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ON TOPOLOGIZING MEASURE SPACES
VIA DIFFERENTIATION BASES

A. M. BRUCKNER (1) and MELVIN ROSENFELD

1. Introduction.

Let (~¥, ,,) he a totally a-finite complete measure space. A number

of authors have developed theories of differentiation of measures on such

spaces by imposing a so called differentiation basis (9, ===» on the space.
Here 9 denotes a tamily of sets of positive measure and =&#x3E; denotes an

abstract notion of contraction of nets (i. e. Moore-Smith generalized sequen-
ces) of sets in 9 to points of 1~. The first to develop such a theory for
abstract spaces was de Possel [15]. Some subsequent developments of the
subject can be found in Morse [12], Denjoy [1], Pauc [14], Hayes and Pane
[6] and Trjitzinsky [1!IJ, [20]. Applications of the abstract theory to the
theory of Martingales can be found in a number of articles including Kric-
keberg and Pauc [10]. The purpose of this article is to develop another ap-
plication of the theory. Specifically, we shall use a differentiation basis to
define, in a natural way, a family 6 of « continuous » functions. The family
6 determines a topology 9 with the property that e is exactly the class of
function which are 9-continuous. We study some of the aspects of this to-

pology in section 4, following short preliminary and motivational sections.
Then in section 5 we consider several examples to illustrate the theory.
We devote section 6 to a study of the case in which the measure space

(X, is separable. In this case there is always a differentiation basis
of a particularly simple kind-a so called net structure. We show in this case
that 9 can be pseudo metrized by a pseudo metric ~O which is in certain

ways compatible with the measure /~. In particular, the class e is suffi-

ciently large to approximate the class of all measurable functions in the

Pervenuto alla Rodazione il 31 ottobre 1968.
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Lusin sense. It follows from onr results that if one considers differentiation

with respect to net structures in abstract measure spaces (see for example
illmroe [13] or Gurevic and Shilov [4]) one may assume the space to ben

pseudo metrized in such a way that the theory of differentiation with res-

pect to nets in metric measnre spaces (see, for example, Saks [17]) applies.
We end with section 7 in which we state a number of open problems.

2. Preliminaries.

Throngliout this article (X, It) will denote a totally -finite measure
space and (9, =&#x3E;) will denote a differentiation basis for the space. This

means that J is a family of sets of finite positive measure and &#x3E; is a

notion of contraction of nets (gPneralized sequences) of sets in Y to points
of X, such that the following two conditions are satisfied :

(i) if x E X, there exists a net of elements of 9 contracting to x;
in symbols, 7. ==&#x3E; x.

(ii) Any subnet of a net contracting to a point x also contracts to x.
Let a be a real valued function defined (at least) on the sets of .7. We

define the upper and lower derivatives of n with respect to It at a point
by

, l ..... B

and

where the limits superior and inferior are taken over a net contracting
to x and the supremum and infimum are taken over the family of all such
nets.

If D o (x) and are finite and equal, we denote this number by
D a (x) and we say 7 is differentiable with respect at x and we call

Di (x) the derivative of a with respect to It at x.

Many authors have studied the problem of determining conditions on

a differentiation basis which will guarantee that the Fundamental Theorem
of Calculus is valid. Although the settings vary somewhat from one author
to another, an irreducible requirement for a satisfactory Fundamental Then
rem is that (~, -==&#x3E;) posses a certain weak Vitali property. (See, for exam-

ple, Hayes and Pauc [6J for an exhaustive study of this question). This

property can be stated in several forms. We state below, the form most
convenient for our purposes. In the sequel, some of our results will involve

this Vitali property ; others will not.
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DEFINITION 2.1. A subset of J is called a Vitali covering of a set
A provided for each x E A there exists a net of elements of flfl, say
(Ja (x)), such that Ja (x) ==&#x3E; x.

Now let /A* denote the outer measure generated by p.

DEFINITION 2.2. The differentiation basis (.9, ===&#x3E;) possesses the weak

Vitali property provided the following condition is met: If A is any subset

of X, E &#x3E; 0, and V is a Vitali covering of A, then there exist a countable
coltection (Jk) of sets in V such that p* (A) = n u Jk) and (Jk) 
~(~)+6.

If, in the preceding definition, the sets (Jk] can be taken to be dis.

joint, we say that (El, =» possesses the strong Vitali property.

3. A inotivating exainple.

In section 4 we shall develop a notion of continnity in measure spaces
which we wish to motivate in the present section.

Let be the linea,r Lebesgue measure space and let 9 denote
the family of open intervals. Let Ik:.--&#x3E;x mean that x E Ik for all k and
lim 3 (Ik) = 0, where 6 (Ik) denotes the diameter of Ik . (Note that contrac-
k - 00

tion involves ordinary sequences in this example). Suppose f is summable

on sets of finite measure and a is defined for all E E 9N by a (E) = f dp.
E

Then for almost every real number x, D a (x) = This li-
’k =&#x3E; xU (Ik)

mit where it exists, is just the ordinary derivative of the function F defined
x

by F (x) = f (t) dt. If the limit exists for all x, then f is just the ordinary
0

derivative of F. In this case, f need not be continuous, of course. It is

easy to prove, however, that f is continuous if and only if for every x, and
every sequence (Ek) of sets of positive measure such that x E Ek for all k

/ .n 
B

and lim b = 0, we have lim Fk) = f (x). One can use this criterion
k - oo k - ooU (

of continuity as a definition of continuity at least in the special case at

hand. It is this type of notion which we wish to take as our basic notion
of continuity. We shall see that this notion meets the minimum require-
ment of any satisfactory notion-namely, that in a large number of cases of

important measure spaces already furnished with a topology ~, a differen
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tiation basis can be constructed which gives rise to a famliy of continuous
functions which generated 9.

We mention in passing, that in certain settings, the class of approxi-
mately continuous functions admits of a similar characterization : a bounded

function f is approximately continuous if and only if lim = / (.r)
k &#x3E; P, (Ek) 

°

for every sequence of sets of positive measure converging to x regularly.
We shall not pursue these ideas further in the present article, but we refer
the interested reader to Rosenthal [16].

4. The class eof continuous functions and its topology .~.

Following the ideas suggested by the preceding section, we now define
the class e.

DEFINITION 4.1. A net of sets of positive measure is said to con-

tract to a point x provided for each a, there exists a set Ia E ~ such that
Ea c Ia and Ia =&#x3E; x. We write Ea =&#x3E; x.

Now let f be any function which is summable on every set of finite

measure and let a be its integral.

DEFINITION 4.2. The function ,f° is said to be in class C provided

for every x E X and every net lEal contracting to x.

Ea (E.) 
f( ) ~ y ~ ~ g

The functions in e admit of a very simple characterization.

THEOREM 4.3. A function J’ is in G if and only if for every xo E X if

~c  f (x~)  b, and then there exists a fl such that if a &#x3E; fl then
ac f (x) for almost every x E Ia .

PROOF : Suppose f E C, a,  f (xo) (xo) =&#x3E; xo yet frequentl,y
p (Aa) &#x3E; 0 where Aa = {a; E (xo) : f (x) &#x3E; b). The subnet IB,j of the sets A.

with positive measure contracts to xo , * Hence
j

contradicting the fact that J’E e. Thus eventually ~u (Aa) -:- 0. Similary,
eventually p (x E Ia (x~) : f’ (x)  a)) = 0, and necessity follows.

Conversely if f satis6es the conditions of the theorem, Aa =&#x3E; xo and

a  f (xo)  l~ then eventually and hence

A,,,

which completes our proof.
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We shall find it convenient to use the notation A d B to mean

p (A B B) = 0. Thus, our criterion in Theorem 4.3 can be written in the form
I~ (± f -’ ([a, bl).

REMARK : The « almost everywhere » inclusion in Theorem 4.3 can be

replaced by strict inclusion provided (9, ==&#x3E;) satisfies the following condi-
tion : if Ia -&#x3E; x, y E lfl for some fl, and Ja =&#x3E; y then for y sufficiently
large p 0. To see this suppose f E C and a  f (xo)  b. By Theo-
rem 4.3 for a sufficiently large Ia ~a-, b]. If for some e &#x3E; 0 there

exists a y E Ia (xo) such that f (y) &#x3E; b -f - ~ and if Ifl (y) -&#x3E; y, then eventually
[b -~- E, oo). Hut by hypothesis n Io. (xo) has positive measure

and hence cannot be a.e. contained in tvo disjoint sets contradicting the

existence of y. So for sufficiently large oc, f (y) c b for all y E la (xo). Similarly
for sufficiently large a, a c ~’ (y) for all y E Ia (xo). Hence 10. [a, b].

DEFINITION 4.4. Let 9 be the smallest topology with respect to which
all functions ine are continuous.

THEOREM 4.5. The class of functions continuous with respect to the

topology ~’ is exactly the class e.
~ 

PROOF: Clearly each is continuous in the 9 topology Conversely,
if g is continuous in the 57 topology and a  g  b, we must show that
if Ia (xo) &#x3E; xo then Ia (xo)c g-1 [a, b] for oc sufficiently large. But g-l (a, b)
is an open set containing xo and therefore from the definition of 9,
xo E fi 1 (at’ bl) n ... n.fn-l (a~ , g-1 (a, b) for some functions It , ... fn in e
and real bi , ... , b~ . But then there exists an 8 ] 0
such that for each i =1, ... , n, ai + 6  bi - E and therefore for a

sufficiently large 1,, 
’ 

[aj - 8] n ... [an + E, e] c

bl) n ... g [a, b] which completes our proof.
We note that the sets of the form .(-1 (0, oo) for form a basis

. for 9 and that 9 is completely regular. These are strictly topological
results true for any family of functions generating a topology.

REMARK : There are other ways of topologizing X. For example, the
family 9 generates a topology for X. Our approach has the virtue, howe-

ver, that changing the elements of 9 on sets of measure zero does not

change the topology. ’We assume, of course, that a net of « changed &#x3E;&#x3E; sets

Ia contracts to a point x if and only if the net of original sets Ia con-
tracts to x. Changing elements of 57 on sets of measure zero can alter the

topology generated by the sets in 9. For example, in euclidean 2-dimen-
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sional space, the family of open squares generate the euclidean topology
while the family of closed squares does not. It is easy to verify that using
our approach, either of these families gives rise to the euclidean topology.
Under certain conditions, the topology generated by 9 is the same as the

topology determined by e. In particular, this is always the case when

(9, ===» donotes a net structure (see section 6, below).

THEOREM 4.f. If (9, ===» possesses the weak Vitali property, then

every open set is mesurable.

PROOF : A necessary (although not sufficient) condition for a set W to
be i5.open is that for every p E W and ~2013&#x3E;~, eventually Iac W. Let W
be an open set and let flfl be the subset of 57 consisting of those 

essentially contained in IV (i.e., It W). Since the differentiation basis

satisfies the weak Vitali property, there is a countable collection 

such that p* J") = 0. Since (,],, B, T~ ) = 0 for every n, W differs

from a measurable set by a set of measure zero and therefore is measurable,
which completes our proof.

Even under the hypothesis of Theorem 4.6, it is possible for 57 to be
trivial. The reason for this is firstly that the abstract notion of contraction
is very general and secondly that the weak Vitali property is independent
of the meaning of contraction on any null set. Thus even if one has a very
natural notion of contraction, one can change this notion on a null set in
such a way that one does not destroy tle Vitali property but does destroy
any desirable property of 9. See Example 5.5.

It is natural question to determine those topological spaces (X, 9) that
arise as in Definition 4.4. They are not completely arbitrary. Clearly 9
must be completely regular. Moreover, since (,r, p) is a-finite and every

open set conta,ins a set of positive measure, ,~ has property (s) (for Souslin).
That is, any disjoint collection of sets in 9 must be at most denumerable.
This property is called the countable chain condition in Kelley [8]. If 57 is
a metric topology, then J has property (s) iff 9 is separadle iff every
isolated set (i.e. a set whose relative topology is discrete) in X is denume-
rable iff ,~ is second countable. Clearly a separable metric space has the

following property : any non-denumerable collection of open sets has a non-
denumerable subcollection with a nonempty intersection. After Marczewski

[11] J we say J has property (lc) if any non-denumerable subcollection of J
has a non-denumerable subcollection c5 such that any two

sets S1’ 82 in c5.
Any collection of sets (not necessarily a topology) satisfying condition

(k) also satisfies condition (s). But the converse is not true : Sierpinski [18]
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gawe an example of a collection 9( of sets such that any uncountable sub-
collection of CK contains two sets which are not disjoint and two sets that
are disjoint. Hence ’K satisfies (s) but not (k). Knaster [9] shows that if ex
is the class of intervals of a continuous ordered set, then the problem (s)
implies (k) is equivalent to Souslin7s problem [9]. we show nov that 9 has
property (k), a consequence of the fact that since (X, is a-finite, the

collection of sets with positive measure has property (k).

DEFINITION 4.7. A collection cK ot’ sets will be said to have property
if any n distinct sets from 9( must include two which are not disjoint.

LEMMA 4.8. I~et n &#x3E; 2 and let 9C be a non-denumerable collection of

subsets of X such that ’X satisfies property (D,~+~). Then there is a non-

denumerable subcollection C)(1 of ex satisfying property (Dn).

PROOF : By Zorn’s lemma there exists a snbcollection s7l of cK maximal

by inclusion among those subcollections of ~h~ satisfying property (D,,). If

!rl is non-denumerahle, then let K1 =A Thus suppose A is denumerable.

By the maximality of for each of the sets E E there is a collection

of n -1 distinct sets of A, say such that (E, j4~ ... , Ain-l }
is pairwise disjoint. Since is non denumerable and the set of collections

of n -1 sets from is denumerable, there is at least one collection of

it-1 sets from say ... , 7 Ai._, such that 
is pairwise disjoint) is non denumerable. But 93 satisfies property (D2) and
therefore certainly property (D,,). For if B, and B2 are distinct sets in 

cannot be disjoint since 93 satisfies property 
and the only two sets that could possibly meet are B1 and B2. Thus we
let which completes our proof.

The following corollary answers affirmatively a question posed by Marc-
zewski [11 J.

COROLLARY 4.9 If (X, It) is a-finite, then (E E ,u ( E) ~ 01 satis-

fies property (k).

PROOF : It is elementary to show that we may assume a (.X ) &#x3E; 00. If

d is any non-denumerable collection of sets in 9N with positive measure,
then there exists an s &#x3E; 0 such that ~C = ~.E E cS : ~, (E ) &#x3E; ~~ is non-denu-

merable. cK satisfies property if and therefore by Lemma
4.8 9( contains a non-denumerable subcollection satisfying property (D2).
Hence no two sets in CK are disjoint which completes our proof.
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.5 ) Examples.

Vre sliall now give several examples of topological spaces (X, 9) arising
as in Definition 4.4 witli the view of showing which topological properties
are not consequences ot’ our definition. Since we are most interested in

those topologies which arise from differentiation bases satisfying the weak

Vitali condition, most of’ our examples will be of this type. First a simple
observation.

THEOREM fi.1. Let (.V.9/f.M) be a a-finite measure space. If J0 is a

completely regular topology such that each nonempty open set is

measurable and has positive measure and if (9, -» is a differentiation

basis such that each IE:; is 90 open and means the set (Ia) is
directed by inclusion and forms a .70 neighborhood basis for p, then 90 = 9,
the topology of Definition 4.4.

PROOF : Since both ,7 and 1-17,) are completely regular we need only
show the two topologies have the same class of continuous functions. Since
the differentiation hasis satisfies the conditions of the remark following
’rheorem 4.a, a function .f is J-continuous if and only if 

x E X, there is a ,’70 open set containiug x which j’ maps into (a, b), and this
of course is true if and only if ,f is ’i) continuous which completes our

proof.

EXAMPLES ;&#x3E;.2. Ijet x5 be a set of cardinality greater than c, the car-

dinal nnlnher of’ the real numbers. Let -LT" = with the product topology.
We define It on rectangles by a (~x : x E Ei for all i = 1, ... , n?) =
= 1 (E2) ... A wliere fJn are Lebesgue measurable subsets

of [0, 1] J and I is Lehesgue measure on We then can extend p by
Caratheodory’s method. Theorem 5.1 applies if’ we let the differentiation

basis consist ot’ the open sets. Thus is not separable nor first coun-
table. as far m we know at present, (X, 9) cannot be defined

via a differentiation basis that satisfies the Bveak ’Titali condition.

It is interesting to note that in the classical torus space, [0, with

.’1 the set of positive integers (see 2, I 7~), one can construct a differentiation
basis for which the Vitali theorem holds. This basis does not give rise to
the product topology, however. The differentiation basis is not formed by
taking the family of all « intervals &#x3E;&#x3E; as elements of the differentiation basis.

(Here an interval is any rectangle as defined above with each Ei being an
interval in [0,1]). In fact, Jessen [7] has shoByu that this family of intervals
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does not satisfy the weak Vitali property even for the case where S is the
set of positive integers.

EXAMPLE 5.3. Let X be the set of pairs of real numbers, and let 90
be the topology generated by all sets of the form ((x,  x  a2 and

With (X, p) being the Lebesgue measure space and the
differentiation basis consisting of the above defined half open rectangles,
the conditions of 5.1 are met and (X, 9) = (X, 90), This differentiation basis
does satisfy the Vitali condition. The space (X, 9) is separable, has an un-
countable isolated set, is first countable and is not normal. For the analo-

gous space in one dimension the continuous functions are easy to describe:

they are those functions which in the usual sense are continuous from the

right.

EXAMPLE 5.4. Let X = (-1,1 ) ~ (-1,1 ) and be the Borel sub-

sets of X and let ,u (A) = Â2 (A) + A, (A) for A E 91(o where Â.2 (A) is the two

dimensional Lebesgue measure of A and Â.1 (A) is the one dimensional Le-

besgue measure of ).rE(20131,1):(~0)6~L). Let 01l be the p-completion of
We define as a differentiation basis (9, ==&#x3E;) : Ia =&#x3E; p = (xo, yo) means

IIaB is a subnet of the sequence Ik = (x, y) : (x - x o )2 +’ (y - k )
(xo , yo) + (0, 0) and Ik = (xy y) : x2 + Y2  k or y = 0 if (xo, yo) = (0, 0).

( k

The continuous functions for this differentiation basis are just those func-
tions continuous in the ordinary sense and which are constant on the

x-agis. The topology (X, 9) they induce is separable, not Hausdorff and

not first countable.

EXAMPLE 5.5. Let X = (-1,1) with Lebesgue measure p and differen-
tiation basis consisting of open intervals where Ia =&#x3E; x for x j 0 means
x E Ia for all a and diam (Ia) converges to 0 and 10. -&#x3E; 0 means Ia = X for
all a. The continuous functions for this differentiation basis are constant

and hence (X, 9) is trivial.

EXAMPLE 5.6. Let (X, 90) be defined as follows : let X be the real line.

A Lebesgue measurable set is 9o open if each point of the set is a point
of density of the set. Let ,u be Lebesgue measure. We let (9, -&#x3E;) consist

of those 9o-open sets A such that p (A)/diam A &#x3E; 1 with the 5.1 sense ofo - 

2

contraction to a point. Then (X, 90) is completely regular and the 

tinuous functions are just the approximately continuous functions (see
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Goffmann, Nelrgebauer, and Nishiura [3J. The differentiation basis posseses the
weak BTitali property since the family of’ intervals possesses this property
and ~7 is regular with respect to the intervals. Thus the conditions of’

Theorem ,).1 are satisfied so that (a, 9) = (.~, This topological space is

not separable or first countable. In this example no differentiation basis

can be chosen so that it yields the 90 topology and is also  sequential »
in that ik ~ -&#x3E; p for each p E ..or.

6. Separable measure spaces.

We turn now to the case in which (A", /I,) is a separal&#x3E;le and a-finite
measure space, and use mal;e that assumption throughout this section. We
shall construct a very simlrle sort of differentiation basis called a net struc-
ture for hoich the strong Vitali property holds. A net structure can be

described as follows.

Let i( = I ~Z2 , I "-I where each 9Lt is a partition of’ X into sets of

tiuite positive measure and refines Ni. ‘Ve call 9i a net structure.
define a differentiation basis (9, ===:» from as f’ollov.s : 

means jlal is a subnet ot’ the sequence likl where Ik is the element of’ 0ik
containing x. 9 has the following property : For any subcollection of J
there is a subcollection O of C),9 such that the elements of 0 are mutually
disjoint and U 

&#x3E; 
1= U 

» 
I. This is a consequence Of’ the fact that fur

I1, Iz E , is either °, [1 or l2 . For vre merely let 

for any otler than I ~. V’e now construct a net for 

first with the assumption that  oo.

Since (.Y~ 0rr, It) is separable., there exist a countable collection s7l = (An)
of sets in 9X such that tor 0 E 9K, there exists an it such
that p- :t,E) ~ E. define 9lu to be the partition of’ .~ obtained by the
relation x « y if and only if for every k = 1, ... , n x E Ak if and only if

y E Ak. 9l C)Z2 ’ ... ) only fails to be a net in that some of the ele-

ments in U 0f, might have zero measure. But by an obvious argument we
can redefine each A~ &#x26; on a set with measure zero so that every element in

has positive measure. Now if u (X) = oo, since x’ is a-finite, we may
write X as the disjoint union of sets X,, with finite positive measure and
each Xu having’ a net = ...). We define 0Z = ...)

00

where U where Ni = 
»=i 

i

We now show that (9, _&#x3E;) satisfies the strong Vitali condition : Let

B be any subset of X, not necessarily measurable. Let B be a measurable
cover of B. Because of the a-finite condition, it suffices to suppose B has
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finite measure. Let be a Vitali covering of B. Let It.) be a sequenee of
positive numbers. V’e choose inductively An, , .., so that  £1 ,

_ 
k 

_

,u B B .U An A,,,  +1. Then for 

u (C) (Anj) (B) + ~ + (£1 + (£2 + ~3) + (~3 + E4) + .... Hence

given e ~ 0, there exists a set C, a union of sets from and therefore

a union of elements of 9, such that p (B g C) = 0 and ,u (C)  ~u (B) -~- ~.
Let Q denote those sets of’ contained in C and let C’ = IUQ I. Since C-0I q

is a Vitali covering of B, B B C’ = B B C. Thus p* (B B C’) = 0 and

,u ( C’)  ,u~‘ (B) -f - E. Since C’ can also be written as a countable disjoint
union of elements of flfl, =» satisfies the Vitali condition.

Since the strong Vitali property holds for ~’, it is true (see de Possel

[15]) that the Fundamental Theorem of Calculus holds for every summable

function f ; that is, if/ is summable on X and a (E) = for every
E

then a.e..

Now let J be the topology generated by C. Each I E J is open. In

fact, 9 forms a base for C. To see this, first, since the conditions of the

remark following Theorem 4.3 are satisfied, if ~ is an open set and p E IV,
then there exists I E 9 such that p E I c W. Conversely if IE 9 and X is

the characteristic function for I, then X is continuous. For if 10 ==&#x3E; ~ then
either eventually X == 1 on 7~ or x = 0 on Ia depending on whether x is
in I or not.

We now show that the topological space (X, ~’) is pseudo-metrizable.
For each n we define g,, (x, y) to be 0 if x and y belong to the same set

in and to be 1 if not. We define e (x, y) . (X, 9) is topo-G ° 
n=1 2n ) P

logized by this pseudo metric : for let y E X and let h1 be the element of

%n containing y. Then

It is easy to check that Lo is a metric if and only if each decreasing
sequence of sets of 9 contains at most one point, and that (X, Lo) is com-

plete if and only if each decreasing sequence of sets of 9 contains at least
one point.

We note that a decreasing sequence of sets in 57 might intersect in

more than one point. Unless this intersection is an atom, however, it must

have measure zero. (This is a consequence of the separability of the measure
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space and the way in which the net structure was defined). In any case,
the derivative of an integral is constant on any such intersection.

We turn now to certain questions concerning the « compatibility &#x3E;&#x3E; of

p with 9. Although ft need not be a regular measure (see the example
following Theorem 6.2 below), it does satisfy a certain regularity condition.

THEOREM 6.1. If and 8 &#x3E; 0 there exists an open set G such

that d G ~: )  E.

PROOF : V’c first recall that if I and J are in 57 then either In J 0
or I c J or J c I. It follows that the characteristic function of a set I in

57 is continuous, and therefore I is both open and closed. Now, if A is

any set in the countable basis for (X, ~Y~, ¡t), our construction of the net

structure shows that A is a finite union of’ sets in 9. Therefore A is open
and closed. Because of Q-finiteness, tor £1 &#x3E; 0 and B E c)k there exists a set
A is a countable union of sets in !7l and hence open such that

p (A o E)  El. It follow from a straightforward argument that there exists
a set B which is a countable union of sets in .9l (and therefore open) such
that .E 6 B and /t (B p E)  e which completes our proof.

We now show that the class of continuous functions is sufficiently
large to approximate the class of’ measurable functions in the Lusin sense.

In this connection we should say that Lusiii’8 theorem takes several forms,
the strongest of which is that for E &#x3E; 0 and for f an arbitrary measurable
function there is a continuous function 9 such that f = g on an closed set
whose complement has measure less than 8. This result does not hold in

our setting (see the example following Theorem 6.2), but it does hold it’

one replaces the word ( closed &#x3E;&#x3E; by the word K measurable ».

THEOREM 6.2. 0 and let f be a mesurable function on the
separable a-finite measure space (X, 07[, p). Let 9 be the net structure defined
above. Then there exists a continuous function g and a measurable set E
such that ~(~"B on E.

PROOF: First suppose (X, is a finite measure space. Let f =
n

= I where ~k E 9/1 for all k == 1, ... ,it and = ~ for i ~ j.
k=1

Let 6 &#x3E; 0. We choose F1 , F2 , ....., Fn from A such that /t (Fk ð. for

k =1, ... , n. Then each Fk is closed and open. We define g to be continuous
such that g on F1 , 9 on F2 B F1, ... , g = an on F’1 B (Pi U ... U F1&#x26;-l).
Now
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Since (Ek) is a disjoint collection and p a for all k = 11 .... , n,
therefore

Since a is arbitrary, we see that for any E &#x3E; 0 there exists a continuous

function g such that f~ (’ x : f (x) ~ g (x) ~ ) ~ ~.
Let 1~ be a measurable function. By Fgoroff’s theorem, for all n there

exists a step function n such that x x (x) P f B( | fn ( ) ( &#x3E; 
n n

But the above paragraph shows that there exists a continuous function gn

such that x E X : gn (x) - h (x) &#x3E; 2013{) 2013 . Hence the sequence (9n)(I n n

converges to h in measure. Hence a subsequence converges to h almost

uniformly. For each k let gk = gnk and 0 be given. There exists a

set E such that u (X E)  E and gn 111 converges uniformly to h By
passing to a subsequence of ign) if necessary, we may suppose sup I g. (x) -

xEE

- h(k)  Leth (x) 
2 

n. Let

K is a closed set containing E and gn converges uniformly on K to a

function 9 J~ which is the restriction of a continuous function g. Then

We now consider the general case in which (X, ,u) is a-finite. Since

X is a disjoint denumerable union of open sets of finite measure, any func-
tion which is continuous on each of these sets is continuous on X. The

result follows immediatly.
We next show that the somewhat stronger form of Lusin’s theorem is

not valid, namely we cannot insist that the set E be closed. More precisely :
there is a finite separable measure space (X, 9N, ~,) and a net structure on
this space and a measurable function of" so that any closed subset g of X such

is continuous must satisfy ,u (~) = 0. To see this let X = [0, lj,,u
be Lebesgue measure, c5 denote the Lebesgue measurable sets and let M be
a subset of X such that = 0 and =1. Let 9N be the a-ring
generated namely and define p on

c)K by /7((j67 n M) A = IA (F). The verification that (X, ~~, ~c) is a measure
space extending (X, cS, p) is sketched in Halmos [5 : p. 71]. (X, is separable
and c5 is dense in 9N, = u (( FB M) A (FBM)) = 0

3. An2aali della Scuola Norm. Sup. - Pisa.
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If we choose as a countable dense set for 9k, a sequence (Ant from cS, then
the open sets in the topology generated by the net structure determined by

are elements of c~. Any continuous function must then be cS measurable.
We let ./’= XH. Suppose iT is a closed subset of X and is continnous,
say the restriction of’ the continuous function gj to K. Then M =

= Ix E X : g (x) =1 ) n K and is measurable. Thus both K n M and are

measurable. Since u* (M) = 0 we have u (K n M) = 0 and since fl* (M) = 1
we have p (gBM ) _: 0 and hence ,u (g ) = 0.

REMARK : It follows immediately from Theorem 6.2 that every measurable
function is equivalent to a function in Baire classe 2. We need only note
that if/is measurable, there exists a sequence of’ continuous functions

which converge a.e. to./. The function g (x) = lim sup gn (.1’) in then in Baire° 

n -. 00 

’

class 2 and g == / a.e
Several authors have written developments of the theory of differentiation

of integrals with respect to net structures in abstract measure spaces ; see,
for exalnple, the texts Munroe [13] and Gurevic and Shilov [4]. The results
we established above indicate that for certain purposes one may assume the

measure space to be pseud metrized. In particular, the net structure we

constructed satisfies all the conditions required of a net structure in metric
measure spaces of finite measure as developed in Saks [17]. (The fact that
we have a pseudo metric space rather than a metric is inessential to Saks’

development). Thus the results that Saks obtains are valid in our setting.

7. Open problems.

The results of the previous sections suggest a number of problems.
We list a few of these.

1. For a fixed measure space (X, ¡.,t), under what circumstances will
two differentiation bases give rise to the same topology?

We saw in sectioo 6 that a separable measure space always admits of
a differentiation basis for which the strong Vitali property holds and such
that the resulting topology 9 is pseudo-metrizable. These results suggest
the following question.

2. When is 9 metrizable’ .

We say in section 4 that 9 must always satisfy certain conditions

related to, but weaker than separability. In case (X, gll, ~c) is separable, the
topology 9 derived from the net structure is clearly separable. This is true
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for any metric topology coming from a differentiation basis. On the other

hand, Example 5.2 shows 9 need not be separable in general.

3. Under what circumstances must 9 be separable

4. Let (X, p.) be a measure space furnished with a topology 9-.
Under wath circumstances does ~~ come from a differentiation basis with

a Vitali property? (Theorem 5.1 shows that if J* is completely regular and
every nonempty open set has positive measure then 9* comes from a diffe-
rentiation basis, but such a basis need not possess a Vitali property).

5. If (X, 9K, p) is separable, then as we saw in section 6 the net structure
gives rise to a pseudo~metrizable topology. It is clear that if the cardinality
of ~’ is larger than c, this pseudo metric cannot be a metric. If the cardinality
of X is el must it always be possible to construct that net in such a way
as to make e a legitimate metric’



258

REFERENCES

[1] A. ÐENJOY, Une extension du théorème de Vitali, Amer. J. Math. 73 (1951), 314-356.
[2] S. ENOMOTO, Dérivations par rapport à un système de voisinages dans l’espace de tore, Proe.

Japan. Acad. 30 (1954) 721-725.

[3] C. GOFFMAN, C. J. NEUGEBAUER and T. NISHIUHA, Density topology and approximate
continuity, Duke Math. J. 28 (1961) 497-505.

[4] GUREVI010D and SHILOV, Integral, Measure and Derivative, Prentice-Hall, Inglewood Cliff.

New Jersey, (1966).
[5] P. R. HALMOS, Measure Theory, D. Van Nostand Company, New York N. Y., 1950.

[6] C. A. HAYES and C. Y. PAUC, Full individual and class differeaitiation theorems in their
relations to halo and Vitali properties, Canad. J. Math. 7 (1955) 221-274.

[7] B. JESSEN, A remark on strong differentiation in a space of infinitly many dimensions,
Mat. Tidsskr. B. (1952), 54-57.

[8] J. KELLEY, General Topotogy, D. Van Nostrand Company, 1955.
[9] B. KNASTER, Sur une propriété charactéristique de l’ensemble des nombres réels. Rec. Math.

MOSCOW 16 (58) (1945) 281-290.

[10] K. KRICKEBERG and C. PAUC, Martingales et dérivation, Bull. Soc. Math. France 91

(1963) 455-543.

[11] E. MARCZEWSKI, Séparabilité et multiplication cartesienne des espaces topologiques, Fund.
Math. 34 (1947) 127-143.

[12] A. P. MORSE, A theory of covering and differentiation, Trans. Amer. Math. Soc. 55 (1944)
205-235.

[13] M. E. MUNROE, Introduction to measure and integration, Addison-Wesley, Cambridge,
Mass., 1953.

[14] C. Y. PAUC, Ableitungsbasen, Prätopologie und starker Vitalischer Satz, J. Reine Angew.
Math., 191 (1953) 69-91.

[15] R. DE POSSHL, Derivation abstracte des fonctions d’ensemble, J. Math. Pures Appl. 15
(1936). 391-409.

[16] A. ROSENTHAL, On Differentiation of Integrals and Approximate Continuity, Bull. Amer.
Math. Soc 48 (1942), 414-420.

[17] S. SAKS, Theory of the Integral, Monographie Math. Warsaw, 1937.

[18] W. SIERPI0144SKI, Sur un probléme de la théorie générale des ensembles, Fund. Math. 33

(1945) 299-302.

[19] W. J. TRJITZINSKY, Théorie métrique dans les espaces où il y a une mesure, Mémor. Sci.

Math., Fase. 143. Gauthier-Villars, Paris, 1960, 119 pp.

[20] W. J. TRJITZINSKY, La Régularité Moyenne dans la théorie métrique, Mémor. Sci. Math.,
Fasc. 157, Gauthier-Villars, Paris, 1965, 88 pp.

Univer8ity of California
Santa Bat"bat"a, Calif.


