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REMARKS CONCERNING THE CONFORMAL
DEFORMATION OF RIEMANNIAN

STRUCTURES ON COMPACT MANIFOLDS

NEIL S. TRUDINGER (*)

§ 1 Introdnction.

Yamabe [8] seeks to establish the following result:

THEOREM : Any compact C°° Riemannian manifold of dimension ~a &#x3E; 3

can be deformned conformally to a C°° Riemannian structure of constant scalar
curvature.

The author has recently noticed that the proof in [8] appears incom-

plete, causing the validity of Yamabe’s theorem to be in doubt. The pur-

pose of this paper, apart from indicating this error, is to establish the re-

sult itself under, however, some restriction on the curvature of the manifold
(Section 3) and also to prove a related regularity result for arbitrary manifolds,
naniely that weak solutions of the deformation problem are necessarily
smooth ones (Section 4).

The partial results of Section 3 are sufficient to show that, in more

than 3 dimensions, a structure of constant positive scalar curvature may
be topologically deformed into one of constant negative scalar curvature.

This had originally been derived by Aubin [1] from Yamabe’s theorem. Ho-
pefully, a proof of Yamabe’s theorem for arbitrary compact manifolds will be
found.

We let be au n dimensional, C°° Riemannian manifold, n ;:&#x3E; 3 and let gij
denote its fundamental positive definite tensor. We consider an arbitrary

Pervennto alla Rodazione il 28 Nov. 1967.

(*) This research was partially supported by a Ford Foundation Po8tdoctoral grant at
the Conrant Institute of Mathematical Scienoed, New York University.
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conformal deformation of the writing it as

where u &#x3E; 0, E C°° (M). 
_

Let -By R denote the scalar curvatures of the g,j re8pectively. Then
according to [8], we have the equation

where

denotes the Laplace-Beltrami i operator corresponding to 
Thus the problem of conformally deforming the structure on M to one

of constant scalar curvature is equivalent to proving the existence of a con-
stant R and positive, C°° (M) function u satisfying equation (2). We take up
the study of this equation in the following sections.

The author is grateful to R. Gardner and J. Moser for many useful

discussions concerning this problem.

§ 2 Yamabe’s approach.

Yamabe [8] considers, instead of equation (2), the equations

proving

THEOREM 1. (Yamabe) For any q  N, there exists a con.3tant ~~q and a

positive C°° function uq (normalized by f iuq Bq d v = ~ ) ( 1 ) satisfying equation (3).
M

(1) We denote the volume eletueut on M by dv and assume
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The solutions Âq, 7 ttq are characterized by the variational problem of

minimizing the functional

over the class of’ functions in W2 (2) satisfying

We denote the above class by Aq so that

It is readily seen that 1 is non-increasing in q and that as q --~ ~~V,

iq 2013~ where

Since the proof in [8] of Theorem 1 (called Theorem B there) is some-

what unnecessarily involved, we insert here a simpler, more direct version.
WTe let ,u &#x3E; 0 denote the ellipticity constant of A u so that

for all points of J.1f.

The proof is split into two stages :
(i) Existence in WTe choose a « minimizing sequence », ie a se-

quence E ~4~ with as n --~ oo. Since urn) is bounded in (m),

(2) The Sobolev spaces for positive integer and are defined by

and

where a~~ is a mnMi-index and is to be understood in the seiiee of distri-

bution theory.
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it is weakly precompact. We show that is in fact precompact in Wl 
The argument is a standard one in the calculus of variations (cf. [6]). By
the Sobolev imbedding theorem, a subsequence of the u(nJ, (which we im-

mediately relabel as 11(n) itself) converges in to a function uq in A,y.
Hence for arbitrary E &#x3E; 0 and sufficiently large m, n depending on t

Thus

for sufficiently large m, n. It then follows (by (7)) that a«?i) converges to

zcq in lV21 We then clearly have F (u,) and hence Uq is a solution

of the variational problem. Note that we may choose the &#x3E; 0 so that

a.e. Also the vanishing of the first variation yields the Euler-La-

grange equations for ’Uq, ie

for all ~ E 1111 (M) The function 1lq is thns a weak solution of equation (.3).
(ii) Sntoothne8s aoid positivety. We quote a result frome lliptic theory.

LEMMA. Let u be a tweak (1~1 )), non-negative, solution in M oj’ the

linear equation

. where f E Lr (31), r &#x3E; n/2. Then u is positive and bounded and we the

estimates

. The lemma may be proved in various ways. Yamabe [8] proves and uses
similar statements. These are also consequences of Moser’s work (see [3],
f5], or [7]).
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To apply the lemma to the present situation, we observe that u sati-

sfies a linear equation of form (9) with

where

Thus zcq is bounded and positive. Elliptic regularity theory [2] then guaran-
tees that uq is C°°.

To establish Yamabe’s theorem from Theorem 1 it suffices to show

that the functions uq are equibounded and hence equicontinuous. Such

is the purpose of the second part of Yamabe’s work ([8], Theorem (‘). In

his proof, however, the inequality (6.2) appears to be in error. The correct
form should be the inequality

which is insufficient for the remainder of the proof to go through. More in-

tuitively speaking, his proof of Theorem C cannot be expected to work since
it does not distinguish at all two facts related to the problem :

(i) the presence of the term - Ru in the equation and
(ii) the compactness of 11/.

Disregarding these factors, one would not egpect, uniform convergence
of a subsequence of the Uq but rather merely convergence in for

any 8 &#x3E; 0 to the trivial solution, as is the case with the problem

where 92 is a bounded domain in Euclidean n-space. See [4].

§ 3 Partial results.

We will show In the next section that a subsequence of the ug con-

verges in a certain sense to a smooth solution of equation (2). However the

convergence is not strong enough to imply the non-triviality of the resul-

ting solution. We demonstrate in this section that for a large class of ma-

nifolds, the convergence is sufficiently nice to guarantee a positive, smooth
solution of (2).

THEOREM 2. There exists a positive constant 8 (depending on gii, R)
8itch that  c, there exists cc positive, Coo solution of equation (2) with

l~ = A. Thus Yamabe’s is true under this assumption on the metric gij.
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PROOF. In the equation (8) consider a test function

The result is

and hence from (7)

Writing tv = (u,)(9+1)11 the above inequality becomes

Let us suppose A &#x3E; 0 and apply the Sobolev and Holder inequalities. We
obtain, thus

since II1tq is bounded independently of q. Hence if

for large enough q and we obtain

Clearly from (13), this inequality continues to hold 0.

Now choose #  N - 1. Then we obtain

and the uq are subsequently equibounded by the Lemma. A subsequence
therefore converges, with its derivatives, uniformly to a smooth solution of

(2), which is also positive by the Lemma. 
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Note that we have the following bound for ),,

and therefore the conclusion of Theorem 2 will hold if

.lt1

cial case we have then

COROLLARY 1. Any conzpact C°° Riemannian 1na.nifold icith 

sealar can. be defoi-med to a C°° Riemannian

of constant scalar curvature.
Corollary 1 may in fact be derived very simply from Theorem 1. For

implies A C 0. Let the maximum value ot’ say be taken

if

on at a point Then since J(P)(0 we must have

and heuce

and accordingly the uq are equibounded.
Aubin [1] has shown that if ’It 2 3 and R is a positive constant, then

gij may be topologically transformed into a metric gij with scalar curvature

R satisfying  0. Hence as a further corollary we have

COROLLARY 2. If it &#x3E; 3, a structure of’ positive, constant scalfcr curva-

tui-e niay be deforiiied topologically into one of constant negative 8calar curva.
Thus the sign of the tias no topological significane in

than t1fO 

4. A regularity Theorem.

We prove now the following result concerning weak solutions of’ equa-
tion (

THEOREM 3. Let it be a tt’’ (1t1) solution oj an eqttatioit of the (2).
Then 1i E Coo (1lI ).

("S) The mean scalar onrvature is the quantity
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PROOF. The function u satisfies

for all ~ E j~~ {M ). We choose an appropriate test function ~ similarly to a
method of J. Serrin [5]. Defiue u = sup (u, 0) and for a fixed fl &#x3E; 1 (to be

eventually chosen as in Theorem 2) ciefine the functions

where 2q = p + 1. 
-

The function G (1t) is a uniformly Lipshitz continuous function of it and
hence belongs to Likeuise Observe also that U and F vanish

for negative u and that

Let us now substitute in (17) test functions

where I is an arbitrary, non-negative C 1 (M ) function. The result is, using (7),

and hence
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Using (19) we then obtain

Let us take q now to have compact support in a coordinate patch of M.
The integrals in (21) may then be replaced by integrals over a sphere S
in En of radius R where q = r~ (x) E Co (R). We choose R so that

Then applying the Holder and Sobolev inequalities to (21) we obtain

and hence

We choose fl as in Theorem 2, ie 1 C ~ ~ (n + 2)/(n - 2) so that 2q  N.

Hence we may let in (22) to obtain the estimate

Let SR/2 denote the sphere concentric to S of radius R/2 and choose

1] = 1 on ~2~ ! i ~~ ( c 2/R on SR . Then we obtain

Replacing u by - u, we obtain (24) also for the function u and employing
a partition of unity clearly provides a global estimate

for some r ~&#x3E; ~ where C will also depend on the local LN norms of ~c. The
boundedness of it and subsequently its smoothness are now conseqnences
ot’ the Lemma. Q. F. D.
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For the functions uq defined in Section 2, we have a uniform estimate
for the norms

and hence a subsequence converges in a weak solution of (2).
Hence we have

COROLLARY 3. 1’he functions v . in yV’_~ (ll~ ) J’or any E &#x3E; 0 to
a &#x3E; solution of equation (2) 1c,ith A.

Yamabe’s tlieorein would thus follow it’ the uon triviality of the above

solution u could be demonstrated. This, of course, we have shown, in the

preceding section but only under a restriction A ~ ~ for certain positive c.

Added in proof (May 1968). Since this paper was written, ’r. Aubin has
found a proof of Yamabe’s theorem by using a completely different variation
nal approach.
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