Annali della Scuola Normale Superiore di Pisa Classe di Scienze # ADALBERTO ORSATTI # A class of rings which are the endomorphism rings of some torsion-free abelian groups Annali della Scuola Normale Superiore di Pisa, Classe di Scienze $3^e\,$ série, tome 23, n^o 1 (1969), p. 143-153 http://www.numdam.org/item?id=ASNSP_1969_3_23_1_143_0 © Scuola Normale Superiore, Pisa, 1969, tous droits réservés. L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ # A CLASS OF RINGS WHICH ARE THE ENDOMORPHISM RINGS OF SOME TORSION-FREE ABELIAN GROUPS ## ADALBERTO ORSATTI (*) #### Introduction. A well known result of A. L. S. Corner ([2], Theorem A) states that every countable, reduced, torsion-free ring A is isomorphic with the endomorphism ring E(G) of some countable, reduced, torsion-free group G. (A ring is called reduced and torsion-free if such is its additive group). In this paper we establish a similar result for a wider class of rings, precisely for the class Δ consisting of locally countable, reduced, torsion-free rings. We say that a torsion-free ring A is locally countable if for every prime number p not dividing A (i. e. $pA \neq A$) the ring $A/p^{\infty}A$ is countable, where $p^{\infty}A$ is the intersection of the ideals p^nA for every natural number n. (Observe that this definition involves only the additive structure of A). The rings of class Δ are characterized as follows (see Proposition 1). A ring A belongs to Δ if and only if A is isomorphic with a pure subring of a direct product $\prod_p R_p$, $p \in P^*$, where P^* is any given set of distinct prime numbers and R_p a countable, reduced, torsion-free Z_p -algebra. $(Z_p = \text{ring of rationals whose denominators are prime to } p).$ The following generalization of Theorem A is proved: THEOREM A*. Let A be a locally countable, reduced, torsion-free ring. Then there exists a locally countable, reduced, torsion-free group G, of the same cardinal as A, whose endomorphism ring E(G) is isomorphic with A. Pervenuto alla Redazione il 23 novembre 1968. ^(*) Lavoro eseguito nell'ambito dell'attività dei Gruppi di ricerca del Comitato Nazionale per la Matematica del C. N. R. The proof of this theorem relies on Corner's methods and ideas, but does not make use of Theorem A: in fact it is obtained by modifying the proof of Theorem A by means of some localization and globalization techniques as exposed in [5]. It is clear from the above characterization that every ring of class Δ is of cardinal $\leq 2^{\aleph_0}$, so that one might wonder if every such ring belongs to the class of the endomorphism rings of *countable*, reduced, torsion-free groups. This last class of rings has been characterized by Corner himself in Theorem 1.1 of [3]. The answer is negative, as proved in Proposition 2, where we construct a ring $A \in \Delta$ with the following properties: $|A| = 2^{\aleph_0}$ and if A = E(G), with G a reduced torsion-free group, then $|G| \geq 2^{\aleph_0}$. It is still an open question if the rings of class Δ satisfy the hypotheses of Theorem 2.2 of [3], which generalizes Theorem 1.1. ## 1. Preliminaries. All groups considered in this paper are abelian and additively written; rings are associative and with an identity, modules are unitary. If $f: B \to A$ is a ring homomorphism, f always maps the identity of B into the identity of A: if B is a subring of A, B contains the identity of A. We will regard sometimes the ring possessing only the zero element as a ring with an identity. Let $\{H_i\}$ be an indexed family of groups (rings). We denote by $\prod H_i$ the direct product (= cartesian product) of the H_i and, for every $x \in \prod H_i$, by x_i the *i*-component of x ($x_i \in H_i$). $\sum H_i$ will be the subgroup (ideal) of $\prod H_i$ consisting of those elements whose components are almost all zero. We often attribute to a ring some properties of its additive group; for istance we say that the ring A is reduced, torsion-free, etc...; or that a subring of A is pure in A. By a subgroup of A we mean a subgroup of the additive group of A. Let N be the set of positive integers and P the set of prime numbers $(P \subset N)$. For every group (ring) H and for every $p \in P$, $p^{\infty} H$ will denote the intersection of all subgroups (ideals) $p^n H$, $n \in N$. Every group (ring) is a topological group (ring) in the *natural topology* obtained by taking the subgroups (ideals) nH, $n \in N$, as a basis of neighbourhoods of 0. This topology will be our main tool; for its principal properties see [2]. We recall here some of them. Let H be a reduced torsion-free group (ring): then H is Hausdorff in the natural topology. Let L be a subgroup (subring) of H and endow H with the natural topology. If L is pure in H, then the natural topology of L coincides with the relative topology. L is dense in H if and only if the group H/L is divisible. If H is divisible by every positive integer prime to some fixed $p \in P$, then the natural topology of H coincides with the p-adic topology. The (group or ring) homomorphisms are uniformly continuous mappings with respect to the natural topologies of the corresponding structures. Z will denote the ring of integers, Z_p $(p \in P)$ the ring of rationals whose denominators are prime to p, \widehat{Z}_p the ring of p-adic integers. Maps are written on the left. The group theoretical terminology is that of Fuchs's book [4]. Let A be a reduced torsion-free ring. For every $p \in P$, consider the ring $A_p^* = (A/p^\infty A) \bigotimes Z_p$ (tensor product of Z-algebras) and the ring homomorphism $\varphi_p : A \longrightarrow A_p^*$ resultant of the canonical maps $A \longrightarrow A/p^\infty A$ and $A/p^\infty A \longrightarrow A_p^*$. $A/p^\infty A$ is torsion-free and without elements $(\neq 0)$ of infinite p-height; then the map $A/p^\infty A \longrightarrow A_p^*$ is injective — so that the kernel of φ_p is $p^\infty A$ — and A_p^* is a reduced torsion-free Z_p -algebra. Define $A^* = \prod_p A_p^*$, $p \in P$, and let $\varphi : A \longrightarrow A^*$ be the canonical map given by $$\varphi(a)_p = \varphi_p(a) \qquad (a \in A, p \in P)$$ where $\varphi(a)_p$ is the *p*-component of $\varphi(a)$. Then A^* is a reduced torsion-free ring and φ is a ring homomorphism. In [5] we defined for every group G the groups $G_p^* = (G/p^\infty G) \bigotimes Z_p$, $G^* = \Pi G_p^*$, $p \in P$, and the canonical homomorphisms $G \to G_p^*$, $G \to G^*$. G_p^* and G^* were called respectively the Hausdorff p localization and the natural pre-completion of G. This terminology will be used also for A. From the embedding lemma of [5] we obtain the following LEMMA 1. Let A be a reduced torsion-free ring. Then the canonical homomorphism $\varphi: A \longrightarrow A^*$ is injective; $\varphi(A)$ is a pure subring of A^* ; the group $A^*/\varphi(A)$ is divisible, i. e. $\varphi(A)$ is dense in A^* endowed with the natural topology. Denote by A^p the image of $\varphi(A)$ under the canonical projection $A^* \to A_p^*$; A^p will be called the *p-projection* of A. From the definition of φ we get $A^p = \varphi_p(A)$. Since $A_p^*/\varphi_p(A)$ is a divisible torsion group with trivial p-primary component ([5], pag. 5) and A_p^* is torsion-free, we have LEMMA 2. Let A be a reduced torsion-free ring. Then A^p is a p-pure subring of A_p^* ; the pure subring (subgroup) of A_p^* generated by A^p coincides with A_p^* ; A^p is dense in A_p^* endowed with the natural topology. The natural topology of A_p^* coincides with the p-adic topology. Let \widehat{A}_p^* be the natural (= p-adic) completion of A_p^* ; then \widehat{A}_p^* is a reduced torsion-free ring which contains A_p^* as a pure and dense subring ([2], Lemma 1.4). Extending by continuity the Z_p -algebra structure of A_p^* , \widehat{A}_p^* becomes a \widehat{Z}_p -algebra. Moreover \widehat{A}_p^* is torsion-free over \widehat{Z}_p , otherwise the additive group of \widehat{A}_p^* would contain some cyclic p-group. A^* is a pure and dense subring of $\widehat{HA_p^*}, p \in P$, which is complete in the natural topology, as easily verified. By means of the injection φ , we identify A with $\varphi(A)$: by Lemma 1, A becomes a pure and dense subring of A^* . Then the natural completion \widehat{A} of A coincides with $\widehat{A^*}$, hence with $\widehat{HA_p^*}$. (See [5], P. 5. and Teorema 1). Now the following pure and dense inclusions hold: (1) $$A_p^* \subseteq \widehat{A}_p^*; \ A \subseteq A^* = \prod_p A_p^* \subseteq \prod_p \widehat{A}_p^* = \widehat{A}.$$ Let $\widehat{Z} = \prod_{p} \widehat{Z}_{p}$, $p \in P$, be the natural completion of Z and identify Z with the (pure and dense) subring of \widehat{Z} generated by the identity of \widehat{Z} . Extending by continuity the obvious Z-algebra structure of A, \widehat{A} becomes a \widehat{Z} -algebra. The product of an element $\pi \in \widehat{Z}$ by an element $\alpha \in \widehat{A}$ is given by the following relations on p-components: (2) $$(\pi a)_p = \pi_p a_p \qquad (p \in P, \pi_p \in \widehat{Z}_p, a_p \in \widehat{A}_p^*).$$ This is an immediate consequence of the principle of the extension of identities, [1], because (2) holds for $\pi \in Z$ and $a \in A$. We conclude this section with the following remark. LEMMA 3. Let L be a p-pure subgroup of the reduced torsion-free Z_p -module H. Then the group $L \otimes Z_p$ is canonically isomorphic with the pure subgroup of H generated by L. PROOF. Let L_p be the pure subgroup of H generated by L. L_p/L is a divisible torsion group with trivial p-primary component. Then the canonical isomorphism is obtained from the exact sequence $0 \to L \to L_p \to L_p/L \to 0$ (where the maps are the natural ones) by tensor multiplication by Z_p . #### 2. The proof of Theorema A*. Let $A \ (\neq 0)$ be a ring satisfying the hypotheses of Theorem A^* . Since A is reduced and torsion-free, the above remarks hold, in particular inclusions (1) are verified. Let P^* be the non void subset of P consisting of the primes p such that $pA \neq A$. If $p \notin P^*$ we have $A_p^* = \widehat{A}_p^* = 0$, hence the p-component of every element of \widehat{A} is zero and we may take $\widehat{A} = \prod \widehat{A}_p^*$, $p \in P^*$. Note that, if $p \in P^*$, A_p^* is countable. The first part of the proof is a localization process: for every $p \in P^*$ we construct a countable pure subgroup G_p of \widehat{A}_p^* , $G_p \supset A_p^*$, whose endomorphism ring is isomorphic with A_p^* ; in this part we will follow exactly, except for small details, the proof of Theorem A of [2]. For a given $p \in P^*$, choose in \widehat{A}_p^* a maximal family $\{f_i, i \in I\}$ of elements of A_p^* linearly independent over \widehat{Z}_p . Then for every $v \in A_p^*$ there exist a non negative integer n_v and elements $\pi_v^i, i \in I$, of \widehat{Z}_p such that, in \widehat{A}_p^* , $$p^{n_v} v = \sum_i \pi_v^i f_i$$ where almost all the π^i_v vanish. If we take always the smallest possible n_v , then v uniquely determines the π^i_v , since \widehat{A}^*_p is torsion-free over \widehat{Z}_p . Let Π_p be the pure subring of \widehat{Z}_p generated by these $\pi^i_v(i \in I, v \in A^*_p)$. Since A^*_p is countable, so is Π_p . Moreover we have LEMMA 4. If in \widehat{A}_p^* $(p \in P^*)$: $$\sum_{j=1}^{n} \gamma_j \ v_j = 0 \qquad (n \in N)$$ where the γ_j are elements of \widehat{Z}_p linearly independent over Π_p and the $v_j \in A_p^*$, then the v_i all vanish. The proof of this lemma is the same as the one of Lemma 2.1. of [2]. For every $v \in A_p^*$, choose two elements $\alpha_p(v)$, $\beta_p(v) \in \widehat{Z}_p$ such that they all form a family which is algebraically independent over H_p . This is possible because A_p^* is countable and \widehat{Z}_p is of trascendence degree 2^{\aleph_0} over H_p . Let A^p be the p-projection of $A: A^p \subseteq A_p^*$. For every $u \in A^p$ define the element $e_p(u) \in \widehat{A}_p^*$ by putting (3) $$e_p(u) = \alpha_p(u) 1_p + \beta_p(u) u$$ where 1_p is the identity of \widehat{A}_p^* , and let G_p be the pure subgroup of \widehat{A}_p^* generated by A^p and by the subgroups $e_p(u) A^p$, $u \in A^p$, of \widehat{A}_p^* . G_p is a countable reduced torsion-free Z_p -module. Now G_p contains A_p^* : in fact A_p^* is pure in \widehat{A}_p^* and so, by Lemma 2, A_p^* is the minimal pure subgroup of \widehat{A}_p^* containing A^p . Moreover, for every $u \in A^p$, G_p contains the pure subgroup H(u) of \widehat{A}_p^* generated by $e_p(u) A^p$ and it is easily verified that H(u) contains $e_p(u) A_p^*$. It is now clear that G_p coincides with the pure subgroup of \widehat{A}_p^* generated by A_p^* and the $e_p(u) A_p^*$, $u \in A^p$. It follows that $G_p A_p^* = G_p$ and so every right multiplication in \widehat{A}_p^* by an element of A_p^* induces an endomorphism on G_p . These multiplications are distinct because G_p contains the identity of A_p^* . We now prove that every endomorphism of G_p . Since G_p is pure and dense in \widehat{A}_p^* , the natural (= p-adic) completion of G_p coincides with the additive group of \widehat{A}_p^* . Consequently δ extends to a \widehat{Z}_p -endomorphism $\widehat{\delta}$ of \widehat{A}_p^* ([2], Lemma 1.4). Let u be an arbitrary element of A^p and consider $\delta(e_p(u))$. We have by (3): (4) $$\delta(e_p(u)) = \widehat{\delta}(\alpha_p(u) 1_p + \beta_p(u) u) = \alpha_p(u) \delta(1_p) + \beta_p(u) \delta(u).$$ Now $\delta(e_p(u))$, $\delta(1_p)$, $\delta(u)$ are elements of G_p and so, by the definition of G_p , there exist $m, n \in N$ such that (5) $$m \, \delta (e_p(u)) = b + \sum_{i=1}^{n} e_p(u_i) \, b_i$$ $$m \, \delta (1_p) = c + \sum_{i=1}^{n} e_p(u_i) \, c_i$$ $$m \, \delta (u) = d + \sum_{i=1}^{n} e_p(u_i) \, d_i$$ where the u_i are distinct elements of A^p , $u_i = u$ and $b, c, d, b_i, c_i, d_i \in A_p^*$. Substituting from (5) in (4) we obtain $$b + \sum_{i=1}^{n} (\alpha_{p}(u_{i}) \mathbf{1}_{p} + \beta_{p}(u_{i}) u_{i}) b_{i} =$$ $$=\alpha_{p}\left(u\right)\left[c+\sum_{i=1}^{n}\left(\alpha_{p}\left(u_{i}\right)\mathbf{1}_{p}+\beta_{p}\left(u_{i}\right)u_{i}\right)c_{i}\right]+\beta_{p}\left(u\right)\left[d+\sum_{i=1}^{n}\left(\alpha_{p}\left(u_{i}\right)\mathbf{1}_{p}+\beta_{p}\left(u_{i}\right)u_{i}\right)d_{i}\right].$$ As the $a_{p}\left(u_{i}\right),\,\beta_{p}\left(u_{i}\right)$ are algebraically independent over Π_{p} , from Lemma 4 we get $$(6) b_1 = c, \quad ub_1 = d$$ while the other b's, c's and d's all vanish. By the last two of (5) and by (6) we have: $$m\delta(1_p) = c, \qquad m\delta(u) = uc.$$ Since A_p^* is pure in G_p , it follows $\delta\left(1_p\right) \in A_p^*$, and since G_p is torsion-free, $\delta\left(u\right) = u\delta\left(1_p\right)$. So we see that δ coincides on A^p with the right multiplication by $\delta\left(1_p\right) \in A_p^*$. Now by Lemma 2 A^p is dense in A_p^* , and A_p^* is dense in G_p for G_p is pure in \widehat{A}_p^* . It follows that A^p is dense in G_p endowed with the natural topology. Then, by the principle of the extension of identities, δ coincides with the right multiplication by $\delta\left(1_p\right)$ on the whole of G_p . The first part of the proof is now complete. The second part consists in constructing a group G with the required properties by means of the G_p , $p \in P^*$, using a local-global argument. For every $a \in A$ consider the elements $\alpha(a)$, $\beta(a) \in \widehat{Z}$ defined as follows: (7) $$\begin{cases} \alpha (a)_p = \alpha_p (a_p), & \beta (a)_p = \beta_p (a_p) & \text{if } p \in P^* \\ \alpha (a)_p = \beta (a)_p = 0 & \text{if } p \notin P^*. \end{cases}$$ Note that a_p , being the *p*-component of a, belongs to A^p . Define the elements $e(a) \in \widehat{A}$ by putting $$e(a) = \alpha(a) \mathbf{1} + \beta(a) a \qquad (a \in A)$$ where 1 is the identity of \widehat{A} . Every element of \widehat{A} is determined by its p-components with $p \in P^*$; by (2), (3) and (7) we have, for every $p \in P^*$ and $a \in A$: (8) $$e(a)_{p} = \alpha_{p}(a_{p}) 1_{p} + \beta_{p}(a_{p}) a_{p} = e_{p}(a_{p}).$$ Let G be the pure subgroup of \widehat{A} generated by A and the e(a) A, $a \in A$. G is reduced torsion-free and of the same cardinal as A. In \widehat{A} we have GA = G, so that every right multiplication by an element of A induces an endomorphism on G; these multiplications are distinct because G contains the identity of A. In order to complete the proof of the theorem, it suffices to show that every endomorphism of G is obtained in this way and G is locally countable. For this purpose, let us determine the Hausdorff p-localizations G_p^* , $p \in P$, and the natural pre-completion G^* of G. Since G is pure in \widehat{A} we have for every $p \in P$ $$p^{\infty} G = (p^{\infty} \widehat{A}) \cap G.$$ If $p \notin P^*$, then $p^{\infty} \widehat{A} = \widehat{A}$, hence $p^{\infty} G = G$ and $G_p^* = 0$. Suppose then $p \in P^*$ and let ε_p be the canonical projection of \widehat{A} onto \widehat{A}_p^* : ε_p maps every element of \widehat{A} into its p-component. By (9), $p^{\infty}G$ consists of the elements of G whose p-component is zero; consequently $G/p^{\infty}G$ is canonically isomorphic with $\varepsilon_p(G)$ which, as easily verified, is p-pure in \widehat{A}_p^* . Hence, by Lemma 3, we identify G_p^* with the pure subgroup of \widehat{A}_p^* generated by $\varepsilon_p(G)$. Next we prove that $G_p^* = G_p$ ($p \in P^*$), from which it follows that G is locally countable, because G_p is countable. G_p^* contains $\varepsilon_p(G)$ which, by the definition of G, contains $A^p = \varepsilon_p(A)$ and $e_p(a_p) A^p$ for every $a \in A$. But, when a runs over A, a_p exhausts A^p ; hence, by the definition of G_p , $G_p^* \supseteq G_p$. On the other hand a straightforward calculation shows that $\varepsilon_p(G) \subseteq G_p$; this implies $G_p^* \subseteq G_p$ and so $G_p^* = G_p$. From the above remarks it follows: $$G^* = \prod_p G_p, p \in P^*; \qquad G \subseteq G^* \subset \widehat{A}.$$ Now, let ω be an arbitrary endomorphism of G. By P. 2. of [5] ω extends uniquely to an endomorphism ω^* of G^* . (The proof of P. 2. suggests a way for constructing ω^*). Observe that if p and q are distinct primes of P^* . Hom $(G_p, G_q) = 0$ because G_p is a Z_p -module, G_q is a Z_q -module and both are reduced and torsion-free. Recalling how we obtained the endomorphisms of G_p , we see that every endomorphism of $G^* = \coprod_p G_p$, $p \in P^*$, is induced by a right multiplication in \widehat{A} by an element of $A^* = \coprod_p A_p^*$, $p \in P^*$. Then ω coincides on G with the right multiplication by $\omega^*(1) = \omega(1) \in A^* \cap G$. If we can prove that $\omega(1) \in A$, the conclusion is reached. In fact, we will prove that $A^* \cap G = A$ (1). It is clear that $A^* \cap G \supseteq A$; conversely, if $g \in G \cap A^*$, then $mg = b + \sum_{i=1}^n e(a_i) b_i$ with $m, n \in N$, $b, a_i, b_i \in A$, and $\sum_{i=1}^n e(a_i) b_i = mg - b = c \in A^*$. As for the p-components, for every $p \in P^*$, we obtain by (8) $$\sum_{i=1}^{n} \left(\alpha_{p} \left(a_{ip} \right) 1_{p} + \beta_{p} \left(a_{ip} \right) a_{ip} \right) b_{ip} = c_{p}.$$ But, as a_{ip} , b_{ip} , c_p belong to A_p^* , it follows from Lemma 4 that $c_p = 0$ for every $p \in P^*$. This means c = 0 and so $mg = b \in A$. Hence $g \in A$, because A is pure in G. ## 3. The rings of class Δ and an example. Let Δ be the class of the rings satisfying the hypotheses of Theorem A*. Δ may be characterized as follows. PROPOSITION 1. A ring A belongs to Δ if and only if A is isomorphic with a pure subring of a ring of type $R = \prod R_p$, $p \in P^*$, where P^* is a set of distinct primes and, for every $p \in P^*$, R_p is a coutable reduced torsion-free Z_p -algebra. PROOF. The necessity follows immediately from Lemma 1. Let A be a pure subring of R: A is reduced and torsion-free. We have $A/p^{\infty}A = A/(p^{\infty}R) \cap A$ for every $p \in P$ and $A \neq pA$ if and only if $p \in P^*$. For every $p \in P^*$, $A/p^{\infty}A$ is isomorphic with a p-pure subring of R_p and is countable. Finally we show that the class Δ is not contained in the class of the endomorphism rings of countable reduced torsion-free groups; these rings are characterized by Theorem 1.1. of [3]. PROPOSITION 2. There exists in Δ a ring A of cardinal 2^{\aleph_0} such that every reduced torsion-free group, whose endomorphism ring is isomorphic with A, is of cardinal $\geq 2^{\aleph_0}$. **PROOF.** For every $p \in P$, let R_p be a countable pure subring of \widehat{Z}_p of rank > 1. R_p properly contains Z_p as a pure and dense subring. Define ⁽¹⁾ I am indebted to F. Menegazzo for this suggestion. $R = \prod_{p} R_{p}, p \in P$, and consider the subring A of R: $$A = \{ \alpha \in R \mid \alpha_p \in Z_p \text{ for almost all } p \}$$ where, as usual, α_p is the p-component of α . We have the proper inclusions $$\sum_{p} R_{p} \subset A \subset \prod_{p} R_{p} \qquad (p \in P);$$ it is easily verified that A is pure in R so that, by Proposition 1, $A \in \Delta$; A is of cardinal 2^{\aleph_0} . Let G be reduced torsion-free group such that E(G) = A. For every $p \in P$ consider the element $\varepsilon_p \in A$ such that the p-component of ε_p is the identity 1_p of R_p whereas the other components all vanish. As ε_p is an idempotent element of A, G splits into the direct sum of the endomorphic images $\varepsilon_p(G)$ and $(1-\varepsilon_p)(G)$, where 1 is the identity of A. Let G_p be the subgroup of G consisting of those elements which are divisible by every prime different from p; G_p is a reduced torsion-free Z_p -module. Since ε_p is divisible in (R and hence in) A by every prime different from p, while $1-\varepsilon_p$ is divisible by every power of p, we have $\varepsilon_p(G)\subseteq G_p$ and $(1-\varepsilon_p)(G)\subseteq p^\infty G$. On the other hand $G_p \cap p^\infty G = 0$ because G is reduced and torsion-free. Hence $\varepsilon_p(G) = G_p$, $(1-\varepsilon_p)(G) = p^\infty G$ and $$G = G_p \oplus p^{\infty} G.$$ We now show that the endomorphism ring $E(G_p)$ of G_p is isomorphic with R_p . By the direct decomposition (10), every endomorphism β of G_p extends to an endomorphism $\overline{\beta}$ of G such that $\overline{\beta}(G) \subseteq G_p$, $\overline{\beta}(p^{\infty}G) = 0$. Since ε_p induces the identity on G_p , we have $\overline{\beta} = \varepsilon_p \overline{\beta} \in \varepsilon_p A$. Conversely, every element of $\varepsilon_p A$ induces an endomorphism on G_p and vanishes on $p^{\infty}G$. It follows that $E(G_p)$ is isomorphic with the ring $\varepsilon_p A$, hence with R_p . Every non trivial endomorphism of G_p is injective: in fact, since G_p is in a natural way an R_p -module, \widehat{G}_p is a module over $\widehat{R}_p = \widehat{Z}_p$; since G_p is a torsion-free group, \widehat{G}_p is torsion-free over \widehat{Z}_p ; then G_p is torsion-free over R_p . It is clear that, for every $p \in P$, G_p coincides with the Hausdorff p-localization G_p^* of G and ε_p coincides with the canonical homomorphism $G \to G_p^*$. By means of the ε_p , $p \in P$, we construct the canonical homomorphism ε of G in its natural pre-completion $G^* = \prod G_p$ and identify G with the pure and dense subgroup ε (G) of G^* . Since, if p and q are distinct primes, Hom $(G_p, G_q) = 0$, the endomorphism ring of $\prod G_p$ is $\prod R_p$. As $A \subset \prod R_p$, every endomorphism of G extends to an endomorphism of Π G_p . Consequently the effect of $\alpha \in A$ on $g \in G$ is described by the following formulae on the p-components: (11) $$\alpha (g)_p = \alpha_p (g_p) \qquad (p \in P).$$ It is easily verified that G contains Σ G_p . Moreover this inclusion is proper since the endomorphism ring of Σ G_p is Π R_p , while E(G) = A which is not isomorphic with Π R_p . Then we can find and element $\overline{g} \in G$ and an infinite subset \overline{P} of P such that $\overline{g}_p \neq 0$ for overy $p \in \overline{P}$. Let \overline{A} be the ideal of A consisting of all $\alpha \in A$ such that $\alpha_p = 0$ if $p \notin \overline{P}$. $|\overline{A}| = 2^{\aleph_0}$ because $A \supset \Pi$ Z_p , $p \in \overline{P}$. Consider the additive homomorphism $\gamma : \overline{A} \to G$ mapping $\alpha \in \overline{A}$ into $\alpha(\overline{g}) \in G$. If $\alpha \in \overline{A}$, $\alpha \neq 0$, there exists $p \in \overline{P}$ such that $\alpha_p \neq 0$; since every non trivial endomorphism of G_p is injective $\alpha_p(\overline{g_p}) \neq 0$; by (11) this implies $\alpha(\overline{g}) \neq 0$, i. e. γ is injective. Hence $|G| \geq 2^{\aleph_0}$. #### REFERENCES - [1] N. BOURBAKI, Topologie générale, Ch. I, Paris, 1961. - [2] A. L. S. CORNER, Every countable reduced torsion-free ring is an endomorphism ring. Proc. London Math. Soc. (3) 13 (1963) 687-710. - [3] A. L. S. CORNER, Endomorphism rings of torsion-free abelian groups. Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, August 1965, pp. 59-69, 1967, - [4] L. Fuchs, Abelian groups, Budapest 1958. - [5] A. ORSATTI, Un lemma di immersione per i gruppi abeliani senza elementi di altezza infinita. Rend. Sem. Mat. Univ. Padova XXXVIII (1967) 1-13. Seminario Matematico Università di Padova, Italia