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A OHARAOTERIZATION OF THE NON-LOCAL
BOUNDARY VALUE PROBLEMS ASSOCIATED WITH
AN ELLIPTIC OPERATOR ‘

GERD GRUBB

Introduction.

Let &2 be a bounded domain in R" with smooth boundary I, and let
A be an elliptic differential operator of order 2m, with smooth coefficients
defined in 2. (The boundedness of 2 is assumed for convenience, but is
not essential for the main results of the paper). Together with A are given
m boundary differential operators B;,j=0,..., m — 1, such that the system
{B;} is normal and covers A (terminology as in Schechter [28]). We assume
that the boundary value problem Au =fin Q, Bju=0in I, j=0,..,m —1,
is uniquely solvable for given f (f and u in suitable function spaces).

With A one can associate certain operators in L?(£). The maximal
operator 4, i8: A defined on the set of u€ L?(£2) for which Az (defined
weakly) € L? (£2), and the minimal operator A, is defined as the closure of:
A defined on the C° functions with compact support in £. The linear

operators A between A, and A, will be called realizations of A. An example
of a realization is the closure of : A defined on smooth functions » which
satisfy the boundary condition Bju =0 in I, j =0, .., m — 1. This reali-
zation is determined by a boundary condition; more generally one views
the operators in the family of realizations as representing abstract bondary
conditions. This is justified by the fact that the domains D(Z) are deter-
mined by the behavior of the fanctions uED(zT) near the boundary I
since D(4,)C Hue (Q), and D (A,) = H™(Q). (The Sobolev-spaces H’(Q),
H;(Q), H’(I') (s real) are defined in detail in I§ 1).

Pervenuto alla Redazione il 18 Dicembre 1967 ed in forma definitiva il 12 Febbraio
1968,
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The realizations given by boundary conditions in terms of boundary
differential operators (like Bj;) have been investigated thoroughly in recent
years. Numerous references should be given here; we will just mention [1],
(3], [18]), [23], [24], [28], which are of use in the present paper.

More recently, certain non-local boundary value problems (called non-
local because they contain boundary operators that are not necessarily dif-
ferential operators) have been discussed ; mostly in the form of generalized
versions of

ou

%=Ku on I’

M

(the typical boundary condition for m = 1), where K is a possibly non-local
operator in I, see [2], [4], [5], [6], [12], [29]. (The paper [29] also treats a
different type of boundary condition).

Thus, by the introduction of more and more general boundary condi-
tions, more and more general realizations have been considered. The present
paper treats a converse problem: to find, to an arbitrary realization, a
specific boundary condition, expressed in terms of boundary operators from
D(A,) to ¢’ (I') and operators between spaces over I, that it represents.
It is shown how this is possible for all closed realizations ; some non-closed
realizations are included in a natural way. The result is given in the form
of a 1-1 correspondence between the closed realizations 4 and the closed
operators L between certain spaces related to the spaces H?*(I') (III § 2).

The correspondence between 4 and L ecomes more interesting by the
fact that it preserves properties of the operators such as dimension of null-
space, closedness of range and codimension of range; and the adjoint A*
corresponds analogously to the adjoint L* (III § 2). Moreover, the correspon-

dence preserves regularity (III § 3) (i.e., the property of having D(Z)
(graphtopology) continuously imbedded in H?*(£), s > 0, corresponds to a
similar property of L), and, if A is formally selfadjoint, it preserves spectral
and numerical properties (III § 4).

The theory requires introduction of a certain non-local boundary ope-
rator from D(A4,) into (L?(I"))™, for which a Green’s formula holds for
allu€ D(A,), allve D (A4;) (II1 §1) (A’ is the formal adjoint of A).

Since the main part of earlier work on non-local boundary conditions
was concerned with the condition (1), we have included some considerations
concerning this particular type of problem. In III § 2 we give a necessary
and sufficient condition that a closed realization represents this type. In
III § 6 are given some further results on this kind of boundary value pro-
blem, deduced from our theory; they overlap with [29].
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The immediate background for our theory is the theory for the non-
homogeneous boundary value problem

\Au =f
(2)
) Bju=g¢;, j=0....,m —1,

a8 developed by Lions and Magenes in [24], [24”]. Those of their results
that we use, and some underlying results, are briefly presented in Chapter I.

Chapter II contains the Hilbert space theory (abstract theory) which
is the basis for our approach. It has points in common with Vishik [32],
but differs in a way that makes it possible to treat all closed realizations,
not only those with closed range. Notation, and some preliminary results
for this chapter, are explained in the Appendix.

Finally, Chapter III combines I and II to give the main results.

The present paper is a revised edition of the author’s doctoral disser-
tation [15]. The main change is that we have omitted considerations con-
cerning sesquilinear forms, in particular a systematic discussion of the
realizations associated with sesquilinear forms in L?(£2) (not in general
continuous on H™ (L)) for the case A = A’, strongly elliptic, given in [15].
Other changes: we use a more general notion of ellipticity here, and base
our considerations on the boundary value problem ‘(2) instead of the Di-
richlet problem from the start; also some results have been sharpened.

The author would like to-express her warmest gratitude to her advisor,
Professor Ralph S. Phillips, for his advice and encouragement throughout
the work.
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Chapter I. Preliminaries.
§ 1. Spaces.
§ 2. Boundary differential operators.

§ 3. Assumptions, and some results on elliptic differential ope-
rators.

Chapter II. Abstract Theory.
§ 1. Basic results.
§ 2. The symmetric case.

§ 3. A discussion of the non-closed operators.

Chapter II1. General Boundary Value Problems.
§ 1. The operators P and M,
§ 2. Fundamental results.
§ 3. Regularity.
§ 4. The formally selfadjoint case.
§ 5. Additional properties of P.

§ 6. Some applications.

Appendix. Preliminaries for Chapter II.
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CHAPTER I. - PRELIMINARIES

Our assumptions are basically the same as those in Lions-Magenes [24]
V, except that we do not work with L?-spaces with p == 2.

§ 1. Spaces.

Let Q be a bounded domain in WR” (with generic point = (z,,...,&));
the boundary I' is assumed to be an » — 1 dimensional C* manifold. Let
us note at this point that the assumptions of smoothness can be weakened
considerably ; we will not make any efforts in this direction. The condition
that £ be bounded is not essential; cases where 2 is unbounded (and
where the coefficients of the differential operators satisfy the various con-
ditions in some uniform sense) could also he treated by our methods. Only
in certain applications (Theorem III 2.5 and part of 1II § 6) will the boun-
dedness be of importance.

We denote by () the space of functions which are infinitely diffe-
rentiable in 2, by @ (2) the space of functions belonging to @ (£2) which
have compact support in £, and by D’ (2) Schwartz’ space of distributions
in £,

Let p be the multi-index {p,,..., p.}, then D? denotes the differential
operator
oM on

.Dp == T .
P
oxi1 T

it is of order |p|=1p, + ... + pu.

We shall need several types of Sobolev spaces; the definitions given
here follow Hormander [18], with a slightly different notation.

Let 8 be any real number. Then H?*®(R") is defined as the space of
w€d’ (J is the space of temperate distributions in ") for which

(14 | &[22 % (§) € L2 (R") 5

here ::(5) denotes the Fourier transform of u (x). H*(R") is a Hilbert space
with the norm

jule=|(14|¢ ‘2)312’;(5) iLZ('R")'
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Now define

(1.1) H*(Q2)=the space of u€(’ (Q), for which there exist U¢€ H*(R"
with U=u in Q; H*(Q) is a Hilbert space with the norm
|u|, =inf| Ul,, the infimum taken over all such U;

(1.2) Hg(2)=the space of u€ H'(R") which have support in 2; H, ()
is a closed subspace of H* (R").
Here D (Q) is dense in H’(2) and D (L) is dense in Hj (£2). Moreover,
H™*(Q) and H, (2) are strong anti-duals with respect to an extension of

’u;dz, wED(Q), veD(Q).
Q

When 3 is a positive integer, H?*(Q) is the space of ue L?(2) for
which D? u (defined in the distribution sense) is in L?(£2) for all |p|<s,
and the norm is equivalent with

1
(2 | DPufyz.
lpi=ss

When 8 and s’ are real numbers with s < s/, H* (2)c H* (Q) algebrai-
cally and topologically (i.e., the imbedding is continuous); furthermore,
H¥ (Q) is dense in H*(Q).

H*(I") is defined by local coordinates, using the definition of H?*(R"1)
(see e.g. Hormander [18])). D (I') is dense in H*(I"), for all s. It follows
from the boundedness of I' that every distribution €}’ (I") belongs to
H*(I") for some 8.

H*(I') and H—* (') are strong anti-duals with respect to an extension of

jW;dG, @, w€D();
r .

the duality will be denoted by (¢, v ).
8 —3

‘We shall often have to consider product spaces

m—1
n H(I'), ;¢€R, j=0,..,m — 1.

=0

The summation will nearly always be over j =0,...,m — 1, where m is a
fixed number, in that case we just write

IHH% (D).



boundary value problems associated with an elliptic operator 431

If the norm in HY (') is |-|;;, j = 0,.., m — 1, we denote the norm

1

m—1 " 2 X X )
(j_Z0 |‘P,-|§,-) of w =@, ., @, JEMHII) by [ |-

Also, the duality between IT H % (/') and IT H " (I") will be denoted by

m-—

1
( @, w ). which stands for 3 ( ¢j, w; ).

1858 s j=0 8 -3,

Many of the results in the following are based on the interpolation
theory for the spaces H?®(£2), H*®(I') and related spaces. We shall only use
it directly a tew times, each time in the form of the following theorem.
(8; and w;, j=20,...,m — 1, denote real numbers; m a positive integer.
(D (I')y™ denotes the product space of @’ (I') with itself m times).

THEOREM 1.1. Let r, and r, be real numbers (ro<<r,). Let K be an
operator in (D’ ()" which maps IT H™ (I") continuously into IT H™" for
r=rqund r=r,. Then K maps I1 H™(I") continuously into ITH T'i(I')
Jor all rg<<r<<vr,.

I § 2. Boundary differential operators.
Denote by y, the mapping of uE(D(Q-) into its boundary value Yo =
=u|r€D ("), and denote by »;(j=1,2,..) the mapping of u €D (L) into

J
aﬂ”’z €D(I'). A fundamental « trace
o

its j’th interior normal derivative y;u =

theorem » is the following :

1
THEOREM 2.1. Let s be a real number >? and let r be the largest

1 —
integer awith r < 8 — 5 The mapping y = {yg s, vel, defined on D (),

extends by continuity to a continuous mapping, which we will also denote by

]'_._

Jj=r S 1
y =Ygy}, of H* (L) onto Il H 2 (I'). The kernel of y is exactly

=0
Hj (Q).

(Various parts of the theorem have been proved by many autors —
for references see Lions-Magenes [24] I1I or [24’]; we here present a very
strong version due to Uspenskii [31], the last statement due to Lions-Ma-
genes [24’] Theorem 1.11.5).
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REMARK 2.1. In this way, y, is defined on all spaces H*(£) with s >

>i+ % Since D (£2) is a dense subset of H*(£2) for all s, and H¥(2)c

c H*® (£) algebraically, topologically and densely, whenever s’ = s, the de-

finition of y; on H*(£) is an extension of y; defined on H* (Q), s’ =5 >
. 1

>.7 + 2 .

By a boundary differential operator B,- of order m; with coefficients in
D(I'y (j and m; are nonnegative integers) we shall mean an operator of
the form
(2.1) Biu= X bjy,D?u

|p|5mj

where the by are functions in D(I') (not all zero for |p|=m;). B; maps
D(Q) into D (I'). It can also be written as

k=m;—1

(2.2) Bju = bjym;u+ ;,2 Tk y w,

=()

where b;eD(I") and the Tj are («tangential ») differential operators in I"
of orders << m; — k, with coefficients in D ().

Let m be a positive integer, and let {B; ,-’:0'""‘ be a system of m boun-
dary differential operators. We say that the system is normal if the orders
m; are distinct, and the functions b; as in (2.2) have inverses (which then
belong to D (I")). We say that the system is a [irichlet system of order m
if, furthermore, the orders m; fill out the set 0,..,m — 1. (For details see
Aronszajn-Milgram [3] and Schechter [28]).

One has easily from Theorem 2.1:

COROLLARY 2.1. Let m be a positive integer and let B; be a boundary
operator of order m;<<2m — 1. The mapping w X\ Bju, defined on D (2),
extends by continuity to a continuous mapping, also denoted by B;, of H?*™(Q)

m—m,—

2 1
into H 2(I').

The situation will usually be that we have two normal systems {Bjjj-'
and {C})»5' (denoting the order of C; Ly u), such that (B, .., Bu_i,
Oy .oy Cm—y} is a Dirichlet system of order 2m. One can then derive from
Theorem 2.1:

PROPOSITION 2.1. Let m be a positive integer and let {B;)i—y" (orders m;)
and {C)i! (orders i) be normal systems such that {B.,.... B, 1, Cy,ue. Co -y}
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i8 a Dirichlet system of order 2m. Then {Bo, ey Bme1, Co s veey Oy} maps
m—1 M — 2m— ~—-l—
H*™ (Q) onto T 7w () > II LR,
j=
In the proof one transforms the problem of constructmg » from boun-

T (I'), CGu=rye ™72 ?(I"),j=0,...,m—1,

into the construction of  from boundary data y;u = pj€ H 2m—j—?(["), j=

=0,..,2m — 1; which is possible according to a lemma by Aronszajn-
Milgram [3], since the orders are distinct and the coefficients b; (as in (2.2))
are invertible. (For details, see e.g. Schechter [28]. One then applies
Theorem 2.1 with s = 2m.

2m— mj—

dary data Bju = ;€ H

I§ 3. Assumptions; and some results on elliptic differential operators.

There is given a differential operator A of order 2m (m is a positive
integer), with coefficients a,, (x)€ D (2):

(3.1) A= z (— 1) 2?1 D? ay, (x) DY

2l lgl=m

which is properly elliptic in Q (as defined in Schechter (28], or [24] V p. 8).
The formal adjoint A’ is defined by

(3.2) A= X (= 1)rIDva, (@)1 .
I2l.1glsm

it is then also properly elliptic in Q.
There are given four systems each consisting of m boundary differential
operators with coefficients in D (I"): B = {By, ..., Bu—}y, C=1{Cy, e, Cro1},
= {Bgy, ety Bu—y}, ¢/ =1{Cy,..., Uy}, where B; is of order m;, C; is of
order u;, Bj is of order 2m — u; — 1, and Cj is of order 2m — m,— 1, for
Jj=0,..,m—1. It is assumed that all four systems are normal, that
{Bos ooy Bu—1y, Coyuey Cny} and (Bg, ey Byery Coy ooy Oy} are Divichlet
systems, and that they together with A and A’ satisfy Greew’s formula

m—1 — —
(3.3) f(Au vt—uA)de =23 ‘[(Cj u Bjv — Bju Cjv) do

j=0
r

for all u, v € H2™ (£).
We will say that the system {A, B} satisfies the hypothesis (@) if

(C) The system of boundary operators B = {B;] covers A (Schechter [28]
or [24] V p. 11).
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REMARK 3.1. The following properties are mentioned in Lions-Magenes
[24] V; we also refer to Schechter [28] and Aronszajn-Milgram [3]:

If {A, B} satisfies (C) then also {A’, B’] satisfies (C). For the special
case where B =y = {yy..,ym_i). one has: [A,y] satisfies (©) for any
properly elliptic A.

We will now introduce several operators in L2(£), associated with the
formal differential operators A and A’.

The minimal operator 4, [resp. A¢] is defined as: the closure as an
operator in L?(Q), of A [resp. A’| defined on 9 (£2). The maximal operator
A, is defined by: D(d,)={uel?(Q)|Ane L*>(Q) (Av defined in the di-
stribution sense)}; Au = A,u for u€ D (4,); A is defined analogously. Then
A, = (4p)* and A; = A}. (For further explanation, see e.g. Ilormander
[17]). Note that 4,, 4;, Ay and A; are closed operators.

Because of the ellipticity of A, one can prove that the tunctions in
D (A,) satisfy : w€ H>™(Q,) for every open subset 2, € £ with ?)1 c Q (in-
terior regularity, Iriedrichs [14]); and that D (4,) = H,/™ (2) (also in the
sense that the graphnorm and the H?"(Q)norm are equivalent on 1) (4,)).

The linear operators A4 with A c Adc 4, will be called the realizations
of A. Similarly, the operators A’ with A, c A'c A; are the realizations of
A’. Clearly, the adjoint of a realization of A is a realization of A’, and
vice versa.

Let A be a realization of A, and let w€ D(A,). For any open subset
Q, of Q with Q, <O one can, because of the iuterior regularity, find
w€ H™(2) = D (A,) such that v =u, in Q,; therefore solely the behavior
of w near the boundary I' determines whether it belongs to D (Z). This
justifies the statement that each realization corresponds to an « abstract
boundary condition ». Our aim is to give a concrete formulation of this
idea ; in fact to show how every (closed) realization corresponds to a boun-
dary condition, expressed in terms of an operator between certain spaces over
T, of the type described in § 1. To do this, we shall need the basic results
in the theory for local nonhomogeneous boundary value problems developed
by Lions and Magenes [24], [24’]). Their theory builds, among other things,
on the regularity results by Schechter [28], Agmon-Douglis-Nirenberg [1],
and uses interpolation theory.

We begin with describing the fundamental regularity results.

Define the operators A; and Aj by

(3.4) D(Ap) ={ue H™(Q)| Bu =0}, Azc A,
and

(3.5) D(Ay) = fue H™(Q) B u=0}. .1,cCA].
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Since Bu =0 and B’u =0 for u€ H;" () = D (A,) = D (A;), Az is a rea-
lization of A, and A} is a realization of A’. It follows from (3.3) that A,
and Ay are contained in each others adjoints.

B is 8o far defined for u € H2™ (Q); for general u€ D (A,) we now define
what we mean by Bu = 0 by (weak definition):

(3.6) For we D(A,), Bu=0 if and only if u€ D ((43)*).
Then one has (Schechter {28], Agmon-Douglis-Nirenberg [1]):

THEOREM 3.1. If {A, B} satisfies (), then u€ D (A,) with Bu = 0 weakly
imply w€ H?™ () with Bu= 0 in the ordinary sense (as in Corollary 2.1).
This shows that D ((43)*) € D (A4, which together with the already
known : A; € (Ap)* gives
Ag= (A;;)*.

In the course of the proof of Theorem 3.1 one finds that the graphtopology
on D (A is equivalent with the H?*"(Q)-topology; we can also note here
that it is a consequence of (3.4) and the statement of Theorem 3.1, by the
closed graph theorem (using that D (A4,) equals algebraically a closed sub-
space of H?"(£), and the graphtopology is weaker than the H 2™ (£)-topo-
logy). Recall Remark 2.1, that {4, B} satistying (C) implies {A4’, B’} satisfying
(©). Then similar considerations apply to Aj. Altogether :

CoroLLARY 3.1. If {A, B} satisfies (C), then Ag and A are adjoints,
and the graphtopology on D{Ag) [D (Ap)] is equivalent with the H 2™ (£2)-topology,
We will say that the system {d, B} satisfies the hypothesis (%) if

(%) the problem
Au=f
(3.7)
Bu=0 (weakly)

has a wnique solution u € D (4,) for all f€ L?(Q).

Note that when (A, B} satisfies (C), (3.7) is the boundary value pro-
blem represented by Az, and then {A, B} satisfies (%) if and only if
0¢€ o (Aﬂ).

We will not try to list sufficient conditions for the validity of (%)
here. A discussion can be found in Lions-Magenes [24] V, where further
references to the literature are given.

(3.7) contains the homogeneous boundary condition Bu = 0; to treat
the corresponding nonhomogeneous boundary value problem one needs an
extension of the definition of B to all uwe D) (A)).

6 Annali della Scuola Norm. Sup. - Pisa
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DEFINITION 3.1. Let 8 be a real number. We define
Dy ()= ue H (Q)| Ave H' (Q))

as a Hilbert space with the norm

1
25
[l = (0wl 4 Ao

We define the space
75 (Q) = (we H' (@)| Au =0},

it i8 a closed subspace of D% () as well as of H'(Q).

Note that D% (2)c H® () algebraically and topologically for all s.
When s=>2m one has in fact D} (2)= H’(Q), since u€ H’(2) implies
Au€ Hs—m(Q); the identity also holds topologically, by the closed graph
theorem. Note that D%(f) is identical D (4,).

THEOREM 3.2. The boundary operator B = {B,,.., B,,—,} defined on
H*™ (Q) can be extended to an operator, also denoted by B, which maps D% ()

m—1 — .._l
continuously into II H T (I") for all real s.
=0
For all s < 2m, H*™ (Q) is dense in D) (R), so that here B is an extension
by continuity of B defined on H?*™ (Q).
Similarly, one obtains by extension by continuity operators C, B’ and C’,

s—2m+u;+ X

1
mapping D (2) and D% (2) continuously into ITH "~ % (I"), ITH 2 (I

— 1
and ITH' mmit (I"), respectively, for all real s.

We refer to Lions-Magenes [24] V, VI and [24’] for details. The exten-
sion is defined such that it is consistent with the weak definition of Bu=10
for w€D(A,) given in (3.6). (In fact the extension is defined by a clever
duality argument, using an analogue of Green's formula (3.3)). Note that

1
B maps D(A,) = D% () continuously into ITH ° 2 (I').

REMARK 3.2. For s = 2m, the above statement can actually be deduced
from Corollary 2.1, by interpolation between integer cases.

For s < 2m, the theorem gives new information. Here the present
statement is an improvement from the results in [24] V, VI, in that it is

. 1 .
not prescribed that s—? be different from an integer, as was the case

in [24]. The improved version follows from some stronger results in Lions
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and Magenes book [24’], of which the authors have kindly shown me the
manuscript. In the same way, Theorem 3.3 below is valid for all s.

With the new definition of B, (C, B’ and ¢’, Green’s formula can be
extended as follows:

COROLLARY 3.3. Let 8 € [0, 2m]. For w€ D% (Q), ve D’ (Q), one has

(3 8) (A, v) — (u, A’v) = ¢ Cu , B’v »—{ Bu , O'v ).
e B el

PROOF. The formula follows from (3.3) by extemsion by continuity,
using Theorem 3.2.

REMARK 3.3. The above extension of Green’s formula is in a sense
the best possible. By this we mean that even though B, C, B’ and €’ are
defined on D’ (2) resp D% (2), the formula does not make sense for all
pairs [u, v] € DY (2) < D'A,'(.Q) unless s 4 8’ = 2m. Proof for the case where
B and C cover A (thus B’ and (' cover A’): Bu and C’v must belong to
dnal spaces in order that (3.8) makes sense. By Proposition III 5.2 (which

1
uses the boundedness of £) mentioned in II[§ 5, Bue T H' 7 2 (I} if
and only if u€ D% (L) (s€[0,2m], u is assumed to be in D% (R)), and C've

1
eI H ™™ T () if and only if ve DX ().

Finally, we present the fundamental result of Lions and Magenes [24]
V, VI, [24’| which gives a precise description of the non-homogeneous
boundary value problem, when the given differential operators are sufficiently
nice :

THEOREM 3.3. Assume that both (A, B} and {A’, B’} satisfy (C) and (U).
(i) Let s << 2m. The mapping (A, B} is an isomorphism of D% (S) onto
1

H(Q) - 1IH T ('), and {A’, B’} is an isomorphism of D% (2) onto

1
HO Q) - T H ™" (g,
(i) Let s = 2m. The mapping (A, B} is an isomorphism of H*(£2;
8-—1nj—

2(I'), and the mapping {A’, B’} is an isomorphism

$—2m-tp;t+ 1

().

onto H*=2m < [ H
of H*(Q) onto Hs— ()< [ H

Here, the really important contribution is statement (i); statement (ii)
follows by interpolation from the results in [1] and is used in the process
of proving (i).



438 GERD GRUBB: A characterication of the mon-local

CHAPTER lI. - ABSTRACT THEORY

§ 1. Basic results.

Definitions, and certain special results that we shall need, are given
in the Appendix.

Let H be a Hilbert space with norm denoted by ||, inner product
(w,v). We assume that the following operators are given in H: A pair of
closed, densely defined, unbounded operators A4,, A, satisfying 4, < (4q)*,
Ajc A%, and a closed operator Az which has a bounded, everywhere defined
inverse, and which satisfies :

Ay Agc (A ().

Denote (4y)* = A4, and Af=A;, then 4¢C A43C A,, A€ Af C A;;
A% has a bounded everywhere defined inverse.

The set of linear operators Adin H satisfying AOCZ c A, will be
denoted by 9N ; the set of linear operators A’ with A{,CZ’ c A; will be
denoted by M. Clearly, A €N implies A*€’, and A’ €M’ implies
(A%)* € M.

In this § we will give a characterization of the closed operators AeM
in terms of operators T from Z(4,) to Z(A}); in the form of a 1 — 1 cor-
respondence. Some properties of the correspondence will be deduced.

We will use the following simplification of notation, whenever conve-

nient : When uED(Z) for some A €N we write Au, instead of Zu, and
when ve D (Z) for some A’ €N’ we write A’v instead of A’v. The graph-
norms in any of the spaces D(Z), a €N, will be denoted by

1
lula=(luf +]4uf)?,
similarly the graphnorm in D(z'), A’ €M, will be denoted by
1
lole = (v 4] a%0 .

() Note that then A, also has a bounded inverse. Conversely, if 4, and 4 have
bounded inverses, and 4, cC (47", then there exists 4 g Vith O€e(dy), 4, 4 pC o
(Description in Vishik [32]).
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LeuMA L1. D (Ay) = D (Ap) + Z(A;) and D (Aj) = D (4%) + Z (4)),
direct topological sums in the graphtopologies.

PROOF: Since D{dgc D(A,) and Z(A,)cD(A,)), D4y + Z(A)c
cD(A,). Now let u€ D(A,). If u can be decomposed into u=wug- u;,
where ug€D(Ag) and w €Z(A,), then Au= Auz; so ug= Az' Au. This
shows that the decomposition is unique, and it also indicates how the ge-
neral element u of D (4,) can be decomposed : If u € D (4,), let ug = A;" Au,
then u; = u — uy satisfies Au; = Au— Aug=0.

Thus D(A4,)= D(Ap) —i—-Z(Ai), direct sum. To show that it is a direct
topological sum we have to show that the mapping [ug,u;] — X w = ug 4 u;
is an isomorphism of 1 (A4p) < Z(4,) onto D(4,) (graphtopologies). The
mapping is clearly continuous :

| wp - we 4 < wglu 4 |ugla = |ugla + | ue|

for all uge D (Ap), u €Z(A,). Since Az and A, are closed, the spaces
D (Ap) < Z(A,) and D (A,) are Hilbert spaces; it then follows by the closed
graph theorem that the mapping is an isomorphism. Thus

D(Ad) =D (Ap) -|- 7Z(4,), direct topological sum.
An analogous proof shows that
D(4) = D (A}) + Z(4y), direct topological sum.

Since we will use these decompositions again and again, we make the
following definitions :

The projection of I)(A,) onto 1) (A4p) defined by Lemma 1.1 is called
prs, the projection onto Z(A,) is called pr.. For u€ D(4,) we also write
prsn =ug; prew=1u;. The projections of D (A4;) onto D(Af) and Z(4;)
defined by Lemma 1.1 are denoted prg resp. prp, and we write pry v = vy,
pry v = v, Wwhenever convenient.

We will still reserve the terminology Ux for the orthogonal projection
of a subspace or element U into a closed subspace X of H.

LEMMA 1.2. For u€ D(A,), veD(A,) one has
(Au, v) — (u, A’v) = (Au, v;) — (uy , A'0).
Proo¥F :
(Au, v) — (uy Av) = (Au, vy + vo) — (up + 1z, A'v)
= (Aug, vg) — (g, A"vg) 4 (L, vp) — (u: . A7)
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since Au; =0, A'vy = 0;
= (Aw, vy) — (ug , A'v),

since u; and vy belong to domains of adjoint operators.

PROPOSITION 1.1. Let A€W, A*€ M’ be a pair of adjoint operators.

Define V=pr; D (Z) and W =prp D (Z") (s0o VC Z(4)), Wc Z(4), closed
subspaces). Then
(i) the equations

D(T)=pr. DA
(w1 pr:D(4)
Tu; = (Aw)w, all w€D(A)
define an operator T: V— W, and the equations
D (T,) = pry D (A*)
(1.2)
T, v = (A"0)y, all ve D (A%
define an operator T,: W—V;

(ii) the operators T and T, are adjoints.

PROOF : Let u€ D (4), vED(Z’). It then follows from Lemma 1.2 that
0 = (Au, v) — (u, A’v) = (Au, vp) — (s , A’v),
and therefore, since u; €V, vy € W:
(1.3) (Aww , vp) = (u; , (A’0),), all weD(A), veD (A",

Now if u; = 0 then, by (1.3), (Au)w , vs) = 0 for all vED(Z"), from which

it follows, since W = pr;'D(Z"), that (Au)y = 0. Thus (Au)w is a function
of u; for all u€ D(X). We can then define the operator 7 by

T’ug = (A’ll/)u/

for all w€ D (A4). Clearly D (T) =pr¢D(Z)c V,and R(T)c W.

Similarly, it follows from (1.3) that (A’v)y is a function of v, for all
vE D(E'). This defines the operator T, satisfying (1.2) and the proof of (i)
is completed. '
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We will now prove that T and T, are adjoints. By symmetry it suf-
fices to prove, e.g., that T is the adjoint of T,.

Since T,: W—> V is densely defined in W, the adjoint 7\*: V— W
exists. It follows from (1.3) that

(Tv, w)yw = (v, Tyw)y, all ve D(T), weD(T,).
Thus T € Tl*.
Now let z€ D(T\*). Define =2+ A;l T\* z; then clearly x€ D (4,)
with &g = A,}'l "*2, &z = 2. One has for all ve D(Z"):

(Ax, v) — (2, A’v) = (Aw, vp) — (0, , A’v) by Lemma 1.2
= (T\*2, vy) — (2, A"0)
= (T\*2, vy) — (2, (A’v)y) since z€V
= (T\*2, v) — (2, T,vr) Dby the def. of T,,

= 0.

Thus € D (A*) = D (A). Consequently, by the definition of T, #; = 2 € D(T)
and Tz, = (Ax)yw = (Ti*2)w = Ti*z, i.e., Tz = T*2. It follows that T*c T.

We have then proved that 7,* = T, which completes the proof of the
proposition.

Proposition 1.1. shows how every adjoint pair A€ O, A*€ N, gives
rise to an adjoint pair T: V— W, IT*: W-»V, with VcZ(4,) and
W < Z(A)), closed subspaces. The next proposition shows that any adjoint
pair T: V— W, T*: W — V, where V and W are arbitrary closed sub-
spaces of Z(A;) resp. Z(A)), is reached in this way.

ProrosiTiON 1.2. Let V be a closed subspace of Z(A,), W a closed
subspace of Z(Aj) and T: V— W, T*: W — V a pair of adjoint operators
(not necessarily bounded). Then the operators A and A" in H determined by

(1.4) D(A)={ueD(A,) u€D(T), (Awyw = Tug}, A€M
and
(1.5) D(A’)=(ve D (A})]| v € D(T*, (A"v)y = T*v}, A’ €M’

are adjoints, and the operators derived from Z, a* by Proposition 1.1 are
exactly T: V— W and T*: W— V.
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PrOOF : For uED(Z), vED(Z’) we have by Lemma 1.2:

(Au, v) — u, A7) = (Au, v;) — (uz, A’v)

== ((Au)w ) l’c') - (u; y (A”l))v), since ur € V, vy € ‘V,

= (Tug ,vy) — (u;, T*v;) by the def. of A and A,

=0.

Thus A4 and A’ are contained in each others adjoints.

‘We now have to prove that A* c A’ and that (Z')~ cd ; by symmetry
it suffices to prove, e. g., that A*c 4 .

Let ve D (4*). Since A, is closed with a bounded inverse, and has A;
as adjoint,
(1.6) H=R(A,)) @ Z (A1) (orthogonal sum);

thus R(A4,) | W. Therefore any element « of the form u =2z 4 A;’ Tz + w,
where z€ D (T') and w € D (4,), is in D (Z), since w; = 2€ D (T) and (Au)y=
= (Tz 4+ Ayw)w = Tz. We have for all such u:

0 = (Au,v) — (u, A'v)
= (T2 + Aw, v;/) — (2, A’v)
= (T2, vp/) — (2, (A")y).

Thus (T2, v;/) = (2, (A’v)y) for all z€ D(T). This shows that v, € D (T*) with
T*v; = (A’v)y, whence, by definition, »€ D (4’). Thus A* c A’.

The last statement of the proposition is obvious.

Finally, every pair T, T* stems from only one pair Z, ar:

LEMMA 1.3. Let A €W and A* € N’ be a pair of adjoint operators, and

let T:V— W and T*: W— V be derived from 4 and A* as in Proposi-
tion 1.1. Then

D(A)={ueD(4,)|u€D(T), (Av)w= Tu)

D (71‘) = (v D (A])| vy €D(T"), (A"v)y = T*v}.
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PROOF : Let 4, and A¥ be the operators defined by (1.4) resp. (1.5) in
Proposition 1.2. It follows from the definitions of T and T* in Proposition
1.1, that

(1.7) D(A)c D(4,)
and
(1.8) D (A" c D (4").

Since A and 4, € M, (1.7) shows that 4 c 4,. Then A* > A*. This, toge-
ther with (1.8) implies A* = A*%. Then also 4 = 4,.

The Propositions 1.1 and 1.2, and Lemma 1.3 together imply the
theorem : )

THEOREM 1.1. There i8 a 1 — 1 correspondence between all pairs o-
adjoint operators A, A* with A € M, A*€ NM’, and all pairs of adjoint opef
rators T, T* with T: V— W, T*: W — V, where V denotes a closed sub-
space of Z(A,) and W denotes a closed subspace of Z(Aj1); the correspondence
being given by :

D(A)={u€D(A,)|u € D(T), (Aw)w = Tu,)
D(A* = (ve DA} | v € D(T*), (A%v)y = T*v;).

In this correspondence, D (T)= pr.D(4), D(T* =pry D (Z'), V=

~

=pr; D (A) and W = pr,. D (4*).
The formulation of Theorem 1.1 is completely symmetric 4 and Z’,

and in T and T*. Since A* is actually determined by 4, and T*: W—V
is determined by T': V — W, an immediate consequence of Theorem 1.1 is:

COROLLARY 1.1. There is a 1 — 1 correspondence between all closed

operators A€M and all operators T: V— W satisfying
(i) V is a closed subspace of Z (A,), W is a closed subspace of Z(A,);
(ii) T ts densely defined in V and closed ;

the correspondence being given by

(1.9) DA)=(ueD(A,)|u € D(T), (Au)y = Tu).

In this correspondence, D (T') = pr; D (Z) (80 V =pr, D(Z)).
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Furthermore, if Yy corresponds to T : V— W in the above sense, then A*
corresponds to T*: W — V by

(1.10) D (A% = [r€D(A})]| re € DT, (Av)y = T*ny)

and D (T*) = prs D (A% (so W =pre D (Z")).

REMARK 1.1. If T is given as a closed operator from Z(4,) to Z(A;)
we can choose W as any closed subspace of Z(A;) for which R (T)c W,
and define 4 by (1.9). Then A corresponds to T: V— W, where V = D(T).
Of course, different choices of W give different operators Z, whereas V is
necessarily equal to D (T). Therefore V need not be explicitly mentioned
in this connection; however, V is important when we consider A~", since
it is the range space for T* and enters in (1.10).

We will give another description of the connection between A and T,
which also sheds light on the topological structures. To do this we need
the following lemma :

LEMMA 1.4, Let W lbe a closed subspace of Z(Aj), and let T be any
operator with D (T)c Z(A,) and R(T,c W. Then the following two sets D,
and D, are identical :

Dy={ueD(d,)|u € D(T), (Auyw = Tuj
(111) Dy={u=z+ Az (Te+ f)+v|26 D(T), fEZ(A}) S W, ve D (4,).

Moreover, the elements z€ D(T), feZ(A) =) W and v€ D(4,) are uniquely ‘
determined by w in (1.11).

ProOF: In the proof we use the earlier mentioned fact that H =
= R (40) ® Z(4))

Let u€ Dy, i.e,u =2+ A5 (Tz+f) +v, with z€ D(T), f€ Z(A) D W,
v € D(A,). Then clearly u € D (4,). Since z€Z(A4,) and A'ﬂ_l (Tz+ 1)+
+ ve D (Ap), ug =2 Also, Au= Tz} f 4 Av, where Tz€ W, feZ(A)O W
and v€ E(4,); then since

(1.12) H=W®(Z(A)O W)D R (4.

we find that (Au)w = Tz. It follows that we D, .
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Conversely, let u € D, . Decompose

(1.13) Au = !Au)W + (Au)Z(Ai)(E) ir + (Au)R(Ao)’
Set (Au), ;1\ o) =1/, and set Az! [(4w),, ]="v. Then veD (4, since
A, is 1 —1.

Now u = u; 4 ug, where ug = A,}" Au. By assumption, u;€ D (T) and
(Au)w = Tw;. Then

w=u + A5 Au
=u; + Az (Tu; +f + Av) by (1.13)

=u + A5 (Tug +f)+ v

where u; € D(T), f€Z(A})> W and ve D(A4,). Thus « belongs to D,.
The uniqueness is easily shown (by use of (1.12)).
We can now prove :

THEOREM 1.2. Let 4 correspond to T:V— W as in Corollary 1.1.
Then ue D(E) if and only if

w=2z+4 A5 (Tz -+ f)+ v.for some z€ D (T),f€Z(A})S) W,veD(4,)

Here z,f and v are uniquely determined by u, and the mapping

(5, /,0) "N wu=z+ A5 (T4 [)+ ¢

is an isomorphism of D (T) < (Z (A1) W) < D(4,) onto D(z), when the
spaces are provided with the graphtopologies.

PROOF : The first part of the theorem follows immediately from Corol-
lary 1.1 together with Lemma 1.4. Lemma 1.4 also gives that the mapping
[e.fio) N u=2z+4 A5 (Tz + 1)+ v of D(T) < (Z(41) S W) < D (4,) onto
D(Z) is 1 — 1; it only remains to prove the continuity of the mapping and
its inverse.

Let the sequence [2", f", v"] converge to [z, f, v] in D(T) < (Z(41) D W)x
< D (4,). This means that 2» — 2, T2" — Tz, f"— f, " —> v and Av* — Av,
in H. Then

'u”—_—'-zn+AEI(I'Z"‘}-J.")+U"—>Z+A'9—1(Tz +j)+v=u,
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since A;' is continuous, and clearly
Aur = Tzn + fr 4 dv*— Tz 4 f+ Av = Au.

Thus " — u in D(X). Since the spaces are metric, this proves that the
mapping [#,f,v] T\ u is continuous. By the closed graph theorem (recall

4 and T are closed, so D (X) and D (T) < (Z(A])©) W) < D(A,) are Hilbert
spaces) the inverse mapping is also continuous, and the proof is completed.

COROLLARY 1.2. Let A correspond to T as in Corollary 1.1. and let {ur)
be a sequence in D (A). Then ™ — u in D(Z) if and only if up— up in
D (Ap) and uf—> u; in D (T) (graphtopologies).

PROOF : By Theorem 1.2, u®» = 2"} A;l( Tz*+f ™) + v*, where [v*, f", v"]
is a uniquely determined element of D (T) < (Z(4;)©S W) < D(4,); then
u; =2" and up = A},‘l (T2 4+ f" + v*. The corollary follows by a straight-
forward application of Theorem 1.2.

REMARK 1.2. Note however, that D(E) is in general not the direct sum

of D(T') and a subspace of D (Ag). When u €D (Z), the component u; usually
depends (partially) on the component wu, since it is of the form wu;=
= A" (Tu; + f) + v (for some f€Z(A}) D W, ve D (4,y).

More properties of the correspohdence between A and T are given in
the following.

THEOREM 1.3. Let A correspond to T: V— W as in Corollary 1.1. Then
(i) ZA)=2Z(T), so A is 1 —1 if and only if T is 1 — 1
(ii) AN\ R (d) = W\ R (T). Thus in particular,
a) A is onto if and only if T is onto;
b) R (A) is closed if and only if R(T) is closed ;
c) R(X) and R(T) have the same codimension.

PROOF :

(i) Let uEZ(Z). Then u = u; and Tu; = (Au)y =0, 8o w € Z(T).
Let u€Z(T). Then u€Z(A,)n D(4) = Z(4).

(ii) By Theorem 1.2, the general element of R (Z) is

g="Te+/+ Av
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where z€ D(T), feZ(A;)© W and ve D (A4, independently. Here [ runs
through Z(A;)©) W and Av runs through R (A, = H () Z(4)), so [+ Av
runs through H () W. Therefore the elements of H that g does not reach
are exactly the elements of W that T2 does not reach, i.e.,

H\R(d)= W\ R(T).

COROLLARY 1.3. A and T have the same index. A is a semi-Fredholm
operator if and only if T is one, and 4 is a Fredholm operator if and only
if T is one.

(The index of an operator S is defined as the dimension of Z (S) minus
the codimension of R (8), if both are finite. § is called a semi-Fredholm
operator if S is closed, R(8) is closed, and the dimension of Z(8) is finite;
it is called a Fredholm operator if furthermore the codimension of R (8) is
finite).

Theorem 1.3 states that A is 1 — 1 if and only if T: V— Wis 1—1.
For this case one has: )

THEOREM 1.4. Let A correspond to T:V — W as in Corollary 1.1,

Assume that A is 1 —1 (or, equivalently, T is 1 — 1). Define TV as the
linear extension of
,~T“1f when feR(T)
T(—l)f= ¢
lo when feHS W
Then

A7 = 45"+ T (defined on R (4)).

PROOF : Let f€ R(A). Let u=A""f, v=A;"f. Then u = v 4 z where
2€Z(4).
By the definition of 7,z¢ ) (T) and
Tz = (Au) w '—"‘fw.
Therefore fy € R(T) and
T(_l)./‘ = T-1 f"' = 2.
Inserting this in u = v 4 2z we find

A-'f= A7 f 4 TNy

which proves the theorem.
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With this theorem one can bring perturbation theorems into use. As
an example we mention the obvious

COROLLARY 1.4. Let A;l be a compact operator. Then A7 exists and
is compact if and only if T ! exists and is compact.

Other examples are given in Theorem 2.2 below.

IT § 2. The symmetric case.

Let us in this § assume once and for all: P corresponds to T': V — 1V
as in Corollary 1.1.

In the case where A, = Ay (or equivalently 4o = A,, or A; = A,), A,
can be chosen to be selfadjoint, which makes the set-up particularly simple.
Then the two decompositions mentioned in Lemma 1.1 coincide, and the
operators T: V — W are operators in Z(4,). It may now happen that
VeWor V=W. In the first case the numerical range »(T) of T (see
Appendix) can be defined; in the second also the spectrum o (7). We will
show how properties of these are reflected in properties of v(]f) and o(z’f).

Throughout this § we assume, in addition to the assumptions of § 1:

(2.1) = AL

Then N = N’ = the set of operators between A, and A,. In particular
’ 0 1 )

AN is selfadjoint if and only if 4 is a selfadjoint extension of A,.

Let A, be a selfadjoint operator € Y such that 0€o (A (that such
an operator exists when A, is symmetric with bounded inverse was proved
first by Calkin [9], see Riesz-Nagy [26] p. 336). One then obtains immedia-

tely from Theorem 1.1 that A€ is selfadjoint it and only if V=W
and T: V— V is selfadjoint. In a more common terminology :

THEOREM 2.1. Let A, be a closed, 3ymmeiric, densely defined opervator
with bounded inverse, and let A, = Af§. Let Ag be a selfadjoint extension of
Ay with 0€g(Ag); denote the decomposition I (A,) = I)(A,,)—[—Z (4,) by

u=ug+ uz. -
(i) Let V be uny closed subspace of Z(A,) and let T be any selfadjoint

operator in V. Then the operator 4c A, defined by

(2.2) D(A)=(ueD(A,)|u: € D(T), (Au)yy = Tu)

is a selfadjoint extension of A,.
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(ii) Conversely, any selfadjoint extension A of A, defines a selfadjoint
operator T in V (= the closure of {u;|u€1)(§)]) by (2.2).
Aand T correspond uniquely to each other.

REMARK 2.1 This theorem gives a complete characterization of all self-
adjoint extensions of A,, a problem earlier discussed by Calkin [9], Krein
[22], Birman [7], Vishik [32] (in some cases with partial, and more com-
plicated results). The above result has the advantage of being easily tran-
slatable into a theorem on boundary conditions (Theorem III. 4.1).

We give two examples of perturbation theorems for selfadjoint opera-
tors applied to Theorem 1.4 :

THEOREM 2.2, Assume (2.1) and Ay selfadjoint. Let A €N be selfadjoint
with 0€p (E), and let A correspond to T: V— V as in Theorem 2.1.
@) If Aﬂ_l i8 compact, then A and T have the same essential 8pec-
trum.
(ii) If T—! is of trace class, then A~ and Ag' have the same absolu-
tely continuous spectrum.

ProoOF : Recall (Theorem 1.3) that OEQ(IT) if and only if 0€ o (T). Let
T(1 be defined as the linear extension of

T-1f for f€V
T(-1 j =
0 for feHO V.

Then it follows from Theorem 1.4 that
A1 = A5 4 T,

(i) The proof is an application of the theorem of Weyl (Riesz-Nagy
[26] p. 362): If S, is bounded selfadjoint and §, is compact selfadjoint
then S, and 8, 4 S, have the same essential spectrum.

Let 8, = 7", 8, = A7'. Then it Aj" is compact, A—' and TY have
the same essential spectrum. Since OEQ(Z) and 0€p(T) it follows that
A and T have the same essential spectrum.

(ii) The proof is an application of the theorem of Rosenblum-Kato
[27], [20]: If §, is selfadjoint and S, is selfadjoint and of trace class (i.e.,
has finite absolute trace), then 8, and 8, 4+ 8, have the same absolutely
continuous spectrum.
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Let 8, = Az', 8, = T"". Clearly 7" is of trace class if and only
if 7! is of trace class.

REMARK 2.2. A version of Theorem 1.4, with selfadjoint positive Ag

and X, was proved by Birman [7]; for such operators Theorem 2.2 is a
consequence of his result. IIe gave in [8] an interesting application of
Theorem 2.2 (ii).

For the characterization of more general i €M, the following lemma
will be very useful : )

LEMMA 2.1. Assume (2.1) and A; selfadjoint.
It V.c W one has for u, vED(Z):

(2.3) (Au, v) = (Aug, vg) + (Tug, ve).

In particular

(2.4) Re (Au, u) = (Aug, up) + Re (Tug, uy
(2.5) Im (Au, w) = Im (Tu:, u;).

PrOOF : For u,ve D (;fj
(Au, v) = (Aug, vg) 4 (Au, vy).
If Ve W, v.€ W so (Au, v;) = ((Au)},», vy) = (Tus, ;).

Then
(Au, v) = (Aug, vg) + (Tug,vy).

(2.4) and (2.5) follow from the fact that (Au;,us) is real.
For the symmetric A € W we then get

THEOREM 2.3. Assume (2.1) and Ag selfadjoint. The following statements
are equivalent :

(i) A is symmetric
(il) Ve W and T is symmetric as an operator in W.

ProoF: If V <« W and T is symmetric, then by Lemma 2.1:
Im (Au, w) = Im (Tu;, u;) = 0 for all uED(Z), thus 4 is symmetric.

Conversely, if 4dis symmetric then AcA* so V=pr; D(/’f) cpr;D(zf")= W;
and Im (Tu;,u;) =0 for all u;€ D(T) by (2.5). This implies that 7 is sym-
metric as an operator in W.
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COROLLARY 2.3. Assume (2.1) and Ay selfadjoint. A is maximal sym-
metric if and only if V=W and T is maximal symmetric.

PROOF: Let V= W and let T be maximal symmetric. If Z, is a sym-
metric extension of Av, Z:c A* ; then the corresponding operator T,: V,.— W,
satisfies Ve V,c W, c W=V, so that T. is a symmetric extension of T.
By the assumption on T, T, = T, which shows that 4 is maximgl sym-
metrie.

Conversely let A be maximal symmetric. Then V€ W and 7 is sym-
metric in W. If V3= W we can extend 7 trivially to a symmetric opera-
tor T,: W — W by letting T.,2 =0 for z¢e WS V. T, corresponds to a
proper symmetric extension 1’1\; of Z, in contradiction to A being maximal
symmetric. Thus V = W, and the maximality of 4 implies the maximality
of T.

Lemma 2.1 indicates that there is a close connection between the nu-
merical ranges (and then also spectra) of 4 and T (3. Theorems 2.1 and
2.3 show that the spectra resp. numerical ranges of 4 and T are simulta-
neously contained in the real axis. Further results can be obtained if we
assume positivity of 4;:

(2.6) m (A,) = inf {(Au, u) |u€ D (4y),|u|=1}>0.

Then there exist positive selfadjoint extensions Az, by Friedrichs’ lemma
below. Friedrichs’ lemma singles out one particular selfadjoint extension
A, with the same lower bound as 4,:

LEMMA 2.2 (Friedrichs [13]) Assume (2.1) and (2.6). There exists one and
only one selfadjoint operator A, € N which satisfies :

For every w€ D(A,) there exists a sequence {u"} € D(A,) such that v»— u
and (A (0" — u), u* — u) — 0.

This operator A, satisfies m (A,) = m(4,).

A proof of Lemma 2.2 is given in Riesz-Nagy [26] p. 325-331.

(%) The definition and the relevant properties of the numerical range and spectrum
of an operator are given in the Appendix (where the results are denumerated by A.1

A.2 ete.).

7. Annals della Scuola Norm. Sup. - Pisa.
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Outline of results.
Let us first note that one always has

(2.7 v(A)2 v (4,),

simply because A 'is an extension of A,. This limits the arbitrariness of

v(Z);'in particular since v(ff) is convex (Appendix, Lemma A. 1). Under
the assumption of (2.6), (2.7) implies

(2.8) »(A)D {(2€C' Rei>m(A4,),Tm i=0).

1° Properties carrying over from 4 to T. Assume (2.1) and (2.6). For
the case where A; = A, we prove that » (T) cy (ﬁ'). If furthermore 0(71) c
c;(Z) (this holds if merely one point in each component of the comple-
ment of »(4) belongs to o (4)), then o (T) € »(4). For the case Az % 4, we
have no results in this direction.

29 Properties carrying over from 7 to A. Assume (2.1) and (2.6) and
let Ag be selfadjoint with m (44 > 0. Let »(T) be contained in a closed
halfplane nr with the property : the closed halfline {Re 1<<—m (Ag), Im 1=0)
is either exterior or part of the boundary of nr. Then v(Z) is contained

in a certain closed halfplane n; parallel to n, (such that n, contains the
halfline {Re 1 > m(4,), Im A = 0}, by (2.8)). Here, if the boundary of ny in-
tersects the positive real axis, then the same holds for the boundary of 7 ;;

if the boundary of n#r contains 0, then so does the boundary of = .
If both »(7T) and o (T) are contained in ny, then also o(Z) is conta-

ined in ;.

The above results can be combined to obtain results about angles and
more complicated convex figures,

1° Properties carrying over from AtoT

We here make the basic assumption :
(2.9) (2.1) and (2.6) hold; Ag= 4,.
PROPOSITION 2.1. Assume (2.9). If there exist A€ T, ¢ > 0, such that

(2.10) [(Auyu) — A ult|=c|ul? for all we D (A),
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then
i)y vVew

(2.11) (il) |(T2,8) — 2|22=c¢|2z|>* for all z€ D(T).
PROOF: By Theorem 1.2, the general element of D (4) is
wu=2z4+ A7 (Te + f)+ v, ze D(T), fEZ(A,)O W, veD(Ay):
Here u; =2, u, = A;' (T2 + f) + v. Therefore for u€ D (4)
(Au, u) = (Au, u,'-l- ;)

= (Au,,u,) + (Tz + 1+ Av, 2).

Since v€ D (A,) and R(A4,) ] Z(A,), this can be written as:

(Au, u) = (Au, , u,) 4 (T2, 2) 4 ( f, 2).

Now assume that for some 1€, ¢ > 0, (2.10) holds, i.e.,

(T::,‘:) i | e, all we D (A)\ {0}
Then

(Auy , uy) + (T2, 2) 4 (£,2) .

. luy + 27 =

for all z€ D(T), feZ(A,)D W, veD (4, (2 1,7v] F(0,0,0]). By Lemma 2.2
we can, for fixed f,z, choose v such that (Aw,,u,) is arbitrarily small (with
| u, P << m (4,7 (Auy , u,).

This implies that in fact

(T2, 2+ ()

(2.12) o

—}.Izc
for all z€ D(T)\ {0}, all f€EZ(A,)O) W.
Now, if (f,2) were == 0 for some z2€ D(T), f€Z(A,)©) W, then the ex-
pression
X EU LI

|2

would equal 0 for some k€. This contradicts (2.12); therefore (f,2) =10
for all z€ D(T), all f€eZ(A) W.
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Recall D (T)= V; we have then proved that V1 Z(4,)C) W or, Vc W.
Then
(T2, 2)

W_ztzc for all z€ D (T)\ {0},

i.e.,
[(Tzy2) — 4|z|*| = ¢ |2*]| for all z€ D(T).

THEOREM 2.4. Assume (2.9). If ‘V(Z) i8 not all of C, then V& W, and
(2.13) »(T)C v (4)

PROOF : Let v(z) =+ @, then also ;(71) = ¢, since V(Z) is convex (it
is in fact contained in a halfplane). Now ¢ C\; (Z) if and only if 1 satis-
fies (2.10) with positive c(c can be chosen as dist (Z,v(Z))). Then Propo-
gition 2.1 shows that' VE W, and that A€C\ » (Z) implies (2.11), i.e., AEQ > (T)
k4 14

<0< =, me®4) >

COROLLARY 2.4. Assume (2.9). If for some — z 3

> —oo, then V& W and m (¢ T)=m (e*® X). (For all — < 0 << 32 ;m (6‘92')=
=— oo by (2.8)).

COROLLARY 25 Assume (2.9), and let Ve W. If m(e?® T)= — oo for
some — —g o< — 2 , then also m (e® Z) =— o0, If m (e¥T)=— oo for all

~

_?geg-;)— then V(A):Q.

If = is a subset of €, we denote the conjugate set (1| 1€x] by .

THROREM 2.5. Assume (2.9). Let v(Z) =+ {, and let » be a component
of C \ ¢ (X), for which x N g (A) == ®. Then V=W and

xC o (T), %' C o (T*.

PRrROOF: By proposition A.3, u’cG\;(’ﬁ'). Applying Theorem 2.4 to
A and A* we obtain

ve W,  y(T)c»(4),

WcV,  »(ThHC»(4*).
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Thus V = W. Moreover, since xc ¢\ » (Z) and x’cd\;(:{“‘) it follows that
xc C\»(T) and »'c C\»(T*. Applying Lemma A.3 to the operators 7 and
T*, we then obtain

xCo(T), »'ceo(T*).

COROLLARY 2.6. Assume (2.9). If for some — -’2'— <0< -’2‘—, ¢ A is

maximal lower bounded, then so is ¢ T, and m (e®® T') = m (e% Z).

For applications of this corollary, note that & closed operators § is
maximal nonnegative [maximal positive] if and only if it is nonnegative
[positive] and maximal lower bounded (Corollary A.4).

From Theorem 2.5 we deduce the following resu!&, which for the adjo-

int is particularly informative in the case where »(A) is not a halfplane :

THEOREM 2.6. Assume (2.9). Let »(A) == C, and let o(A)c » (A) (this
holds if merely one point in each component of C\» (Z) i8 in Q(Z)). Then

o(T)c »(A) and o(T*)C » (AY.

Here O\ » (AY is @ component of a\?(Z*), and if ;(Z) is not equal to a
halfplane, then in fact
¥ (AY =y (A%).

PROOF : By application of Theorem 2.5 to each component of C\ » (X),
we get C\;(z)c o (T) and G\V—(Z)’CQ(T*); hence
o(T)cy(A), o(THey(AY.
The last statement follows from Proposition A.3 and Corollary A.3.
2° Properties carrying over from T to A.
In this section we assume :
(2.14) (2.1) and (2.6) hold; A, is selfadjoint with m (45> 0.

THEOREM 2.7. Assume (2.14). Let Ve W, and let — %< 0< % Ir
m (e T) > — cos 0 m(Ag), then

cos 0 m(Ag) m(e? T)

. 0 4
(2.15) m (e A)zcose m(Ag) + m(e' T)"
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ProoF : Let u € D (A4)\ {0}. Then, by Lemma 2.1

Re (¢ du,u) _ Re (6" Aug, ug) + Re (6% Tue , ;)

[uf® - [ug + u[?
Re (¢ Au,u) _ cos 8 m(Ap) | ug|?+m(e® T)|u; |2
2.16 = .
(2:16) [u [? [ws + wef?

It follows immediately that

Re (e’ Zu, u)

(2.17) —Tup

= co8 Om(Ap) if Uy = 0.

Let us now assume %; 5= 0, In the case m (¢ T) = 0, we obtain from
(2.16)

Re (66 Au,u) _ o8 01 (Ag) | ug >+ m (e T)| ue |?
lwlP = (R
__co8Om(Apt® 4 m (P T)
- ¢+ 17 ’
where t=|ug||u;|~'. Since the funection f(t) = (at> + b)(t + 1)~2,a > 0,

b >0, defined for ¢t >0, obtains its minimum at ¢ = ba—! with f(ba—?) =
=ab (a + b)~!, we find that

Re (e"’lu, u) cos 0 m(Ag) m(e® 1)
[u]® " cos® m(ds) + m(e®T)

(2.18) , when m (¢ T) = 0.

In the case 0 > m (e T) > — cos @ m(Az) we proceed a little differen-
tly. Here,

Re (e Zu, u)

(2.19) P

=0 if cos O m(Ag)|ug |t + m (e T)|u; |t = 0.

1 1
Otherwise, t = |ug || u; [=1 < (— m (¢ T))? (cos 6 m(Ay) ? < 1,and

Re (e Iu, u) __ cos O m(Ap) 2 4 m (e® T)
| w[? (t— 1) ’

since the denumerator is negative. The function ¢ (f) = (at® -+ b)(t — 1)~2,

1
2

1
a>0,0>b>—a, defined for 0 <<t < (—b)?> a ?, obtains its minimum at
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t= — ba—! with g(— ba—')=ab(a 4 b)~1. Thus we also here get
! 0 7 i0
s Re (¢® Au, u) cos O m(Ap) m(e : T) , when

(2.20) [ul? cos 6 m(Ag)+ m(e*® T)

( 0> m (e T) > — cos 0 m(Ag), cos 0 m(Ap) | ug >+ m(e?® T)| u; [2< 0.

Since ab(a + by'<a when b > —a, and ab(a+ b)~! < 6 when
0> b > —a, a comparison of (2.17), (2.18), (2.19) and (2.20) gives that

Re (¢ Au, u) __ cos 6 m(Az) m(e® T)

| u |2 cos 0 m(A,) + m(eie T) , all ueD (A)\{O}’

which proves the theorem.

COROLLARY 2.7. Assumptions of Theorem 2.7. If m (e®T) is > 0,=>0
or > — cos 0 m(Ag), then m (e* 4d) i8 >0,=>0 or > — oo, respectively.

REMARK 2.3. Theorem 2.7 extends a result by Birman [7], proved under
the assumptions that Ay = 4,, T is selfadjoint, 6 = 0.

REMARK 2.4. For a geometric interpretation of Theorem 2.7, note that
m (e® 8) > — oo (some — % <L —;i) means that »(S) is contained in the
closed halfplane n, whose boundary intersects the real axis at the point
cos—1 0 m(e® §) under the angle —72'— — 0; = contains large positive real
points. When m (¢ 8) > — cos 0 m (4,), the point — m (4y) is exterior to .

The result for the case 8 = + —;1 is rather trivial, and it does not use
positivity of Ag:

THEOREM 2.8. Assume (2.1) and Ag selfadjoint. Let V c W and let

0= i;— or — g— . Then m (e T') =0 if and only if m (e® z) = 0.

ProOOF: Equation (2.5) in Lemma 2.1 shows that m (e Z)ZO»if and
only if m (¢ T) = 0. Moreover, it follows from (2.7) that m (e* A)< 0 for
all T'; this completes the proof.

‘'We will now use the connection between the spectrum and the nume-
rical range.
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THROREM 2.9. Assume (2.14). Let V= W, and let — % <0< %.If

¢ T is mazimal lower bounded with m (¢ T) > — cos 0 m(Ay), then ¢4 is
mazimal lower bounded (the lower bound estimated by (2.15)).

PRrOOF : If ¢ T is maximal lower bounded, then ¢ T — m (¢*° T') is ma-
ximal nonnegative, by Proposition A.4 in the appendix. Then also the ad-
joint ¢—% T* — m (¢ T) is nonnegative, by Corollary A.5. When m (e T) > —
cos O m(Ag), we can apply Theorem 2.7 to ¢ T and ¢~ T* to obtain that
¢ A and ¢—® 4* are lower bounded. Then an application of Corollary A.5
gives that ¢ A is in fact maximal lower bounded.

Application of a similar technique to Theorem 2.8 gives

THEOREM 2.10. Assume (2.1) and A, selfadjoint. Let V= W and let
= -’2'— or — -Z— . Then ¢ T is maximal nonnegative if and only if ¢® A is

mazximal nonnegative.
Finally, we note that Theorem 2.7-2.10 can be employed to give re-
sults about angles and other convex sets, e. g.,

COROLLARY 2.8. Let o denote a closed angle which is the intersection of
two closed halfplanes for which the halfaxis {Re A<< — m(Az), Im A =0} is
exterior or part of the boundary. If v (T) is contained in a, and one point of
G\ a is in o(T), then » (Z) and o (Z) are contained in an angle «, , obtained
from o by parallel-translation. Here, if both boundary lines are not parallel
to the real awxis, 0 ¢ o implies 0¢ «,; in general 0 ¢ interior of a implies 0 ¢
interior of a, .

More general convex sets can be treated by computations on the for-
mula (2.15),

1I § 3. A discussion of the non-closed operators.

The characterization of operators A€M in terms of operators T
between the nullspaces of A, and A; given in § 1 is limited to closed

A €N ; in the following we will show how far it can be extended to in-
clude non-closed operators.

Let 4 be a closed operator € M, and let AeM with 4 =74.4 cor
responds by Corollary 1.1 to an operator T: V — W, closed densely defined,

where V = pr;])(:f) and W= jorcfl)(:el\*). Note that one also has V =
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=pr; D (A) and W = pry-D (4%); for A* = 4* and pr: D (&) = pr; D (A)sin-
ce pr; is continuous from D (A4,) to Z(A,) in the graphtopology.
Theorem 1.2 states that

D@) = (u=2+4 47" Tz + f) + v|[z, 1, v € D(T) x (2(4) D W) < D(4o)} ;
now D(Z) is a certain dense subset of this set. The exact possibilities for

D(E) are given in the following lemma :

LumMa 3.1. Let A and A4 € M such that A s closed and corresponds
toT: V—s W by Corollary 1.1, and A cz. Then A =2 if and only if

~

3.1) DA =tu=2+ A7" (Tz + 1)+ v|[2,f] € F, ve D (4,
where F is a dense subspace of D(,’I\') X (Z (A7) (D) W) (graphtopology).

PROOF : Since 4, c A c 4, D(A) is certainly of the form (3.1) for
some subspace F c D(?) X (Z(A)S) W). Then by the isomorphism in
Theorem 1.2, D(Z) is dense in D(K) if and only if F < D(A, is dense
in D(a’\) X (Z(A}))©) W) < D(A), i.e., if and only if F is dense in D(ll\‘) <
><(Z (A})(© W) (graphtopologies).

The remaining discussion will be divided into two cases, according
to whether Z(4;)(© W equals {0} or not.

10 W= Z(4).

When W = Z (4j), i.e., pry D(Z") = Z(4,), then it follows from Lemma
3.1 that the set F mentloned there is of the form F= D x {0}, where D

is a dense subset of D(T ) (graphtopology). Denote the restriction of T to
D by T (so that D= D(T)), then Lemma 3.1 shows that

(3.2) D(Z):{u:z—l—A;’ Tz +v|z€ D(T), veD(4,)
or, equivalently, using Lemma 1.4;
(3.3) D (A)=(ueD(A,)|ueD(T) ) (Au)y ) = Tug)-

Note that 7 = 7,
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We have then shown that when pr. D(A* = Z(Aj), then there exists
a closable operator 7': Z (4,)— Z (A;) such that 4 is determined by one

of the equivalent formulas (3.2) and (3.3).
Conversely, when a closable operator T: Z(4,)— Z (Aj) is given, the

operator A €M defined by (3.2) or (3.3) satisfies pr, D(Z’) =Z(4)):
Let the closable operator 7: Z (4,) — g (A1) be given, and define a by
(3.2). It now follows by Theorem 1.2 that 4 is determined by

D(§)={“=Z+A;l Tz 4v|2€D(T), ve D (4,

Moreover, P corresponds to T V — Z(4;) in the sense of Corollary 1.1,

with V = D (T) (closure in H). Then, by Theorem 1.1, (71)" corresponds to

(T)*: Z(A})— V, which shows that pr. D (A% = pry D (A*) = Z (A)).
Altogether we have proved

THEOREM 3.1. An operator A € N (closed or not) satisfies pr, DAY =
= Z(A,) if and only if there exists a closable operator T: Z(A,)— Z (4}
such that

(3.4) (D (A) = fue D(4,)|wc€ D(T), (An), 1 = Tug).

A and T determine each other by (3.4).

When A corresponds to T in this way, 4 corresponds to T: V—Z(Aj})
in the sense of Corollary 1.1, with V = D(T).

REMARK 3.1. The correspondence between the A €M for which
prc'D(Z")=Z (A}), and the closable operators T: Z(A4,) — Z(4;), given in
the above theorem, is easily seen to be inclusion preserving.

20 W == Z (Aj).

We saw that when pr, D (A% =2z (A1), then A can be characterized
by an operator 7': Z(4,)— Z(A;). This is not always the case when
prc,D(Z") is not dense in Z(4;). The set F mentioned in Lemma 3.1 is
now a dense subset of D (7')<(Z(4;)© W). There are three possibilities: 1)
F may be of the form D (T) x (Z(A})©) W), where 7= T; 2) F may be
of the form I(T) < Z,, where T="T and Z;=Z%(A}) S W (but Z;=5=Z(A])© W);
or 3) F may not even be the product of a subspace of 1) (7T) and a sub-
space of Z(4;)> W.
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1) In the first case, it is easily seen that A is characterized by
T, W, by the formula

(3.5) D(A)={ueD(A,)|u €D (T), (Awyw= Tuc),

and conversely, (3.5) determines 7 when 4 is known. Here A = 2 and
T=T ; 80 we get the theorem

THEOREM 3.2. Let V be a closed subspace of Z(A,), W a closed sub-
space of Z (Ay), and T: V— W a closable, densely defined operator. Then

T: V— W corresponds to an operator Adem by
D (4) = (u€D(A)|u € D(T), (Au)w = Tug);

and T: V> W corresponds to A in the sense of Corollary 1.1.
2) In the second case, 4 cannot be deseribed solely by 1" and W;
information about which part of Z(4;) &) W that is used is also required.

Therefore there is not a 1 — 1 correspondence between operators Aand T
a8 in the previous theorems. ]
3) The third case contains the remaining types of operators. We will
not discuss these further, except that we will mention an important example :
Let T be a non-closable operator with D(T)c Z(4,), R(T)c Z(A}.
Define the operator Aem by

D(A)={ueDA,)|ueD(T) (Aw)y 1, = Tug).

It follows from Theorem 3.1 that pr;,D(Z') is not dense in Z (A4;).

Thus A corresponds to an operator T, :W)—» W, where W 3= Z (A}). One
can show that T, is an extension of pry o 7, and that F (for Z) congists
of the pairs [2, Tz — T, 2] where 2€ D (T); thus is obviously not a product
space of a subspace of D(T,) and a subspace of Z (4;) = W.

(One has in this case that A* corresponds to T'"): W——)ff(T_), where
T™ is the adjoint of T: D (T)—> Z(4}), and W = D(T®). Then A = A**
corresponds to T,: D(T)— W, where 7, is the adjoint of
T®): W— D(T). Further details are given in [15)).
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CHAPTER III. - GENERAL BOUNDARY VALUE PROBLEMS

§ 1. The operators P and M.

Let 4, A’, B, B’, C, ¢/, denote the differential, resp. boundary differen-
tial, operators introduced in Chapter I. Throughout this chapter we will
assume :

Basic Assumption : Both of the systems {4, B} and {4’, B’} satisfy the
hypotheses (@) and (U).

Then the operators A,, Ay, 4, A;, Ag and A§ = Ay, defined in Chap-
ter I, satisfy the hypotheses of Chapter II § 1. With the notations used
there, </( is the set of realizations of A, and 9/(’ is the set of realizations
of A’. Recall that A, satisfies
(1.1) D (Ap)=(ueD(4,)| Bu=0}={ut H* (Q)| Bu = ¢},
and Aj satisfies
(1.2) D(Ap)={(ueD(A})| B u=0}={u€ H™(Q)| B’ u = 0};

Ag and Aj are adjoints (Corollary I 3.1).
In the present chapter we will {ranslate the 1 — 1 correspondence bet-

ween operators A€W and operators 7' between the nullspaces of A, and 4;,
given in Chapter II, into a characterization of the realizations of A in terms
of boundary value problems. The fundamental property of our set-up that
makes this possible is that the boundary operator B maps Z(4,) isomor-

1
phically onto the space of distributions on the boundary IT H .
More generally, one has:
PrOPOSITION 1.1. B[B’] maps Zj (Q)[Zy (2)] isomorphically onto

1 1
(D) (I T E(r), for all real s,

PROOF: The proof is a straightforward application of the results of
Lions and Magenes quoted in Chapter I.

10 s << 2m .

l—m,—

or

By Theorem I 3.3 (i) the mapping {4, B} is an isomorphism of D} (£2)(De-

1
finition T 3.1) onto H®(2) < ITH 7 % (I'); then the inverse of {4, B maps
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1
{0} < ITH"™ ™~ 3(I") isomorphically onto a closed subspace of D’ (2). This
space is exactly {u€ D% (2)| Au = 0} with the topology of D} (£); by De-
finition I 3.1 it is equal to the space Z% (£2). It follows that B maps Z% (%)

1
isomorphically onto ITH™ 7 2(I').
20 s = 2m.

By Theorem I 3.3 (ii), {4, B} maps H*(£) isomorphically onto H*™*"(Q) <

t—m]' ﬂtj

1 1
yig; 4 " (I'); thus {A, B}~ maps {0} < ITH 2 (I') isomorphically onto
the space {u € H*(2)| Au = 0}, provided with the topology of H*(£2). This
space is exactly Z3 () (Definition I 3.1). It follows that B maps Z} (Q)

1
isomorphically onto ITH "7~ 2 (I).
The analogous arguments can be applied to B’.

1
LEMMA 1.1 C[C’] maps Z4 (2)|Z4 ()] continuously into ITH T y(rI)

l-2m+mj

1
(ITH +?(I’)], for all real s.

PRrROOF : Follows immediately from Theorem I 3.2.

The results in Chapter II were derived from a rewriting of (Au,v) —
—(u, A’ v): ‘
(1.3) (Au, v) — (u, A" v) = (Au, v;") - (ug, A’ v),
where u€ D(4,) and v€ D(A;) are decomposed according to Lemma IT 1.1.

We would like to have a formula analogous to (1.3), but with boundary
terms appearing on the right. As noted in Remark I 3.3, Greens formula

(1.4) (Au, v) — (1, A’v) = € Cu, B’v) — { Bu, C’v)

cannot in general be extended to hold for all pairs [u,v]€ D (4;) < D (4;).
However, it is possible to get around this difficulty by introducing certain
non-local boundary operators M and M’, related to B, C, B’ and (’, to
take the place of ¢ and C’ in (1.4).

M and M’ will be introduced in connection with certain operators P
and P’, acting in the boundary.

DEFINITION 1.1. Let s€1R.

1 1
Letpe IIH' I(I'). Then Ppe IIH 7~ 2(I') is defined by : Pp = Cu,
where w is the solution in Z4 (2) of Bu=q.

Tn,'
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l—2m+,u]' + s—-2m+mj +

1 1

Similarly, let ye [TH 2(I'). Then P’ vye€llH T(I) is
defined by: P’y = C’ v, where v is the solution in Zji (2) of B’ v=y.

For each real s, this definition makes sense because of Proposition 1.1.
and Lemma 1.1. Moreover, it easily seen that if 8> s, then the definition
for s is an extension of the definition for s’ (¢f. Remark I 2.1). In this
way, P is defined as an operator in (D’ (")) .

P is an m < m matrix of operators Py ; k, 1= 1,..,m, in @ (I'), which
are in general non-local (i.e., the support of Pp; ¢ need not be contained in
the support of ¢). If 2 is the halfspace {(x,,...,2,)|x, > 0] and 4, B and
C have constant coefficients, the Py are singular integral operators. (This
case of unbounded £ can be included in the above procedures.) This makes
it plausible that P in general is a pseudo-differential operator in I", in the
sense of Kohn-Nirenberg [21] and Hirmander [19] (the theories extended
to the manifold I'). We will not go further into this here.

P has the order—property :

1
THEOREM 1.1. For all real s, P maps [TH' 7 2 (I') continuosly into
1 — 41
IE ™" 2(I') and P’ maps )74 QLA

1
7 SRR Y

(I") continuously into

PROOF : The statement is an immediate consequence of Proposition 1.1
and Lemma 1.1.

More properties of P and P’ are given in § 5. In the rest of this § we
actually only use the definition and contmmty of 1’ and P’ for 8 = 0 i.e.,

l
p: g~ 2(1‘)-»113 TR (), P IOH it T () —IH " g ().

We will now introdnce the boundary operator M, defined on D (4,) =
= DY (). This can be done in several equivalent ways; we begin with one
that uses P explicitly.

DEFINITION 1.2, For any we€ ) (A4,), Mu is defined as

Mu = Cu — PBu.
Similarly, for ve D (Ay), M'v is defined as
M'v = C'v — P'B’v.
Since the mappings C: D (4,)— IIH T %(I’),

l

— 1 —m—l
B: D(A)—>ITH """ 2(') and P: IIH 7 2 (I')—HH """ 2 (") are



boundary value problems associated with an elliptic operator 465

everywhere defined and continuous, M clearly maps D (4,) .continuos]y into
1

ng~—" ).
However, a closer look reveals that the range of M is contained in the

#j

1
space of functions ITH™" /% (I'); and that in fact M maps D(A,) conti-

Im—gei— L
nuosly onto ITH T (I"). This is mentioned in the following theorem,
which is a compilation of the relevant properties of M.

THEOREM 1.2.

(i) The jollowing three definitions of M are equivalent :

a) For wue D(A,), Mu= Cu — PBu.

b) For w€ D(A,), Mu= Cug (according to the decomposition in Lemma
II 1.1).

1
c) Let we D (dA,), then Mu is the unique element of IIH e 2(I")
Jfor which '
(Au,v) = ¢  Mu , By ) Jor all veZ (4,).

T R

I
(i) M maps D(A,) continuously onto ITH e (I'). On D(4p), M

#j

1
coincides with C, and maps D (A,) continuously onto ITH m 2 (I'). (Graph-

topologies on D (A,) and D(A4p).)

1
23n—yj— 7

(iii) The kernel of M: D(A,)— IIH (') is D(Ay)+ Z(A)).
(iv) M’ = €’ — P’B’ can be defined similarly, and has properties analo-

gous to those of M ; in particular it maps D(A;) continuously onto [TH mj+2_(F )e
The following « Green’s formula » holds for all pairs we D(A,), vE D (A;):

(1.5) (Au,v) — (w, A’v)=¢( Mu , Bv )—( Bu , Mwv ).

o= 50 ot g w5 i g

(v) Define the realizations Ay and Ay by:
(1.6) Ay €M ; DAy )= [ue D(4,)) | Mu = 0}
(1.7) Ay €N; D(Ay) = (e D (A]) | Mv=0).

Then Ay and Ay are adjoints.
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PROOF :

(i) Let w€ D(A,) and let w=uy; +4 u;, where uz€ D (Ap), u €Z(4,)
a8 in Lemma IT 1.1.

Since Bug = 0 (see (1.1)), Cu — PBu = Cug 4+ Cu; — PBu,;, which
equals Cu; by the definition of P. Thus a) and b) are equivalent definitions
of M. :

Now, if veZ (4;)

(Au, v) = (Aug, v) = (Aug, v) — (ug, A'v)

={ Cuy . Bv )—<( Bu; , Cv ),
T T W WA

since ug € H™ () (see (1.1)), so that we can apply Green’s formula 1(3.8)
with 8 = 2m;

=<{ COuy , B’v ), since Buz;=0.

em—pj— 5| |~2tugt 3|

This shows that if vy = Cugz then

1

(1.8) (Au, v) =€ w , B'v ), all veEZ(A).
2m—psj— %‘ |-t 5|

1

_2m+”j+?(l’ ), equa-

However, since B’ maps Z (4;) isomorphically onto JITH
1
tion (1 8) determines a unique element y € [IH " "7~ 2 (I') for each u € n4,).
This implies that b) and c) are equivalent definitions of M.
(ii) We will use definition b), recalling that D (4,) is a closed sub-
space of H?" () (see (1.1) or Corollary I 3.1). Since the mapping pr; is
continuous from D (4,) onto D (44), and C is continuous from H 2™ ({2) into

1 Sm—gi— L
MA™ ™™ 3 (I'), M= C o prs maps D (A,) continuously into JTH ™"/~ = (I").

Also by b), Mu = Cu when u€ (A and therefore M maps D (44 conti-

)

1
nuously into ITH e "~ 2(I'). That this last mapping is surjective follows

1
from Proposition I 2.1: for given g € [IH " "/ % (I') there exists u € H2™(%)
with Bu = 0, Cu (= Mu) = .
(ili) When w€ D (4,), Bu= Cu=0, whence Mu=0 by a). When
u€Z(A,), Mu=0 by c)
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Conversely, let € D(A4,) with Mu = 0. Then, by c), (A%, v) = 0 for all
VEZ(A)), i.e.,, Au€Z(A}}. Since Z (A= R(A,) (as noted in II (1.6)),
Au€ R (Ay). Then u = uy - u, where uy€ D (A,), u, €Z(4,).

(iv) M’ has analogous properties to those of M.

Let u€ D(A,), ve D(A;). Then

(Au, v) — (u, A’v) = (Au, v) — (uz, A'v) (Lemma II 1.2)

=<{ Mu , Bv )—( Bu , Mo ),
fm—ny- %‘ {—ometust %t {—mi— %f {ms+ %3
since B’vy =0, Bug=0.

(v) Let Ay and Aj be defined by (1.6) and (1.7). For u€ D (Ay),
v€D(Ay) one has by (iv):

(Au, v) — (u, A’V) =0

80 A, and Aj- are contained in each others adjoints. Recall that Ay € N
implies (Ay)*€ N/, and Ay €N’ implies (Ay)*€WM. Let ue D (Ay)*),
then this means that u € D(A,) and

(Au, v) — (u, A’v) =0 tor all ve D(Ay-).
Since Z (A1) c D (Ay) (by (iii)), one has in particular:
(Au, v) = 0 for all ve€ Z(4;),

whence, by definition ¢), Mu = 0. Thus € D (Ay), which completes the
proof that Ay = (Ay-)*. The proof that Ay = (Ay)* is analogous.

REMARK 1.1. Note that the operator Ay defined in Theorem 1.2 (v) is
an example of a realization of A determined by a non-local boundary con-
dition ; moreover its domain is not in H*(£2) for any s > 0, since it contains
Z(4,) (y (ii).

PROPOSITION 1.2. The set of equations

Bu =¢
(1.9)
Mu =y

"

1
(), yellH

1
2m —Mj— 5

has a solution w€ D(A,) for any pair ¢ € [TH
The solution is unique modulo D (A).

).

X dnnal della Scuola Norn Sup. Pisa
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—mi— —l- 2m—/4j— l . 9
PROOF: Let @ € IIH 2 (') and ywelIlH 2(I') be given. If
u€D(A,) is a solution of (1.9) then
Bu = Bu; =@

Mu = Mug =y
and conversely, if ¥ =v 4 z where v€ D (Ay), 2€ Z(4,) and

(1.10) Be =g
(1.11) Mo =y,

then » is a solution of (1.9).
Since D (4,) € D (4p) and Z(A4,)n D(Ap = (0}, it follows from Theorem

1 .
1.1 (ii), (iii), that M maps D (44) onto ITH 2"'_”’_?(I') with kernel D (A,).
Thus (1.11) has a solution v € D (4,), unigne modulo D (4,). By Proposition
1.1, (1.10) has a unique solution z€ Z(A4,). It follows that (1.9) has a solu-
tion u € D (A,), unique modulo D (4,).

COROLLARY 1.2. The set of equations

Bu=g¢
(1.12) ’
| ou = 0

1 1
has a solution u€ D(A,) for pellH 7 2(I'), o€ LIH "/~ 2 (I'), if and only if
1
o— Py €A™ IH.

Proor: If w€D(A,)is a solution of (1.12), then ¢ — Pp = Cu — PBu =

1
m—pi— <

MueIIH'
Conversely, if o — Ppe ITH""

(I') by Theorem 1.1 (ii).
1

“I3(I"), then a solution w€ D (4,) of

Bu=y¢g

My =9 — Py

exists according to Proposition 1.2; this u also satifies (1.12).
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III § 2. Fundamental results.

Let V be a closed subspace of Z(4,), and W a closed subspace of
Z (Aj). It was proved in Proposition 1.1 that B maps Z (4,) isomorphically
1

onto ITH BEXTAY consequently B maps V isomorphically onto a closed
1

subspace X of ITH - " 2(I'). Denote the strong antidual of X by X’. Since
X is a Hilbert space, the strong antidual of X’ is X; moreover, a norm
in X together with the duality leads to an identification of X with X",
However, we will avoid to make use of this identification since it requires
a specific norm in X, ¢f. Remark 2.1 below.

1 .

1
Since X c ITH "’ % (I'), every element ¢ € IIH "ty (I') defines a uni-
que element ¢, € X’ by

(2.1) Co , vy Y={¢,y) for all yeX.
1 1 x X
mj+ 2| |—mj— 1|

1
¢, is the restriction of ¢, considered as a functional on ITH T (), to
the subspace X. To describe the connection between ¢ and @, we will
either use (2.1) or simply say that

(2 2) @ =¢, on X.

From B we can deduce an isomorphism K of V onto X' by the for-
mula
(Bv,,Bo,) =, ,v)y, all v,v,€V.
X X

1
Similarly, let B’W = Y (closed subspace of ag~tety

gives rise to an isomorphism F of W onto Y’ by

(I')), then B’

(P, B wy) = (10, ,10)n,  all ey, w, € W,
Y Y

Now if T is a linear operator with domain in ¥ and range in W, then 7T
detines an operator L: X — Y’ by

D (L)= BD(T), LBv= FTv, all ve D (T).

We prefer to write the definition of L in the following equivalent form :
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DEFINITION 2.1a. Let VE Z(A,), Wc Z(A}), closed subspaces, and let
T be an operator with D (T) € V, R(T)c W. Denote BV = X and B'W =Y.
Then T: V— W gives rise to the operator L:X — Y’ defined by

D(L)= BD(T)
(LBv,B'w) = (Tv,w)w, all ve D(T), we W,
y Y
Similarly :

DEFINITIUN 2.1b. Let V, W, X, Y be as in Definition 2.1a, and let T,
be an operator with D(T))c W, R(T,)c V. Then T,: W — V gives rise to
the operator L,: Y — X' defined by

D(L))= B'D(T,)

(L,B'w,Bv)= (T, w,v)y, all weD(T,),veV.
X X

REMARK 2.1. Note that the definitions are independent of any parti-

cular norms in X and Y. We have aimed at this for the following reason: In
1 1

the consideration of the space ITH "’ *2(I') and its strong dual ITH "~ I,

the duality, i.e., the sesquilinear form

is given as an extension of the L*inner product in (D (")) (with respect
to the surface measure on I'), whereas there is an arbitrary choice between

equivalent norms in ITH m’.+7([ "), for instance corresponding to 'different
systems of local coordinates. Therefore, results that do not depend on the
choice of a particular norm in the spaces H*(I') (s 5= 0), are in general the
most useful ones.

LEMMA 2.1. Definition 2.1a establishes a 1 — 1 correspondence between
all linear operators 1': V— W(Vc Z(A,), Wc Z(A)), closed subspaces), and

1
Y30, clo-

1
all linear operators L: X — Y’ (Xc IIH Ty (I, YeIl
sed subspaces). '
Stmilarly, Definiton 2.1b establishes a 1 — 1 correspondence between all
linear operators T, :W—V(V and W as above) uand all linear operators

L: Y—> X (X and Y as above).
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PRrROOF: See Remark 2.2 below.

REMARK 2.2, Comsideration of the isomorphisms B: V— X, E: V—
— X’,B” W— Y and F: W — Y’, shows Lemma 2.1, and moreover shows
the fact that (loosely speaking) the correspondences in Lemma 2.1 preserve
all those properties of the operators that can be expressed independently

L 2o + +
of particular norms in IIH ™0 2(I) and ITH T 30 (cf. Remark 2.1).
Since the proof for each property, we shall need to consider, is imiediate,
we will not state this fact explicitly in a theorem.

If L: X— Y’ is densely defined, we define the adjoint L* as an ope-
rator from Y to X’ by: L* is the operator with largest domain satisfying

(Lp,p>={(gp, L*y), allgeD (L), yeD(L*).
YT X x

(Mere we use the notation (&, )= (g, &).)
X X X X

One has:

LEMMA 2.2, Let T: V— W be densely defined, so that T*: W—V exists.
If T: V-— W corresponds to L: X — Y’ by Definition 2.1a, then T*: W—V
corresponds to L*: Y — X’ by Definition 2.1b.

The proof is easy and will be omitted. We further note :

LEMMA 2.3.
(i) When w€ D(4,), Bu= Bu;. In particular, if A€M, then
B (pr; D(A)) = BD (4).
(ii) Let T: V— W correspond to L: X — Y’ as in Definition 2.1a.
If we D(A,), then u;€ D(T) if and only if Bu€ D (L)

PrRoOO¥:
(i) When w€ D(A,), u=ug+ u; where ug€ D(Agp), u; € Z(A,). By the
definition ot Ag, Bug=0; thas Bu = Bu,.
(ii) Let T: V— W correspond to L: X — Y’ as in Definition 2.1a,
and let w€ D(A,). Then u,€ D (T) if and only if Bu;€ D(L). The statemeunt
follows from the fact that Bu: = Bu.

LeMMA 2.4, Let T: V— W correspond to L: X — Y’ as in Defini-
tion 2.1a. Then the jolowing two sets D, and D, are identical :

l)1 = $u eD (Aﬁl %3 €D (T), (An)“' = T’u(’
o = {u€ D(A)| Bue D (L), Mu= LBu on Y}




472 GErRD GRUBB : A characterization of the non-local

ProoF: Let w€ D(A,) with u. € D(T). Since this is equivalent with
u€D(4,), Bu€D (L), by Lemma 2.3, it is enough to prove that (Au)w = Tu,
if and only if Mu = LBu on Y (in the terminology introduced in (2.1)-(2.2)).

Let u satisfy (Au)w = Tu; or, equivalently,

(2.3) (Au, w) = (Tu; , w) for all we W.

Since We Z (43), (Au,w)=¢ Mu , Bw ), by the definition of
fm—sj —3| 1—omtu; + ]
M (Theorem 1.2 (i) ¢)). Also, by the definition of L, (Tu; , w) = { LBu; , B’w),
Y g
which equals { LBu, B‘w) by Lemma 2.3 (i). Therefore, (2.3) is equivalent
¥ Y
with

(2.4) ( Mu |, B’w )=({LBu, B'w), all we W.
T IOV

Since B’ maps W isomorphié&lly onto Y, (2.4) is equivalent with

(2.5) ( Mu , y >=(LBu,y), all yey,
fem—uj— %l {—amtugt %f v
i. e.,

(2.6) Mu= LBu on Y.
This shows that u satisfies (Au)y = Tu, if and only if Mu = LBu on Y.

With Lemma 2.1-2.4 we have the complete machinery to «translate »
the results of Chapter II § 1 and 3 into statements involving boundary
conditions. The proofs of the theorems below are quite straightforward, so
we will only indicate details in a few cases.

Corollary II 1.1 carries into:

THEOREM 2.1. There i8 a 1 — 1 correspondence between all closed opera-
tors A €N and all operators L: X — Y’ satisfying
1

(i) X ts a closed subspace of II H _mj-?(l’ ) Y i8 a closed subspace of

s () ;

(ii) L s densely defined and closed ;
the correspondence being given by

IIH

D(A)={u€D(A,)|BueD (L), Mu= LBu on Y).

In this correspondence, D (L) = BD (4) (s0 X = BD (4)).
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Furthermore, if a corresponds to L: X — Y’ in the above sense, then
A corresponds to L*: Y — X’ by

D (4% = {ve D(A}))| B've D(L*), M’v= L*B’v on X};

here D (L*)= B’D (4" (so Y = B'D (4*).

REMARK 2.3. As in Remark IT 1.1 we note that for A we only need

1
to know L as an operator from I[IH e 2(I') to Y’, since X = D (L);
however, X is important for the definition of L*, and the correspondence
with A*.
Noting that by Lemma 2.3 (for A* and B’) and the fact that B’ is an
1

2(I'), pry D (A*) is dense in Z(4})

1
™t T (), we obtain from

isomorphism of Z(Aj) onto ITH 9"

if and only if B’D(A*) is dense in IT H
Theorem II 3.1 the following theorem :

THEOREM 2.2. An operator Aem (closed or not) satisfies B’D(Z’) =
1
—2m+;¢j+7

=1ITH (') if and only if there exists a closable operator
1 1

L: ITH™"" 2y > TH™ 7T (") such that

(2.7) D(A)={ue D(A)|Bu€ D (L), Mu= LBu).

A and I determine each other by (2.7); the correspondence is inclusion pre-
serving.

When A corresponds to L in this way, i corresponds to L: X —
1
2m-—p.j—?

— ITH (I") in the sense of Theorem 2.1, with X = the closure of

1
DLy in TH 2 I).

Theorem II 3.2 is easily carried into

™y

1
THEOREM 2.3. Let X be a closed subspace of I H 7 *(I'), Y a clo-

1
"2m+l¢j+ 5

sed subspace of [l H (Ir'and L: X — Y’ a closable, densely defined
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operator. Then L corresponds to an operator 4 by

D(z) = |{u€D(A,)|BueD(L), Mu= LBu on Y},

and L: X — Y’ corresponds to A in the sense of Theorem 2.1,

Theorem 2.2 and 2.3 enable us to include certain non-closed cases in
the following description of the correspondence between properties of A
and L. Note that the realizations considered in Theorem 2.2 are a subclass
of those considered in Theorem 2.3, namely those for which Y =

1
=I11H Tyt (I'). We have stated Theorem 2.2 in preparation for the

discussion of « pure conditions » later in this §.

THEOREM 2.4. Let 4 correspond to L: X — Y’ as in Theorem 2.1 or
Theorem 2.3. Then ’

(i) Ais 1 —1 if and only if L is 1 —1; in fact

~

dim Z (4) = dim Z (L);

(ii) 4 maps D(Z) onto H if and only if L maps D (L) onto Y’;
(iii) R(Z) i8 closed if and only if R(L) is closed ;
(iv)

codim R (4) = codim E (L).

PROOF : Theorem II 1.3 is easily extended to the non-closed cases de-
scribed in Theorem II 3.2. Then Theorem II 1.3 implies the above state-
ments for the correspondence in Theorem 2.1 and 2.3.

COROLLARY 2.4, Let A correspond to L: X— Y’ as in Theorem 2.1
or 2.3. Then A and L have the same index ; 4 is a semi-Fredholm operator
if and only if L is one, and A is a Fredholm operator if and only if L
is one.

A complete translation of Theorem II 1.4 seems unnecessary here (it

1 - L
requires a specific norm in IIH ’ 2 (I') and Il H bt ('), and leads

to a somewhat unnatural statement), however, we will mention the conse-
quence of Corollary II 1.4:
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THEOREM 2.5. (Uses the boundedness of ). Let 4 correspond to L: X— Y’
as in Theorem 2.1 or 2.3. If A1 exists (or, equivalently, L= ewists), then
A1 s compact if and only if L—! is compact.

PROOF : Since 2 is bounded, the imbedding of H?2™(£) into H°(Q) is
compact, and therefore Aj;' is compact. Thus A™' and T ™' are simulta-
neously compact, by Corollary II 1.4, so the same holds for A-' and L.

REMARK 2.4. As mentioned in I §1, the fundamental results can be
proved also in (sufficiently nice) cases where £ is unbounded. In that way
one would get a characterization of Fredholm operators also in such un-
bounded eases, even though Theorem 2.5 could not be extended.

Let us describe how some well known (local) boundary conditions fit
into our theory. (More detailed descriptions in [15]).

1) The boundary condition Bu = 0 determines the operator A,,
which corresponds to L: X — Y’ with X= Y ={0}. For, X =D (L)=
= BD (44 = (0) and Y = B’D (A}) = B’D (4}) = (0)}.

2) The condition Cu = 0 is equivalent with Mu 4+ PBu=0 or Mu=
= — PBu. Let 4 denote the realization determined by the boundary con-

dition Cu = 0, then 4 is closed by Theorem I. 3.2; and corresponds in the
1

1 —p L
sense of Theorem 2.1 to the operator L: ITH TRy — HHE™ YT
defined by

2m—, i

1 1
D(L)=|peTH 7 *(I')|Ppe TH ()

Ly =— Pp for ¢e¢€D(L).
3) The so-called « mixed conditions»: Bu=0on Iy, Cu=0on I},

where I'= I, U I',U X (nontrivial disjoint anion; I', and I', are open sub-
sets of I, X is an » — 2 dimensional (> manifold), give rise to closed

operators Z, which correspond to L: X— Y’ with X and Y defined by

1 —
X= («,»EIIH—’ 2| supp @ € Ty},

1

—2m+tut+ ) (I') l supp v © I:zs

={yellH

and L defined by
DLy=|peX | Ppe Y’}

Ly=—Pp on Y, for ¢@¢clD (L.
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(Here Pp€ Y’ is understood in the following way: When @€ X, Ppe

1
€IIH " 2(I'yc(@ (I')™, so { Pg,v) is defined for all y € (D (")) . Now
1
Y= H, """ 2 (I, (cf. definition I(1.2), negative ), so that (D (Iy)™
is dense in Y. We say that Pp€ Y’ if ( Pp, y) is continuous on vy € (D (I))™
with respect to the topology of ¥. — Note that Y’ is the space of functions

2m—pj— 5
IIH Z(Ty).
1

2 ().

mj —2m+/4j+

1
In the last example X == ITH ° 2 (I') and Y= IH

1
—2 e
When Y = [IH it g ("), the boundary condition states that Mu is a
function of Bu (not just coincident with LBu as functionals on a subspace
1
of IIH 2(I')). Since Cu= Mu -+ PBu (Theorem 1.2 (i)), this also
means that Ou is a function of Bu, or,

—2m+uit+

(2.8) Ou = KBu, u¢ D (4),

for some operator K in (' (I"))™.

The earlier studies of non-local boundary value problems [2], [4], [5],
[6]), [12], [29]) have been concerned mainly with boundary conditious of the
type (2.8) ([29] does include other types that (2.8)); the term « non-local »
referring to the fact that K is not required to be a differential operator.
We will therefore give this problem some special attention. Here we change
our point of view slightly, in that we will discuss all realizations A that
can be described by a boundary condition of the type (2.8); then we shall
have to consider closed as well as non-closed A\', and we do not have a
correspondence A <—>L to start with. In the remainder of this § it is
described how such realizations fit into our theory. Some further results
will be given in § 6. :

Since the « mixed problem » described above in 3) is obviously not in
this class, we have chosen (for lack of better terminology) to call boun-
dary conditions of the type (2.8) « pure conditions ». More precisely :

DEFINITION 2.2. An operator A€M will be said to represent a pure
condition if and only if Bu=0 implies Cu = 0 when w€ ) (AN).

Recalling that Mu = Cu — PBu for u€ D(A,), and M maps D (A4,) into

2m—pi—

1
IIH 2(I') (Theorem 1.2) one easily proves :
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LEMMA 2.5. Let A € M. The Jollowing statements are equivalent :
(i) 4 satisfies Definition 2.2 ;
L L
(ii) there emists am operator K: ITH @ 2 (I')— ITH "/~ 2 (I') such
that
(2.9) D(4) = {u€D(A,) | Bue D(K), Ou = KEBu);
2m—pi—

1 1
(iii) there exists an operator L: IIH 0 2 (I')— IIH 2 (I)

such that

(2.10) D(4) = {u€ D(A,)| Bu€ D (L), Mu = LBu).

When 4 € 9 satisfies (2.9) we say that A represents the pure condition

Cu = KBu; when A € WM satisfies (2.10) we say that A represents the pure
condition Mu = LBu.

Let A satisfy Definition 2.2, and let K and L be operators for which
A satisfies (2.9) resp. (2.10). There is a fundamental difference between the

way in which A is related to K and the way in which it is related to L.
Recall Proposition 1.2: the problem

Bu=g¢

Mu=vy

1 i L
has a solution u € D (:,) for all pairs [p, y] € 174; R (I'y < o™ "2 ().
Therefore all of D (L)< R (L) can be reached by [Bu, Mu] when w€ D (4,);

and consequently is not only A determined by L, but also L determined
by 4 in (2.10).
Considering (2.9), we recall Corollary 1.2: the problem

sBu=tp
lou=0

1 i L
has a solution u € D (4,) for [p, o] € [IH TR (Myx DHE T2 (') if and

1
only if ¢ — Ppe [IH "™ Z(I'), and then  is a solution of
‘ Bu=¢

1Mu=g—P¢;v.



478 Gerp GRUBB: A characterization of the non-local

This shows that whereas K determines A by (2.9), only the part of D (i),

po— l.. ~
for which K¢ — Pp€ IIH Ty (I'"), enters in the definition of A ; outside

of this K may be arbitrarily chosen. Moreover, we see that the connection
between K and L is exactly:

1
D (D)= (pe D K)| Kp — Ppe [TH "2 (1))
Ly = Kp — Py for g€ D (L).

Altogether, we have found

ProPosITION 2.1,
(i) There is a 1 —'1 correspondence between all a satisfying Definition
1

—m— L 2m—pej— L
2.2 and all operators L:[IH " T(I')— ITH ™ " 2 ("), the correspon-
dence being given by (2.10). In this correspondence, D (L) = BD ( a )e

1 1
(il) A satisfies (2.9) for an operator K : HHET? (ry— 1TH "2y
if and only if a satisfies (2.10) for the operator L defined by

gy
D(L)y=\{peDK)| Kp — Pq)fl]Hl T

(2.11)
Ly = K¢ — Pyp for o€ D (L).
We can now restrict the attention to the connection between A and L.

_The question to consider is how the properties of A and L are related, or
rather: To what extent can our previous theory be applied 4 It turns out
that there a.re two radically diﬂ'erent possibilities, according to whether

L:mE™ ™" 2 (r) —ITE™ 2(I') is closable or not. When L is closable,

we are in the case described by Theorem 2.2; one then has that a repre-
sents the pure condition Mu = LBu, and the whole theory about correspon-
dences between properties of 4 and L can be applied (with D (L) as the
domain space for L, strictly speaking). When L is not closable, an accurate
use of Theorem 2.2 will show that A does not represent a pure condition
even though A does, so that the operator L, : X, — Y, to which 4 cor-
responds by Theorem 2.1 is not an extension of L; a rather pathological
situation. A criterion for A determining which case we are in, is whether
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1
B’ D (4*) is dense in 118 Ay

in the following :

(I") or not. The precise result is given

THEOREM 2.6. Let A € W(. The following statements are equivalent:
1

(i) A represents a pure condition Mu = LBu where L: [TH " )
— I[TH

(ii) A represents a pure condition ;
2m+,uj+

2m—u i

1
2 (I') is closable;

2 ().

In the affirmative case, A represents the pure condition Mu = LBu ichere
L 1is the operator appearing in (i)

(iii) B’ l)(:l‘*) is dense in ITH

PROOF: The proof uses Theorem 2.2. In fact, the equivalence of (i)
and (iii) is a mere restatement of the first part of Theorem 2.2. It is also

seen from Theorem 2.2, that (i) implies (ii), and that 4 re_preseuts the pure
condition J_Iu=ZBu if (i) holds. Tinally, since Z‘=(X)", Theorem 2.2
applied to A shows that (ii) implies (iii).

As a corollary one gets a description of the pathological case :

COROLLARY 2 6. When 4 is determmed by a pure condztton Mu = LBu

with L:ITH 7 2 (r'y— HH T 2 (I') not closable then A corresponds to

an operator L,: X, — Y, with Y, & IIH ~tmbgt (I'y (and X, = D (L) >

o D(L,)> D(L); L, is (clearly) not an extension of L.

PrRoOF: None of the statements (i)-(iii) of Theorem 2.6 hold in this

case. Let A correspond to I, : X, — Yy by Theorem 2.1. Then since =T,

= 1
Y,=B'D zt) = B'D (zx) =+ HH—2m+14j+§

Concerning X, we first note that D(L,) = BD(.Z' ) (Theorem_2.1) and D(L)=
= BD (Z) (Proposition 2.1 (i)); now the closures of B])(Z) and Bl)(Z) in

[

—mj—

1IH (I') are equal since B is continuous from D (4,) with the graph

7)1,

topology onto ITH
> BD (&), D(L,) > D (L)

2 (I'). Thus X, = D(L1)=1) (L). Sinee BD(4) o
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The next corollaries are easily shown.

COROLLARY 2.7. Let A be a closed operator € ). Then A represents

4L
pure condition if and only if B’ 1) (A*) is dense in ITH it ().

COROLLARY 2.8. Let A €N represent the pure condition Mu = LBu.
Then A is closed if and only if L is closed.

About the adjoint one has:

TaKOREM 2.7. Let A represent the pure condition Mu — LBu (L closable
or not). Then A represents a pure condition (with obvious notation) if and
1
only if D (L) is dense in I H ™ (), i.e., if and only if BD (A) is dense
1
—mj—

in ITH 2(I).
In the affirmative case, A represents the pure condition M’y — L*B’ u.

Proor : Applying the 9{’-analogue of Corollary 2.7 to A (which is
closed) we see that A* represents a pure condition if and only if B])(A”

= BD (A) is dense in ITH IIH T 2 (I'). When L is closable, B])(A)——I) (1)
by Theorem 2.6, so BD (A) = D (L); when L is not closable, BD ( A)=l)(11,)

where 17(—L—J= l)—(IT) by Corollary 2'.6, 8o that also here BI) (X) = D(L).
This proves the first part of the theorem.

The second part follows, when L is closable, from L* = I*; in the
nonclosable case it can be deduced from the last statement in II § 3.

II1 § 3. Regularity.

This § is concerned with the question of regularity, i.e., the smooth-
ness properties of the solutions of the various boundary value problems.

1
We here consider inclusions D (A) € H*(Q) and (L) c ITH 7 %(I'Jand
show how these correspond to each other when 0 << s << 2m. For 8> 2m
one never has D(4) c H* (2), since D(4)> D (4,) = H,;™ (2); here we just

1
see what D(L)c IT H T (I") implies for 4. Other types of regularity re-
sults (e. g., concerning the property Au € H?(Q)=—=> v € JI*+ (), varying s
and t) will be discussed in a subsequent paper.
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We distinguish between two types of inclusions, exemplified as fol-
lows :

Let F be an operator from HO°(2) to a Hilbert space K, and let
s > 0. Then D(F) < H*(£) (algebraically) means that D (F) is a subset of
H:(2); and D (F)c H*(£) (algebraically and topologically) means that fur-
thermore the inclusion mapping is continous, when D) (F) is provided with
the graph-topology ; i. e.,

fuls<<ec(|uly+| Fulg)y ¢> 0, all ueD(F).

1
For an operator L: X — Y’ (X a closed subspace of IT H "2 (I'")) the
graph topology on D (L) is of course determined by a norm |¢|;=
1

(g ';Z—m]-— li + | Lg %,)?; here ome is interested in inclusions D (L)<
2
1
cIH ™% s>0.

THEOREM 3.1. Let A correspond to L as in Theorem 2.1-3 or Propo-
position 2.1 (i).
(i) Let 0 < s << 2m. Then D(A) c H*(Q) (alg.) if and only if D (L)

—_—n,—
s—my

1
clIlH 2 (I") (alg.).

"&j—-

—mi—
(ii) Let 8 = 2m. Then D (L) C ng' XI') (alg.) tmplies

{we D (A)| Aue H=2m(Q)) c H* () (alg.).

ProOOF : We observe first by inspection of Theorem 2.1-3 and Propo
gition 2.1 (i), that in all cases one has

~

(3.1) D (L) = BD (4).

Now let u€ D (A,), and consider the decomposition u = ug | u, with
Ug € D(Aﬂ), u-€ Z(Ai).
For 0 << s<< 2m, we note that D (A;) € H* (L), thus u € H*(Q) if anc

1
only if w.€ H'(Q)NZ (4,) = Z4; i.e., it and only if Bug€Il j; SN AN
(Proposition 1.1). Since Bu; = Bu, it follows that u € H*(£2) if and only if

1
Bue [TH™ ™™ 2(I'). Then (i) follows by use of (3.1).
For s = 2m we have: Au € H*?™(Q) implies ug = A;‘ Au € H'(Q) (The-

orem I 3.3, Buy = 0). Then, for those « which have Au€ H*—™(Q), u€ H?*(£2)
1
it and only if u, € Z (), i.e., Bu ¢ I H 7 2 (I'). This leads to (ii).
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LeMMA 3.1. Let F be a closable operator jfrom H°(£2) into a Hilbert
space K, and let s > 0. Then D (F) € H*(Q) (alg. and top.) if and only if
D (F) c H*(2) (alg.).

PROOF. That D (F) c H*(Q)(alg. and top.) implies 1) (F)c H*(RQ) is
obvious; on the other hand, if D(F) C H#(£)(alg.), the inclusion mapping
D(F)— H°(Q) is continuous with values in H?*(£2), thus continous into
H# (L), by the closed graph theorem.

THEOREM 3.2. Let A correspond to L as in Theorem 2.1-3 (80 L is as-
sumed closable).

~

(i) Let 0 << s < 2m. Then D (A)c H?*(Q)(alg. and top.) if and only if
D) c IIH'_'"’_%(F) (alg. and top.). )

(ii). Let 8 = 2m. Then D (L) C HHs_mj——;_(l‘) (alg. and top.) implies
fueh (X) | Au€ H*—2™(Q)} c H*(Q) (alg. and top.), where luEl)(z)| Auell *2m(£))
is provided with the norm (| u lf. + | Au |§_.2,,.)37.

ProoF : Since L is closable, fi corresponds to L.

~

If follows from Lemma 3.1 that ) (A) c H*(£2) (alg. and top.) if and
only if D(i) C H*(Q)(alg.); and that for 8 = 2m, {u € I (A~) |Au€ Hs—2(Q)}) €
C H*(£) (alg. and top.) if and only if (uEI)(i) | Au € Hs—2m (Q)} < 11+ (£,
walg.), using that the closure of {u€ ) (A)| Aue H*~?™(2)} in the norm
(|u Iﬁ + | Au |f_2,,,)% equals {u€ l)(§)| Auwe H*—2(Q)}. The technique of the
proof of Lemma 3.1 also gives that D (L) c I] llx—m"'_%([') (alg. and top.)
it and only if D(L)c ITH "7~ T:'(1') (alg.). -

The theorem now follows by application of Theorem 3.1 to A and L.

REMARK 3.1 Note that in the above theorems there are no other ex-

plicit assumptions on Y than the defining one: that Y be a closed sub-

1
space of [IH Bkngt g ().

1L § 4. The formally selfadjoint case.

When A is formally selfadjoint (i.e., 4 = A’), then A, = A; and
A, = A]. Moreover, the boundary operators B, B, C and (!’ can be chosen
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such that B = B’ and C = (’; then the operator A, is selfadjoint. (Systems
{B, C} of this kind are called self-conjugate in Ercolano-Schechter [10]. The
index sets {mj}, {u;] will satisfy yj=2m —mj—1, j=0,..., m—1. We
refer to [10] for a detailed description.)

In the present § we will add this assumption to the basic assumption
stated in § 1:

(4.1) A=A’ B=DB, C=C.

Then the theory of IT § 2 can be applied. Note that we now have BZ (4 ) =
1

=B ZA)y=IIH 7 2(I).

THEOREM 4.1 Assume (4.1).

1
Let X be any closed subspace of IT " 2(I'), and let L: X— X’ be
selfadjoint. Then the operator Aem defined by

(4.2) D(A)={ueD(A,)| Bue D (L), Mu= LBu on X}

is selfadjoint.

Conversely, any selfadjoint operator Adem defines a selfadjoint operator
L: X—> X’ by (4.2); here X = BD (4).

A and L correspond uniquely to each other; D (L)= BD (Z).

This theorem follows easily from Theorem II 2.1.

With our usual terminology, les us assume in the rest of this § that
(43) A corresponds to L: X — Y’ as in Theorem 2.1.

One gets straightforwardly from Lemma II 2.1 and Definition (I1I) 2.1 :

LevMA 4.1. Assume (4.1) and

(4.3).
Let X< Y. Then for u, ve D (?f)

(Au, v) = (Auy, vg) + € LBu, Bv).
roor
In particular

. Re (Au, u) = (Aug, ug) + Re  LBu, Bu),
v'or
Im (Au, %) = Im<{ LBu, Bu).
RO

)y dunale della Scuola Norm. Sup. Pisa.
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Theorem II 2.3 and Corollary II 2.3 imply:

THEOREM 4.2. Assume (4.1) and (4.3).
A is symmetric if and only if X € Y and L is symmetric (i. e. { Ly, p ) =
¥y

= (g, f&w) Jor all @,y € D (L))
Py

Moreover, A is maximal symmetric if and only if X = Y and L i mazxi-
mal symmetric.

For the remaining theorems we assume that A, is positive, i.e.
(4.4) m(Ay) = inf {(Aw,u)|u€D(4y), |u|=1}> 0.

Then there exist positive selfadjoint realizations, in particular the operator
4, determined by Friedrichs’ lemma, Lemma I1 2.2. The justification for
calling Friedrichs’ extension A, is that it is exactly the realization Ap_,,
say, which corresponds to B = B’ =y (« Dirichlet conditions »). We will
indicate a proof :

J
Denote {yg, ..., Pm—1} =7, Where y; = % (a8 in Theorem I 2.1). Using

that ap, () €D () one obtains by integration by parts

(4.5) (Au, v) = a (u, v) + (Nu-y_vdo, all u,veD(Q),
I;/

where a (u,v) is defined by

|2l lgl=m

(4.6) au,v)= 3 fapq(w)unmdx;
Q

and N={N,, ..., Nn_1} is a normal system of boundary operators with 0=
coefficients and orders 2m —j — 1, j=20,..., m — 1. (4.6) actually makes
sense for all u,v€ H™({); then a(u,v) is a continuons symmetric sesquili-
near form on H™(£).

By extension by continuity (using Corollary I 2.1), (4.5) extends to
H2m (Q):

(4.7) (Au, v) = a (u, v) + f Nu-yv do, all u, ve H2™ (Q);
r

1 o1
here y and N map H " (£) continuously into J/TH Ty (I") resp. IIH * 2(I).
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Define the operator Az—, by
A B=y © Ai

D(Ap-,) = {u€c H2™(Q) | yu = 0} ;

by the regularity theorem mentioned in Chapter I (see Remark I 3.1 and
Corollary I 3.1) it is selfadjoint. Moreover, D (Ap=,) € H," (), for D (Ap_,) C
c H (Q)c H™(L) and y defined on H™(f) extends y defined on H 2™ (Q)
(Remark I 2.1); we then use that [u€ H™(Q)|yu = 0} = H," (£2) (Theorem
I 2.1).

Now let u €D (Ap—,). Then since D (2) is dense in Hy (£2), there exists
a sequence {u"} € D (2) € D(4,) so that w*—>u in H,(2). In particular
u* — u in L*(L). One also has, using (4.7)

[(A @@ —wu), w* —u)|=|a@W —u, v» —u)|<c|u—ul?,

since « (u,v) is continuous on H™(LQ). Thus (4 (u" — u), w" — u)—> 0 for
n —» oo,
This shows that Ap_, satisfies the conditions of Lemma II 2.2, thus

AB=7=A7.
We will use the notation A,. Note that Lemma II 2.2 implies that
m(4,)=m(4,).

The results of II § 2 are concerned with numerical ranges and spectra.
There is one complication in carrying this over to the correspondence bet-

ween 4 and L, that we would like to point out:
o L
Usually, the duality between II H " (') and I H A (') is gi-
1
ven, whereas the norm in IT H " (I") is not specified (cf. Remark 2.1).

1
Therefore (it L: [IH @ 2(I')— ITH"" % (I')) the value of (L, ¢) is
well known, whereas || is not, so the numerical range of L is
'—-170

mi—
! )
Y
i 2t
—m— L
not independently defined. Also the identification of ITH 7 2 (I') with
its dual is not fixed, so that L does not have a well defined resolvent or
spectrum.
There are several ways of handling this.

1 .
1° We can fix the norm in I[H ° 2 (I'). This can be done in many
ways ; particularly suitable for the given set up is the norm that one

m

1
obtains by demanding that B: Z (L) —> 1111 ' * 1) be an isometry. We
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can then define the spectrum (and various parts of it) and the numerical
1

1
range, using the identification between ITH —mj_?(I’) and IIH ijr7(1’) de-
fined by the duality together with this particular norm. All the statements
of II § 2 carry over word for word. The results from this approach seem
somewhat artificial, not very easily applicable.

1

20 If we notice that the particular norm in ITH = 2(I") mentioned
in 1° can actually be described in terms of the norm in L?(£2), we obtain
that the corresponding numerical range and lower bound can be defined in
terms of the norm in I?(2) and the duality between Y and Y’;
let us therefore define (for L: X — Y’ with X c Y, closed subspaces of

1

o 7 = (I):

mi—
(4.8) vz(L)={{LB2,Bz)|2€Z(A,) with Bze D(L), |z| =1},
Y Y R
(4.9) mgz(L)=inf{Re{ LBz Bz)|2€Z(A,) with Bze D(L), |z|=1}.
¥ ¥

Now, those spectral properties that are connected with the numerical
range and the concept of lower boundedness can still be treated if we
work only with vz (L) and mz(L).

3% Finally, it can be shown that positivity, nonnegativity and lower
boundedness, as well as the corresponding maximal concepts, can be defined
qualitatively, without reference to norm or numerical range. This will
lead to qualitative descriptions of the correspondence between spectral (and

numerical) properties of A and L. The properties that depend on specific
estimates are lost by this approach.

In the following we will develop the ideas mentioned in 2° and 3Y,
thereby applying the major part of II § 2. However, one type of application
has been omitted ; the application of perturbation theorems as in Theorem
II 2.2 These obviously give rise to statements in the style of 1° above ,
however, one could also get a qualitative statement from Theorem II 2.2
(ii), with suitable definitions. Since this type of idea requires a thorough
treatment we have omitted it here.

1

LEMMA 4.2. Let Xc Yc[IH 7 * (I') (closed subspaces) and let
L: £— Y¥'. Let|-|x 1 and |-|x, ; be two equivalent hermitian norms in X. Then

inf {Re { Lo, ¢ ) | @ € D (L), | @ |y, = 1]
and .
inf {Re{ Ly, @) | @€ D(L), | ¢ |x,. =1}
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belong to the same of the four sets
i) {t>0j, (i) {t=0}, (ii)  {t > — oo}, (iv) {t=— oo}

PROOF : Follows easily from the fact that there exist positive con-
stants ¢/, ¢’’ so that

oz <|olx:<c¢’|®l|x. for all p€X,

1
DEFINITION 4.1, Let X €Y c [TH ¢ 2(I') (closed subspaces) and let
L: X—Y’. L will be said to be positive, nonnegative, lower bounded or un-
bounded below, according to whether

inf {Re { Lo, p ) |p € D (L), | ¢ |x = 1}

i8 >0, =0, > —co or = — oo for all the equivalent norms in X.
The definition makes sense because of Lemma 4.2.

LeEMMA 4.3. Let L: X— Y’ (X € XY) correspond to T: V— W as in
Definition 2.1a. Then L is positive, nonnegative, lower bounded or unbounded
below, if and only if T is positive, nonnegative, lower bounded or unbounded
below, respectively. (One has mz (L) = m (T).)

PROOF : Let X be provided with the norm defined by |Bz|x = |¢|;
then the statement follows immediately from { LBz, Bz) = (T%, 2).

DEFINITION 4.2. Assumptions of Definition 4.1, with X=Y. L: X — Y’
will be said to be mazimal positive/maximal nonnegative/maximal lower boun-
ded, if it is positive/nonnegative/lower bounded, and has no proper positive/non-
negative/lower bounded extension (respectively).

LEMMA 4.4. Let L: X — X’ correspond to T: V— V as in Definition
2.1a. Then L is maximal positive/maximal nonnegative/maximal lower bounded,
if and only if T is maximal positive/maximal nonnegative/maximal lower
bounded (respectively).

PRoO¥. The lemma is an easy consequence of Lemma 4.3, Definition
4.2 and Definition A.2 (Appendix).

For the case where L is closed, densely defined, Definition 4.2 can
now be replaced by a more useful description.

PROPOSITION. 4.1, Let L: X — X’ be closed.Then L is mawximal posi-
tive [maximal nonnegative] if and only if L is maximal lower bounded and
positive [nonnegative].
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PROOF : By Corollary A.4 the statement holds with L: X — X’ repla-
ced by T7: V— V. Then Lemma 4.3 and 4.4 imply that it holds for L.
We also mention the consequence of Corollary A.5:

PROPOSITION 4.2, Let L: X — X’ be closed. Then L is maximal posi-
tive/maximal nonnegative/maximal lower bounded, if and only if L is densely
defined and L and L* are both positive/nonnegative/lower bounded (respectively).

The application of these ideas to the results of II § 2 is now quite
straightforward, so we will list the theorems without proofs. Recall II (2.7):

» (Z) D ¥ (A,
From 4 to L:
THEOREM 4.3. Assume (4.1), (4.3) and (4.4), and assume that Ap=A,.
() If v(d) = C, then X Y and », (L) c v (A)
(i) If for some — %g o< -;‘—, me® 4)> — oo, then X € Y and
¢ L is lower bounded with mz(e®® L) = m (% Z). |
(iii) If for some —% =0< % , 60 4 is maximal lower bounded, then
X=1Y and ¢ L is maximal lower bounded with mz(e®® L) = m (e* A).
Qualitative statements :
THEOREM 4.4. Assumptions of Theorem 4.3.
(i) Let — —"2—g 0 < % If one of the following properties holds for

¢® A, then it holds for e L : positivity, nonnegativity, lower boundedness, and
the corresponding maximal concepts.

(ii) Let X c Y. If for some — -’2’— <0< %, ¢ I is unbounded below,
then 8o is ¢ A. If ¢ L is unbounded below for all — % <0< —g—, then
» (4) = (.

From L to A :

THEOREM 4.5. Assume (4.1), (4.3) and (4.4), and assume that A, satisfies
m (Ap) > 0.
(i) Let XY, — % <0< —’;- If e L is lower bounded with

mz(e®® L) > — cos 0 m(Ag), then ¢ A is lower bounded with

cos 0 m(Ag) mz (e L)

0 4
(4.10) m (¢ 4) = co8 0 m(Az) + mg (¢ L)’
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(ii) Let X = Y, — % <L % If €9 L is maximal lower bounded

with mz (e L) > — cos 0 m(A,) then ¢ A is maximal lower bounded, the
lower bound estimated by (4.10).

Qualitative statements :

THEOREM 4.6. Assumptions of Theorem 4.5. Let __12’_ <0 <‘—7—2’—. Iy

X c Y and ¢ L is nonnegative [ positive], then &% A is nonnegative [positive) ;
if furthermore X =Y and ¢ L is maximal nonnegative [positive], then

e® A is maximal nonnegative | positive].

THEOREM 4.7. Assume (4.1) and (4.3).

(i) Let Ve W and let 6= % or —-%. Then € L is nonnegative if

and only if €* A is nonnegative (and then m(e® Z)= 0).

(il) Let V= W and let 9=% or —%. Then € L is maximal non-

negative if and only if ¢ A is maximal nonnegative.

As mentioned in II § 2 one can by combination obtain theorems about

angles and other convex sets. Example:

COROLLARY 4.5. Assumptions of Theorem 4.5. Let X =Y. If — %g

=0, <0, < %, and ¢ L and €% L are maximal nonnegative, then o (A)

and » (E) are contained in the angle
A=ref|r=0, — %—91g9£% — Oy

The formula (4.10) can be employed to give results about more general
convex sets, using »z(L)

ILI § 5. Additional properties of P.

The operator P was defined in § 2 as: the inverse of B: Zj(Q2)—

1 1
— ITH ™7 (I") followed by O: Z3(Q)— ITH' "~ 2(I'). 1t was shown
how I’ is defined consistently in this way for all real s, and that P maps
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‘—‘"lj—

1 1
IIH % (I') continuously into ITH' '/~ 2 (I') for all real s. P’ was de-

1
fined analogously from A’, B’ and C’; P’ maps ITH mhmait

:—2m+mj+l
nuously into IIH 2 (I") for all real s.

In this § we will derive some additional properties of P and P’.

(I') conti-

THEOREM 5.1. For each real s, define P; as the restriction of P with

domain ITH :
e & "2"""I‘j'|“

1
™ (I"), and define Py as the restriction of P’ with domain
1

z2(I).
:—m’—-—l— 3—,4j__l_
Then for all real s, P,: IIH 2 (I'y—I1IH t(I') and

1 41
Pyp_y: IIH ’+”’+?(F)—+HH ity (I') are adjoint operators.
PRrOOF : Let ¢, w € (D (I')y™. It follows from Proposition 1.1 that the
equations Bu = @, B’ v =y have unique solutions u € Z5" (Q) and v€ Z Q).
Then

f(P«p-E — @-P’y)do —_-f(Cu-B’v— Bu.C’ v) do
r r

= / (Auv — ud’v) da, by I (3.3),
0

=0, since Au= Av=0.

Since D (I') is dense in H!(I"), all real t, the statement now follows
by extension by continuity (recall that the duality between H'(I') and
H-*(I') is an extension of the L2-inner product between functions in D (I"),
a8 described in Chapter I).

Next we will show how, under certain additional assumptions on our
given differential operators A, A’, B, B’, C, C’, the operators P and P’ have
an « ellipticity »-property (or regularity-property). Here we can either assume
that (A, C} and {4/, C’} have the same nice properties () and (U) of
Chapter I) as {4, B} and {A’, B’}, so that the roles of B and C (or of B’
and C’) can be interchanged, and P and P’ are simply invertible. Or we
can make use of the boundedness of 2 and I, which has not played an
essential part up to this point (the fundamental theory does not use com-
pactness arguments), and use certain results of Lions-Magenes [24] VI,
requiring only that C covers 4 (i.e, {4, C} satisfies (C)).
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The first result is easily described:
THEOREM 5.2. Assume in addition to the basic assumption that {A, C)

—1

and {A’, C’} satisfy the hypotheses (C) and (U). Then P maps IIH ATV &
— L _ 4 L

isomorphically onto ITH' ¥~ Z(I') for all real s, and P’ maps [TH' bt g )

1
isomorphically onto ITH '_m+mj+7(1") for all real s.

PRrROOF : By interchanging B and C and applying Definition 1.1 and
Theorem 1.1 we obtain an operator which is the inverse of P and maps

1 —mi— L
J14; ) (I') continuously into IIH TR (I"y for all real s. The analogous
argument applies to P’.

The theory from Lions-Magenes [24] VI that is required for the second
result will be stated for the system {4, C} (rather than {4, B}) right away.
Define :
Z(4,C) =(ueH™(Q)| Av =0, Cu = 0}
ZA,C)y={ve H™(Q)| Av=10, C'v=0}.
One has (Schechter [28], Agmon-Douglis-Nirenberg |1]):

PROPOSITION 5.1. (Uses boundedness of .) If (A, C} satisfies the hypo-
thesis (C), then Z (A, C) and Z (A’, (') are finite dimensional and contained in
D (). .

Then Z (A, C) is a closed subspace of any of the spaces D*, (£2), H*(2),
s real, so that the quotient spaces D® (2)/Z(4, C) and H*(£)/Z (4, C) can
be defined as Hilbert spaces with the quotient topology. A and C are defi-
ned on 1% (2)/Z(4, C) and H*(£2)/Z (4, C) in the obvious way.

1
For s=0, ¢ real, let (H*(Q) < [IH "~ T (I'); Z(A’, ¢"), B'Z(A’, ("))
1
denote the space of distributions { f, ¢} € H3 () < [IH HT T (I") which satisfy

(fywuwa +C @ , Bg )=0 for all ge Z(4’, 0');
ey 3| {—tbut 5

1
it is a closed subspace of H*(2)>< [TH "% (). :
Lions and Magenes prove (%) ((24] VI, Theorem 4.1, Theorem 8.1 and
Remark 8.3):

] .
(3) The condition «s — 7 not integer » has been omitted because of results in [24'],

see our Remark 1.3.2.
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THEOREM 5.3. (Uses boundedness of ). Assume that {A, C} satisfies (C).
(i) For all s < 2m, (A, C} maps 1* (2)/Z (4, C) isomorphically onto the

1
space (H®(Q) < ITH' ™" 2(I'); Z(4’, "), B'Z (47, C")).
(ii) For all s = 2m, {A, C} maps H*(2)/Z (A, C) isomorphically onto the

1
space (H*—2m (Q) > ITH " 2 (I'); Z(4’, '), B'Z(4’, ")).
A particular consequence of this result is

PROPOSITION 5.2. (Uses boundedness of Q). Assume that {4, O} satis-
fies (Q).

]
(i) Let 8 << 2m. If for some r < s, w€ D', (2) with Cu€ IHH™ (),
then w€ D ! (Q).
(ii) Let s =2m. If for some r < s, w€ H" () with Au€ H*—™ () and

1
cuellg™ " * (I"), then we H* (L)
PROOF :

1
(i) It follows from Theorem 5.3 (i) that {Au, Cule[H(Q,< ITH " % (')
Z(A’, 0'), B’Z(A’, (). The agsumption on Cu implies that in fact {Au, Cuj €
1

(HO(Q) =< ITH """ 2 (I"); z(4’, "), B'Z(4’, (")), using that B'Z(4’, ¢")c
c(D(I')™. Another application of Theorem 5.3 (i) then gives that u=u,+-2

where u, € 1*, () and z€7(4,0) cD(Q), i.e., we D’ ().
(ii) Since in particular u € D", (Q2), it follows from Theorem 5.3 (i) that

1
{Au, Cu)€ (H® () < IIH "7~ 2(I'); Z(4’, ¢"), B'Z(A’, (’)}. The assump-
1
tions on A and Cu imply that in fact {Au, Cu} € {H*—2™ () >« ™2 (r;

Z(4’,0), B’Z(A’, C')}, using that Z(4’,(’) Q(.@) and B’Z (A7, C')c D).
An application of Theorem 5.3 (ii) now shows that u=wu,-+2 where u,€ H*(£)

and 2€Z (4, 0) c D(Q), i.e, ue H(Q).

We can now obtain the following statement about I :

THEOREM 5.4. (Uses boundedness of Q). In addition to the basic assump-
tion, assume that {A, C} satisfies (C). Then I’ has the property :

S 1
Lad] 5

For each real s, @ € (D([")™ with P g€ ITH (I'") tmply

1
pelH ™2 (),
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™)

1
PROOF : Let @ €(D'(I"))™, then @€ mg " (I') for some » € R since

1
I is compact. Assume that Ppe I1H' “T2(I") for some s€W. If r >3 we
are through; therefore let » << s. By Proposition 1.1, ¢ = Bu for some
w€Z7 (£2). v has the properties: uw€ H" (Q), Au=0¢ H'(2), all teR, and

1
Cu = Pp¢€ IIH T (I"). Then Proposition 5.2 shows that € H*(R), i.e.,
uw€Z5(2). Another application of Proposition 1.1 gives that

1
g=BueclIH "7 =(I).

III § 6. Some applications.

As mentioned in (ITI) § 2, previous investigations of non-local boundary
conditions have almost solely dealt with the boundary condition Cu = KBu,
K a given operator in (D’ (I"))™ . We called this type of condition a « pure
condition » in § 2; it is shown there how K determines uniquely the ope-

rator L to which A corresponds, whereas it is only a certain part of K
that is fixed by L or A. The method to treat the problem of how proper-
ties of 4 depend on properties of A within our framework will be to derive

the properties of L from K, these correspond to similar properties of A by
our theory.

Let K be given as an operator in (0’ (I'))™. Let A be the realization
of A determined by

(6.1) D(A)=(ueD(4,)|BueD(K) Ou= KBu};

i. e., a represents the pure condition Cu = KBu; then 4 also represents

1 —pi— L
the pure condition Mu — LBu where L: [TH @ 3 (I')— o™ ™" 3 (r)
is defined by:

1 e 1
(6.2 D(L)=(peDK)NITH " 2(I')|Kp — Ppe ITH™ 77 (")

Ly = K¢ — Pp for @€ D(L)

(Proposition 2.1).
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We always have D (L)= BD (Z) and can apply Theorem 3.1; however,
the case where we get most information is the case where L is closable ;
then the whole preceding theory applies to the correspondence between 4
and L.

Because of (6.2) one could say that it is the difference K — P that
determines the character of A.

Below are given a few results; they should be considered more as an
illustration of our theory than a final goal, since we have not made an ef-
fort to use all possible aspects of it. The results overlaps with Schechter [29].

Sketch of results.

Assume for simplicity that m =1, B= B’ = y. Then the operators
1

P and P’ map H '—?(l‘) continuously into H ‘—%(I‘) for all real s (Theo-

rem 1.1), i.e,, are of order 1. Under additional assumptions (as in Theorem

5.2 or 5.4) they have an «ellipticity » — or regularity — property : Py €
3 3 1

€H 2(I')[P'pe H ()] implies pe H ("),

We assume that K is given as an operator in )’ (I"), and maps H* (I")
continuously into H*—"(I")- for some fixed real r, and s belonging to a sui-
table finite interval (in particular this is satisfied if K has order 7, i.e.,
maps H*([") continuously into H?*—"(I') for all real 8). Then L is closed.
Furthermore : .

3
(i) If » <1 and P has the regularity-property, then D (L)yc H? (I')
(alg. and top.) so that (by Theorem 3.2) D (Z)CH 2(8) (alg. and top.).

Moreover, A* is determined by the boundary condition C’vx = K’B’u, where
K’ is a naturally defined adjoint of K; here D (L*) < H3%2(I") (alg. and
top.) so that D (E‘)CH 2(2) (alg. and top.). Since I)(L) and D (L*) are
continuously imbedded in H?¥?(I'), L and L* are Fredholn operators (using

that I" is bounded) .then 4 and A* are Fredholm operators.
(ii) If r > 1 and {( has a regularity-property, then we get the same

conclusions as in (i) (for the adjoint we have to assume that K’ also has
the regularity property).

1 3
(iii) If r =1 and P is an isomorphism of H' *(I')onto H 2(I)

1 3
for all s, and K: H? (I")—)Hs 2 (') has a sufficiently small norm for
each s, then the conclusions of (i) hold; and in fact OEQ(Z). Using the
boundedness of £ we get that the inverse A-1 is a compact operator.
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We proceed to deduce the exact results. Let us mention the following
once and for all: We will often use the assumption that an operator K
in (9’ (I'"))™ maps ITH™** (I') continuously into ITH"*% (I"), for all r be-
longing to a closed interval [7o, ). By interpolation (see Theorem I. 1.1),
it is actually enough that the property holds for the end-points r = r, and
r = Ti . -

1
LEMMA 6.1. Let K be an operator in (D’ (I'))™ such that ITH & 2(I)e

1
i~%

1
c D(K) and K is continuous from ITH '’ 2 (I) into IIH tﬂT’?(l’) Jor

1 1
some real t. Then L : HH_m’_?(I‘)—-> I]Hm S (I"), defined by (6.2), is
closed.

ProOF : Let {¢»} be a sequence in D (L) such that

—mj—

1
(6.3) g"— @ in IIH T (I),

1
(6.4) Le"— vy in [H™2(D),

1 : L
(6.3) implies that K¢"— K¢ in nmH™ 2 (I') and Pp"— Pg in naE™" 3r)
(Theorem 1.1), thus altogether

1
Lg" = K¢" — Pp"— Kp — Pp in ITH" " (I,

t L
where t, = min {t, 0). From (6.4) we obtain that Le"— v in ITH ' A (),

m—yj—

1
since ¢, < 2m; thus Ko — Pp=1y¢ ]7)‘[2 2 (I'). This shows that ¢¢€

€ D (L) with Lp = y.

LEMMA 6.2. Let t, vy and »; be real numbers (ro<<r,), and let K be a

r—t—mj-—

1
mapping in (D’ (")) which maps II H 2 (I') continuously into

1 v
ITH " (I") for all refry,r,]. Denote the restriction of K with domain

1
OTH 20 by K, (s€[ry—t, r, — t)).

1
There exists a mapping K’ in (D’ (I'))™ such that K’ maps ITH st 5

s+l—2m+mj+ i

continuously into ITH (') for all s€[2m —r, , 2m — r,], and
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1
- . . - ampit <
such that, if K, denotes the restriction of K’ with domain IIH P

’-r+l‘)+ %

(I’

r—t— mj—

1 1
then K,_.: ITH P(My—IH " 2(T) and Kjm_y: TH

—rtt+m+

(r)y—
1
— ITH 2 (I") are adjoint operators for all r€[ry, r,].

We will say that K’ is the adjoint of K, or, if it is necessary to be
more precise, that K’ is a (t, ry, r,}-adjoint of K.

ProoF : For each re[r,, r|, K, ., is a continuous mapping of

r—t—m =

1 1
Z(I) into ITH "2 (I'). It therefore has an adjoint (K,_,)*

1 1
sending ITH —'+"j+?(l’ ) continuously into /1T H IARCAN ().

When s’ >s, H¥(I')c H*(I") alg. and top., and densely, and the
duality between H*(I') and (H*(I')) = H—*(I') is an extension of the
duality between H? (I') and H~* (I"). Therefore, for ro<<r <<+ <1y,
K, > K, implies (K,)* < (K,)*. Let K’ = (K,_,* then (K,_)*<c K’ for all
r€[ry, 7], and (K, o* is in fact the restriction of K’ with domain
1
7([‘). With the notation: K, is the restriction of K’ with do-
1
main IT H ?(F), this means that (K,_,* = Ky,_,. Note that when
refry, rl, 8=2m —re[2m —r;, 2m — ry)

I1H

mH —rtujt+

s—2m+pjt

LEMMA 6.3. Assume that the hypotheses of either Theorem 5.2 or T1heo-
rem 5.4 hold, so that P has the property :

1
(6.5) @ (D ()™ with Ppe [TH TR (I'), some s€R,

1
imply @€ [TH 7 2 (I'),

Let K be an operator in (D’ (I')y™ for which there exists ¢t > 0 such that

™y =

1 1
K maps ITH' f 2(I') continuously into ITH 7 2(I') for all s€[0, 2m].

Then L, defined by (6.2), is closed and satisfies

PN N 5 e
m. m,

1
D(L)=I1IH 2(I') alg. and top. (Notation as in § 3).

1
PROOF : Since ¢t > 0, K maps )74 A (I') continuously into

—1
TR (I'y for all s€[0,2m]. Tor s=0 this implies that L is closed
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™

1
(Lemma 6.1). For 8 = 2m we see that both KX and P map ag™ T

m—pj—

1
continuously into ITH ? 2 (I"), therefore L satisfies

1
2m—_uj-- N

(6.6) Vip:4

(see (6.2)).
Now let ¢ € D (L). If for some 0 <<r < 2m

(I'ye D (L) alg. and top.

—1 r E-—t"—l
(6.7) Poe IH ™" 2(), PeeITH T2 (1), all &> 0;

1
then the same is true for K¢ since qu—quEHHm—”f—z(I‘). Then

r+c—t—m]-—-

1
p¢IllH 2(I") for all ¢ > 6, by the assumption on K. It now fol-

r+e—-t-p]-—

1
lows from (6.5) that Po ¢ [TH 2(I'y for all £¢> 0. For ¢ =t this

1
means that Pp¢ ITH ‘7 Z (I'), which contradicts (6.7).

Therefore there is no 0 <<r << 2m for which (6.7) holds. Thus either

1 .
Ppell H ™43 (I') or (6.7) holds for some r < 0. The latter case is

Hi—

’ 1 X
excluded since g€ I[TH ° 2(I') so that Ppe [TH 2(I'). Using (6.5)

2m—mj—-

om—pi— L 1
again we see that Pq)EHH” “T2(r) implies @€ T H 2 ().

We have then proved that

om—tn— L
(6.8) D@y nH ™" T(T) alg.
By the closed graph theorem, (6.6) and (6.8) together imply

2m—mj—-

1
D(L)=IIH 2 (I') alg. and top.

LEMMA 6.4. Assumptions of Lemma 6.3. Let K’ be the adjoint of K,

1
defined according to Lemma 6.2; it maps /TH LAY o) continuously
. 1
T(r') for all s€[0, 2m]. Let L: IH 7 * (') —

1
—2m-+uj+ ?(I‘) —

_2 -
into ITH o=yt

2m —#j— %

— ITH (I') be defined by (6.2). Then the adjoint L*: ITH
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mit -
— ITH 7" 2 (I') is exactly the operator defined by

—2mm+ , , +
(6.9) SD(L")=M€H “r 1)|K<p——P<penH " 1);
L*'¢ = K'¢o — P'p for ¢@€D(L*.

rtmj

ProOOF : With the notation of Lemma 6.2, K, ,: II H

1
S IETTE) and K, DHTTE 0y g TR
adjoints, for all »€[0, 2m].

1
By Lemma 6.3, L: TH 7 *(I')—> ITH

(F) —

2 (I') are

2m— Hi—

1
r ) satisfies

2m—m,~— -

1
D(L)= 2(I') alg. and top.

+/‘j+

L* is defined on the set of we[TH 2 (I') for which there exist

1
yhe IIHm’_'-?(I‘) such that

(6.10) ( Lp , y )=<, ® 1p" ), all g€ D(L);
TP TR T

_ 1
2

then y* = L*y.
1
We also have for v & [T H " T (1) peD(Ly= HH™ " T(I):

( Lg ) Y )=( K¢p , Y y—<( Pp Y )

1 1
T e L R T B B O B e e
= @ Ky y—<« @ , Py Y,
t2m—t-—mj— —‘ (—2m+t+m]+ —‘ i ‘2m—mj—- %: . 2m+m + —‘,—:

using that K, and K, are adjoints, and that P, and P, are adjoints
(Theorem b5.1). Since ¢ > 0 and in fact @€ /] H T (I'), the expression
can be transformed into

= ( (4 K"lp > —< g ) 1"4’ ’

)
l2m—mj— %‘ t—2m+mj+ —;—z t2m—m}-— %2 ‘—2m+mj+ T:{

=X @ , K'yp — P'y).
:Im—-mj_-‘}! ‘—2m+mj+ -%‘
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Altogether we have found

(6.11) ( Lp Y Y=( ¢ , Ky —Puy),
{ 1 1 1 1j
tom—nj— 5| |-ombuit 3 fem—mi— 3| |-2mbmit 3

1
—2mpit o

all e D(L), all wellH (.

By comparison of (6.10) and (6.11) we see that an element y€

. 41 41
e H "™ 2 (1) is in D(L* if and only it K’y — Pye A" (D),
and then L*y = K’y — P’y. This proves that L* is defined by (6.9).

We can now apply the regularity theorem in § 3 to the set-up defined

in the preceding lemmas. In order to get the regularity of A* we have to
assume continuity of K for s¢€[0, 2m -+ t]; for the first statements of the
theorem s €[0, 2m] is enough.

THEOREM 6.1. In addition to the basic assumption, assume that the ope-
rators A, A’, C and C’ satisfy the hypotheses of either Theorem 5.2 or Theo-
rem 5.4. .

Let there be given an operator K in (D’ (I'))™ for which there exists

8—t—mj—

1 —u— L
t >0 such that K maps IIH 2 (I') continuously into ITH TR r)
for all 8€[0, 2m 4 t]. Let K’ be the adjoint according to Lemma 6.2.

Then the realization A of A which represents the boundary condition
Ou = KBu (i.e., is defined by (6.1)) is closed and satisfies

D (4)c H™ (Q) alg. and top. ;

its adjoint A* is exactly the realization of A’ which represents the boundary
condition C'w = K’B’u, and it also satisfies

D (A% c H>™ () alg. and top.

PrRoOOF : By Lemma 6.3, L defined by (6.2) is closed and satisfies

2m—m]~—

1
(6.12) D(L)= IIH 2(') alg. and top.

~ —m— 1L Im—pej— L
Since A corresponds to L: ITH "TT(y— MTH " 2(I') in the sense
of Theorem 2.1, A is closed and it follows from Theorem 3.2 that

(6.13) D(E)CH’“” (£2) alg. and top.

10. Annali della Scuola Norm Sup. Pisa.
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1 mi

By Lemma 6.4, L*: Il H :(I—ITH" 2(I') is defined by
K’ by (6.9). Then since A* corresponds to L* (Theorem 2.1), A* represents
the pure condition C’w = K’B’u (Proposition 2.1). By Lemma 6.2, the as-

1
—2 I
m+"]+ 5

—2m+uj+

sumption on K implies that K’ maps IT H ’ (I") continuously into

1
oHE 7" () for all s€[2m — (2m +t), 2m — 0] = [— ¢, 2m]. Then
Lemma 6.3 can be applied to L* and K’, to show that

1
uit 5

D(LMY=IH (I'y  alg. and top.

Now Theorem 3.2, applied to Z", shows that

DA% c H™(Q) alg. and top.

COROLLARY 6.1. Assumptions of Theorem 6.1. The boundednes of I im-
plies that A and A* are Fredholm operators.

1
PROOF: From Theorem 6.1 we have that D (L)= ITH B (I,

1
D(L*=IH ”’+?(I’), alg. and top. The boundedness of I' implies that
1

1
the imbedding of ITH e "2 (I') into I[TH TR (I') is compact. It then
follows by a standard theorem (see e.g. Beals [6] p. 348) that Z (L) is finite

™j

1
dimensional and R (I) is closed. Similarly, the imbedding of ITH . +5(I')

1
into ITH -2M”j+7(1") is compact, so that Z (L*) is finite dimensional and
R(L") is closed. Altogether L has closed range, and Z (L) and R (L} = Z{L*)
are finite dimensional, so L is a Fredholm operator; similarly L* is a
Fredholm operator. By Corollary 2.4 it follows that A and A* are Fredholm

operators.

LeMMA 6.5. Let K be an operator in (D’(I')\", for which there exists t>>0
such that

(i) K maps [TH
s€[—t, 2m].
(it) For all s €[0,2m] one has:

1 s — L
TS (') continuously into ITH 7~ 2 (I') for all

1 , o L
(6.14) @ellH 72", KeellH "~ 2(I) imply pecllH

t+t-—mj -

1
3
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Then L, defined by (6.2), is closed and satisfies

1
2mt-t—m; — 5

D(L)y= [IH alg. and top.
ProOF : Using (i) for 8 = — ¢, we obtain from Lemma 6.1 that L is

2m—-t—mj —

1
closed. For s = 2m we see that K maps IIH 2(I') continuously

-1 2mt-t—m; —

into ITH HE T (I"); then since P maps ITH

s — L 2y —
into ITH ey (I') which is continuously imbedded in ITH " q(I,
we find by consideration of the definition of L that

1
2 (I') continuously

2m+¢—mj - %

(6.15) IIH (I')'e D (L) alg. and top.

Now let g€ D (L). If for some 0 <<r <2m

1 1
6.16)  PeeIlTH 72", PpelIH (), all >0,

L
then the same is true for K¢, since Ko — 1’<;r'EIIH2 A (I"). By (6.14),
l .
"M TS (). Then Py e Il Heoe

2m—pj — —;»

-1
2

this implies that @ € JIH (I'), which co-

ntradicts (6.16) since ¢ > 0. Thus Py € ITH

. 1
Hj— 5

(I'). Since ¢ € D (L), this

jmplies K¢ € IIH = (I'). Using (6.14) again, we conclude that

2m+!—mj -

1
peIIH 2(I'). We have then proved that

2m+t—mj -

1
(6.17) D (L)< [TH 2([) alg.

By the closed graph theorem', (6.15) and (6.17) together imply that

2m+t—mj -

1
D(L)y= ITH Z(I') alg. and top.

LEMMA 6.6. Assumptions of Lemma 6.5. Let K’ be the adjoint of K,

) ; s—omtpj + +
defined according to Lemma 6.2; it maps IIH 2

1
I B ”‘

(I") continuously into
. i L
=AMt T Y for all s€(0, 2m 4 t]. Let L:ITH @ *(I') —
e — 1 ot L
o I TR be defined by (6.2). Then the adjoint L*: [IH 9 2(I)—>

1
> HH" T (I') is exactly the operator defined by (6.9).
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PROOF : The proof is similar to that of Lemma 6.4, so we will only
describe it very briefly.

One has for all p€ ITH

1 1
YT ), all e D (L) = ITHT T T H(),

{ Lp , Y=( K¢ |, »—( Pp , v )
fom—j — 3 {—omtu; + 3l femwi— %‘ fontu— g fomesg - 3] {-embus + %t
= @ , Ky )—( ¢ , Py )

z2m+t—m,- - %‘ ’—2m—t+mj + %t ,2m-—-mj —_ -;—‘ ‘—2m+m]- + %z

since K., and K, are adjoints, and P, and P; are adjoints. Thus

(6.18) ( Lp p y = @ , K’yp—P’y) all e D(L),
=2m—;4j — %l g—2m-|-,u’- + ;—‘ :2m+t—Mj—%-: ‘—2m—t+mj + -;—

1

—2mtpi+ 5 ().

weIlH
L* is defined by (6.10), then (6.18) shows that L* is the operator
satisfying

—2m-+u; +

1 1
D(I* = |ye IH T K y— P ye TH™ T ()

L* =K’y — P’y for weD(L*.

In the following theorem we strengthen the hypothesis on K to get
the results for A* as well as those for 4.

THEOREM 6.2. Let K be an operator in (D’ (I"))™ for awich there exists
t > 0 such that (i) - (iii) (%) are satisfied :

1 1
(i) K maps ITH '+¢_m’—?([‘) continhously into ITH T 2(I) for all
s€[—t,2m 4t

(if) For all s €[0, 2m] one has

T gy — L sbt—m; — L
6.19) @elIH ™ I(I), KpellH ™ T[Ty imply pe IH T 7T (I).
. S U, . . He—m—
() The assumptions (i)-(iii) are satistied if K is an isomorphism of ITH Iy
onto TH 7 2(I) for s€[— 1, 3m + t].
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(iii) Let K' denote the adjoint defined acording to Lemma 6.2 ; it maps

1 1
—2 s = _t—2 .
) mﬁﬁ__’- 2 $oemtmm & (") for all s€[—t,2m+

ITH (I") continuously into IIH
+ t). Assume that K’ satisfies

1
2y, K gelEm' "™ty

6.20) gerrg Tt (') imply

1

att—2m+u;+ 5 (I')

g€ ITH
Sor all s €[0, 2m].

Then the realization A of A which represents the boundary condition
Cu = KBu is closed and satisfies

(6.21) D (Ayc H™ (Q) alg. and top.,
and
(6.22) {ue D(A)| Aue HH(Q)jc H*™+(Q) alg. and top.,

1
where {uED(E) | Au€ H'(Q)} is provided with the norm (Juls4]4Au])?.
The adjoint A* is exactly the realization of A’ which represents the pure
condition C’ w= K’ B’ u, and it satisfies (6.21) and (6.22) with A replaced
by A’.

PROOF : Follows trom Lemma 6.5 and 6.6 and Theorem 2.1 and 3.2,
in a way similar to the proof of Theorem 6.1.

COROLLARY 6.2. Assumptions of Theorem 6.2. The boundedness of I'

implies that A and A* arve Fredholm operators.
PRrOOF : Analogous to the proof of Corollary 6.1.

[For the last theorem we operate with a fixed set of norms in the
spaces H7 (I') (r real).

LEMMA 6.7, Assume that all four systems (A, B}, {4’, B’}, {4, C} and
{.L’, €’} satisfy the hypotheses (C) and (U) of Chapter I. Then there exist
constants c¢; > 0 such that D satisfies

1
| Ppl,_, _1y=clo] \ alleeIIH ™7 T(I)
fs=sj 2‘ ’

S—Mj -_— —2—' b

for all real s (Theorem 5.2).
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Let K be an operator in (D’ (I'))™ for which there exist constants & >0
such that K satisfies

1
— i —
| Ko '{: RTES C—e) @ ';._m,. _1, all p€ ITH (')

Jor 8 =0 and 8 = 2m. Then

Zm—mj -

1
D (L)y=IIH 2(I') alg. and top.,

1
and L maps D (L) 1 — 1 onte ITH™" "7 2(I).
Let the adjoint K’ be defined as in Lemma 6.2. Then L* is determined
by (6.9) and satisfies

1
D(L* = IIH “ts (I") alg. and top.,

1
it maps D (L*) 1 — 1 onto oa™t I
PROOF : It follows from the assumptions that

1
|(K—P)<P|’,_“j__1_* 2""”'{3—".,_4, allge [IH' "2 (I),
2 2

for s =0 and 8= 2m, so that K — P is au isomorphism of I/H T 2(l)

1
onto ITH 72 (I") for 8 = 0 and 8 = 2m. By interpolation (Theorem I. 1.1)
the same holds for all s € [0, 2m].
Let L be defined by (6.2). Lemma 6.1 shows that L is closed. From the

L1 S 5
fact that K— P maps ITH '’ 2 (I') isomorphically onto IIH ‘'~ % (I')
for all s €[0,2m] follows immediately that

21”:—1”j -_—

1
D(L)=1IIH 2 (") alg. and top.

. 1
and that L maps D (L) 1 —1 onto HHzm—m’_—i(I’).
1
To find L* we use that the adjoint of (K — P): I[H 7 % (I')—

o1 b+ A
S IE™72(I) is exactly (K’ — P'ym_,: TH V75 10 )
for 8€[0, 2m], again isomorphisms. The rest of the lemma is then easily
shown. :

1
—s+mj —+ 5



boundary value problems associated with an elliptic operator 505

THEOREM 6.3. Assume that all four systems {4, B}, (A", B}, (A, C} and
{4’, C’} satisfy the hypotheses (@) and (U). Let

1
va=inf{IPwli,_“j_.iilquHH' T, 19 1)y, — 1y = 1h
2 2

and let K be an operator in (D' (I")y™ for which there exist constants &> 0
such that :
1
= - l AN
| ‘P|,,_“j__12_i <(@—e)|e I;._m,__ 1y allpeIIH ()

z

Jor s =0, s = 2m. Let K’ be the adjoint of K according to Lemma 6.2.
Then the realization A of A which represents the boundary condition
Cu = KBu satisfies

(6.23) D(Z)c H?™ (Q) alg. and top.
and 0€g(4).
Moreover, A* is the realization of A’ iwhich represents the boundary
condition C’'u = K’B’u,
(6.24) D (A%< H?™ Q) alg. and top.
and 0€p (4%

PROOF : Follows easily from Lemma 6.7, using Theorems 2.1, 2.4 and 3.2.

COROLLARY 6.3. Assumptions of Theorem 6.3. The boundedness of Q
implies that the inverses A-1and (‘:1\"')-l are compact operators.

ProOY¥ : Iollows from (6.23), using that the imbedding of H2m (L) into
H° (L) is compact.

APPENDIX. Preliminaries for Chapter II.

All operators considered are linear.

Let S be an operator with domain D (8) in Hilbert space K (norm | |x)
and range R(S) in a Hilbert space H (norm |u|z). We say that § in an
operator from K into H and write in short: 8: K — H.

The nullspace Z (8S) of 8 is defined by

Z(8)={ue D(N)| Su=0).
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The graph G (S) of § is defined as the subset of K < H determined by
G (8) = {[u, Su] | u € D (8)}.

K < H is a Hilbert space with the hermitian norm

1

|[uav]lxxﬂ=(‘"|%(+|vl2g)2‘
If @(S) is closed in K < H we say that § is closed; if G (S) is the
graph of an extension of S we say that 8 is closable, the extension is

then called the closure of 8 and is denoted by 8.
1

The norm |u|s=( u % -+ | Su[})?, defined in D(S), is called the
graphnorm (with respect to 8). When S is closed, D (8) is a Hilbert space
under the graphnorm. .

Recall that the adjoint S*: H-— K can be defined if and only if
D (8) = K. Moreover, when m: K, 8 is closable if and only if D (8*) =
= H, and in the affirmative case (§)* = 8* and S**:K — H exists and
equals 8.

When K is a closed subspace of H, S can be considered as operator
in H. We then define

(A.1) + m (8)=inf {Re (Su,u) |u € D(8), |u| =1} = — oo.

If m(S)is >0,=0,> — ocoor=— o0, we will say that S is positive,
nonnegative, lower bounded or unbounded below, respectively. (Note that
in this definition, (Su, %) is not required to be real for all u€ D (S)). With
this definition, S is dissipative in the sense of Phillips [25] if and only if
— 8 is nonnegative.

‘We also define the numerical range »(8) of §.

(A.2) »(8) = {(Su,u)|ueD(8),|u|l=1}.

The closure of the numerical range »(8) is denoted by » (S).
When K = H, the resolvent set o (8) of § is defined by

0(8)=1{1€C|(1 — 8)~! exists and is bounded,

everywhere defined in H},
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and the spectrum o (S) of § is
a(8)=C\_e(8), the complement of ¢ (S) in C.

DEFINITION A.l. An operator S in H will be said to be maximal non-
negative if it is mon-negative and has no proper nonnegative extension.

This means that — S is maximal dissipative, following Phillips [25];
we have chosen the present terminology in order to define maximal positive
and maximal lower bounded operators as well (Definition A.2 later).

Closed maximal disgipative operators are of special interest because
they constitute exactly the class of infinitesimal generators of strongly
continuous semigroups of contraction operators (see Phillips ]25]). It was
proved by Hille, Yosida and others (see Hille-Phillips [16]), that a neces-
sary and sufficient condition for an operator 7' in H to be the infinitesi-
mal generator of a strongly continuous semigroup of contractions is that
it satisfies

(i) T is densely defined and closed
(ii) o(T) is contained in the halfplane {Re 1 <C 0}
(i) | — T)'||<<(Red)~* for all Ae C with Rei > 0.

Phillips proved in [25] the following statements for dissipative ope-
rators : )

19 When 7' is maximal dissipative then 7' is closed if and only if
T is densely defined.

2° If T and 7T* are adjoints then 7 is maximal dissipative if and
only if T* is maximal dissipative.

3% If T and T* are adjoints and both are dissipative then both are
maximal dissipative.

Transforming the preceding characterizations into our terminology, we
get

PROPOSITION A.1. Let 8 be a closed operator in H. Then the following
statements are equivalent :
(i) 8 is maximal nonnegative
(ii) S s densely defined and S8* is maximal nonnegative
(iii) S is densely defined and S and S* are nonnegative
(iv) o (S) c (Red =0}, |[(A—8)"||<<|Rei|™t for all AeC with
Re 1 < 0.
In the description of maximal nonnegative operators, the numerical
range » (S) (defined by (A. 2)) can be useful. »(8) was investigated by Stone
([30], Chapter iV). He proved the following statements :
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LeMMA A.l.

(iy For any linear operator 8,»(S) is convex.

(ii) If the distance between A and »(8S) equals d > 0, then A — 8 has
an inverse with ||(A — 8)7'|| < d-'.

(ili) Let 8 be closed, and let A€o (8) with ||(,— 8)'||<dy" for
some dy, > 0. Then every point in the circle |l — 1| < d, belongs to o (8).

Since » (8) is a convex subset of C,C\ »(¥) has 0,1 or 2 components
(in the case of two components, »(S) is a parallelstrip). By successive ap-
plications of Lemma A.l, one obtains

LEMMA A.2. Let 8 be closed. If one point of a component of C \ v (&)
belongs to o (S), then all of that component is in o (8).

We can now add the following two descriptions to Proposition A.l,
noting that an operator § is nonnegative if and only if »(S) € {Rel = 0}:

PROPOSITION A.2. Let 8 be closed. The following statements are equi-
valent with the statements (i) - (iv) of Proposition A.1:
(v) o(S) and v (8) are contained in {Re i = 0}
(vi) »(8) i8 contained in (Re A = 0] and one point of {Red < 0} is in
e ().

ProOF : Follows easily from Proposition A.1, Lemma A.l1 and Lem-
ma A.2.

COROLLARY A.2. A closed operator S is maximal symmetric if and only
if i8 and — iS are nonnegative, and one of them is maximal nonneyative.

PRrRoOOF: Uses Proposition A.2 (vi) and the fact that § is maximal
symmetric if and only if S is symmetric and either i or — i belongs to ¢ (S).

REMARK A.l. If 8 is maximal normal, »(8) equals the closed convex
hull of 6 (S). (The definition of maximal normal operators and the proof of this
theorem, are given in Stone [30]. Such operators are by some authors just
called normal). Then S is maximal nonnegative if and only if 6(8) c
{Re 1= 0}.

We can now prove

LEMMA A.3. Let 8 and S* be adjoints. Let 1€ €\ (). Then 1€ (S)
if and only if Ae Q> _»(S*).
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PROOF: Since;(S) is convex, A has a positive distance from a closed
halfplane containing » (S). By a rotation ¢ we can carry the halfplane into
a « positive halfplane » {Re £ > ¢} containing v (¢ ) such that Re e 1 < &

1) If 1€o(S) then Re ¢ 1€ (¢ 8), so that, by Proposition A. 2 (vi),
¢ § — £, is maximal nonnegative. By Proposition A. 1 (ii) the adjoint
e—% 8* — £, is nonnegative, which implies that » (e-* S*) c {Re £ = £,}. Since
Ree—%71=Re 601 < &, e~ ®AeC\ » (e 8. Thus 1€C \ »(8%.

2) If 7€eC\ »(8*), both A — § and 1 — 8* have bounded inverses
(Lemma A.1 (ii)). Since § is closed, R (A — §) is closed. Therefore

H=RA—8)PZ{7Z— 8%,

which equals R (1 — §), since Z (1 — 8% = (0).
Thus 1€ (8).

If » is a subset of C we will denote the conjugate set {i|1€x| by x’.

ProrosITION A.3. Let 8§ and S* be adjoints. Let » be a component of
G\ ¥ (8), form which %N o (8) @. Then x c ¢ (8), and »’ = (i |1€x] satis-
Jies: »’ is a component of €\ »(8), and »' c o (8*).

PrROOF: By Lemma A.2, x co(S). Applying Lemma A.3 to every
point of x we obtain that »' c €\ »(8*), and that »’ c ¢ (8*). Let x, be
the component of € \_» (S*) containing »’. We can now apply an argumen-
tation to x, similar to the above, to obtain that x; < ». Thus altogether
=, .

COROLLARY A.3. Let 8 and 8* be adjoints, and let v (S):{:¢,;(S) not
equal to a halfplane. If o(S) c»(8) (this holds if merely one point in each
component of €\ »(S) is in g (8)) then

o (8% v (8% = (8) (= (| Lev (8)).

Proo¥r : The corollary follows by consideration of the possible convex
sets in the plane: If »(8) is not a halfplane there are the two possibilities :
1) »(8) is parallel strip, 2) »(8) contains no parallel-strip.

In the first case € \;(S) has two components which are both in g (S).
Each of these are by conjugation carried into a component of C \ » (8%
by Proposition A.3; then since \;(S’) has at most two components,
C N\ »(8) =C ~_»(8*. Proposition A.3 now also implies that C \_» (§*) c
0 (8*), 80 o (8% c v (8*).
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In the second case, there is no convex subset of ¥ (8)’ whose comple-
ment has two components, so the component € \_»(8) of €\ »(8*) must
equal the whole set € \_»(8*. Again we obtain C \_» (8* c o (8%, 8o
o (8% cv(8*).

ReMArRK A.2. To illustrate the assumption in Corollary A.3 that ¥ (S)
is not a halfplane, we mention the following: If S is the adjoint of a maxi-
mal symmetric operator, and »(S)is equal to a halfplane, then ¢ (§8) c » (S),

but C\ » (8% = C\ »(9).

DEFINITION A.2. An operator S in H will be said to be maximal lower
bounded if it is lower bounded and has no proper lower bounded extension.

An operator S in H will be said to be maximal positive if it is positive
and has no proper positive extension.

For closed operators one has the following equivalent description which
makes it easier to verify that an operator satisfies Definition A. 2 (which
is most in accordance with the concept of maximality):

PROPOSITION A.4, Let 8 be closed.
(i) 8 is maximal lower bounded if and only if there erists c € R so that
8 — ¢ i8 maximal nonnegative.
(ii) S is maximal positive if and only if there exists ¢ > 0 so that S — ¢
i8 maximal nonnegative.
In the affirmative cases in (i) and (ii), ¢ can be chosen equal to m (S).

ProOF :

(i) Let S be maximal lower bounded. Then § — m (§) is nonnegative
and has no proper lower bounded extension; thus it is in particular maxi-
mal nonnegative.

Conversely, let ¢ be a real number for which § — ¢ is maximal nonne-
gative. By Proposition A.l (iv), A — (8 —¢) maps D(S) 1 — 1 onto H for
all 4> 0. Then if 8, is a proper extension of 8,1 — (8, —¢) is not 1 —1
for 2 > 0. Therefore 8, cannot be lower bounded, for in that case u -
+m(8,)— 8, would be 1 —1 for u > 0. This shows that § is maximal
lower bounded.

1
(ii) Let 8 be maximal positive. Then m (S) > 0. Let 7'=§ — 5 m S);

. .y . . 1 ~
T is positive and has no proper extemsion 7, with m (T,) > -3 m(S);

thus in particular 7' is maximal nonnegative. It follows from (i) that 7 is
maximal lower bounded, and then from (i) that T — m (7') is maximal non-

negative. Using that 7 = § — %m(b‘) we now get that S is maximal
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lower bounded, and

1
S—?”&(S)—m(s—%nz(S)):S—-——;—m(S)-——;—m 8)=8—m(S)

is maximal nonnegative.

Conversely, let § — ¢ be maximal nonnegative for some ¢ > 0. Since
8 — ¢ is nonnegative, S is positive. By (i), § is maximal lower bounded,
thus it has in particular no proper positive extension, i.e., 8 is maximal
positive.

COROLLARY A.4. Let 8 be closed. S8 is maximal nonnegative [maximal
positive] if and only if S is maximal lower bounded and m (8) = 0[m (8) > 0|.

COROLLARY A.5. Let S be closed. Then S is maximal positive / maxi-
mal nonnegative ,/ maximal lower bounded, if and only if 8 is densely defi-
ned and S and S* are both positive / nonnegative / lower bounded, respectively.

PRrOOF : Follows from Proposition A.l (iii) and Proposition A.4.



512 GERD GRUBB: A characterization of the mon-local

BIBLIOGRAPHY

[1] S. AgmoN, A. DotGLis and L. NIRENBERG : Estimates near the boundary of solutions of
elliptic partial differential equations satisfying general boundary conditions I. Comm.
Puare Appl. Math. 12 (1959), 623-727.
[2] M. S. AGraNovVICH and A. 8. DYNIN: General houndary value problems for elliptic systems
in an n-dimensional domain. Dokl. Akad. Nauk SSSR 146 (1962), 511-514; Soviet
Math. 3 (1962), 1323-1327.
[3) N. AroNszaJN and A. N. MiLGRAM : Differential operators on Riemannian manifolds. Rend.
Circolo Mat. Palermo 2 (1952), 1-61.
[4] W. G. Bapg and R. 8. FREEMAN : Closed extensions of the Laplace operator determined by
a general class of boundary conditions. Pacific J. Math. 12 1962, 395-410.
[6] R. W. BEALS : Non-local boundary value problems for elliptio partial differential operat(;rs.
Dissertation, Yale University 1964.
[6] R. W. BraLs : Non-local boundary value problems for elliptic operators. Amer. J. Math.
87 (1965), 315-362.
[7] M. S. BIRMAN: On the theory of self-adjoint extensions of positiye definite operators. Mat.
Sbornik 38 (80) (1956), 431-450. !
[8] M. S. BIRMAN : Perturbations of the continuous spectrum of a singular elliptic operator by
varying the boundary and the boundary conditions. Vestnik Leningrad Univ. 17, no. 1
(1962), 22-55.
[9] J. W. CALKIN : Symmetric transformations wn Hilbert space. Duke Math. Journal 7 (1940),
504-508. )
[10] J. ERcoLaNO and M. SCHECHTER: Spectral theory for operators generated by elliptic
boundary problems with eigenvalue parameter in boundary conditions (I). Comm. Pure
Appl. Math. 18 (1965}, 83-106.
[12] R. S. FREEMAN : Closed operators and their adjoints associated with elliptic differential
operators. Pacitic J. Math., 22 (1967). 71-97.
[18] K. O. FRIEDRICHS: Spektraltheorie halbbeschriinkter Operatoren und Anvendung auf die
Spektralzerlegung von Differentialoperatoren. Math. Ann. 109 (1934), 465-487.
[14] K. O. FRIEDRICHS : On the differentiability of the solutions of linear elliptic differential
operators. Comm. Pure Appl. Math. 6, (1953),"299-326.
[156] G. GRUBB: 4 characterization of the non-local bouudary value problems associated with an
elliptic operator. Dissertation, Stanford University, 1966.
[16] E. HiLLE and R. S. PHILLIPS: Functional Analysis and Semi Groups. Revised edition.
Amer. Math. Soc. Colloq. Publ. 31 (1957).
[17] L. HORMANDER : Definitions of maximal differential operators. Arkiv for Mat. 3 (1958),
501-404.
[18] L. HORMANDER : Linear Partial Diferential Operators. Springer-Verlag 1963.
[19] L. HORMANDER : Pseudo differential operators. Comm. Pure Appl. Math. 18 (1965), 501-518.
[20] T. KaTO : Perturbations of continuous spectra by trace class operators. Proc. Japan Acad.
88 (1957), 260-264.
[21] J. J. KouN and L., NIRENBERG : An algebra of pseudo differential operators, Comm. Pure
Appl. Math. 18 (1965), 269-308



boundary value problems associated with an elliptic operator 513

[22] M. G. KREIN: Theory of selfadjoint extensions of symmetric 8emi-bounded operators and
applications (I). Mat. Sbornik 20 (62) (1947), 431-495.

[28] J. L. Lions: Equations différenticlles opérationnelles et problémes aux limites. Springer-Ver-
lag 1961.

[24] J. L. Lions and E. MAGENES: Problemi ai limiti non omogenei; (I), (IL1), (IV), (V):
Annali Scunola Norm. Pisa, 14 (1960), 259-308; 16 (1961), 39-101, 311-326; 16
(1962), 1-44 ;- Problémes aux limites non homogénes; (Il): Annales Inst. Fourier
(Grenoble) 11 (1961), 137-178; (VI): J. &’Analyse Math. 11 (1963), 165-188.

[24'] J. L. LioNs and E. MAGENES : Problémes aux limites non homogénes et applications, Vol. I
Ed. Dunod. Paris 1968.

[25] R. 8. PHILLIPS : Dissipative operators and hyperbolic systems of partial differential equations.
Trans. Amer. Math. Soc. 90 (1959), 193-254.

[26] F. Riesz and B. Sz.-NAGY : Lecons d’analyse fonctionnelle. Académie des Sci. de Hongrie,
Akadémiai Krad6, Baudapest 1953.

[27] M, ROSENBLUM : Perturbations of the continuous spectrum and unitary equivalence. Pacific
J. Math. 7 (1957), 997-1010.

[28] M. SCHECHTER: General boundary value problems for elliptic differential equations. Comm.
Pure Appl. Math. 12 (1959), 457-486.

[29] M. SCHECHTER : Nonlocal elliptic boundary value problems. Ann. Scuola Norm. Sup. Pisa
20 (1966), 421-441.

[30] M. H. STONE: Linear Transformations in Hilbert Space and their Applications to Analysis.
Amer. Math. Soc. Collog. Publ. 156 (1932) (reprinted 1951).

[31] S. V. USPENSKIL: Properties of the classes W, with a frational derivative on differential
manifolds. Dokl. Akad. Nank 132 (1960), 60-62.

[32] I. M. VISHIK : On general boundary value problems for elliptic differential equations. Trudy
Mosc. Mat, Obsv. 1 (1952), 187-246 ; Amer. Math. Soc. Transl. (2) 24, (1963), 107-172

UNIVERSITY OF COPENHAGEN

The main part of the work was carried out while the amnthor was supported by
NSF Grant GP-5841.



