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A CLASS OF RINGS
WHICH ARE THE ENDOMORPHISM RINGS

OF SOME TORSION-FREE ABELIAN GROUPS

ADALBERTO ORSATTI (*)

Introduction.

A well known result of A. L. S. Corner ([2], Theorem A) states that
every countable, reduced, torsion-free ring A is isomorphic with the en-

domorphism ring E (G) of some countable, reduced, torsion-free group G.

(A ring is called reduced and torsion-free if such is its additive group).
In this paper we establish a similar result for a wider class of rings,

precisely for the class A consisting of locally countable, reduced, torsion-
free rings.

We say that a torsion-free ring A is locally countable if for every prime
number p not dividing A (i. e. pA ~ A) the ring A/p°°A is countable,
where p°° A is the intersection of the ideals pn A for every natural number
n. (Observe that this definition involves only the additive structure of A).

The rings of class A are characterized as follows (see Proposition 1).
A ring A belongs to A if and only if A is isomorphic with a pure subring
of a direct product II Rp , p E P*, where P~ is any given set of distinct

p

prime numbers and Rp a countable, reduced, torsion-free Zp-algebra.
(Zp = ring of rationals whose denominators are prime to p).

The following generalization of Theorem A is proved:

THEOREM A~. Let A be a locally countable, reduced, torsionfree 
there exists a locally countable, reduced, group G, of the

same cardinal as A, whose endoiitorphism ring E (G) is isontorphic with A.

Pervenuto alla Redazione il 23 novembre 1968.

(") Lavoro esegnito nell’ambito delPattiivita dei Gruppi di ricerca del Comitato Na-

zionale per la Matematica del C. N. R.
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The proof of this theorem relies on Corner’s methods and ideas, but
does not make use of Theorem A : in fact it is obtained by modifying the
proof of Theorem A by means of some localization and globalization tech-
niques as exposed in [5].

It is clear from the above characterization that every ring of class L1
is of cardinal  2No, so that one might wonder if every such ring belongs
to the class of the endomorphism rings of countable, reduced, torsion-free
groups. This last class of rings has been characterized by Corner himself
in Theorem 1.1 of [3]. The answer is negative, as proved in Proposition 2,
where we construct a ring A E A with the following properties : |A | = 2o and
if A = ~ (G), with G a reduced torsion-free group, then I G ~ &#x3E; 2No .

It is still an open question if the rings of class L1 satisfy the hypotheses
of Theorem 2.2 of [3], which generalizes Theorem 1.1.

1. Preliminaries.

All groups considered in this paper are abelian and additively writ-
ten ; rings are associative and with an identity, modules are unitary. If

J’: .B -~ A is a ring homomorphism, f always maps the identity of B into
the identity of A : if B is a subring of A, B contains the identity of A.
We will regard sometimes the ring possessing only the zero element as a

ring with an identity.
Let be an indexed family of groups (rings). We denote by IIHi the

i

direct product (= cartesian product) of the Hi and, for every x E HHi, by
i

xi the a-component of x {xi E EHi will be the subgroup (ideal) of J7J?t
i i

consisting of those elements whose components are almost all zero.
We often attribute to a ring some properties of its additive group;

for istance we say that the ring A is reduced, torsion-free, etc... ; or that
a subring of A is pure in A. By a subgroup of A we mean a subgroup
of the additive group of A.

Let N be the set of positive integers and P the set of prime numbers
(P c N). For every group (ring) ~ and for every p E P, p°° g will denote
the intersection of all subgroups (ideals) H, n E 

Every group (ring) is a topological group (ring) in the natural topology
obtained by taking the subgroups (ideals) n H, n E N, as a basis of neigh-
bourhoods of 0. This topology will be our main tool; for its principal
properties see [2]. We recall here some of them. Let H be a reduced

torsion-free group (ring): then .g is Hausdorff in the natural topology. Let
L be a subgroup (subring) of H and endow H with the natural topology.
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If L is pure in H, then the natural topology of L coincides with the re-

lative topology. L is dense in H if and only if the group is divisible.

If H is divisible by every positive integer prime to some fixed p E P, then
the natural topology of H coincides with the p-adic topology. The (group
or ring) homomorphisms are uniformly continuous mappings with respect
to the natural topologies of the corresponding structures.

Z will denote the ring of integers, Zp (p E p) the ring of rationals
-

whose denominators are prime to p, Zp the ring of p adic integers. Maps
are written on the left.

The group theoretical terminology is that of Fuchs’s book [4].

Let A be a reduced torsion-free ring. For every p E P, consider the
ring A~ = (A/p°° A) Q9 Zp (tensor product of Z-algebras) and the ring homo-
morphism A --~ A~ resultant of the canonical maps A - A and

is torsion-free and without elements (=)=0) of infi-
nite p-height ; then the map A/p°° A --~ ~4.~ is injective - so that the

kernel of g~~ is p°° A - and A; is a reduced torsion-free Zp-algebra.
Define A * = II A: , p E P, and let A - A* be the canonical map given by

p

(a)p = g (a) (a E A, p E P)

where g (a)p is the p-component (a). Then A~ is a reduced torsion-free

ring and cp is a ring homomorphism.
In [5] we defined for every group G the groups 

G~" = 77 and the canonical homomorphisms G - G~, G - 6’*. G~t
p

and G* were called respectively the localization and the 

ral pre-co1npletion of G. This terminology will be used also for A.
From the embedding lemma of [5] we obtain the following

LEMMA 1. Let A be a torsion-flree Iring. Then the canonical

homo1norphism cp: A --~ A~ is injective ; q~ (A) is a pure subring of A *; the
group (A) is divisible, i. (A) is dense in A~‘ endowed 1-0ith the na-

tural topology.

Denote by Ap the image ofqJ (A) under the canonical projection 2013;
Ap will be called the p-proiection of A.

From the definition we get AP --- cpp (A). Since (A) is a di-

visible torsion group with trivial p-primary component ([5], pag. 5) and

Ap is torsion-free, we have

LEMMA 2. ..Let A be a reduced torszon free ring. Then p-pure
the pure subring (subgroup) of Ap coincides

with dense i7a A*p, endouJed 10ith the topology.

10
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The natural topology of ~ coincides with the p.adic topology. Let
~~ 

p 
~~

A* be the natural (=p-adic) completion of A*; then ~ is a reduced

torsion-free ring which contains Ap* as a pure and dense subring ([21, Lemma
1.4). Extending by continuity the Zp-algebra structure of ~ becomes
- - P7 p

a Z.-algebra. Moreover A*P is torsion-free over Zp , y otherwise the additive
p

group of A*P would contain some cyclic p-group.p
A* is a pure and dense subring of which is complete in

p

the natural topology, as easily verified. By means of the injection cp, we

identify A with by Lemma 1, A becomes a pure and dense subring
of A*. Then the natural completion A of A coincides with A*, hence with

.11

(See [51, P. 5. and Teorema 1). Now the following pure and dense
p

inclusions hold :

n 
, ,

Let Z = 1I P, be the natural completion of Z and identify Z
p 

~ 
, ~ 

~

with the (pure and dense) subring of Z generated by the identity of Z.

Extending by continuity the obvious Z-algebra structure of A, A becomes
a Z-algebra. The product of an element yr E Z by an element a E A is given
by the following relations on p-components :

This is an immediate consequence of the principle of the extension of iden-
tities, [1], because (2) holds for a E Z and a E A.

We conclude this section with the following remark.

LEMMA 3. Let L be a p-pure subgroup of the reduced torsion-free Zp-mo-
dule H. Then the group L (&#x26; Zp is canonically isomorphic with the pure 
group of H generated by L.

PROOF. Let Lp be the pure subgroup of H generated by L. Lp/L is a

divisible torsion group with trivial p-primary component. Then the cano-
nical isomorphism is obtained from the exact sequence 0 -~ .L --~ Lp-
2013~ Lp/L --~ 0 (where the maps are the natural ones) by tensor multiplica-
tion by Zp .
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2. The proof of Theorema A*.

Let A (~ 0) be a ring satisfying the hypotheses of Theorem A*. Since
A is reduced and torsion-free, the above remarks hold, in particular in-
clusions (1) are verified.

Let P* be the non void subset of P consisting of the primes p such
that A. If p P* we have A* = = 0, hence the p-component of

-

every element of A is zero and we may take A p E P*. Note that,
if p E P*, A* is countable. p

The first part of the proof is a localization process : for every pEP.
we construct a countable pure subgroup Gp of Ap* 6’p D Ap, whose endo-
morphism ring is isomorphic with A*; in this part we will follow exactly,
except for small details, the proof of Theorem A of [2].

For a given pEP*, choose in A*p a maximal family of ele-
p

ments of A*P linearly independent over  . Then for every v E A* therep ZP p
exist a non negative integer nv and elements such that, in At,

where almost all the n§j vanish. If we take always the smallest possible nv,
, 

then v uniquely determines the n’ , since Ap is torsion-free over Zp . Let

IIp be the pure subring of Zp generated by these n) (i E I, v E Since

A; is countable, so is IIp . Moreover we have

LEMMA 4. If irt

where the Yj are elements of Zp linearly independent over Z7p and the Vj E 
then the Vj all vanish.

The proof of this lemma is the same as the one of Lemma 2.1. of [2].
For every v E A~ , choose two elements ap (v), (v) E Zp such that they

all form a family which is algebraically independent over This is pos-
sible because Ap is countable and Zp is of trascendence degree 2No over
IIp . Let Ap be the p-projection of g : ~.~ C dp . For every u E Ap define
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the element ep (u) E 1; by putting

, -

where 1 is the identity of A*p and let Gp be the pure subgroup of A*P ge-p p I p 
l’, 

p

nerated by AP and by the subgroups ofA*p. Gp is a coun-

table reduced torsion-free Z.-module. Now Gp contains At : in fact A~ is
pure in A * and so, by Lemma 2, A* is the minimal pure subgroup of jlp
containing AP. Moreover, for every u E AP, Gp contains the pure subgroup
H (u) of JL~ generated by ep (u) AP and it is easily verified that H (u) contains

A*. It is now clear that Gp coincides with the pure subgroup of

A* generated by A*p and the It follows that G. A* = Gpp p 
, , 

p"’ 
p

and so every right multiplication in A*p by an element of A* induces an
endomorphism on Gp. These multiplications are distinct because ~p con-

tains the identity of A*. We now prove that every endomorphism of 6"p
is obtained in this way. Let 6 be an arbitrary endomorphism of Gp. Since

-

Gp is pure and dense in the natural (= p-adic) completion of Gp coin-p py p

cides with the additive group of A*p . Consequently 6 extends to a Z,)-endo-
p

morphism 6 of A* ([2], Lemma 1.4). Let u be an arbitrary element of AP and
consider 6 (e. (u)). We have by (3):

Now 6 (ep (u)), 6 (1 v), 6 (u) are elements of Gp and so, by the definition of
Gp, there exist E N such that

where the iii are distinct elements of and
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Substituting from (5) in (4) we obtain

As the ap (iii) are algebraically independent over 77p, from Lemma 4
we get

while the other b’s, c’s and d’s all vanish. By the last two of (5) and by
(6) we have :

Since A* is pure in G,, it and since Gp is torsion-free,
ð (u) = 116 (lp). So we see that 6 coincides on A P with the right multiplica-
tion Now by Lemma 2 AP is dense in Ap, and A*p is densep 

1*1 
p p

in Gp for Gp is pure in A*p . It follows that AP is dense in Gp endowed
with the natural topology. Then, by the principle of the extension of iden_
tities, ð coincides with the right multiplication on the whole of Gp.

The first part of the proof is now complete.

The second part consists in constructing a group G with the required
properties by means of the Gp, p E P*, using a local-global argument.

For every a E A consider the elements a (a), (a) E Z defined as follows :

if

if

Note that ap, being the p-component of a, belongs to Define the elements
-

e (a) E A by putting

-

where 1 is the identity of A. Every element of A is determined by its
p-components with p E P*; by (2), (3) and (7) we have, for every pEP.
and a E A :
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Let G be the pure subgroup of A generated by A and the e (a) A, a E A.. 

-

G is reduced torsion-free and of the same cardinal as A. In A we have

GA = G, so that every right multiplication by an element of A induces an
endomorphism on G ; these multiplications are distinct because G contains
the identity of A. In order to complete the proof of the theorem, it suffices

to show that every endomorphism of G is obtained in this way and G is

locally countable.
For this purpose, let us determine the Hausdorff p-localizations p E P,

and the natural pre-completion G * of G. Since G is pure in A we have

for every p E P

If p P , then hence p°° G = G and Gp = 0.
-

Suppose then p E P* and let E, be the canonical projection of A onto

Bp maps every element of A into its _p-component. By (9), p°° G consists
of the elements of G whose p-component is zero; consequently G/poo G is

-

canonically isomorphic with which, as easily verified, is p.pnre in A*p.
Hence, by Lemma 3, we identify Gp* with the pure subgroup of 1; generated
by Next we prove that Gp = Gp (p E P*), from which it follows that

G is locally countable, because Gp is countable. Gp contains Bp (G) which,
by the definition of G, contains Ap = Bp (A) and ep (ap) Ap for every a E A.

But, when a runs over A, ap exhausts AP ; hence, by the definition of Gp,
Gp. On the other hand a straightforward calculation shows that

this implies and so 

From the above remarks it follows :

Now, let w be an arbitrary endomorphism of G. By P. 2. of [5] w extends
uniquely to an endomorphism roll of G*. (The proof of P. 2. suggests away
for constructing ao). Observe that if p and q are distinct primes of P*,
Hom (Gp, Gq) = 0 because Gp is a Zp-module, Gq is a Zq~module and both
are reduced and torsion-free. Recalling how we obtained the endomorphisms
of we see that every endomorphism of G* = II E P*, is induced by

p

a right multiplication in A by an element of Then co

p
coincides on G with the right multiplication by w* (1) = co (1) E A* n CT. If
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we can prove that co (1) E A, the conclusion is reached. In fact, we will

prove that A* n G = A (1). It is clear that A* n G ~ A ; conversely, if

+ 
n n

gE GnA*, then mg = b + ~ e (a;) b~ with mz, n E N, b~ E A, and Z e ==

i=1 i=1

= mg - b = c E A* . As for the jp components for every p E P*, we obtain

by (8)

But, as atp , cp belong to it follows from Lemma 4 that cp = 0 for

every p E P*. This means c = 0 and so mg = b E A. Hence g E A, because
A is pure in G.

3. The rings of class if and an example.

Let A be the class of the rings satisfying the hypotheses of Theorem
.A~". A may be characterized as follows.

PROPOSITION 1. A ring A belongs to A if and only if A is isomorphic
with a pure subring oj a ring of type R = II Rp, p E P*, where P* is a set

p

of distinct primes and, for every p E P*, Rp is a coutable reduced torsionjree
Zp-algebra.

PROOF. The necessity follows immediately from Lemma 1. Let A be a

pure subring of R : A is reduced and torsion-free. We have Alp- A =
= A/ ( p°° R) n A for every p E P and A =}= pA if and only For every

p E P*, Alp- A is isomorphic with a p-pure subring of Rp and is countable.
. Finally we show that the class J is not contained in the class of the

endomorphism rings of countable reduced torsion-free groups ; these rings
are characterized by Theorem 1.1. of [3].

PROPOSITION 2. There exists in A a ring A of cardinal 2No such that

every reduced torsion-free group, whose endomorphism ring is isomorphic with
A, is of cardinal 2 

-

PROOF. For every p E P, let Rp be a countable pure subring of Zp of
rank &#x3E; 1. Rp properly contains Zp as a pure and dense subring. Define

(i) I am indebted to F. Menegazzo for this suggestion.



152

and consider the subring A of R :

for almost all p)

where, as usual, is the p-component of a. We have the proper inclusions

it is easily verified that A is pure in R so that, by Proposition 1, A E d ~
A is of cardinal 2No .

Let G be reduced torsion-free group such that E ((T) == A. For every
p E P consider the element 8, E A such that the p-component of 8, is the

identity ip of Rp whereas the other components all vanish. As 8p is an

idempotent element of A, G splits into the direct sum of the endomorphic
images Ep (G) and (1 - 8p) (G), where 1 is the identity of A. Let Gp be the
subgroup of G consisting of those elements which are divisible by every
prime different from p ; Gp is a reduced torsion-free Zp-module. Since 8p is

divisible in (R and hence in) A by every prime different from p, while

1-Ep is divisible by every power of p, we have and 

On the other hand Gp n p°° G = 0 because G is reduced and torsion-free.

Hence ~~ ( G ) = Gp , (1- Ep) ( G ) = p°° G and

We now show that the endomorphism ring of Gp is isomorphic with

Rp . By the direct decomposition (10), every endomorphism fl of Gp extends
to an endomorphism of G such Since s.
induces the identity on Gp, we Conversely, y every ele-

ment of Bp A induces an endomorphism on Gp and vanishes on p°° G. It

follows that E (Gp) is isomorphic with the ring Ep A, hence with Rp. Every
non trivial endomorphism of Gp is injective : in fact, since GP is in a natural

way an Rr-module, 6’p is a module over Rp = Zp ; since GP is a torsion-free
I, 11,

groups Gp is torsion-free over Zp ; then Gp is torsion-free over Rp .
It is clear that, for every p E P, G, coincides with the Hausdorff p-loca-

lization Gp of G and sp coincides with the canonical homomorphism G -- a;.
. By means of the Ep, p E P, we construct the canonical homomorphism E of G in

its natnral pre-completion and identify G with the pure and
p

dense subgroup e ( G ) of G ~. Since, if p and q are distinct primes,
Hom (Gp, Gq) = 0, the endomorphism ring of II Gp is II Rp . As A c II Rp,

p p P



153

every endomorphism of G extends to an endomorphism of 1I Gp. Consequently
p

the effect of a E A on g E G is described by the following formulae on the

p-components :

It is easily verified that G contains Z Gp. Moreover this inclusion is proper
p

since the endomorphism ring of Z GV is II Rp , while E (G ) = A which is
p p 

_

not isomorphic with Then we can find and element g E G and an

_ 

p 
- _ _

infinite subset P of P such that g, =j= 0 for overy p E P. Let A be the ideal
of A consisting of all a E A such that ap = 0 if p ~ = 2N~ because

Consider the additive homomorphism y : A - G mapping
p _ _ _

a E A into a (g) E G. If a E A, oc ~ 0, there exists p E P such that 0 ; since

every ’non trivial endomorphism of Gp is injective ar (g~) ~ 0 ; by (11) this

implies a (g) ~ 0, i. e. y is injective. Hence 2N, .
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