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EXCEPTIONAL BOUNDARY POINTS FOR THE
NONDIVERGENCE EQUATION WHICH
ARE REGULAR FOR THE LAPLACE

EQUATION - AND VICE-VERSA

by KEITH MILLER (*) (Berkeley)

In [9] Littman, Stampacchia, and Weinberger investigated the notion
of regular boundary points for Dirichlet’s problem with respect to the uni-

formly elliptic equation in divergence form

when the coefficients are only supposed to be measurable. The coefficient
matrix is assumed symmetric and the uniform ellipticity condition may be
stated

eigenvalues of

where a is the ellipticity constant, 0 C a C 1. They proved that the regular
points for equation (1) are the same as those for Laplace’s equation.

In this paper we prove that the analogous result is false for the uni-

formly elliptic equation in nondivergence form

with the same class of coefficients. In fact, it is false for every oc  1

when n = 3.

Pervenuto alla Redazione il 16 Dicembre 1967.

(*) The researoh for this paper was partially supported by Air Force Contract num-
bei : AF-AFOSR 553-6-1 

.
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Our method involves consideration of spines of varying degrees of sharp-
ness (see Figure 1) such as the exponentially sharp spine of Lebesgue [4,
p. 303]. In Theorem 5 of Section 5 we show that for n = 3 and for every
x C 1 there exists a certain nondivergence equation for which the tip of
every algebraic spine is exceptional, although such points are regular for
Laplace’e equation. The coefficients for this equation, incidentally, are C°°

in the interior and become discontinuous only on the axis of the exterior
spine. In Theorem 6 we take care of the K vice-versa ~ portion of the title;
we show that for n = 3 and for every «  1 there exists a certain nondi-

vergence equation for which the tip of every spine (no matter how sharp)
is regular, although the tip of the exponential spine of Lebesgue is egcep-
tional for Laplace’s equation. Again the coefficients are C°° except on the
axis of the exterior spine.

Only in the case n = 3 do we have examples of « both ways nonequi-
valence &#x3E;&#x3E; for a arbitrarily close to 1. However, in Section 3 we will show

that for every n &#x3E; 2, if a  1 , then an isolated boundary point is re-
n- 1

gular for a certain nondivergence equation, although it is of course excep-
tional for Laplace’s equation. The coefficients involved are discontinuous

only at the isolated point and analytic elsewhere in Rn.

There has been great interest in the question of regular boundary points
for elliptic equations. Several authors, even before the paper of Littman,
Stampacchia, and Weinberger, had established the result that a boundary
point is regular for the equations. (1) and (3) if and only if it is regular
for the Laplace equation ; all of these proofs however use smoothness of
the coefficients in an essential way. For example, R. Herv6 [6] proved
this result for the nondivergence equation (3) (also with lower order terms

included) provided that the coefficients are locally Lipschitz continuous. For
other references to previous results with smooth coefficients and to classical
results for Laplace’s equation see the introduction to [9].

On the positive side for the nondivergence equation (3), the present
author has recently shown [10] that every boundary point with an exterior
cone (no matter how small the aperature) is regular for (3) (also with lower

’ 

order terms included). Notice that boundary points with only slightly worse

geometry, i. e. with exterior algebraic spines (no matter how blunt), are
exceptional for certain nondivergence equations, n ¿ 3, as is shown in the

present paper. In Section 5 we mention several other results which are

immediately explained by our construction, for example the results for La-
. 

place’s equation that exponential spines are exceptional when n = 3 (Lebes-
gue’s example) and that algebraic spines are exceptional when n &#x3E; 3 (which
could be computed from Wiener’s criterion).
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Our construction of a nonsolvable Dirichlet problem in Section 5 fol -

lows the method of Lebesgue?s classical example and requires that a boun-
ded discontinuity of a solution at a boundary point be removeable. This is

always possible only if a ; otherwise examples show that it mayn-1

be false. When a we show in Theorem 2a that a singularity atn-1

an isolated point or a boundary point is removeable provided that a certain
growth condition is satis6ed at the point. Pucci [13, p. 157] has previously
derived equivalent theorems; Gilbarg and Serrin [5] have used similar tech -
niques, but are concerned with equations with continuous coefficients.

When a  1’ we show in Theorem 2b that an isolated singularity is
n-1

removeable provided that a certain order Holder continuity holds at the
point. This result has no relevance to our main topic, but it follows imme-

diately and it appears to be new.

1. Pt·elimitiaries.

Let x = ., . , xn) denote a real vector in 2, and is a real val-
ued function defined (and usually of class C2) in some bounded open set

D of interest. We let -0. denote the class of operators L of form (2), (3).
We constantly use the weak maximum principle : that is, if u E CO C2 (~),
Lit ? 0 in on 8Q, then uc0 on D.

Given an L E d3a and a continuous function q; on 8Q; the Dirichlet pro-
blem is to find a solution of

is some function space with generalized second derivatives
such that the maximum principle still holds. Certainly with only measure -
able coefficients we cannot expect a C2 (0) solution. It is not yet clear what
should be our choice of 9( (Q), although recent results of Aleksandrov [11
and Pucci ( 14~ indicate that the Sobolev is a logi-
cal choice.

DEFINITION. A barrier foi- L at the point x° E aQ is a function tc, de-

ufied in some relative neighborhood N = ( U an open neighborhood
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of x°), which satisfies

regular boundary point for L (or for the equation
Lu = 0) if there exists a barrier for L at x 0

Otherwise x° is an exceptional point for L.
In the case of Laplace’s equation, solvability of the Dirichlet problem

for arbitrary continuous boundary data is equivalent to existence of a bar-
rier at every boundary point. Unfortunately we cannot at present prove the
same equivalence for the general nondivergence equation. After all, with the

present state of the theory we cannot prove solvability of (4) even on the

sphere if the coefficients are not smooth. If we were to find an example (4)
with no solution we might have reason to suspect that the difficulty is

caused by the nonsmooth coefficients in the interior and not by the patho-
logy of the boundary. However, if the coefficients of L are Holder conti-

nuous on compact subsets of ,ia, then we can prove that the equivalence
holds, as stated precisely in the following theorem. For this reason we res-
trict our example to L with smooth (in fact C°°) coefficients in the interior.

THEOREM 1. Suppose the coefficients of L are Hi;lder continuous on each
contpact subset of 0. Any solution of (4) must then be in C2 (Q). 1.’here existi

a solution of (4) for every continuous boundary function 99 ij* and only if there
exists a barrier for L at every boundary point.

Proof. The proof of the first assertion is trivial. Let it be a solution

of (4) and consider any snbsphere 8 with S c Q. By the well known exis-
tence theory for equations with Holder continuous coePficients [4, p. 339]
there exists a C2 solution it, on S which agrees with 2c on We lave

required that the maximum principle also hold for the class 9f; hence,
u = Ul on S. See [10, p. 98] for proof of the second assertion.

We now define certain types of spines, in order of increasing sharp-
ness. Let D be the body of revolution obtained by rotating (for n &#x3E; 2)
the shaded area shown in Figure 1 about the xn axis. We may assume

that aD is except at 0, the tip of the intruding spine. Let (r,0) be
. polar coordinates with the positive Xn axis as polar axis. That is, r (x) = I x I
and We say that aD contains a conical spine it’

there exists a positive constant k such that (~2013 8) ~ k as x --~ 0 on ¿Q;
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3~ contains an algebraic spine if there exist positive constants k and p
such that (n - 9) = krP as x -+ 0 on 8Q contains an exponeittial spine
if there exist positive constants k, C, and A such that (71 - 9) ~ Ic exp (- Cr-1)

Fig. 1

as x -+ 0 on 00. As a degenerate case we say that contains a line

segment spine if (~z - 0) = 0 for all x sufficiently near 0 on for exam-

ple, S~ = ;x : 0  ~ x (  1 and .x is not on the negative xn axisl.
Finally, we have the case of an isolated boundary point, for example,

S~ = yx : 0  ~ x ~  1;. This aD may be considered ’ to have a completely
degenerate spine ; we have made the body of the spine so thin that we
have wiped i~ out completely, leaving only its tip, 0.

2. Removeabte singularities.

In this section we very simply and precisely characterize the growth
condition, in dependence upon a, which is necessary to insure that a sin-

gularity at an interior or boundary point be removeable. What we actually
show is that the maximum principle continues to hold as if the singularity
were not there. It therefore might be more precise to call such a result
an «extended maximum principle », in keeping with the terminology of
Gilbarg and Serrin [5], rather than a theorem on « removeable singularities ».

Consider radially symmetric functions of the form w (x) = g (r). The
class Eo. is invariant under translation and rotation of the coordinate axes.

At each fixed point x° ~ 0 we choose coordinate axes with origin at x°
such that the yi axis is in the radial direction and axes are

in the tangential directions. With respect to these axes, = grr ,

and the cross derivatives are all zero. There-
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fore, the operators L applied to radial functions, are exactly of the
form

where the functions oci (x) are measureable and satisfy a ~ ai (x) ~ 1. We
consider the particular operator Lo which at each point has coefficient 1
for the second derivative in the radial direction and coefficient a for the

second derivatives in the tangential directions. The equation

then has solutions w (x) = 1 and

Thus for the solution .w in (7) is positive and tends to -~ oo at

the origin. Moreover, it is a solution of Pucci’s maximizing equation [13],

as is easily seen from the representation (5), so it is a supersolution (i. e.,
L1C ~ 0) for all L Hence it can be used in the standard fashion to

remove singularities which grow more slowly than itself.

THEOREM 2a. Suppose Q is a bounded open set and xO E Q (either XO E Q
or x° E aS2 is allowed). Suppose

2b. Suppose Q is a bounded open set,

’ 

Proof. As mentioned, the proof of (2a) is standard. We consider the

proof of (2b). Suppose, for the sake of contradiction, that u has a positive
maximum value M on S~. By the strong maximum principle, this maximum
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can be assumed only at x°. Let ~S be a sphere centered about x°, of
radius R. some N  3f on aS and u = M at x°. Now, the func-
tion - w (x) = - B1-(l(n-l) is a solution of the maximizing equation,
as is seen from the representation (5). Hence, the function v (x) = M -

is a supersolution which is h u on the

boundary of the deleted Thus u (x) ~ v (x) by the maxi-
mum principle, which contradicts the hypothesized growth condition on

-

3. The isolated boundary point as a regular point.

When a  1 the exponent of the solution zr in (7) is positive.
n-1

Hence w itself is a solution with a non-removeable bounded isolated sin-

gularity. Moreover, w is a barrier at the origin for the operator Lo ; hence
the following result:

THEOREM 3. The origin is an isolated regular boundary point for the

operator L 0 described in (6) when x . This operator has coefficients° 
n - 1 ‘

analytic in Rn ’nlinu8 the origin., as claimed in the introduction.
Incidentally, to is a solution of Pucci’s minimizing equation

hence, within the class of equations 0, L E minimizes the so-

lution (when it exists) of the Dirichlet problem on ~x : 0 C I x  1~ t for

boundary values 99 = 0 at 0 1 on ~ = 1.

4. The special solutioiis.

We now develop some particular equations which have solutions of the
form u (x) = ra f (8), 0  ), ~ 1, where u is a C2 function except on the

negative Xn axis, but where f’ has a certain asymptotic growth as 0 --~ n-.
Let Po be a positive constant and let fl be a function of 0 defined as

follows :

fl is monotone and C °° on [0, ~c].

At each fixed point x° ~ 0 we find it convenient to choose the follow-

ing Euclidean coordinate system with origin at x° : let the positive y1 1
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axis lie in the direction of increasing r, let the positive yz axis lie in the

direction of increasing 0. and let the axes be chosen arbitrarily in
directions orthogonal to the y,, y2 plane. We then define L1 to be the
operator whose value at each x0 is given by

Clearly the coefficients of Li with respect to the original axes are C°° except
on the negative xn axis, as claimed in the introduction. For functions of

the form t-If (0), A any real number, we have

We normalize, setting J* (0) = 1. The condition that )-If (0) be a C2 solution
of L1 (r~ f’ (8)) = 0 for 0 c 9 C n, r * 0, is then that j8 be a solution of
the initial value problem

The final condition insures that is C2 even on the positive rn axis.
For our purposes we will always use

In the first case aL is in in the second L is the Laplacian, and in
the third L is in d2a . Actually, the development (a)-(12) is just a speciali-
zation of a general representation for L (i-If (0)), L E Eo., to be found in [10],
but we have thought it more enlightening to include the complete descrip-
tion of .L1 here.

Now comes the crucial observation concerning the problable behavior
of the solution of (11) as 02013&#x3E;-h. If we look,. as in the method of Frobe-
nious [3, pp. 132-135], for solutions of (ltlt) of the form (n - g (n - 9),
where u is a constant and g is regular and non zero at the origin, y then

the third term in because it has no factor of ln - 0)"~ ~ does not

enter into the indicial equation for p. We obtain roots = 0 and p 2 =
= 1 - (it - 2) independently of A. (In case ,u2 --- 0 we expect a solution
of the form log (~c - 0) g (~z - 0)). NA’e therefore suspect that the solution
of (11 ) will have the following asymptotic behavior as (vr20130)20130+: ne-
gative power growth for (n20132)B0&#x3E;1, logarithmic growth for (n20132)B0=1,
and bounded growth for (n - 2) ~io  1. The following theorem confirms this
expectation. We delay its proof to Section 6.
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THEOREM 4.

(a) For every real A and positive Po there exists a unique solution (call
it F) of problem ( 11 ).

(b) If 1 ~ (n - 2) Po and 0 [ ~  1 then the solution F has exactly
one zero occurs in (~/2, on), is monotone decreasing on [0, on), and is
asymptotic to a negative constant times (n - 8)1~~’~-2»~ (or - log (n - 9) when

1 ) as 9-+n-. 
,

(c) If (n - 2) ~Bo [ 1 then for att real 1 tlae solution F is continuous on
alt [0, n] ; moreover, for all 8ufficiently , F remains positive on [0, n].

5. Exceptional points and vice-versa.

Lebesque mentions in [8, p. 353] that the tip of every algebraic spine
is regular for Laplace’s equation when n = 3. His proof seems mistaken ; he
introduced the barrier + x2 + xa , perhaps under the mistaken notion

that its zero level surface x3 = - (xi -~- forms an arbitrarily sharp
algebraic spine as Actually one can show that no barrier 2c for

Laplace’s equation at the tip of an algebraic spine can be Holder continuous;
for, suppose it were Holder continuous of order À, 1 ~ 0. Then let 0 [ ~,1 [ ~,.
The function of the form u = rÅlf(9) which is harmonic on 0 ~ 8 ~/(0) ==
I I fc, (0) = 0, has a zero 91  n, as is seen in theorem 4b. Since the

spine is sharper than any cone, we could dominate u by a multiple of w
near the vertex on the cone 0 c 0  01 , and conclude that u must be Holder
continuous of order A, a contradiction.

However, Lebesgue’s result still holds. It appears as a problem in
Kellog [7, p. 334]. The author has checked it out using Weiner’s criterion.
One can underestimate the capacity of a cylinder of length h and radius

p  2013 by a constant times hlllog (J 1. One then can underestimate the ca-2

pacity ri of the ith segment of the exterior spine (see Kellog’s notation)
in terms of the capacity of an enclosed cylinder, thus establishing that
the tip of any algebraic spine is regular.

We now establish that the tip of every algebraic spine is exceptional

for the operator L1 when we let Po =1, with a any constant satisfying
a

1 C a  1, and n = 3. Then for every 1, 0  .1. [ 1, the solution u (x) ===
" 

1

I’A F (0) described in Theorem 4b is asymptotic to - crA (71 - c a
positive constant. be a domain whose boundary contains the algebraic

J 1. della .Scuola Sup. - Pisa.
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Act

spine (n - 6) ~r1-á. Thus u (x) --~ - c as x -~ 0 on 8Q ; but u (x) -+ 0 as

x --~ 0 on straight line rays. Hence u restricted to S~ has continuous

boundary values and u assumes these boundary values continuously except
for a bounded discontinuity at 0. However, we can show that no solu-

tion v of the same equation can assume these boundary values continuously;
for if so would satisfy E, (u - v) = 0 in Q, u - v E c2 (0) n co (T2 -
- 0}), and (u - v) = 0 on 8Q - (0) with at most a bounded discontinuity
at 0. Since L1 has ellipticity constant a &#x3E; 1 , we may infer by Theorem

2

2a that this bounded singularity is removeable, and (u - v) = 0 on Q- (0j.
Therefore, the Dirichlet problem for these boundary values on aD is

nonsolvable. All points of other than 0 are regular (there exists an

exterior sphere at each of these points). This, with Theorem 1, implies
that 0 is not a regular point for this domain and this equation.

Of course 0 is also an exceptional point for this equation for any do-
main with a sharper spine. Letting A-+ 0+ we see that the tip of any

algebraic spine, no matter how blunt, is also exceptional.

1 ’

THEOREM 5. Let n = 3 a  1. Let Lie be the operator de-
2

fined by (9) with flo = 1. Then L1 has C°° coefficients on Iln - (the closed
a 

.

negative x3 axis), aLl E and 0 is an exceptional boundary point for the
equation L,u = 0 on any domain S2 whose boundary contains an algebraic
spine with axis on the negative X3 axis. 0 is a i-egular boundary
point f’or Laplace’s equation on such domains.

Similarly, using Theorem 4b, we see that the tip of every exponential
spine is exceptional for Laplace’s equation when n = 3.

If we instead let ~Bo = a, 0  a  1, then Theorem 4c tells us that

the solution F of (11) stays positive on [0, ~~ for all sufficiently small A.

Thus r~ F (0) is a barrier at the origin for L, when ~S~ contains a line
. segment spine. Actually, a much more straighforward construction of such
a barrier is given in Lemma 7 ; the barrier there constructed is then used

in Lemma 8 to prove Theorem 4c.

THEOREM 6. Let n = 3, 0 ~ a  1, and let L1 be the operator defined
by (9; with Po = a. Then L1 E Ea and 0 is a regular boundary point for L1
on the domain Q = (the unit batt minus the closed negative X3 axi8l. Hou,e-

0 is an exceptional boundary point for Laplace’s equation on this doniain.
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The two theorems above were stated only in the case n = 3 because
only in this dimension do we obtain examples of « both ways nonequiva-
lence of regular boundary points » for a arbitrarily close to 1. However, the
asymptotic growth of ~’ revealed in Theorem 4, depending as it does only
on - 2) also gives information for higher dimensions. When n ~ 4,

and then the tip of every algebraic spine is ex-

ceptional for the operator L1. (Since this includes the case a = 1, for which
.L1 equals the Laplacian, we have here no example of nonequivalence) When

and = a then the tip of the line segment spine is re-

gular for L1.
In summary, when n = 3 Theorems 5 and 6 give examples of  excep-

tional points aad vice-versa » for a arbitrarily close to 1. When n = 27
Theorem 3 gives an example of « vice-versa » for a arbitrarily close to 1.

When it ~ 4, the paragraph above and Theorem 3 give examples of

« vice-versa » for a sufficiently distant from 1.

6. Proof of Theorem 4.

LEMMA 1. For every real ~, and Inositive (n - 2) flo there exists a unique
solution (call it F) of the initial value problem (11).

We need only require that fl be a positive and continuous
function on [0, n]. Existence is then a simple case of a theorem of the au-
thor’s [11] which states that there exists a unique solution of the problem

provided that (Y is continuous in its three variables, Lipschitz continuous

in its second and third variables, and monotone nonincreasing in its third

variable, and that the function p is continuous for t &#x3E; 0 and o (t-2) as
t -+ 0+ .

LEMMA 2a. Tlte14e exists a solution H of (lla) on (0, n) E C«2

(0, n], H~ (n) = 0, H (n) = 1.
2b. 1’he14e exists acnother solution K of on (0, n) which is asymp-
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2c: F, the solution the initial value problem (11), is a linear com-

bination of H and K, F = aH -~- bK.

Proof : Letting t = ~ - 0, we see that Lemma 2 a also follows imme-

diately from the existence theory for problem (13),
Now consider Lemma 2b. Letting f (t) = (or g (t) log t if

I - (n - 2) ~80 = 0) we see that f satisfies ( l la) iffi g satisfies a certain equa-
tion of the form

Thus, provided (n -  2, (14) is exactly in the form (13a) and there

exists a solution with g’ (0) = 0, g (0) = 1.
The above method suffices for the example used in Theorem 5, for there

n = 3, ~B - 1 , 1. We have included it for its simplicity.

However, for the general theory with (n - 2) ~8o an arbitrary positive con-

stant we shall have to go to the method of Frobenius and use the analy-
ticity of equation at 0 = n.

We try for solutions of the form

and get pi = 0 and P2 = 1 - (n - 2) ~8a as solutions of the indicial

equation. We summarize some results found in [3, p. 133].
If fl2 is not an integer then there exist two independent solutions

If P2 = 0, then there exist two independent solutions, g (t) as above, and

If ,u2 is an integer - k (necessarily negative since ~o is positive) then there
exist two independent solutions, H (t) as above and
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but where the coefficients co , c1, ... are not necessarily constants but may
include a factor of log t. tn any case we see that Lemma 2b is valid. Fi-

nally, Hand g are independent, so every solution of (lla), F included, is

a linear combination of the two.

LEMMA 3. For A ) 0, the solution F must start out strictly decreasing
and continue strictly decreasing so long as F remains Positive.

Proof : The expansion Fe (0) = BPee (o) -~- o (0) inserted in (lla) yields
Fee (0)  0. Hence is initially strictly decreasing. However, were F to cease
sirictly decreasing while still positive it would either have an interval of

constancy (clearly impossible) or a positive relative minimum within (0, ~c)
(also clearly impossible since 12 + (n - 2) is positive and 0 at a mi-

nimum). This completes the proof of the lemma.
To prove Theorem 4b it is sufficient to establish that the coefficient b,

where F = aH + bg, is positive. However, for certain values of 1 (eigenva-
lues) b is zero. For example, A =1 is an eigenvalue for every function fl
since the linear function Xn = r1 cos 0 is a solution of every elliptic equa-
tion under consideration. However, by comparison of F with cos 0 we

will establish that there are no eigenvalues satisfying 0  1  1.

LEMMA 4. When 0  ~,  1 no solution f of (lla) can have both a zero

02 and an earlier zero 9. of fe in [0, n/2]. (By synunetry the same applies
2n [~/2, n] 2b2th 02  ol)’

Proof : Notice that f satisfies equation ( l l a.) with coefficient A2 + fl (n- 2) A
for the zero order term, but cosine satisfies the same equation with a lar-

ger coefficient 12 + fl (n - £h) I. A change of the independent variable puts
the equation in self adjoint form and one then introduces the Prüfer

substitution. Now at 01 the Prüfer phase functions w (9) and w (9), of the

solntions f’ and cosine respectively, satisfy w (0~) &#x3E; n/2 = w (0~). Hence,
the proof of the Sturm Comparison Theorem [2, p. 259] establishes that

w (0) &#x3E; w (0) for all 0 &#x3E; 91; thus, f cannot have a zero (i.e., co cannot

reach :1:) until strictly after the first zero of cosine.

An alternate proof would involve comparing the solution (notice
L1 (r~ f (8)) = 0) with the super solution r~ cos 0 (notice .L1 (1’,1. cos 0)  0) on
the region 8,  8 (x)  82~ after first using the linear solution r1 cos 0 
as a « barrier at infinity &#x3E;&#x3E; to get a Phragmen-Lindelof theorem (see proof
of Lemma 8 for example) for all regions contained in the upper half space
~&#x3E;0.

LEMMA 5. Fo~~ O  ~  1, the solution -I’ )ii itst be strictly decreasing on

all [0, ?).
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Proof : We have seen, Lemma 3, that F continues strictly decrea,sing
so long as it stays positive. Now ~’ cannot have a zero relative minimum

in (0, ~)~ for then we would have T" - F = 0 at an interior point, and the
unique solution of this initial value problem would be If’ = 0. Also, F can
not have a negative relative minimum in (0, ~), for then we would have

~/2 C 82 C ol C ~ with F (82) = 0 and Fe (0,) = 0, which contradicts Lemma
4 applied to the second quadrant.

LEMMA 6. For 0 C 1  1, tlae solution F must be of the aH + bK
ivith b &#x3E; 0.

Proof: We show first that b ~ 0. Suppose, for the sake of contradiction,
that F = aH. Certainly a # 0. If a &#x3E; 0, then by Lemma 5 F has stayed
positive and strictly decreasing on [0, ~z~ ~ but applying the same Lemma 5
to H in the opposite direction yelds that H must be a strictly decreasing
function of (n - 0), a contradiction. If a  0 then the graph of F would
cross the axis (in the second quadrant by Lemma 4) and 1~’ would have

both a zero and a later zero of its derivative (at 0 in the second

quadrant, contradicting Lemma 4.

Finally, since b =1= 0, F is strictly decreasing, and K (0) --&#x3E; - oo as

9 --~ n- (or Ko (0) -+ oo in case (n - 2 j flo  1), it is clear that b &#x3E; 0.
This completes the proof of Theorem 4b. We continue to the proof of

Theorem 4c by first constructing a barrier at the origin on the domain Q = R’l-

(negative xn axis{ for the operator L1 

LEMMA 7. Let (n - 2) flo  1. There exists a function f and numbers

~c &#x3E; 0 such that

Proof : Let f3 be a constant satisfying Then let

and extend it to [0, a/2] in such a way that
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Normalization later will take care of the "~(o) = 1 requirement. We due
note 11 f (0) « .~1 (rl f (0))/1.1-2 and consider the case 1 = 0. On [;r/2, n) we
have ,

which is uniformly negative on [a/2, ~c~ since (~ - 0) cot 0 h - 1 and

=== ~o there. Likewise on [0, ~z/2) we have 10 ( f )  0 uniformly. Hence
there exists an q &#x3E; 0 such that

But, since this f is bounded and I multiplies only f in 1;L, see (10), 1A ( f (0))
depends continuously on I, uniformly on [0, hence lx ( f (8)) ~ - r~ on [0, 11:)
for all |A  some positive IA.

LEMMA 8. For all ,1 satislying 0  A,  u the solution F of Theorem 4

is ~ f’ on ~U~ ~j, where f and IA are defined in Lemma 7.

Proof. We first establish the following Phragmen-Lindelöf type result

for the operator 2~ : if D is an open set contained in the open cone 

[x : x is not on the closed negative xn, axis), w E G’2 (Q) n co (Q), L1 w &#x3E;  0 in
on 8Q, and w (x)=o as x-~-oo in Q, then on S~. Our proof uses

the positive supersolution as a « barrier at i,nfinity ». By the growth
condition on w, for every E &#x3E; 0 there exists an .R sufficiently large that

i~E ~ ~v - is c 0 on the boundary of DR == ~ fi ~ Bl. Hence
V, 0 on 12R by the maximum principle for bounded open sets. This, with
the arbitrariness of ~, establishes the desired result. More general Phragmen-
Lindelof theorems on cones may be found in [12j.

We know that both f and F are continuous on [0, ~j and equal 1 at 0,
that rlf (0) is a supersolution for L, on Q, and that r~ F (9) is a solution.
Suppose now for the sake of contradiction that there exists V E (0, ~] where
.~’ (y) = lcf (~) with 0  k  1. A.hplication of the above Phragmen-Lindeliif
result to the subsolution on the open cone S,~ = yx :
;x~ # 0 and 0 c 8 (x)  y; would then imply that F (0) C lcf’(8) for 0 -- 0 --- 11’,
yielding a contradiction when 0=0. This completes the proof of the lemma
and of Theorem 4c,
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