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SOBOLEV SPACES AND MULTIDIMENSIONAL

LAGRANGE PROBLEMS OF OPTIMIZATION(*)

LAMBERTO CESARI

In [3] and [4] we have proved existence theorems for multidimensional
Lagrange problems with control variables and unilateral constraints in

a fixed bounded domain of a real Euclidean space E,,, " &#x3E; 1. These

theorems are based on known weak compactness properties of Sobolev

for I h 1, p &#x3E; 1, and (~ a fixed bounded open subset of’ .E,,. In
the present paper we shall prove a further existence theorem based on com-

pactness properties of the same Sobolev spaces with p = 1. This theorem

will extend to multidimensional Lagrange problems the well known Nagumo-
Tonelli existence theorem for free problems of the calculus of variations.

We have already extended this theorem to unidimensional Lagrange problems
in [1, 2].

In the present paper we shall also consider multidimensional Lagrange
problems in which the underlying domain is a fixed but unbounded domain

in E,,. We shall extend the previous existence theorems of [3] and [4] as

well as the existence theorem of the present paper to cases where the un-

derlying fixed domain is unbounded.

§ 1. A few remarks on weak compactness in Zp for p ~ 1.

Weak compactness theorems in spaces Lp ( C~) with p h 1 and Q’ a boun-

ded subset of E+ are well known. Here we state briefly one of these theo-
rems together with some of its extensions to cases where p = 1 or (~ is

unbounded. We denote by t the real vector variable t = ... , t’) E E,, .
If z(t), t E G, denotes a real-valued function defined on a subset Q’ of E,, by

the notation z E Zp ( Q’!, p &#x3E; 1, we shall mean, as usual, that z is measurable,
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and that z IP is L,-integrable in G. The following statement is well known-

(l.i) Let G be a measurable bounded subset of ~’,,, and Zk (t), t E G,
Ic = 1, 2 , ... , a sequence of real valued measurable fnnctions such that

for some con-

u

stants p &#x3E; 1, M :~~! 0. Then, there is a measurable function z (t), t E G, and
a subsequence I such that

for every real-valued measurable function 0 (t), t E G, with

q-1 + p-1 = 1. All integrals above are finite.

REMARK 1. This theorem is usually proved as a consequence of general
statements of Functional Analysis. Indeed, the space Lp (G) with the usual
Lp-norm is a uniformly convex normed space and hence symmetric by re-

marks of J. A. Clarkson, and consequently any strongly bounded sequence
is weakly compact by a theorem of L. Alaoglu concerning weak topologies
in normed linear spaces (see E. Rothe, Pacific Math. Journal 3, 1953,
493-499)). Nevertheless, there are direct proofs of statement (l.i) which are
based on the remark that hypothesis (#) implies that the functions Zk are

equiabsolutely integrable in G, that is, given e &#x3E; 0, there is (E) &#x3E; 0

such that g c G, H measurable, meas H C a implies

(indeed, by Holder’s inequality .

and it is enough to assume 3 = Eq 

REMARK 2. There is a statement underlying (l.i), namely that, for G
~ 

bounded, the integrability of ~~ &#x3E; 1, implies the integrability of every
power 1 ~ r C ~. This statement is not valid for G unbounded. Ac-

tually, for G unbounded, (l.i) itself is not true, as the following example
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shows. Take v = 1~ ~ = [l~ oo), p = 2, zk (t) = t-1 for 1 ~ t k, Zk (t) = 0
for k  t  + oo, k = 1, 2 , .... Then, we can take z (t} = t-I for 
and all are Zi-integrable, but z is not. For G unbounded the foll-
owing statement (l.i)’ analogous to (l.i) holds.

(l.i)’ Let G be any measurable subset of E,., and Zk (t), t E G, k =

= 1, 2 , ... , a sequence of real-valued measurable functions such that

for some constant p &#x3E; 1, M ~~- 0. Then, there is a measurable function z (t),
t E G, and a subsequence such that

for every real-valued measurable t E G, y

q-1 + p-3 = 1. All integrals above are finite.

REMARK 3. A proof of (l.i)’ can be obtained by first extending all func-
tions Zk to all of E" by taking zk (t) = 0 for G, and then by repre-
senting as the countable union of nonoverlapping bypercubes of side

length one. On each of these hypercubes (l.i) holds, and the final subseq-
uence can be obtained by the diagonal process. Statement (l.i)’ can be
completed by the remark that if, together with (a) and (#), also the following

hypothesis (y) holds : and for some

u

constant 1V1’ &#x3E; 0, then it is also true that z E L1 (G), that for all

1~~=~ and (2) holds for all 1 ~ r c p. For G unbounded the following
statement (l.i)" represents also an extension of (l.i) in a different direction.

(l.i)’’ Let G be any measurable subset of Ev, and Zk (t), t E G, k --1, 2,...,
a sequence of real-valued measurable functions such that p&#x3E; 1,
for every interval R c El, and 2~ restricted to G fl R; (~3)’ for every l~ c Ev

3. Annali della Scuola Norin. Sup. - Pisa.
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there is a constant M == M (R) such that

Then, there is a measurable function z (t), t E G, and a subsequence I
such that

for every interval I~ c .E,, and z restricted to a f1 R ;

for every R c E,, and 1 = ~ ~ p ;

for every real-valued measurable function

0 of compact support. All integrals above are finite.

REMARK 4. For p = 1 statement (l.i) is not true, as the following well
known example proves. Take v = 1, G = [0, 1], Zk (t) = k for 0 k-1 ,
Zk (t) = 0 for k-l  t~ 1, k = 1, 2 , .... Then we can take z (t) = 0 for all

I 1

I and now for we have

0 0

and (3) is not valid. For p = 1 and G bounded, statement (l.i) can be replaced
by the following statement (1.ii).

(l.ii) Let Q~ be any measurable bounded subset of E~, and Zk (t), t E G,
k = ~, 2 ~ ... , , a sequence of real-valued measurable functions such that (8)
the functions Zk are equiabsolutely integrable in G. Then there is a meas-

urable function z (t), t E G, and a subsequeuce I such that

for every measurable bounded function 0 (t), t E G. All integrals above

are finite.

REMARK 5. Since G is bounded and has, therefore, finite measure, con-
dition (6) certainly implies for some constant

M’, and thus a condition analogous to (p) of (~..i~ is superfluous here.
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PROOF OF (t.ii). For the convenience of the reader we sketch a proof
of the essentially known statement (l.ii). It is not restrictive to assume that

G is contained in the hypercube 0  ti  ~V, i = 1, ... , V, for some integer N.
Let us define each function zk in B, by taking zk (t) = 0 for G.

Then the functions Zk are L,’integrable in every interval Roc E", and

Given any interval

we shall denote the integral Of Zk in 1~ with

the usual conventions concerning signs. Let Ro be the interval [0, NJ, 0 =
For every k = 1, 2,..., let us consider

the function defined for every and

where the integral ranges over the interval [0, t]. Then, for every interval

R c RO the interval functions

can be expressed in terms of the usual differences of order y of the func.

tions Zk with respect to the 2" vertices of R, say

As a consequence of (6) the interval functions Pk (B) = dR Zk, k = 1, 2, ... ,
are equiabsolutely continuous in the usual sense, that is, given - &#x3E; 0, there
is some 6 = 8 (8) &#x3E; 0 such that, for every finite system Ri , ... , Rj of nono-
verlapping intervals R~ c I~o , j = 1, ... , J-, with Ij meas 1~~ ~ a~ we have

Note that

and that the two intervals
= (qi, where

I differ by the single interval 
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and hence

where meas Thus, given
e &#x3E; 0, whenever I t - t’ = d we have Zk (t) - Zk (t’)  NV-

(,.INv-1) = s for every k = 1, 2, .... This shows that the functions Zk (t),
k = 1, 2,..., are equicontinuous in Since Zk (0) = 0, the same

functions are also equibounded in Ro. By Ascoli’s theorem there is, there-

fore, a subsequence = 1, 2,..., with k,~ --~ oo, which is uniformly con-

vergent in Ro toward, a continuous function Z (t), t E Ro . Since Zk (t) = 0 for
every t = (tt, tv) with t E Ro and with t1 t2 ... tv = 0, we deduce that Z (t) = 0,
for the same t.

For any interval R = [a, b) c Ro we hawe

where -yj ranges over the 2~ vertices of R with the usual sign conventions
as mentioned above. --~ oo we deduce

and the convergence is uniform with respect to R c Since the interval

functions are equiabsolutely continuous in Ro , 1 then the im-

terval 4nZ has the same property.
By Banach’s, theorem there is a measurable and L,-integrable function

7 with

I 

for every R c and

This relation proves (12) for every function (P which is the characteristic

function of an interval.

Thus (12) is proved also for functions (P which are characteristic func-
tions of a finite union of nonoverlapping intervals. If E is any measurable
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set, we can approach .E in measure by means of a sequence of finite unions
of nonoverlapping intervals, and then (12) can be proved for functions 0

which are the characteristic functions of measurable sets. Then (12) is proved
also for measurable step functions (P. Finally, any measurable bounded

function 0 can be approached by means of a sequence of measurable step
functions with the same bound, and thus (12) can be proved in general.
Relation (11) is now a consequence of (12).

REMARK 6. For G unbounded, statement (l.ii) is not true, as the fol-

lowing example shows. Take v = 1, G = [0, -~- oo), xk (t) = 1, for 0 ~ t ~ k,
zk (t) = 0 for k  t ~ + oo, k = 1, 2, .... Then we can take z (t) = 1 for all
0 ~ t  --~- oo, and (10) in false, and so is (12), though (12) still holds for

every measurable bounded function 0 with compact support.
For p = 1 and G unbounded, statement (1. ii) can be replaced by the

following two statements.

(l.ii)’ The same as (l.ii) with G any measurable subset and the

additional hypothesis (E) (t) dt c M, k = 1, 2,..., and some constant M.
a

(l.ii)" The same as (l.ii) with G any measurable subset of Ev, where
(6) is replaced by the weaker hypothesis : (6’) for every interval R e E~ the
functions Zk restricted to G n R ai,e equiabsolutely integrable; and the con-
clusions (10), (11), (12) are replaced by the following weaker statements :

for every interval R c Et’ ,

for every interval R c Ev ;

for every measurable bounded function ø (t), t E G, with compact support.

§ 2. Weak compactness in Sobolev spaces It" p 1.

Weak compactness theorems in spaces Wp (G), G an open subset of

E~, p h 1, a.l’e well known [7] for G bounded. Here we summarize some

of the results, and add some remarks for the cases where p = 1 or G is

unbounded.

As we know an element z of is a real-valued function z(t),
with z E Lp (G), possessing generalized first order partial derivatives
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with

Dz denotes the v-vector i === 1,..., v), then Dp (z, G) and J~p (z, G) denote
the nonnegative numbers

We shall consider below a proof of compactness theorems in (G) for

1 in which the main tool is the following lemma.

(2.i) LEMMA. If z (t) is of (R), p ~ 1, in an hypercube R = [a, b]
of side-length h, then"

where is the mean value of z in the hypercube R.

This lemma is well known [7]. For the convenience of the reader we

shall sketch here the proof of the lemma for p = 1.

PROOF OF (2,i) FOR p = 1. We can approach z strongly in R by means
of functions of class C1. Therefore, it is enough to prove (2.i) for functions
z (t) of this class. Also, it suffices to give here the proof for v = 2, the

proof for v ~ ~ being analogous. To simplify notations we shall replace t1,
t~, ’(t, 1:2 by x, y, ~, 1] respectively, and we take R = [a, b, a + 1~,, b + h]. Since

there must be some such that

where is the double integral in the second member of (18). We shall
denote by Iy the analogous integral in terms of zy. I For all (x, y), ((, q) E R,
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we have now

By integration with respect to in [a, a + h) and with respect to y, q
in [b, b + h], and taking absolute values, we obtain

This proves (16) for p = 1 and v = 2. We have now again for any w h 2
and p = 1 by using the notation t = (t1, ..., = (T19 ..., ~’’), and assuming
(16) proved for every ,,~2,
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This proves (17) for p = 1 2.

For functions of class W~ (R), p ~ 1, in an interval B = [a, b] a weak

compactness theorem can be stated as follows.

(2.ii) Let zk (t), t E R = la, b], k = 1, 2,..., y be a sequence of real-valued

functions of class (R), p &#x3E; 1, with Dp (Zk, R) --- M, k = 1 I 2"... , and some
constant M. Then, there is a subsequence and a function z (t), t E R, of
class Wp (R) such that , 

.

for all 0 E Lq (R), q-1 + p-I = 1.
For p = 1 an analogous statement reads :

(2.iii) (t), t E R = (a-, k = 1, 2, ... , y be a sequence of real val-

ued functions of class W, (R) and with

some constant M. Let us assume that the generalized first order partial de-
rivatives Di xk, k = 1, 2, ... , i = 1,..., v, are equiabsollltely integrable in ~.

Then, there is a subsequence and a function z (t), t E R, of class (R)
such that

for every measurable bounded function 4S (t), t E B.
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For the convenience of the reader we give below the proof of (2.iii).
For any i = 1, ... ,", we shali denote the set of variables ti,..., ti-1,

... , ty and we shall often write (ti , ti) for t and dti for dtl... dti-I dti+1... dt,.
We shall say that a property holds for almost all R = [a, b] c G provided the
property holds for all R = [a, b] with (a, b) E G x G with exception at most
of a set of points (a, b) E G x G of measure zero (in Ev X E,).,

The generalized derivatives Di z (t) = 8z/8ti, i = 1, ..., v, of a function

z (t), t E G, of class (G) can be characterized a. e. by the following im-

portant property : For almost all 2~ = (a, b] c G, a = (ai,..., b = (bl,..., by),
we have

PROOF OF (2.iii). We may well assume that R is the interval [0, b], or
0 c ti ~ bi, i = 1, ... , v. We can extend each function in the interval

2013 ~ :::;: ti = 1, ... , v) by evenness in t1, ... , t"’, and then we can
extend each function in the whole of 2~ by periodicity of period 2bi in

= 1, ... , v. The functions zk are now defined in Ev and are of class W1!
in each fixed interval Ro c E.. The same functions M,

xo
for a constant 11lo which does, not depend on k but may depend on Ro, and
the derivatives are equiabsolutely integrable in Ro . We can take for

an hypercube 0  ti ~ A, i = 1, ... , v, of side length A &#x3E; 0, Ro contai-

ning R in its interior. We shall prove (2.iii) for the hypercube * As men-

tioned in Remark 5 of § 1, from the equiabsolute integrability of the deriv-
atives in I~0 we deduce that there is some constant M’ such that

Here Jf’ does not depend on k but may depend on Ro ®
For every integer r = 0, 1, 2, ... , let us consider the subdivision of

Ro into 2vr hypercubes = 1, ... , Jyr, of side length 2-r A, that we ob-
tain by dividing Ro by means of the hyperplanes ti = a2-r A, a = 1, ... , I
2r, i = I, ... , v, For every r let us denote by I the step function
that we obtain by replacing Zk (t) in Rr’ by means of the mean value (zk)R,,
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of zx in For every r and for every R = Rrj we have

where the last member does not depend on k but depends on r. Thus, for

every r, the sequence zkr (to, t E Ro , k = 1, 2,..., I is bounded in Ro.
For r = 0, (t), t E I k = 1, 2,..., is a bounded sequence of constants,

tnd thus there is a convergent subsequence, say still ZkO (t), t E Ro, k = 1,
... We shall denote by zo (t), t E R~ , the limit function which is constant
)n Ro. 0 For r = 1 the functions Zkl (t), t E 7 k = 17 2,..., are constant on
each of the 2y subintervals = 1,..., 2v, and thus there is a conver-

jent snhsequence, say still (t), t E k = 1, 2,.... shall denote by
z2 (t), t E Ro, the limit function which is constant on each of the 2" inter-

vals ~jj~==l~...y2~ By repeating this process of successive extractions

we obtain, for every r = 0, 1, 2,..., a subsequence, say still zkr (t), t E Ro ,
k = 1, 2,..., which is convergent as k -+ oo toward a function Ro, I
and all Zkr and zr are constant on each of the 2yr i ntervals Rrj, j = 1, 2,..., 2,r.
By the diagonal process we obtain now a subsequence of integers [k8J
such that Zk ’(t) --~ Zr (t) as s -+ oo for all t E Ro and every r = 0, 1, 2,.... 0

By a suitable reindexing we can always denote by [kJ the new sequence
so that we have

for all t E Ro and every r = 0, 1, 2, ....
We shall now apply (17) of’ (2.i) to each function aiid eaell

interval Rrj , j --- 1, ... , 2vr. The mean values are now the values talien by
the step functions (t) on each and hence

and, by summation over j = 1,..., 2yr, also

For all r, 8, r we have now from (20) and (23),
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For r, s fixed, r  8, we have zkr --&#x3E; zr, z, as k -+ 00, uniformly in Ro
since, rand 8 being fixed, all functions Zkr are constant on each Brj and
all Zk, are constant on each Thus, as k -+ from (23) we deduce

Also, for every r, we can determine an index k such that

Relation (25) shows that the sequence Zr (t), t E Ro , I r = 0, 1, 2,..., conver-
ges in L, (Ro) toward a function z (t), t E Ro , I of class L, (Ro)’ and that

By (23), (26), and (27), we deduce

that is, the sequence zkr (t), t E Ro , r = 1, 2,..., converges in L, (Ro) toward
a function Y of class £1 (Ro). Thus (19) of (2. iii) is proved.

Since the derivatives (t), t E Ro , r = 1, 2, ..., i = 17 ... IV, are equi-
absolutely integrable in Ro , we can apply (1. ii) successively v times, and
extract a new subsequence, which we still indicate for the sake of sim-

plicity, so that, together with relations (19), also the v relations hold

for some suitable functions t E of class L1 (Ro), and for all measur-
able bounded functions 0 (t), t E Ro. We have only to prove that these func-
tions pi are the generalized derivatives of the function x determined above.
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For every we know already that

for almost all intervals R = [a, bJ a = ... , 
= (bi , ... , by).

Then it is also true that for almost all intervals R = [a, b~ c R, rela-
tions (29) holds for all r = 0, 1, 2, ... , and all i = 1,..., v. Note that

where R, = [0 ~ A, i = 1, ... , v], and we can write this relation in

the form

where [0, ~1’~ denotes the (v - 1 )-dim. interval 0 ~ t + i,.j = l, ... , v.
This implies that, for almost all ti of the 1-dim. interval 0 ~ tl --- ¿-1, we have

Hence, for all bit c [0, A’] and almost all tt, 0 c t~ ~ A, we have

Since

we conclude that

for all [ai, aud almost all ti, 0 ~ A. Thus, for almost all [a, b] c Ro
the first member of (29) converges, as r --&#x3E; 00, toward the first member of
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formula (30) below, and the second member of (29) toward the second . mem -
ber of (30) below. Thus, by (29), as r -~ oo, we deduce

for almost all [a, b] c R, , i = 1, ... , v. This proves that Pi (t) = Di z (t) almost
everywhere in Ro, i = 1,..., v. Statement (2. iii) is thereby proved.

As in the previous papers [3,4] we shall assume for G and its boundary
8 = a G a certain amount of regularity, and we shall say that a bounded open
set Q’ is of class Kol, l¿l. To be precise, we may assume that K=cl G=G U S

the union of finitely many nonoverlapping parts K,,..., KJ, each Kj (R)
being the 1 - 1 image of a rectangle R under a transformation Tj which is

continuous with its inverse T-1 and has continuous partial derivatives up to
the order l, j = 1, ... , J . (A number of different assumptions can be made

(See, for instance, S. L. Sobolev [8J, Chap. I, § 10, p. 72, Remark). The fur-
ther usual convention shall be made that the boundary of G is the union
of non overlapping parts Â.s, each 18 being the image under Tj of one face
h of .I~, or A. = for only one j.

If G is unbounded, we shall say that G is of class Kol if its closure
J( = cl G is the countable union of nonoverlapping parts ... , each

as before, and with the further assumptions that each set

V N = UN cl GN is the ,closure of an open bounded set GN of class 
that every interval R of Ev has a non-empty intersection with at most fi-

nitely many and that G = U Gly , GN c that is, G is the union

of the bounded open subsets GN all of class ·

Obviously, there are oo-many decompositions as described of sets G of
class bounded or unbounded. Any such decomposition will be called

a typical t ’representation of the set G of class Kol .
Statements (2. ii) and (2. iii) have now the following extensions to open

sets G.

(~. iv) Let zk (t), t E G, k = 1, 2,..., be a sequence of functions of class

W~ ( G), p ~ 1, in a bounded open set G with Dv (zk , G)!!~~M, k= 1, 2,..., for some
constant M. Then, there is a subsequence and a function z (t), t E G, of
class such that 

,.

for every and every interval .
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class then we have also

for every ø E Lq ( C~ ).
(2. v) Let xk (t), t E = 1, 2, ..., be a sequence of functions of class

((G) in a bounded open set (, = 1 2, ... , and some1V 1 (G) in a bounded open set G, 
with 

G 
(I Zk, i dt  M, k = 1, 2, ... , and some

. 

a 
..

constant M, and whose generalized first order partial derivatives Di z" ,
i = 1,..., v, k = 1, 2,..., are equiabsolutely integrable in G. Then, there is

a subsequence J and a function of class such that

for every bounded measurable function 0 (t), t E R, and every interval Rea.
If (~’ is of class 7 then we have also

for every bounded measurable function 0 (t), t E G.

REMARK 7. For G unbounded, (2.iv) and (2.v) are not true, as the

following example shows. Take zk (t) = 0 for all t E G == ~ with exception
of the solid sphere of radius one and center tk = (k, ..., Ie), where ==

, k= 1,2,.... Then where c, is a

constant wich depends only on p, and the derivatives are equiabsolu-
. 

tely integrable in G, but for where Cp &#x3E; 0
c

is a constant which depends on p only.
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For C~ unbounded (2.iv) is still valid under the same hypotheses, pro-
vided in the conclusion the strong convergence of zk, in the whole of G is

replaced by 
- -

and we assume has compact support.
Analogously, for Q’ unbounded (2.v) is still valid under the additional

for all i=I,...,,. and some constant M’,
?

provided in the conclusion the strong convergence of in the whole of G

is replaced by

and we assume that 0 has compact support. 
’

For G unbounded, both theorems (2.iv) and (2.v) can be stated in

weaker forms that can be deduced from the analogous theorems of § 1. To

state these new theorems we shall always think of the unbounded open set
G as the union of bounded open subsets, or G = U c such

that for any interval R c G we have also R c GN for some N. If 0 is of

class then we shall assume that the sets GN are the open bounded

subsets of G of class Koi described above relatively to any typical repre-
sentation of the open set G of class 

(2. iv)’ Let zx (t), t E G, k = 1, 2,..., 7 be a sequence of measurable func-
tions in the unbounded open set G c E,, , G = U GN as above. Assume that

I ~

for every N = l, 2, ... , we have (GN), D (z, GN) &#x3E; 1 ? k = 1, 2,...,
for some constant MN. Then, there is a subsequence and a function

z (t), t E G, measurable in G, with z E W) (GN) for every N, such that
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for every interval R c G, and every function 0 (t), t E R, 0 E Lq (R), q-1 -f-
p-1 = 1. If Q is of class Koi and G = U GN, GN c is any typical
representation of G, then we have also

for every N = 1, 2, ..., and for every function ø (t), t E G, W E Lq (0), q-1 +
-,- p-1 = 1, 4P of compact support.

Let G, lc = 1, 2, ... , be a sequence of measurable func-
tions in the unbounded open set U GN as above. Assume that

for every N = 1, 2, ... , we have for

some constant Assume that, for every 2V the derivatives 

2,..., 9 V7 k = 1, 2,..., , are equiabsolutely integrable in G x. Then, there is a

subsequence and a function z (t), t E G, measurable in G, witli z E (GN)
for every N, and such that

for every interval 1~ e G, and every bounded measurable function 0 (t),
t E R. If G is of class Koi , and G = u GN, 6’y c is any typical rep-
resentation of G, then we have also

for every N = 1, 2,..., and for every bounded measurable function ø (t),

~ 

t E G, W of compact support.

REMARK 8. For functions z (t), t E G, of any Sobolev space 
all generalized derivatives of all orders lal,
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o :::;;: I a c t, exist a. e. in G. Here a = (a1 , ... , «v) denotes an arbitrary
system of integers 0, with = ai +... + a,, . In addition Da z E .Lp (G)
for all a with 0 C C l, and each derivative D" z of order 0 ~ cc ~ t - 1
possesses boundary values ø: on the boundary of G, provided G
be, say, of class KOI. I f Dh z (t) denotes the vector of all generalized partial
derivatives of all orders I =h, ,..., (%t’), 1,..., 1, (so that, for exam-

1 -1
ple, Doz=z is a 1-vector), then let Dp (z, G) and Dlp (z, G) denote the nonnega-
tive numbers 

°

The compactness theorems above in Sobolev spaces W~ (Q’) can be ex-
tended without difficulties to Sobolev spaces (G), I h 1. All that is needed
is to assure that the derivatives of maximum order -I)Q z (t), t E G, a ] = 1,
are equiabsolutely integrable, and that the other derivatives Da z (t), tEa,
of lower orders, 0 c ~ [ a ~ l - 1 i possess an integral bound.

§ 3 Preliminary notations for multidimensional Lagrange problems.

Let a be an open subset of the t-space B, , t = (ti, ... , let x = (xi, ...,
xn) denote a vector variable in En, and u = (ul , ... , um) a vector variable

in Em. We shall denote the x~ , i = 1, ... , n~ as state variables, and the
°u~ , j = 1, ... , m, as control variables. As usual, we denote by clG and by

the closure and the boundary of (1. We also denote by co H the
convex hull of a set H, and thus cl co H is the closure of the convex bull of

H. For every let A(t) be a given nonempty subset of En~~ and let A
be the set of all (t, x) with For every (t, x) E A let 1rT (t, x)
be a subset of and let ~f be the set of all (t, x, u) with (t, x) E d.,
u E U (t, x). The set M defined above is a subset of B, X En X Em and its

projection on Ev X En is A. We assume Q’ to be of class Kol for some l &#x3E; 1.
We shall consider vector functions x (t) = ..., xn), u (t) = (u1 ~ ... , 

t E (~, and, by analogy with the case v = 1, we may denote x (t) as a tra-

jectory, and u (t) as a control function, or strategy. For every i = 1,..., n,
we shall denote by a given finite system of nonnegative integral indices

with I 0153 I = at + ... + 0153" . We shall assume

each component xi (t) of x to be locally Lpi integrable in G and to

possess the generalized partial derivatives 7 all locally

4. della scuota Sup.. Pisa.
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Lps integrable in G for certain pi &#x3E; 1. In § 5 we shall assume all 1,
in § 6 we may allow some pi to be - 1. We shall assume that each com-

ponent ul (t) of u is measurable in G.
Let N denote the total number of indices a contained in the n systems
i = 1,..., n, and let f (t, x, u) = ( fia) denote an N-vector function whose

components are real-valued functions fia (t, x, u) defined on M. We shall

consider the system of N partial differential equations in G :

or briefly

We are interested in pairs x, it of vector functions x (t), u (t), t E G, as
above, satisfying the constraints

which are often denoted as unilateral constraints, and the system of partial
differential equations

or in short

Given 8&#x3E;0 and a point we shall mean by the closed neigh-
borhood Na (to , of radius d of (to, xo) in A the set of all (t, x) E A at a
distance ~ ~ from xo). Also, we shall denote by U, the set of all points
u E at a distance ~ ~ from a given set U. We shall say that U (t, x) is

metrically upper semicontinuons at the point (to , xo) E A provided that, given
6 &#x3E; 0, there is some 15 = 15 s) &#x3E; 0 such that U (t, x) c [ U (to , for

all (t, x) E N8 (to , xo). We shall say that U (t, x) is metrically upper semicon-
tinuous in A provided U (t, x) has this property at every point (to , xo) E A.

. This concept of metric upper semicontinuity is most often used when the

sets U (t, x) are compact and all contained in a bounded part of In

general, the sets x) are only closed and not compact, and in these cases
it has been found that analogous concepts of upper semicontinuity, more
topological in character, are needed. We shall denote these properties as
properties ( U ) and ( f~ ).

First, given 6 &#x3E; 0 and a point (to , x~) E A, let us denote by U (to , xo ; 6)
the set
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where U ranges over all (t, x) E Na (t , xo). We shall say that U (t, x) satisfies
property ( U) at a point provided .

that is,

We shall say that U (t, x) satisfies property (U) in A if satisfies

property (U) at every point A set U (t, x) satisfying property (U)
is necessarily closed as the intersection of closed sets. Property ( U ) is the

so-called property of upper semicontinuity used by C. Kuratowski, E. Mi-
chael, and G. Choquet (see [4] for references).

Below we shall also consider the sets

and other analogous ones, which we shall introduce as needed. We shall *
say that such a set Q (t, x) satisfies property (Q) at a point (tor xo) E A provided

that is,

We shall say that Q (t, x) satisfies property (Q) in A if Q (t, x) satisfies
property (Q) at every point (to , xo) E A. A set Q (t, x) satisfying property (Q)
is necessarily closed and convex as the intersection of closed and convex

subsets of 

~ 4. Boundary conditions and the cost functional.

Beside the N-vector f° u) = ( fi«), 7 we shall consider a scalar function

0 (t, x, u) defined on M, and we shall denote by x, u) the (11~’ + I)-vector
function .7(t, x, u) = fia), or .7= (, fo , /)? defined on M. Concerning the
n-vector function x (t) _ (xi, ... , x’) we shall require that each function xi (t),

I.

t E G, belongs to a Sobolev .class for given li and pi, 1::;;: 17
i = 1, ... , 1 n. By force of Sobolev’s imbedding theorems [8], as well

as by direct arguments, each function xi and each of its derivatives 2~ xi

for which 0 I li - 1 has boundary values Oi a defined almost every-

where on the OG of G, each Oi a being of class Lpi on S.
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We shall now require a set (B) of boundary conditions involving the boun-

dary values of the functions xi and of their generalized partial derivatives

Da Xi, 0 ~ I 0153 - 1. On these boundary conditions (B) we assume the

following closure property : tE G, k=1, 2,...,
are vector functions whose components xi, xk belong to the Sobolev class

if strongly in Lpi (G) for every P with

0 -1, if (t) --~ (t) as k ---~ 00 weakly in Lpi (G) for every
fl with I P = li, and if the boundary values ~ka of xk (t), i = 1~... n, on
~S = a G satisfy boundary conditions (B), then the boundary values ~a of

xi (t), i = 1~... n, = a G satisfy conditions (B).
For G unbounded but of class goa in a given representation G = U GN,

GN c (see § 2) we shall replace by the analogous condition, say

still (P~), where we assume only xi, xx E for every N, and we as-

sume that as k - oo strongly in for each N and

0 - 1, and that 2013~ as k -~ 00 weakly in J;Pi (GN) for
each N .--- li, i = 1, ... , y n.

For instance, if the boundary conditions (B) are defined by requiring
that some of the boundary values coincide with preassigned continuous func~
tions ~a on certain parts of then, by force of Sobolev’s imbedding
theorems [8], as well as by direct argument, we know that property (P~)
is valid.

A pair x (t) = ..., (t) = (ut, ..., um), t E 0, with xi E (G) (xi E

for every N if G is unbounded), ui measurable in G, satisfying
(t, x (t)) E A, u (t) E U ( t, x (t)), Da x2 (t) = Jia (t, u (t)), a E I«I; , i = 1, ... , n, a. e.

in G, the boundary conditions (B), is said to be

admissible. A class S~ of admissible pairs is said to be complete if, for any
sequence xx, uk, k = ~, 2, ... of pairs all in D, and any other admissible

u such that xk -~ x in the sense described under (P~) (for 0 boun-
ded or G~ unbounded), then the pair x, u belongs to D. The class of all

admissible pairs is obviously complete.
The Lebesgue integral

where x, u is any admissible pair, and where dt = dt1 dt2 ... dtv, is said to

be the cost functional or performance index.
We shall seek the minimum of I [x, u] in classes 0 as above. Problems

of maximum of I are equivalent to problems of minimum of -1, and corres-
ponding existence theorems for a maximum can be obtained by existence
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theorems for a minimum by changing fo into - fo , that is, changing the

sense of the relative inequalities.
We shall often need below a second set of finite systems n7

of indices fl = ..., ~8,,) , 0 and these systems may be

different from the systems As usual then, fflli and shall

denote the union and the intersection of the two systems and 

§ 5. Existence theorems for multidimensional Lagrange problems in So-
bolev classes p &#x3E; 1.

EXISTENCE THEOREM 1. Let Q’ be bounded, open and of class Koll let A
be compact, let U (t, x) be nonempty and compact for every (t, x) E A, and let

U(t, x) be metrically upper semicontinuous on A. Let f (t, x, i=

1, ... , n) _ ( fo , f ) be continuous on M, and assume that the set 

with z° ~ f° (t, x, u), z = f (t, x, u) , u E ZI (t, x), is a

convex subset of for every (t, x) E A. Let (B) be a system of boundary
conditions satisfying property (P1) . Let o be a nonempty complete class of
admissible pairs x (t) = (xi, ... , xn), u (t) _ (ui, ..., um), t E G, xi E Wpi {G), pi &#x3E; 1,
1 t, i = 17 ... ) n, measurable, j = 1,..., m, satisfying given inequalities

where the Nip are given constants, and the given finite systems of indices

with Assume that and (t) 
G

for some constants LiY (which may depend on Lo, Nip, (B), Q, G)
and all systems y = ("1 , ... , y,), 0 c ~ y ~ c li, which are not in U y

i = 1,... , n. Then, the cost functional I [x, u] possesses an absolute minimum
in ~.

Now let G be unbounded, open, and of class Kol, and let G = U GN,
7 be a typical representation of G. Let A be closed now instead of

compact, but assume that for every closed interval R of Ev the subset of

all (t, x) E A with is compact. Let us assume that (*) fo (t, x, it) ~&#x3E;

&#x3E; - 1jJ (t) for all (t, x, u) E M, where 1p (t) &#x3E; 0 is a given L-integrable function
defined on G. This condition is certainly satisfied if, say, fo &#x3E; 0 on M.

Since 92 is not empty and f, (t, x (t), a (t)) is by hypothesis L-integrable on G
for every pair of the class 0, then hypothesis (*) assures that the

iufimium i of iii ~~ is finite. Let m assume that for every pair x, u
?
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of the class S~ we have

and that there are constants ~i t such that

for every admissible pair x, u of the class S~. Then Theorem 1 still holds,
and for the minimizing admissible pairs x, u of the class Q of which we as-
sert the existence (at least one) we know that (34) and (35) hold.

Again, assume that G is unbounded, open, and of class and let

G = U c GN§, be a typical representation of G. Let us assume

again that A is closed but that for every closed interval R c E+ the set

of all (t, x) E A with t E R fl is compact, and let us assume that condition

(*) is satisfied. Theorem 1 holds also in a particularly weak form. Indeed, it
is enough to know that the following conditions are fulfilled : For every pair
x, u of the class S~ we have xi E (GN), N = 1, 2, ... , i = 1, ... , n; re-

lations (33) hold in the weak form

where the are given constants which may depend on N ; (x, 1t) E Q,
I [x, ul ~ Lo implies

for every N and = (11 , ... , 7 Y,,), 0 ~ ] y which are not in laii U 
i = 1,.. , n - here the Liy (.V) are constants which may depend on N, L~ ,

(B), G, 0. Under these weak assumptions, theorem 1 still holds,
and for the miminizing admissible pairs (x, u) of the class of which we

assert the existence we know only that

for every N, where the are constants which may depend on ~’.

REMARK 9. It is not restrictive to consider only those pairs (x, u) of Q
satisfying a further constraint of the provided Lo is large
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enough so that Q so reduced is not empty. The minimizing pair will necessarily
satisfy this further constraint. This remark holds also for theorems 2, 3;
and 4, and will not be repeated. Theorem 1 for G bounded was proved in
our previous paper [3]. For Q’ unbounded the proof is the same with the

use of the remarks on compactness theorems in §§ 1 and 2 of the pre-
sent paper.

EXISTENCE THEOREM 2. Let G be bounded, open, and of class K01,
let A be closed, let U (t, x) be nonempty, closed, and satisfying property ( U )
in A. Let .7(t, x, u) = ( fp, fia , 0153 E ~«~i, i = 1, ..., n) = be continuous

on Jf, and assume that the = ¡(t, .x, U (t, x)) is closed,
convex, and satisfies property ( Q) in A. Let (B) be a system of boundary
conditions satisfying property (Pl). be a nonempty, complete class of

ii
admissible pairs x (t) = (.x1 , ... , x’), 
pi &#x3E; 1, 1  Li  t, i === 1 , ... , n, uj measurable, j = 1 , ... , m, satisfying given
inequalities

where Po &#x3E; 1, No ~ 0 are given constants, and is a given
finite system of indices fl = (fl, , ... , with 0 c  (  li. Assume that

(x, 1t) E Q and dt  Liy for some constants
o

(which ma,y depend on Lo , Nio, (B), Ql G), and all systems F = 9 ... r,,),
o c ~ y which are not in i = 1, ... , it. Then, the cost functional
I [x, it] possesses an absolute minimum in S~.

If G is unbounded, open, and of class and G = U GN9 GN C 
is a typical representation of G, let us assume that (*) fo (t, x, ~c) ~ - ~ (t)
for all (t, x, it) where 1p (t) ~ 0 is a given L-integrable function on G.

If we know that for every pair x, 2c of the class we have

and that there are constants ~T ~ , No , No such that
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for every pair x, u of the class 92, then theorem 2 still holds as above, and
for the minimizing admissible pairs x, u of the class 0 of which we assert

the existence we know that (37), (38), (39) hold.

For G unbounded, open, and of class = U GN, c 

typical representation of G, Theorem 2 holds also in a particular weak

form. Indeed, it is enough to know that the following hypotheses are satis-
fied : the condition (*) holds; for every pair x, u of the class 0 we have

xi E (GN), i =1, ... , u, for every N ; relations (36) hold in the weak

form

where No is a constant and Nig (N), No (N) are given constants which may
depend on N; (x, u) E Q, I [x, u] implies

for all N=1 , 2,... and all y, I y I which are not in =1,..,, n -
here the Liy (N) are constants which may depend on N as well as Lo,

(B), No (N), G, Q as above). Under these weak assumptions, Theo-
rem 2 still holds, and for the minimizing admissible pairs x, u of the class
S~ of which we assert the existence we know only that

for every N = ~ , 2, ..., y where the are constants which may depend on N.
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EXISTENCE THEOREM 3. Let G be bounded, open, and of class let

A be closed, let U (t, x) be nonempty, closed, and satisfying property ( U)
in A. Let l(t, x, u) = (/0 0153 E {0153}¡, i = 1,..., 11,) = ( f°, f ) be continuous

on M, and let us assume that the set Q (t, x) of all z = (ZO, z) E with

z = f (t, x, u), u E U (t, x), is a convex closed subset 

satisfying property (Q) in A. Also, let us assume that fo (t, x, u) ~ - ~fo for
all (t, x, tt) E M and some constant o. Let (B) be a system of boundary
conditions satisfying property Let Q be a nonempty complete class of
admissible pairs x (t) = ... , Xn), tt (t) = (u1 , ... , t E G, xi E 

pi &#x3E; 1, 1 ~ -_-_ 1 ~ ..., n, uj measurable, j = 1 , ... , 1)1" satisfying
given inequalities

where the are given constants, and the (PJi are given finite systems of indices
fl = ... , with 0 ~ ~ ~ Assume that x, u E Q, I (x, u~ ~ 

,

implies / I pi dt --- Li, for some constant Li, (which may depend on
G

Lo, Nip, (B), ,~2, G) and all systems y = (y1 , ... , y~ ), 0 C li which are
not in i = 1, ... , n. Then, the cost functional possesses an ab-

solute minimun in S~.

If G is unbounded, open, of class Kol, and G = U GN I is

a typical representation of G, if we know that f4 Ct, x, u) ~ - y~ (t) where

y~ (t) b 0 is of class L~ (G), and if we know that for every pair x, u of the
class Q we have

and that there are constants such that

for every admissible pair x, zc of the class D, then theorem 1 still holds as

above, and for the minimizing admissible pair x, u of the class of which
we assert the existence we know that (41) and (42) hold.

For G unbounded, open, and of class = U GN c a

typical representation of G, Theorem 3 holds also in a particularly weak

form. Incleed, it is enough to know that the following hypotheses are satis-
fied : fo (t, x, M) ¿ - 1j1 (t) where ip (t) ~ 0 is of class L, (G) ; for each pair x, u
of the class P we have xi E i = 1 , ... , n, for every N ; the relations
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(40) hold in the weak form

where Nip (N) are given constants which may depend on
I [x, MJ ~ Lo , implies

for all N = 1, 2,... and all y, 0  y  , which are not in i = 1,.., n -
here the LiY (N) are constants which may depend on N as well as L,,

(N), (Bi, G, S~ as above. Under these weak assumptions Theorem :3

still holds, and for the minimizing admissible pairs x, u of the class of

which we assert the existence we know only that

for every N = l, 2, ... , where the are constants which may depend
on N.

REMARK 10. Theorems 2 and 3 for C~ bounded have been proved in our
previous paper [4]. For Q’ unbounded the proofs are the same with the use
of the remarks on compactness of §§ 1 and 2 of the present paper.

§ 6. An existence theorem for multidimensional Lagrange problems in

Sobolev classes W~ , p ~ 1.

EXtSTENdE THEOREM 4. Let G be bounded, open, and of class let

A be closed, let U (t, x) be nonempty, closed, and satisfying property (U)
in A. Let f’ (t, x, u) = i = 1 , ... , n) = ( f° , f ) be continuous

N
on M, and let us assume that the of all z = (z°, z) E with

z = f (t, x, u), u E U (t, x), is a convex closed subset of 

satisfying property (~) in A. Also, let us assume that (a) there is a continuous
scalar function 0 (~), 0 c ~  + and two constants C, D ~ 0 such that

’ ø (~)/~ - + oo as ~ - oo, and 10 (t, x, u) h W (1 ] u 1), 1 f (t, x, u) I c (,7 + D I u I
for all (t, x, u) E M. Let (B) be a system of boundary conditions satisfying
property (P1). Let S~ be a nonempty complete class of admissible pairs
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u~ measurable, j = 1,..., m, satisfying given inequalities

where the Nip are given constants, and the (fl)i are given finite systems of in-
dices P == with 0  li. Assume that (x, u) E D, I [x, im-

plies (1) for some constants Liy (which may depend on

e

Lo, I Nip, I (B), Q, G) and all systems y = (1’t , ... , Yy)~ ~ ~ ~ I y I ~ li - 1, which
are not in u i = 1 ... , ~ (2) DYxi(t), t E G, are eqaiabsolutely inte-
grable in G, i = 1 , ... , ~a, for all finite systems 7’ _ (y1 ~ ... , 1’,,) with y 
which are not already in i (if any). Then, the cost functional I [x, u] pos-
sesses an absolute minimum in ,~.

If G is unbounded, open, of class gol, and G = U GN, GN c is

a typical representation of G, if we know that (i ) f o (t, x, u) ¿ - 1p (t) for

all is of class L1 (G) ; (ii) for every N there is

a continuous function ON (~), 0 ~ ~  + oo, and two constants CN, DN ~ 0
such that ON (~)/~ as ~ -~ ~- oo, and fo (t, x, u) ),

I for all (t, x, u) E M with if we know that

for every pair (x, u) of the class Q we have

and that there are constants 111,’ such that

for every admissible pair x, it of the class S2, and (x, u) E S~, I [x, it] ~ L,
implies (2) as above, then Theorem 4 still holds as above, and for the mini-
mizing admissible pairs x, it of the class S~ of which we assert the existence
we know that (44) and (45) hold.

For G unbounded, open, and of the class Kol, G = U GN c GN+1,
a typical representation of G, Theorem 4 holds also in a particulary weak
form. Indeed, it is enough to know that the following hypotheses are satis-
fied : (i), (ii) above hold ; for each pair x, u of the class [J we ha,ve xi (GN ,
i = 1, ... , n, for every A’ ; relations (43) hold in the weak form
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where are given constants which may depend on N; [x, uJcLo
implies for every N, where are constants

a~,

(which may depend on N, Lo, (B), Q, G), and where y = (y1 , ,..., Y,,)
in any systems with 0 c ~ - 1, which is not in U ~/~~i, i = 1,..., n ;
(2’) for every N, are equiabsolutely integrable in GN, for

i=l .... I n, and all finite systems y = (y, , ... , y,,) with I i’ I = li which are not
in (if any). Then, Theorem 4 still holds, and for the minimizing admis-
sible pair x, u of the class of which we assert the existence we know only
that n:i (Xi, GN) = 1 , ... , n, for every N = 1, 2,..., 1 where the 3fl,v
are constants which may depend on N.

PROOF. First let us consider the case Q’ bounded. We have 0 (~) ~ 2013 It/O
for some number Mo ~ 0, hence 0 (~) -f-~lo ~ 0 for all 0, and fo (t, x, u) +
-~- Mo ~ 0 for all (t, x, u) E M. Therefore, for every pair x, u in D we have

where = meas G.

Let where Inf is taken for all I pairs (x, u) E 0. Then i

is finite.

Let Xk (t), Uk (t), t E G, ~==1,2~..~ be a, sequence of pairs all in S2 such
that as k -~ oo. We may assume

Let us prove that the functions ut (t), na xi (t), a E i = 1 , ..., n,
j =1, ... , 1 in, are equiabsolutely integrable in G. We shall use a well known
argument. Let e ] 0 be any given number, and let a = 2-1 (| G|M0 +
+ I i I + 1)-1, where = meas G.

Let N &#x3E; 0 be a number such for Let

E be any measurable subset of G with meas E ; ~ = ~/22BB Let .E1 be the
subset of all t E E where is finite and and let 

Then (t)  N in and 0 (1 I ¿ 1 /a, or  a.e.

in E2 . Hence
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This proves that the vector functions Uk (t), t E G, k = 1, 2, ... , are equi-
absolutely integrable. From here we deduce

and this proves the equiabsolute integrability of the functions 

« E ~a~i, $ = 1,...~ ~. Thus, all functions = 1, 2,..., a E i = 1,..., n,
are equiabsolutely integrable in 6~.

Since I G = meas G is finite, we conclude that the integrals

admit of finite bounds which are independent of Ic. By the hypotheses
of the theorem we conclude that all partial derivatives with I ex I = li,
i = ~, ... , n, are equiabsolutely integrable in G, and that for all derivatives
Da = 1,..., n, with 0 - 1, there are bounds

By application of the compactness theorems of § 2, we conclude that there

are functions xi with i = 1, ... , n, and a suitable subsequence
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such that in the sense described under property (P~). The proof,
from here on is identical with the one we have given in our previous
paper [4].

unbounded the proof is the same with use of the remarks on

compactness of §§ 1 and 2 of the present paper.
In theorem 4 we have taken all p~ = 1, i = 1, ..., n. Combining the

hypotheses and the arguments of theorems 3 and 4 it is possible to set up
existence theorems with some exponents Pi = 1 and other exponents 1,
i = 1, ... , n.

REMARK 11. Property ( Q) for the sets Q (t, x) of existence theorem 4 is a
consequence of growth condition (a) of the same theorem (or of (ii) if G is

unbounded). Namely, property (l~) for G bounded can be shown to be a

consequence of the continuity hypothesis, of property (U) for U (t, x), and

of the following milder growth condition : (fl) Given e &#x3E; 0, there is a number
such that for all (t, x, u) E M

with ~ I u ~ u~ . For Q~ unbounded it is enough to know that a property (fl)
holds for every subset GN . Furthermore, the continuity hypothesis of fo on Ai
can be replaced by lower semicontinuity on AI. [L. Cesari, Existence theo-
rems for optimal controls of the Mayer type, SIAM J. Control, 6, no. 4,
1968].

REMARK 12. Growth condition (a) of existence theorem 4 for Q~ bounded

can be replaced by the following milder one : (e) 0, there is a

nonnegative L-integrable function V’E (t)7 t E G, which may depend on s, such

that (t, x, u) for all (t, x, u) E M. Indeed, first note

that (e) implies, for e = 1, 0 C ~1 (t) + fo (t, x, u) for all (t, x~ u) E M, with

(t) ~ 0, ’ and we shall denote by in the constant in = ~~ (t) dt  -~- oo .
’G

Then, given any e &#x3E; 0, take o -= 2-1 t ( ~ i ; + nt + 1)"~ , and let E denote

any measurable subset of G. For a E i = 1, ... , n, we have
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There is, therefore, some 6 &#x3E; 0 such that meas C ~ implies

and

We have proved the equiabsolute integrability in G of all derivatives

a E i = 1,..., ~ , k = 1, 2, .... For a unbounded and the weak

form of existence theorem 4 it is enough to know that a property (s) holds
in each set G N .

§ 7. Weak solutions.

In many cases the or Q, are not convex, and examples show
that an optimal solution may well fail to exist. It has been proposed, then,
to replace the differential system and functional

by a new analogous system of differential equations and a new functional, say,

More precisely, we consider with R. V. Gamkrelidze [5] the differential

system and functional defined by

where F ranges from 1 to p, where the new control variable v is now an

(my + ft).vector, say u(1),..., y It ,..., Å.t , each being an m-vector subject
to the usaal constraint E U {t, x), j = 1,..., It, and each Aj being a scalar
satisfying lj&#x3E;0; j=1,..., It, If we denote by A the ft-vector A, _ (A1 ,..., 1,.)
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and by the simplex defined by 0, j = 1, ... , ~c , Z).j = 1, then for

the new control variable v = (uO~ , ... , ~.) we have the constraint v E V =
- Uf-t X F, where U ~ = 1/ x ... X U (,u times). We shall then require that
all 1 are measurable functions on G, and tbat the new space variables

i = 1, ... , n, belong to the same Sobolev’s spaces as before, xi E 

i= 

Thus, there are still n state variables xi as before, but they satisfy a
more complex system of partial differential equations, and an analogous
change has been made in the functional.

The variables lj can be thought of as probability distributions, and cor-
respondingly the new (weak, or generalized) solutions can be thought of as
generated by a probability distribution of usual controls (acting
contemporaneously).

- - 
m

Instead of the sets (t, x) = f’ (t, x, U (t, x)), or the sets Q (t, x), we shall
~ 

now consider the analogous sets Q. = g (t, x, V (t, xj), and (J., with

Q* (t, x) = ~(, x, V )) = ut~))~ (tt(1),... , 2c~~~’ 1) E I’].

()bviously Q. is the set of all the points which can be thought of as convex

combinations of p points of Q. Thus, for h N + 2, the set is certainly

convex and so will be the set Q..
Existence theorems 1, 2, and 3 can be repeated for the (weak, or

generalized) problem above without any essential change. The same holds
for theorem 4 by using growth condition (e) of the last remark of § 6

(instead of condition (a)), since condition (e) for fo , f implies an analogous
property for go, 9 . Indeed, if f (t, x, u ) ~ ~ ~E (t ) -~- E ~o ( t, x, u) for  11 I

(t, x) E A, u E U (t, .x), then

REMARK 13. For v = 1 the introduction of weak, or generalized solutions
has been associated to the remark that - under conditions often satisfied
-- the solutions of the modified equations (49) and the values of the cor-

responding integral J can be approached by means of usual solutions of the
unmodified equations (47) and the values of the corresponding integral I.
See, also for references, [2], II, nos. 14 and 15]). Such a question for ’V&#x3E; 1
will be answered elsewhere.
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