Annali della Scuola Normale Superiore di Pisa Classe di Scienze

ROBERT S. STRICHARTZ

Fubini-type theorems

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 22, nº 3 (1968), p. 399-408

http://www.numdam.org/item?id=ASNSP_1968_3_22_3_399_0

© Scuola Normale Superiore, Pisa, 1968, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FUBINI-TYPE THEOREMS

by Robert S. Strichartz (*)

§ 1. Introduction.

Given a class of functions on a product space $M \times N$, it is a natural problem to try to characterize those functions in terms of their restrictions to sections $\{m\} \times N$ or $M \times \{n\}$ for all $m \in M$, $n \in N$. Fubini's theorem does this for Lebesgue integrable functions on a space with a σ -finite, positive product measure, $L^1(M \times N, \mu \times r)$. It says that a measurable function f is in $L^1(M \times N, \mu \times r)$ if and only if the restriction of |f| to μ -almost every section $\{m\} \times N$ is ν -integrable, and their integral, regarded as a function on N is μ -integrable. Its integral is in fact the $\mu \times r$ integral of |f|. This implies a similar characterization of $L^p(M \times N, \mu \times r)$ for $p < \infty$.

In [7] we proved a Fubini-type theorem for the Banach spaces $L^p_{\alpha}(E_n)$ of Bessel potentials of order α of L^p functions in Euclidean n-space, for $\alpha \geq 0$ and $1 . For <math>\alpha = k$, an integer, these spaces coincide with the usual Sobolev spaces of functions in L^p with weak derivatives of order $\leq k$ in L^p . For α not an integer they form a natural class of «fractional Sobolev spaces». The precise definition of $L^p_{\alpha}(E_n)$ is the class of functions of the form $G_{\alpha} * q$ for some $\varphi \in L^p(E_n)$, where G_{α} is the function whose Fourier transform is $(1 + |\xi|^2)^{-\alpha/2}$. The $L^p_{\alpha}(E_n)$ norm of f is the L^p norm of f, [1, 2]. The theorem we proved is the following: Fubini-type Theorem for L^p_{α} : Let e_1, \ldots, e_n be any basis for E_n , $n \geq 2$, and denote by (x_1, \ldots, x_n) the coordinates of $x \in E_n$ with respect to this basis. Then a function $f \in L^p(E_n)$ is in $L^p_{\alpha}(E_n)$, $\alpha \geq 0$, $1 , if and only if for each <math>j = 1, \ldots, n$, the following holds: for almost every $(x_1, \ldots, x_j, \ldots, x_n) \in E_{n-1}$ the function

Pervenuto alla Redazione il 12 Febbraio 1968.

^(*) Work done partly under a NATO Postdoctoral Fellowship at the Faculté des Sciences d'Orsay, and partly under Air Force Contract F44620 67-C-0029 at M. I. T..

 $F_{x_1,\ldots,\hat{x_j},\ldots,x_n}(x_j)=f\left(x_1,\ldots,x_n
ight)\in L^p_a\left(E_1
ight) \ \ ext{and} \ \ \|F_{x_1,\ldots,\hat{x_j},\ldots,x_n}\|_{L^p_a\left(E_1
ight)} \ \ ext{is in} \ L^p\left(E_{n-1}
ight).$ Furthermore, the $L^p_a\left(E_n
ight)$ norm of f is equivalent to the sum of these n L^p norms.

Now there is another class of spaces, which we shall denote $\Lambda_{\alpha}^{p}(E_{n})$, which for α not an integer may also be considered « fractional Sobolev spaces ». They may be defined as follows:

Let $1 \leq p \leq \infty$ $\alpha = k + \beta$, k a non-negative integer and $0 < \beta \leq 1$. Then $f \in L^{\nu}(E_n)$ is in $\Lambda_a^p(E_n)$ provided f and all its derivatives of order $\leq k$ are in L^p and satisfy

$$\iint \frac{\mid g\left(x+y\right)+g\left(x-y\right)-2g\left(x\right)\mid^{p}}{\mid y\mid^{n+\beta p}}\,dx\,dy \leq M^{p} < \infty.$$

The sum of the smallest such M and the L^p norms of f and its derivatives is the Λ_a^p norm. If $p=\infty$ replace the integral by $\sup |y|^{-\alpha} |g(x+y)+$ $+g(x-y)-2g(x)| \leq M < \infty$.

The spaces L_{α}^{p} and Λ_{α}^{p} coincide if and only if p=2 (see [8], where they are denoted $L_{p\alpha}$ and $\Lambda(\alpha; p, p)$ respectively). Thus we already have a Fubini-type theorem for Λ_{α}^{2} . The main goal of this paper is to extend this result to Λ_{α}^{p} for $1 \leq p \leq \infty$:

Fubini-type theorem for Λ_a^p : Let e_1,\ldots,e_n and (x_1,\ldots,x_n) be as above. Then a function $f\in L^p(E_n)$ is in $\Lambda_a^p(E_n)$, $\alpha>0$, $n\geq 2$, $1\leq p\leq \infty$ if and only if for each $j=1,\ldots,n$ the following holds: for almost every $(x_1,\ldots,\widehat{x_j},\ldots,x_n)\in E_{n-1}$ the function $F_{x_1,\ldots,\widehat{x_j},\ldots,x_n}(x_j)=f(x_1,\ldots,x_n)\in \Lambda_a^p(E_1)$ and $\|F_{x_1,\ldots,\widehat{x_j},\ldots,x_n}\|\Lambda_a^p(E_1)$ is in $L^p(E_{n-1})$. Furthermore, the $\Lambda_a^p(E_n)$ norm of f is equivalent to the sum of these n L^p norms.

We shall prove this theorem in § 2. In § 3 we give some remarks showing the relationship between this result and other results. In § 4 we give an application of the Fubini-type theorem for $L_k^p(E_n)$ to resolve the following problem of Lions [4]: for which open sets $\Omega \subset E_n$ are the C^{∞} functions of compact support in Ω dense in $L_k^p(\Omega)$?

§ 2. Proof of the main theorem.

We lean heavily on the work of Taibleson [8], especially Theorem 4, p. 421. We summarize his results as follows:

LEMMA 1: For $f \in L^p(E_n)$ denote by f(x, y), $x \in E_n$, y > 0 its Poisson integral $f(x, y) = C_n \int\limits_{E_n} f(x - t) \frac{y}{(\mid t \mid^2 + y^2)^{n+1/2}} dt$. Then $f \in \Lambda_a^p(E_n)$ if and

only if, for some $k > \alpha$, $f \in L^p(E_n)$ and $\iint |y^{k-\alpha-1/p} D^k f(x,y)|^p dx dy \leq M^p < \infty$ for every derivative $D^k f$ of order k of f. For $f \in \Lambda^p_\alpha(E_n)$ it is sufficient to consider only certain derivatives; for instance $\left(\frac{\partial}{\partial y}\right)^k$ alone will do, or all derivatives involving only the x variables. The best constant M plus the L^p norm of f gives a norm equivalent to $\|f\|_{\Lambda^p_\alpha}$. If $p = \infty$ the same results hold if the integral is replaced by eas sup $|y^{k-\alpha} D^k f(x,y)| \leq M < \infty$. We will need a slight improvement of these results which is not given in $\{8\}$:

LEMMA 2: $f \in \Lambda_a^p(E_n)$ if and only if $f \in L^p(E_n)$ and, for some $k > \alpha$, $\iint \left| y^{k-\alpha-1/p} \left(\frac{\partial}{\partial x_j} \right)^k f(x,y) \right|^p dx \, dy \le M^p < \infty \quad \text{for } j = 1, \dots, n. \quad \text{A similar result holds for } p = \infty. \quad \text{Thus if } \alpha = \beta + m, \ 0 < \beta \le 1, \ m \ \text{an integer} \ge 1, \\ \text{then } f \in \Lambda_a^p(E_n) \text{ if and only if } f \in L^p \text{ and } \left(\frac{\partial}{\partial x_j} \right)^m f \in \Lambda_\beta^p \text{ for } j = 1, \dots, n.$

PROOF: Assume $\iint \left| \ y^{k-\alpha-1/p} \left(\frac{\partial}{\partial x_j} \right)^k f(x,y) \ \right| dx \, dy < M^p \le \infty \quad \text{for} \quad j = 1, \ldots, n. \quad \text{It follows from Lemma 4b, p. 419 of [8], that}$ $\iint \left| \ y^{k+k_0-\alpha-1/p} \ D^{k_0} \left(\frac{\partial}{\partial x_j} \right)^k f(x,y) \ \right| dx \, dy < C M^p \quad \text{for any derivative} \quad D^{k_0}_x \quad \text{of order} \quad k_0 \quad \text{involving only the} \quad x \quad \text{variables. But if} \quad k_0 \ge (n-1) \, k \quad \text{then every derivative of order} \quad k+k_0 \quad \text{can be expressed as} \quad D^{k_0} \left(\frac{\partial}{\partial x_j} \right)^k \quad \text{for some} \quad j. \quad \text{Thus by Lemma 1, } f \in \Lambda^p_a \ .$

PROOF OF THE MAIN THEOREM: Let $f \in \Lambda_a^p(E_n)$ with $\alpha = \beta + m$, $0 < \beta \le 1$, m an integer. It suffices to shows that for almost every $x' = (x_2, \dots x_n)$, $F_{x'}(x_1) = f(x_1, x') \in \Lambda_a^p(E_1)$ and $\|F_{x'}\|_{\Lambda_a^p(E_1)}$ is in $L^p(E_{n-1})$. In fact it suffices to show $\iint \left| \left(\frac{\partial}{\partial x_1} \right)^k f(x_1, x') \right|^p dx_1 dx' \le M^p < \infty$ and

$$(1) \qquad \iiint \left| \frac{\left(\frac{\partial}{\partial x_{1}}\right)^{k} f\left(x_{1} + t, x'\right) + \left(\frac{\partial}{\partial x_{1}}\right)^{k} f\left(x_{1} - t, x'\right)}{\mid t\mid^{1+\beta p}} - \frac{2\left(\frac{\partial}{\partial x_{1}}\right)^{k} f\left(x_{1}, x'\right)}{\mid t\mid^{1+\beta p}} \right|^{p} dt \ dx_{1} \ dx' \leq M^{p} < \infty$$

for $k=0,1,\ldots,m$. This is a consequence of the definition of $A_{\alpha}^{p}(E_{1})$ and the fact that if $\frac{\partial}{\partial x_{1}}f(x)$ is an L^{p} derivative of f as a function on E_{n} , then for almost every x', $\frac{\partial}{\partial x_{1}}f(x_{1},x')$ is an L^{p} derivative of $f(x_{1},x')$ as a function on E_{1} . [5, p. 57].

Now $\left(\frac{\partial}{\partial x_1}\right)^k f \in L^p(E_n)$ because $f \in \Lambda^p_\alpha(E_n)$. Thus it remains to prove the last inequality. We use the estimate of the L^p norm of a second difference of a function in terms of its Poisson integral derived in [8] (the formula on top of p. 426):

$$\begin{split} \left(\iiint \left| \left(\frac{\partial}{\partial x_{1}} \right)^{k} f\left(x_{1} + t, x'\right) + \left(\frac{\partial}{\partial x_{1}} \right)^{k} f\left(x_{1} - t, x'\right) - 2 \left(\frac{\partial}{\partial x_{1}} \right)^{k} f\left(x_{1}, x'\right) \right|^{p} dx_{1} dx' \right)^{\frac{1}{p}} \\ & \leq 4 \int_{\mathbf{0}}^{t} y \left| \left(\frac{\partial}{\partial x_{1}} \right)^{k} \left(\frac{\partial}{\partial y} \right)^{2} f\left(x, y\right) \right|_{p} dy + t^{2} \left\| \left(\frac{\partial}{\partial x_{1}} \right)^{k} \left(\frac{\partial}{\partial y} \right)^{2} f\left(x, t\right) \right\|_{p} \\ & + 2t^{2} \left\| \left(\frac{\partial}{\partial x_{1}} \right)^{k+1} \left(\frac{\partial}{\partial y} \right) f\left(x, t\right) \right\|_{p}. \end{split}$$

We take the L^p norm with respect to $|t|^{-1-\beta p}dt$ and use the triangle inequality to dominate the p-th root of the expression in (1) by the sum of three terms:

$$\begin{split} &4\left(2\int\limits_{0}^{\infty}\left|\int\limits_{0}^{t}y\right|\left(\frac{\partial}{\partial y}\right)^{2}\left(\frac{\partial}{\partial x_{1}}\right)^{k}f\left(x,y\right)\right|_{p}dy\left|^{p}t^{-1-\beta p}dt\right)^{1/p}\\ &+\left(2\int\limits_{0}^{\infty}\int\left|t^{2-\beta-1/p}\left(\frac{\partial}{\partial y}\right)^{2}\left(\frac{\partial}{\partial x_{1}}\right)^{k}f\left(x,t\right)\right|^{p}dxdt\right)^{1/p}\\ &+2\left(2\int\limits_{0}^{\infty}\int\left|t^{2-\beta-1/p}\left(\frac{\partial^{2}}{\partial y\,\partial x_{1}}\right)\left(\frac{\partial}{\partial x_{1}}\right)^{k}f\left(x,t\right)\right|^{p}dxdt\right)^{1/p} \end{split}.$$

The last two terms are finite because $\left(\frac{\partial}{\partial x_1}\right)^k f \in \Lambda^p_\beta(E_n)$. The first term is handled as follows: Consider the integral operator $T_{\Psi^p}(s) = \int\limits_0^s \varphi(t) \, t^{-1+a+1/p} \, s^{-\alpha-1/p} \, dt$.

The kernel is homogeneous of degree -1, so the operator is bounded in L^p provided $\int_0^1 t^{-1+\alpha} dt < \infty$, i.e. provided $\alpha > 0$, [3, Chapter 9]. Applying this result to $\varphi(t) = \left\| \left(\frac{\partial}{\partial y} \right)^2 \left(\frac{\partial}{\partial x_1} \right)^k f(x,t) \right\|_p t^{2-\alpha-1/p}$ we see that the first term is dominated by a constant multiple of the second.

The same argument works for $p = \infty$ if we replace the L^p norms by sups.

Conversely, suppose $\|F_{x_1,\ldots,x_j,\ldots,x_n}\|_{A_{\alpha}^p(E_1)}$ is in $L^p(E_{n-1})$ for $j=1,\ldots,n$. Since the $A_{\alpha}^p(E_1)$ norm dominates the $L^p(E_1)$ norm we have $f \in L^p(E_n)$. Thus by Lemma 2 it suffices to show

$$\iiint \left| y^{k-\alpha-1/p} \left(\frac{\partial}{\partial x_i} \right)^k f(x,y) \right|^p dx \, dy \leq M^p < \infty$$

for j = 1, ..., n and k = m + 2. We do the case j = 1, m = 0, the others being almost identical.

We use the fact that for each fixed x' and y, $\left(\frac{\partial}{\partial x_1}\right)^2 P(x_1,x',y)$ is an even function with mean value zero in x_1 , where P is the Poisson kernel $C = \frac{y}{(|x|^2 + y^2)^{n+1/2}}$. Thus

$$\begin{split} & \left(\frac{\partial}{\partial x_{1}}\right)^{\!2} \! f\left(x_{1} \;,\, x',\, y\right) = \! \int \!\! \int \!\! \left(\frac{\partial}{\partial x_{1}}\right)^{\!2} P\left(t_{1} \;,\, x' = t',\, y\right) \! f\left(x_{1} = t_{1} \;,\, t'\right) \, dt_{1} \, dt' \\ & = \frac{1}{2} \int \!\! \int \!\! \left(\frac{\partial}{\partial x_{1}}\right)^{\!2} P\left(t_{1} \;,\, x' = t',\, y\right) \! \left[f(x_{1} + t_{1} \;,\, t') + f(x_{1} = t_{1} \;,\, t') - 2f(x_{1} \;,\, t')\right] dt_{1} \, dt'. \end{split}$$

Taking the L^p norm in x_1 and using Minkowski's inequality we get

$$\left\| \frac{\partial^{2} f}{\partial x_{1}^{2}} (\cdot, x', y) \right\|_{p} \leq \frac{1}{2} \iint \left| \frac{\partial^{2} P}{\partial x_{1}^{2}} (t_{1}, x' - t', y) \right| \cdot \left\| f(\cdot + t_{1}, t') + f(\cdot - t_{1}, t') - 2f(\cdot, t') \right\|_{p} dt_{1} dt'.$$

Then we take the L^p norm in x':

$$\left\| \frac{\partial^2 f}{\partial x_1^2} \left(\cdot, y \right) \right\|_p \leq \frac{1}{2} \int \left[\int \frac{\partial^2 P}{\partial x_1^2} \left(t, x', y \right) | dx' \right] \cdot \left\| \int \left\| f \left(\cdot + t, t' \right) + f \left(\cdot - t, t' \right) - 2 f \left(\cdot, t' \right) \right\|_p^p dt' \right]^{1/p} dt_1$$

$$\text{Let } \varphi \left(t_{1} \right) \! = \! \left(\int \! \frac{ \left\| f \left(\cdot + t_{1} \,,\, t' \right) + f \left(\cdot - t_{1} \,,\, t' \right) - 2 f \left(\cdot ,\, t' \right) \right\|_{p}^{p} \! dt' \right)^{\! 1/p} \,.$$

Then our hypothesis is precisely that $\varphi \in L^p$. On the other hand we have

$$\begin{split} \iint \left| y^{2-\alpha-1/p} \left(\frac{\partial}{\partial x_j} \right)^2 f\left(x, y \right) \right|^p dx \, dy \leq \\ & \frac{1}{2} \int \left| \left(\int \left| \frac{\partial^2 P}{\partial x_1^2} \left(t_1 , x', y \right) \right| dx' \right) y^{2-1/p-\alpha} \left| t_1 \right|^{1/p+\alpha} \varphi \left(t_1 \right) dt_1 \right|^p dy \end{split}$$

so it suffices to show that the integral operator

$$\int_{0}^{\infty} K(t_{1}, y) \varphi(t_{1}) dt_{1}$$

is bounded in L^p , where

$$K(t_1, y) = y^{2-1/p-a} t_1^{1/p+a} \int \left| \frac{\partial^2 P}{\partial x_1^2} (t_1, x', y) \right| dx'.$$

Now

$$\frac{\partial^2 P}{\partial x_1^2}(t_1, x', y) = C_1 \frac{y}{(t_1^2 + |x'|^2 + y^2)^{n+3/2}} + C_2 \frac{yt_1^2}{(t_1^2 + |x|^2 + y^2)^{n+5/2}}$$

80

$$\int \left| \frac{\partial^2 P}{\partial x_1^2} (t_1, x', y) \right| dx' \leq \frac{C_1 y}{(t_1^2 + y^2)^2} + \frac{C_2 y t_1^2}{(t_1^2 + y^2)^3}$$

Thus it suffices to handle the kernels

$$K_1(t_1, y) = \frac{y^{3-1/p-a} t_1^{1/p+a}}{(t_1^2 + y^2)^2}$$

and

$$K_2(t_1, y) = \frac{y^{3-1/p-a} t_1^{2+1/p+a}}{(t_1^2 + y^2)^3}$$

Both are homogeneous of degree -1 so we need $\int_0^\infty \frac{t_1^a}{(1+t_1^2)^2} \ dt_1$ and $\int \frac{t_1^{2+\alpha}}{(1+t_1^2)^3} \ dt_1$ finite, which is certainly the case in the range $0 < \alpha \le 1$ (remember we took $\alpha = \beta, m = 0$).

Again the case $p = \infty$ is a simple modification.

§ 3. Remarks.

- 1) The above theorems referred to the decomposition of E_n as a product of E_1 and E_{n-1} . Corresponding to the decomposition $E_n = E_K \times E_{n-k}$ for any k, $1 \le k \le n-1$, we have a similar theorem taking the Λ_a^p (resp. L_a^p) norm with respect to the E_k variables and then the L^p norm in the remaining variables, and doing this for sufficiently many such decompositions so that the E_k variables span the entire space. This may be proved by successive applications of the above theorems.
- 2) These results should be contrasted with the known restriction theorems with loss of smoothness [6, 8]:

RESTRICTION THEOREM: Let V^k be any k-dimensional affine linear subvariety of E_n , for $1 \le k \le n-1$. Suppose $\beta = \alpha - \frac{n-k}{p} > 0$. Then every function in $\Lambda_a^p(E_n)$ and $L_a^p(E_n)$ (provided $1) has a well defined restriction to <math>V^k$ which is in $\Lambda_\beta^p(V^k)$. The restriction map is in both cases continuous and onto, and there exist corresponding continuous linear extension operators from $\Lambda_\beta^p(V^k)$ to $\Lambda_\alpha^p(E_n)$ and $L_a^p(E_n)$.

3) The restriction theorem has a dual statement. A distribution T on V^k regarded as a k dimensional Euclidean space may be regarded as a distribution on E_n supported on V^k (but not all distribusions supported on V^k arise in this way). Then $T \in \Lambda^p_{\beta}(V^k)^*$ if and only if $T \in \Lambda^p_{\alpha}(E_n)^*$ if and only if $T \in L^p_{\alpha}(E_n)^*$ (provided 1). (Here * denotes the dual space — See [2, 8] for a characterization of these spaces).

There is a less precise dual consequence of the Fubini-type theorems:

COROLLARY. Suppose T is a distribution on E_n which can be decomposed as $Tf = \int_{E_{n-1}} T_{x'} F_{x'} dx'$ where $F_{x'}(x_1) = f(x_1, x')$ and $T_{x'}$ is a distribution on

 E_1 for each $x' \in E_{n-1}$. If $T_{x'} \in \Lambda^p_{\alpha}(E_1)^*$ for almost every $x' \in E_{n-1}$ and $\mid T_{x'} \mid_{\Lambda^p_{\alpha}(E_1)^*}$ is in $L^{p'}(E^{n-1})$ then $T \in \Lambda^p_{\alpha}(E_n)^*$. Similarly for L^p_{α} provided 1 .

PROOF.
$$\mid Tf \mid \leq \int\limits_{E_{n-1}} \parallel T_{x'} \parallel_{A^{p}_{\boldsymbol{\alpha}}(E_{1})^{*}} \parallel F_{x'} \parallel_{A^{p}_{\boldsymbol{\alpha}}(E_{1})} dx'$$
. Apply Holder's inequa-

lity and the Fubini-type theorem.

4) The proof of the A_a^p Fubini-type theorem can be simplified in many special cases. The first half follows from the L_a^p Fubini-type theorem and

the L_a^p restriction theorem in case $1 , and is immediate in case <math>p = \infty$. The second half is quite simple in case $\alpha < 1$. For then the second difference in the definition of Λ_a^p may be replaced by a first difference and we may always write $f(x) - f(y) = [f(x_1, \dots, x_n) - f(y_1, x_2, \dots, x_n)] + \dots + [f(y_1, \dots, y_{n-1}, x_n) - f(y_1, \dots, y_n)]$. No such identity seems to hold for second differences, however.

5) Most of the results of [7] for L_a^p spaces can now be carried over to Λ_a^p spaces, usually without the restriction 1 .

§ 4. A problem of Lions.

It is a simple proposition that the C^{∞} functions with compact support in some fixed open set $\Omega \subset E_n$ are dense in $L_a^p(E_n)$ (resp. $\Lambda_a^p(E_n)$) if and only if the complement Ω' of Ω supports no non-zero distribution in $L_a^p(E_n)^*$ (resp. $\Lambda_a^p(E_n)^*$) [4].

If k is any positive integer we may define $L_k^p(\Omega)$ to be the space of functions in $L^p(\Omega)$ which have derivatives of order $\leq k$ in $L^p(\Omega)$ (in the sense of distributions on Ω) with the sum of these L^p norm as the $L_k^p(\Omega)$ norm. We may ask when the C^{∞} functions with compact support in Ω are dense in $L_k^p(\Omega)$? Lions [4] shows under certain additional hypotheses, that the answer is the same as before, namely if and only if Ω' supports no non-zero distribution in $L_k^p(E_n)$. Using the Fubini-type theorem we will establish this result in general.

Let $L_k^p(E_n|\Omega)$ denote the space of restrictions to Ω of functions in $L_k^p(E_n)$ with the factor space norm $L_k^p(E_n|\Omega) = L_k^p(E_n)/\{f \in L_k^p(E_n) : f \equiv 0 \text{ on } \Omega\}$. Let $\overset{\bullet}{L}_k^p(\Omega)$ denote the closure of $C^{\infty}_{\text{com}}(\Omega)$ in $L_k^p(E_n)$. Then we always have the continuous inclusions

$$\overset{\circ}{L}_{k}^{p}\left(\Omega\right)\subseteq L_{k}^{p}\left(E_{n}\mid\Omega\right)\subseteq L_{k}^{p}\left(\Omega\right).$$

Theorem. Let $1 , <math>k \ge 1$. The following three conditions are equivalent:

- 1) $\overset{\mathbf{o}}{L}_{k}^{p}\left(\Omega\right) = L_{k}^{p}\left(E_{n} \mid \Omega\right)$
- 2) $\overset{\circ}{L}_{k}^{p}(Q) = L_{k}^{p}(\Omega)$
- 3) Ω' supports no non-zero distribution in $L_k^p(E_n)^*$.

For the proof we will need two lemmas. Let π_i denote the projection of E_n on E_{n-1} given by $\pi_i(x_1, \ldots, x_n) = (x_1, \ldots, x_i, \ldots, x_n)$. In what follows we identify functions which are equal almost everywhere.

LEMMA 1. Let A be a closed set such that $\pi_i(A)$ has positive measure for some i. Then A supports a positive distribution in $L_a^p(E_n)^*$ for $1 and <math>\alpha > 1/p$, and in $\Lambda_a^p(E_n)^*$ for $\alpha > 1/p$.

PROOF. Without loss of generality we may assume A compact, and i=1. Let $\varphi(x_2,\ldots,x_n)=\sup\{t:(t,x_2,\ldots,x_n)\in A\}$ and $\psi(x_2,\ldots,x_n)=(\varphi(x_2,\ldots,x_n),x_2,\ldots,x_n)$. These are clearly measurable. Consider the distribution $Tg=\int\limits_{\pi_1(A)}g\left(\psi(x_2,\ldots,x_n)\right)dx_2,\ldots,dx_n$. It is non-zero (because $m\left(\pi_1\left(A\right)\right)>0$) and supported in A. For each $x'=(x_2,\ldots,x_n)$ let $T_{x'}$ be the delta distribution on E_1 at the point $\varphi(x')$. Then $Tg=\int\limits_{\pi_1(A)}T_{x'}G_{x'}dx'$ where $G_{x'}(x_1)=g\left(x_1,x'\right)$. Thus the lemma follows from the Corollary to the Fubinitype theorems in § 3, 3, and the well known facts that the δ distribution is in $L_p^{p}\left(E_1\right)^*$ and $A_p^{p}\left(E_1\right)^*$ for the given values of α and p (see e.g. [7,8]).

LEMMA 2. Suppose $m(\pi_i(\Omega')) = 0$ for i = 1, ..., n. Then $L_k^p(\Omega) = L_k^p(E_n)$, 1 .

PROOF. Since $m(\Omega')=0$ we have $L_k^p(E_n\mid\Omega')=L_k^p(E_n)$. Since we know $L_k^p(E_n\mid\Omega)\subseteq L_k^p(\Omega)$ we must show the opposite containment. Thus let $f\in L_k^p(\Omega)$. We apply the criterion of the Fubini-type theorem to show $f\in L_k^p(E_n)$. Since $f\in L_k^p(\Omega)$ we have $f\in L^p(\Omega)$ and $\left(\frac{\partial}{\partial x_1}\right)^k f\in L^p(\Omega)$. Thus for almost every x', $F_{x'}(x_1)=f(x_1$, x_2 , ..., $x_n)\in L_k^p(\Omega_{x'})$ where $\Omega_{x'}=\{x_1:(x_1,x')\in\Omega\}$ and $\int \|F_{x'}\|_{L_k^p(\Omega_{x'})}^p(\Omega_{x'})\,dx'\leq \|f\|_{L_k^p(\Omega)}^p$. But since $m(\pi_1(\Omega'))=0$ we have $\Omega_{x'}=E_1$ for almost every x'. Thus $F_{x'}(x_1)\in L_k^p(E_1)$ for almost every x' and

$$\int \|F_{x'}\|_{L_k^p(\Omega)}^p(E_1) \leq \|f\|_{L_k^p(\Omega)}^p.$$

Similar results hold replacing x_1 by x_2, \dots, x_n . The Fubini-type theorem now applies to f and completes the proof.

PROOF OF THE THEOREM. Let us show first 1) and 3) are equivalent. We note first that $\overset{\circ}{L}_{k}^{p}(\Omega)$ is closed in $L_{k}^{p}(E_{n}|\Omega)$. For taking the Sobolev norm on $L_{k}^{p}(E_{n})$ we have the $L_{k}^{p}(E_{n}|\Omega)$ norm equal to the $L_{k}^{p}(E_{n})$ norm for functions supported on a compact subset of Ω .

Suppose $L_k^p(\Omega) \neq L_k^p(E^n \mid \Omega)$. Then by the Hahn-Banach theorem there exists a non-zero element in $L_k^p(E_n \mid \Omega)^*$ which annihilates $L_k^p(\Omega)$. But every

element of $L_k^p(E_n | \Omega)^*$ lifts to an element of $L_k^p(E_n)^*$. Thus there is a non-zero distribution in $L_k^p(E_n)^*$ which annihilates $C_{\text{com}}^{\infty}(\Omega)$ hence is supported in Ω' .

Conversely, suppose $\overset{\circ}{L}_{k}^{p}(\Omega) = L_{k}^{p}(E_{n} | \Omega)$. Then multiplication by the characteristic function of Ω is a bounded operator on $L_{k}^{p}(E_{n})$. For if $f \in L_{k}^{p}(E_{n})$ then $\chi_{\Omega} f$ restricted to Ω is in $L_{k}^{p}(E_{n} | \Omega)$ hence in $\overset{\circ}{L}_{k}^{p}(\Omega)$ hence $\chi_{\Omega} f \in L_{k}^{p}(E_{n})$. It follows from the results of [7] that Ω' must have measure zero, hence $\overset{\circ}{L}_{k}^{p}(\Omega) = L_{k}^{p}(E_{n})$. Now if T is in $L_{k}^{p}(E_{n})^{*}$ and supported in Ω' it annihilates $C_{\text{com}}^{\infty}(\Omega)$ hence is zero.

Since 2) implies 1) it remains to show 3) implies 2). But assuming 3) we have, by Lemma 1, that $m(\pi_i(\Omega')) = 0$ for i = 1, ..., n. Lemma 2 then implies $L_k^p(\Omega) = L_k^p(E_n)$. Since 3) implies 1) we obtain $\mathring{L}_k^p(\Omega) = L_k^p(E_n|\Omega) = L_k^p(\Omega)$.

NOTE ADDED IN PROOF: We have recently learned that O. V. Besov has given a different proof of the main theorem. See Proc. Stek. Inst. Math. 77 (1965) 37-48.

BIBLIOGRAPHY

- [1] N. Aronszajn and K. T. Smith, Theory of Bessel Potentials I, Ann. Inst. Fourier 11 (1961), 385-475.
- [2] A. P. CALDERÓN, Lebesgue Spaces of Differentiable Functions and Distributions, Symp. on Pure Math 5 (1961), 33-49.
- [3] HARDY, LITTLEWOOD and POLYA Inequalities Cambridge 1952.
- [4] J. LIONS, Problèmes aux Limites dans les équations aux dérivees partielles, Séminaire de Mathématiques Supérieures, Univ. de Montrêal, Dept. de Math., Oct. 1962.
- [5] L. SCHWARTZ, Théorie des Distributions I, 2nd edition, Paris 1967.
- [6] E. M. STEIN, The characterization of functions arising as potentials II, Bull. Amer. Math. Soc. 68 (1962) 577-582.
- [7] R. STRICHARTZ, Multipliers on Fractional Sobolev Spaces, J. Math. Mech. 16 (1967) 1031-1060.
- [8] M. Taibleson, On the Theory of Lipschitz Spaces of Distributions on Euclidean n-Space I, J. Math. Mech. 13 (1964), 407-480.