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FUBINI-TYPE THEOREMS

by ROBERT S. STRICHARTZ (*)

~ 1. Introduction.

Given a class of functions on a product space M x N, it is a natural

problem to try to characterize those functions in terms of their restrictions
to sections x N or M x in) for all m E M, n E N. Fubini’s theorem does
this for Lebesgue integrable functions on a space with a a-finite, positive
product measure, Ll (W M N, p X v). It says that a measurable function f’
is in Li (M x N. X v) if and only if the restriction of I to ,u-almost
every section ( m x N is v-integrable, and their integral regarded as a
function on N is u-integrable. Its integral is in fact x v integral of

. This implies a similar characterization of L P x v) for p  oo.

In [7] we proved a Fubini-type theorem for the Banach spaces 
of Bessel potentials of order a of LP functions in Euclidean n-space, for

a h 0 and 1  p  oo. = k, an integer, these spaces coincide with
the usual Sobolev spaces of functions in EP with weak derivatives of order

in Lp . For a not an integer they form a natural class fractional

Sobolev spaces ». The precise definition of La (Bn) is the class of functions

of the form Ga * J~ for some 99 E LP (.E~,), where Ga is the function whose

Fourier transform is (1 -]- ~ ~ I2)-a/2 . The Lp (En) norm of f is the Lp norm
of (r, [1, 2]. The theorem we proved is the following : Pubini-type Theorem
.for L: : Let ei , e,, be any basis for En , n --&#x3E; 2, and denote by (x1 , ... , 2 Xn)
the coordinates of x E with respect to this basis. Then a function f’ E 
is in La (En), x &#x3E; 0, 1  p  oo, if and only if for each j = 1, ... , n, the

following holds : for almost every (.xl , .. , x;, the function
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LP Furthermore, the Lp (E,,) norm of f’ is equivalent to the sum of
these n LP norms.

Now there is another class of spaces, which we shall denote Afi (E,,),
which for a not an integer may also be considered « fractional Sobolev

spaces ». They may be defined as follows :
Let non-negative integer and 0  p ~ 1.

Then is in A: (En) provided , f and all i ts derivatives of’ order

~ k are in Lp and satisfy

The sum of the smallest such lIl and the Lp norms of / and its derivatives

is the Aap norm. If’ p === 00 replace the integral by sup | y j"" I 9 (x + y) +
-[-gr(x-y) - 00.

The spaces Lfi and ~la coincide if and only if’ p = 2 (see [8], where
tley are denoted Lpa and A (~ p, p) respectively). Thus we already have a
Fubini-type theorem for A;. The main goal of this paper is to extend this

result to ~4f for 1 ~ p ~ oo :
theorem fu~’ ~1u : Let ei’ ... , e,i Hnd (x’1 , ... , be as above.

Then a function f E Lp (L’,,) is in lla (En), a &#x3E; 0, ll, ~ 2, 1 c p ~ 00 if and

only if for eac;h j = 1~ ..., n the following holds : for almost every

(xi , ... , x~ , ... , E the ^ ~ (Xj) _ ~t’ (x’i ~ ... , Xn) E 
and ~ ~ ~ is in Furthermore, the ~1a ( f;,~) norm
of /’ is equivalent to the sum of these n LP norms.

We shall prove this theorem in § 2. In § 3 we give some remarks

showing the relationship between this result and other results. In § 4 we
give an application of the Fnbini-type theorem for to resolve the

following problem of Lions (4J : for which open sets are the G’ °°

functions of compact support in Q dense in 

§ 2. Proof of the main theorem.

We lean heavily on the work of Taibleson [8], especially Theorem 4,
p. 421. We summarize his results as follows :

LEMMA 1 : For f E LP (En) denote by ~t’ (x, y), x E j1Jn, y &#x3E; 0 its Poisson

integral Then if and



401

only if, for some i

for every derivative Dkf’ of order k of f. For f E da (En) it is sufficient to

consider only certain derivatives ; for instance alone will do, or all

derivatives involving only the x variables. The best constant M plus the
LP norm of f gives a norm equivalent If p = oo the same re-

a

sults hold if the integral is replaced by S M C 00.
We will need a slight improvement of these results whicl is not given

in [8]:

- 

LEMMA 2: f’ E ~la (En) if and only if’ f E Lp (En) and, for some k &#x3E; a,

for j = 1,..., n. A similar re-

sult holds for p = oo. Thus if ’J1l an integer &#x3E; 1,

PROOF z. Assume

It follows from Lemma 4b, p. 419 of [81, that

for any derivative Dx of order

ko involving only the x variables. But if (it - 1) k then every deriva-

tive of order k -~ ko can be expressed as for some j. Thus by

Lemma 1, ,

PROOF OF 1.’HE MAIN THEOREM: With 

w an integer. It suffices to shows that for almost every x’ = (X2 ’ ... xn),
and is in In fact it suf.

tices to show and
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for k = 0, 1,..., m. This is a consequence of the definition of (EI) and

the fact that if is an LP derivative of f as a function on En , then
axi

for almost every x’, is an LP derivative of f’ (xi , x’) as a fun-

ction on E1. [5, 
/ k

Now because f’ E A! (En). Thus . it remains to prove the
w ’i/ .

last inequality. We use the estimate of the LP norm of a second difference
of a function in terms of its Poisson integral derived in [8] (the formula
on top of p. 426) :

We take the Lp uorm with respect to t ~-~-~~ dt and use the triangle ine-
quality to dominate the p-th root of the expression in (1) by the sum of
three terms : .

The last two terms are finite because The first term is hand-

led as follows : Consider the integral operator
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The kernel is hoinogeneotis uf’ degree - 1, so the operator is bounded in
1

provided i.e. provided a &#x3E; 0, [3, Chapter 9]. Applying

this result to we see that the first term

is clominateci by a constant multiple of the second.
The same argument works for p = oo if we replace the LP norms by

sups.

Conversely, suppose

Since the Av norm dominates the L~ (Ei) norm we have

Thus by Lemma 2 it suffices to show 
°

for j = 1, ... , n and k = 1llt -~- ~. We do the case j = 1, ’1)1, = 0, the others

being almost identical. 
, B 

We use the fact that for each fixed x’ and
" 1 /

even function with inean value zero in where P is the Poisson kernel

Thus

Taking the LP norm in xi and using Minkowski’s inequality we get

Then we take the LP norni in x’ :
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Then our hypothesis is precisely E LP. ()n the other land we have

so it suffices to show that the integral operator

is bounded in Lp, where

Now

so

Thus it suffices to handle the kernels

and

Both are homogeneous of degree - 1 so we need and

finite, which is certainly the case in the range 0  ~ ~ 1

(remember we took oc = fJ, w = 0).
Again the case p = oo is a ~ simple modification.
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§ 3. Remarks.

1) The above theorems referred to the decomposition of .En as a product
of Ei and Corresponding to the decomposition En = EK x En-k for
any k, 1 C k ~ ~c - 1, we have a similar theorem taking the At (resp. Zf)
norm with respect to the Ek variables and then the Lp norm in the remai-
ning variables, and doing this for sufficiently many such decomposi.tions so
that the Ek variables span the entire space. This may be proved by succes-
sive applications of the above theorems.

2) These results should be contrasted with the known restriction

theorems with loss of smoothness [6, 8] : 
*

RESTRICTION THEOREM: Let Vk be any k-dimensional affine linear

sub variety of for 1 - 1. Suppose fI = 0153 - n k &#x3E; 0. Then
p

every function in Afi (E’l) and Lfi (En) (provided 1  p C oo) has a well defined
restriction to Vk which is in The restriction map is in both cases’
continuous and onto, and there exist corresponding continuous linear exten-
sion operators from to lla (En) and 

3) The restriction theorem has a dual statement. A distribution T on
Y k regarded as a A dimensional Euclidean space may be regarded as a

distribution on En supported on Y k (hut not all distribusions supported on
yk arise in this way). Then if and only if T E ~la (En)* if and

only if 2’ E Lp (E")*‘ (provided 1  p  00). (Here * denotes the dual space
- See [2, 8] for a characterization of these spaces).

There is a less precise dual consequence of the Fubini-type theorems :

COROLLARY. Suppose T is a distribution on En which can be decomposed
11

where and Tx. is a distribution on

JJ1 for each for almost every x’ and

Similarly for Llfi provided

PROOF. Apply Holder’s inequa-

lity and the Fubini-type theorem.

4) The proof of the Fubini-type theorem can be simplified in many
special cases. The first half follows from the La Fubini-type theorem and
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the Lfi restriction theorem in case 1 and is irnmediate in case

p = oo. The second half is quite simple in case a  1. For then the second

difference in the definition of may be replaced by a first difference and

we may always write f (x) - . f ( y) = [ ,j (z~ , ~... - f ( y i , x2 , ... , xn)j -~- ...
...+[/(2/1 ··· , yn-1, x~1) - f~ (y , ··. , y~)]· No such identity seems to hold for

second differences, however.
5) Most of the results of [7] for Lfi spaces can now be carried over

to spaces, usually without the restriction 1 

§ 4. ~1 problem of Lions.

It is a simple proposition that the C °° functions with compact support
in some fixed open set Dc En are dense in La (En) if and

only if the complement Q’ of Q supports no non zero distribution in Lfi 
(resp. [4].

If k is any positive integer we may define Lf (S~) to be the space of

functions in ~p (S2) which have derivatives of order  k in Lp (Q) (in the

sense of distributions on ~) with the sum of these Lp norm as the Ll (S~)
norm. We may ask when the C" functions with compact support are

dense in Lions [4] shows under certain additional hypotheses, that
the answer is the same as before, namely if and only if f2’ supports no
non zero distribution in Lk (En)~. Using the Fubini-type theorem we will

establish this result in general.
Let 2~ (En ~ I Q) denote the space of restrictions to Q of functions in Lf (En)

with the factor space norm on 5~~,
Let Zk (Q) denote the closure of (Q) in Lk (En). Then we always have
the continuous inclusions

THEOREM. Let 1  p  oo, k ;:&#x3E; 1. 1.’he f’ollozeing three conditions are

equivalent:_

3) Q’ supports no non-zero distribution in Lk ~L’~zi’~·
For the proof we will need two lemmas. Let ni denote the projection

Of~ Fn on En-l given by TZ’i (x, , ... , xn) = (Xi’ ... , ... ~ xn). In what follo’V8

we identify functions which are equal almost everywhere.
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LEMMA 1. Let A be a closed set such that has positive measure
for some z. Then A supports a positive distribution in L~ (E~,)~ for 1 C p C o0
and a &#x3E; and in All (En)- for a &#x3E; 1/p.

PROOF. Without loss of generality we may assume A compact, and

These are clearly measurable. Consider the distri-

bution It is non-zero (because m (~1 (A))

and supported in A. For each let be the delta

distribution on E1 at the point cp (x’). Then where 

(xi) = g (Xt , x’). Thus the lemma follows from the Corollary to the Fubini-
type theorems in § 3, 3, and the well known facts that distribution

is in ~a (E,)* and (E 1 )*‘ for the given values of Lx and p (see e.g. [7,8]).

LEMMA 2. Suppose m

PROOF. Since mi (S~’)=0 we have Since we know

Lk (En I Q) we must show the opposite containment. Thus let f E 
We apply the criterion of the Fubini-type theorem to show 

Since f E Lk (D) we have /6 Lv (Q) and Thus for almost

every where

and But since rn (1ft (,Q’)) = 0 we have

Sax. = E1 for almost every x’. Thus Fx, E Lk (El) for almost every x’ and

Similar results hold replaci ug x1 by x2 , ... , xn . The Fubini-type theorem
now applies and completes the proof. ,

PROOF OF THE THEOREM. Let us show first 1) and 3) are equivalent.
o We note first that is closed For taking the Sobolev

norm on Ll (En) we have the Lfl (En norm equal to the Z~ (En) norm
for functions supported on a compact subset of Q.

o

Suppose (D) + l.k Q). Then by the Hahn-Banach theorem there
, 

o

exists a non zero element in Ljf (Eu Q)* which annihilates Lkp (Q). But every
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element of Lf (En ~3)* lifts to an element of Thus there is a

non-zero distribution in Ll (En)- which annihilates (0) hence is sup-
ported in Q’.

o 
Conversely, suppose Lx = Lx (.En | C). Then multiplication by the

characteristic function of Q is a bounded operator on For if/6
E Lx then XD f restricted to Q is in Ll (.En hence in Lk (Q) hence

It follows from the results of [7] that Q’ must have measure

zero, hence = Now if T is in and supported in

!J’ it annihilates (Q) hence is zero.

Since 2) implies 1) it remains to show 3) implies 2). But assuming 3)
we have, by Lemma 1, that m(27i (Q))=0 for i = 19 ... , n. Lemma 2 then

o

implies Lf (Q) = Lx (En). Since 3) implies 1) we obtain Lk = Ll (En =

NOTE ADDED IN PROOF: We have recently learned that 0." V. Besov

has given a different proof of the main theorem. See Proc. Stek. Inst. Math.
77 (1965) 37-48.
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