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A REMARK ON PLANOHEREL’S THEOREM
FOR BANACH SPACE VALUED FUNCTIONS

STEPHEN VÁGI

1. Introduction.

Convolution operators acting on Banach space valued functions have

turned out to be a useful instrument in proving Lp inequalities, and

have found a nainber of applications in classical analyisis ([1], [9], [10]).
Omitting what is not relevant to the present purpose one can sum-

marize this theory, which runs parallel to that of the scalar case, as fol-

lows :

A) One has to prove that one’s operator is bounded on Lpo for sdme

particular 
B) This information is then used to show that the operator is of

weak type (1,1 ).
C) Finally, the interpolation theorem of Marcinkiewicz allows to

conclude that it is bounded on all Lp’s, 1  ~  po . This note is concer-

ned with Step A.
In the classical case, i. e., when dealing with scalar functions this step

is carried out by taking po = 2 and using Plancherel’s theorem. This is

usually quite easy and seems to be the only effective procedure to handle
this step.

The same approach succeeds also in the applications which the vector
method has found so far. This is so because in every case the Banach

spaces which contain the values of the L2 functions one is working with
turn out to be Hillbert spaces, and Plancherel’s theorem does hold for Hil-

bert space valued functions. Now it is remarkable that Steps B and C,
which embody the difficult real variable aspects of the theory and which
account for its power, in no way depend on the fact that these spaces
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are Hilbert spaces. To sum np : Extending the method from scalar to vector
functions does not effect B and C, however, Step A remains easy only if
Plancherells theorem is available for vector valued .L2 functions. The pre-

ceding observations are intended to motivate the interest in asking whether
that theorem - in a sense to be made precise below - does hold for

quadratically integrable functions with values in a general Banach space,
i. e., one which is not linearly homeomorphic to a Hilbert space.

The purpose of this note is to provide a partial answer to the above

question. It always turns out to be negative if the Fourier transform is requi-
red to be an isometry of L2 ; without this restriction it is negative for a
class of Banach spaces which includes many of those currently used in

classical analysis. Whether the answer is always negative, is not known.

2. I)efituitious, Notations, and Statement of Results.

J57 will be a complex Banach space with norm || || and dual E’. For
will denote the Banach space of E-valued, strongly

mesurable functions defined on the real line B for which

Integration in the preceding formula and everywhere else in this paper
is with respect to Lebesgue measure. General references on analysis in

Banach spaces are the treatises [3] and [4]. For the Fourier

transform of f is defined by the usual integral formula

Note that Ff is a bounded continuous function which vanishes at infinity.
Also, note that Ll (R, E) n L2 (R, E) is dense in L2 (R, E) Plancherel’s

theorem in this context is the statement that for f E L1 jR, E) (R, E) 9f
belongs to L2 (R, E) and that J can be extended to a bounded linear

map of into itself. If this is the case 9 will be said to the

extendable (for E). It will follow easily that if 9 is extendable, it is a

linear homeomorphism of L2 (R, E) onto itself.

The results to be established are the following:
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THEORElBI 1. If can be extended to an isometry of L2 (R, E) onto
itself, then E - its original norm - is a Hilbert space.

THEOREM 2. If 7 can be extended to a bounded linear operator of L2 (R, E)
into itself and one af’ the conditions i, ii, iii listed below is satisfied, then E
is linearly homeomorphic to a Hilbet"t space.

i) E has an unconditional Schauder basis.
ii) The dual, or an interated dual of E, has an unconditional Schauder

basis. °

iii) E is the dual, or an iterated dual of a Banach space, wlcich has
an unconditional Schauder basis.

Theorem 2 can be used to prove the non extendability of J for

concrete spaces E. A number of such results are obtained in Section 4.

3. Proofs.

Before proving the theorems a few simple properties of the Fourier
transform have to be established. Denote by cS the E-valued infinitely often
differentiable functions on R which decrease rapidly at infinity ; i. e., such that

(1-~- ~ I x Ik) (x) 11-+ 0 for Ixl --~ oo, and for all non negative intergers k, l.

Exactly as in the scalar case, one shows that c5 is dense in LP(R, E); 1 ~

S p  oo, and that 97 maps cS bijectively onto itself. Define Jf for f E
E Li (R, E) by (~’f ) (~) = (-~). Again it follows exactly as in the scalar case
that Trestrieted to cS is the inverse of J restricted to c3. If 97 can be extended
to a bounded linear map of L2 (R, E) into itself, then so can 7, and the
two extensions, also denoted by ~’ and ~’, are inverses of one another ;
i. e., is a linear homeomorphism of L2 (R, E) onto itself. The norms of

5 and ~’ are equal and cannot be less than one. The latter fact one sees

by considering f = ug with u E E and g a scalar L2 function. If the norm
of is one, then 7fi is an isometry. It is clear that is extendable if E

is linearly homeomorphic to a Hilbert space.
The proofs of both Theorem 1 and Theorem 2 are hinged on a lemma

which will be proved next. -

LEMMA. 1. Let ‘~ be extendable for E. Let k be a positive integer,
n2 , ..., nk distinct integers, and ’ltt, U2 (not necessarily distinct) ele-

ments of E. Then

lchere c denotes tlae of’ ~’,
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PROOF : Let N be a positive integer. Define a function IN by

where y is the characteristic function of the open interval (0, 1). fN is a simple
^^

function, its Fourier transform fN is

and fN E L2 (R, E). The extendability of y is not needed to show this :
.11

and its factor in the above formula is bounded. The L2 norm of
~~

IN is given by

Consider now the function g defined by

g is periodic of period one, and Lipschitz continuous. Consequently, it has

a Fourier series which converges to it everywhere, and the convergence
is absolute and uniform ([11] Vol. I). Denote its complex Fourier coef6-

cients by - oo  n  oo. By the Lebesgue dominated convergence

theorem (2) becomes .

The Riemann.Lebesgue lemma for Fourier integrals shows that for N appro-
aching infinity all the terms in the above series which have n =4= 0, tend
to zero. Since each of the integrals in this series is less than or equal to

one in absolute value, and since 03A3|cn I converges, it follows that (3) tends
to co . * However
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The lemma now follows from this by observing that

is independent of N, and that 7 is extendable.

PROOF oF THEOREM 1. Let u, v E ~ In Lemma 1 set k = 31 ut = U
u2 = u3 = v ; n~ = 0, n2 =1, n3 = -1. Since J is assumed to be an isometry
(1) becomes

Replacing v by - v in this formula, adding the two identities thus obtai-

ned and finally defining a function 1p of the real variable A by

one obtains

1p is readily seen to be a convex, non-negative, and even function of A.

An easy computation shows that the integrand of (6) is symmetric with
respect to the point 0 = 1/4 . This, the evenness, and the periodicity of the
integrand allow to rewrite (6) in the form

Let t be non-negative ; introducing tv instead of v in (7), one finds that
satisfies the integral equation
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Computation shows that ~o (1) = 8 ~~ ro I~ 12 is a solution of (8). By the change
of variable t cos 2~c 9 = Vs (8) transforms into the equivalent equation

Note that 11’, "Po’ and their transforms 9? and are

locally integrable on [0, oo). To show that 990 is the only solution of (9) in
this class of functions and, hence, "Po the only solution of (8), recall the

following fact ([12], p. 323): If f and g are locally integrable on [0, oo)
and g is not identically zero, then

implies that f (x) = 0 at almost every x in [0, Since the kernel of (9)
is locally integrable, it now follows from the above theorem and the linea-

rity of (9) that 4po is its only solution. Introducing this information into (5),
one obtains

Setting A= - in (10) one finally has2

i.e., the norm of E satisfies the parallelogram identity ; in other words, it

is an inner product norm. Theorem 1 is proved.
Some further preparation is needed before the proof of Theorem 2 can

be taken up. A Schauder basis of a Banach space .E is an unconditional

basis if the series giving the expansion of an arbitrary element of the

space is unconditionally convergent, i.e., if rearrangement does not affect

its convergence or sum. It is known [5] that a sequence of elements

of .~ which span a dense subspace is an unconditional basis of B if and

only if there exists M &#x3E; 0 such that for any finite subsets A, B of the

integers such that B a A, and any choice of y one has
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The following lemma will also be needed.

LEMMA 2. Let ..4. be a finite 8et, (Ua)aeA a family of elements of E,
{k«)«E d a farrtily of scalars. Then

This ,lemma has been announced in a more general context in [8]. For the
sake of completeness a proof will be included for the special case used

here. If .E is the field of complex numbers (11) is easily proved by separa-
ting the left hand side into its real and imaginary parts. Let now f be a
continuous linear functional on E. The left hand side of (11) is the supre-
mum of

taken over all f’s whose norm does not exceed one. Using (12) for the scalar
case, one has

But if then

(13) and (14) together prove (12).

PROOF OF THEOREM 2 UNDER THE ASSUMPTION i): It is no restriction

of generality also to assume that = 1 for all n. Let Eo be the dense
subspace of E spanned by the basis; i.e., Eo consists of all finite linear

combinations of en’s. Define a linear map T : jE~ - 12 by Ten where

is the standard orthonormal basis of l2. . T mapg Eo injectively onto
a dense subspace of 12.

k

Let now Apply Lemma 1 to the vectors = 1,2,...,k,
j=1

and arbitrary distinct integers n, , ... , nk to obtain
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k k

,I = 11, 2, ..., /.,) Lem to , e. and to 03A3 
k 

eLet A = ( 1 , , 2, ... , ;i,nd apply Lemma 2 to Z li ej and to Z lj e,
j=l 

° 

j=l

by setting U1 = Aj ej, = 0in the first case, and e; , kk =
--- in the second. lly (11)

These two inequalities combined with (15) give

(16) shows that T can he extended to all of /fJ as a bounded linear map,
that it has it bounded inverse, and consequently a closed range. Since

l’ (Eo) is dense in l2, T maps E onto l2, i.e., T is a linear homeomorphism
ot’ E 12.

Theorem 2, assuming ii or iii, is a direct consequence of the following

;;. Let F n,ncl G be B a bounded bilinear form
on F x G ivhich i,g determinig jor both F and G. Then 7 is extendable

for F if and only it is extendable foi- G.

OF LEMMA 3. Let f E L2 (R, F), g E L2 (R, G). Introduce

( , ) is a bounded bilinear form on L2 (R, h’i x, L2 (R, G), and norm deter-

mining for hoth 1,2 (R, F) and L2 ( R, G), i.e., tor f E E L2 (R, G)

This is easily checked by a minimal modification of the argument given in
[9] to prove Lemma S of that paper, which states essentially the same fact.

7 can be defined on and For IE c5 (R, F) and

f/ E c5 (R, G) it is readily verified that
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Now if y is extendable for F it has a bounded transpose with respect to

( , ). By (17) this transpose coincides on the dense subspace cS of L2 (B, G)
with 9, i.e., 9 defined on c5 is extendable to L2 (R, G). Since .F and G en-
ter the statement of Lemma 3 symmetrically, this concludes the proof of
that lemma.

To prove Theorem 2 assuming, say condition ii, let be the iterated

dual of B which has an unconditional basis. If 9 is extendable for E, it is

extendable for .B’’ by Lemma 3, B being the bilinear form giving the duality
betwen E and E’. steps one extends 9 to EBn), this space then satis-

fies condition i of Theorem 2 and is, therefore, linearly homeomorphic to a
Hilbert space ; this implies that E itself is linearly homeomorphic to a Hil-
bert space, too. It is clear nov, how to prove Theorem 2 assuming condi-

tion iii. 
_

4. Resuls on Non-Extendability.

In this section, the non-extendability of 7 for a number of specific Ba-
nach spaces will be shown. These examples will illustrate sufficiently how
other cases might be dealt with. The method will consist in using Theorem
2 in combination with the following simple

LEMMA 4. Let E and F be Banach spaces. Let 7 be non-extendable for
I’ ; then it is non-extendable for E if either of the following two conditions

Jrolds.

i) E contains a closed subspace whiclz is linearly homeomorphic to F.
ii) .E can be linearly and continuously onto F.

The statement is obvious in Case i. In Case ii, it follows by duality
from Theorem 2 and Part i of Lemma 4.

a) Sequence spaces. Theorem 2 implies that if E has an unconditional
basis and is not linearly homeomorphic to a Hilbert space, then 7 is not extend-
able. Let c, c0 and 1P 1 1  p  oo denote the familiar sequence spaces.

Except for l°° all there spaces have obvious unconditional bases. Now l p ,
p # 2 is not linearly homeorphic to a Hilbert space ([2], p. 120) So by the
above remark, 7 is not extendable # 2. Since l°° = (l1)’
and (co)’= l1, non extendability follows for 100 and co from Theorem 2. Fi-

nally, c contains co as a direct summand.
b) L P spaces. Let (8, I, p) be a measure space, then J is non-extend

able for LP (S, E, /z), 1  p  oo unless this space is finite dimensional or

p = 2. It is easy to see that LP is finite dimensional if and only if the

collection of measurable sets of positve finite measure consists of finitely
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many atoms, each of finite measure. Excluding this trivial case, one has to

deal with a measure space which contains infinitely many measurable sets

of positive finite measure. One can always find in such a space a sequence
[An) of disjoint measurable sets which have positive finite measure. This is

clear if the space contains infinitely many atoms of finite measure. If not,
let Bo be a measurable set of finite positive measure which is not a finite

union of atoms ; such a set exists by assumption. Ba contains a proper subset
of positive measure B1 such that 0  fl (Bt)  p (Bo). Let Al = Bo - B, ;
p (A,) &#x3E; 0. Now proceed inductively. If xi denotes the characteristic func-

tion of Ai, then (,u Xi has Lp norin one, and the closed subspace of
LP spanned by these functions is linearly isometric to the sequence space
lp . Lemma 4 and a) now imply that 7 is non-extendable. If (8, I, p) is to-

tally sigma-finite, then L°° is the dual of L1, hence 7 is non-extendable

to L°°.

c) Let K be a compact Hausdorff space, and the space of con-

tinuous complex valued functions on K. Let be the dual of this space,

i.e., the set of all finite signed Baire measures on K. 7 is non extendable
for C (h’)’ and hence for C (h’). ’1°o see this let p be a non-zero element of

h 0. is a closed subspace of C (1~)’, J is non extendable for

by b). Hence, by Lemma 4, it is non extendable to C (h.’)’.
d) Let ek (Rn) be the space of hounded continuous functions on Eu-

clidean n-space which have bounded continuous derivatives up to and inclu-

ding those of order k. ek (Rn) is a Banach space with the norm

where 7~ is the, by now, standard multi-index notation for derivatives. Re-
striction to a, line maps ek continuously onto Ck (R). Restriction to the
interval I = [0, 1] ] maps continuously into ok (I). It is easily checked
that this map is also onto. It is known ([0], p. 184) that Ok (I) is linearly
homeomorphic to 0 (I) (The norm of used in [0] is different from the

one above, however, they are easily seen to be equivalent). It follows by
Lemma 4 and c) that F is not extendable for ek (Rn).

e) To conclude, consider the following case: Let H be a complex
infinite dimensional Hilbert space and let denote the algebra of boun-
ded linear operators on H. 7 is not extendable for B (H). To see this, let

A E B (H) be self-adjoint and such that the norm closure of the subalgebra
generated by A is infinite dimensional. (It suffices to take an A whose

spectrum is not a finite set.) From spectral theory one knows that this

subalgebra is isometrically isomorphic to the algebra of continuous complex
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valued functions on a compact Hausdorff space ([6], p. 95), i.e., the Banach
(H) contains a closed subspace for which 7 is not extendable. One

can go slightly further : if C (H) denotes the closed ideal of B (H) consis-

ting of the compact linear operators on H, and if B is separable, it follows
that 7 is not extendable for C (H) because ([7], p. 208) B (H) is linearly
isometric to the second dual of 

De University, Chicago, 
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