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THE GENERALIZED WEIERSTRASS-TYPE INTEGRAL

by GARTH WARNER

Introduction.

In a recent paper [5] Cesari showed (5, p. 111] that the Weierstrass-

type integrals relative to a mapping (variety) and a .

set function 92 which is quasi-additive and of bounded variation with respect
to a mesh function 6 can be obtained by a standard process of limit as

b (D) -~ 0. Indeed, Cesari showed under general assumptions on V and f
that the set is again quasi-additive and of bounded

. ¡e

variation with respect to the same mesh function 15, and hence

can be defined as a Burkill-Cesari integral In a second

paper [6] Cesari proved, under a convenient system of axioms, that

can be represented as a Lebesgue-Stieltjes integral, i.e.

in a certain measure space
’ 

The main purpose of this paper is to continue the axiomatic a $:.4roach
of Cesari’s and to present in an abstract and general setting some of the

main properties of the generalized Weierstrass-type integrals

an earlier paper [12], we carried out this program for the general Burkill-

Cesari integral. For the sake of continuity, we adopt the notations and

conventions introduced there.

Pervennto alia Redazione il 14 Settembre 1967

1, delta Scuola Norm. Sup. Pisa
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In more detail, in this paper generalized Weierstrass-type integrals

where now both C and cp are set functions, and p is quasi-additive
and of bounded variation will be investigated. The function f is assumed
to satisfy convenient hypotheses of continuity but ,t’ is not assumed to be

real valued. In fact f and C take on values in general locally convex topo-
logical vector spaces while the range of q is assumed to be a uniformly
convex Banach space. In Section 1, we show that the set function 0 = f’ (~, q)
is again quasi-additive and of bounded variation with respect to the same

directed set (T,» (q)), and hence 91) = f 0 is again a Burkill-Cesari

integral. Thus this result represents an extension of a main theorem [5,
p. 111] of Cesari’e to the general setting. In Section 2, we discuss the ques-

tion of the invariance of f’ (~, q?) with respect to change of the generating
set functions (~, The results obtained extend those of Stoddart [8~. In

Section 3 we consider the question of approximation of the integral 99).

That is, using a convenient notion of convergence of a net of pairs (C", qa)
to a pair ((, q), we give conditions which enable us to conclude that

f (~a , ff (C, The results obtained extend those proved by Cesari

in surface area theory, and show, tlierefore, that also these results hold in
the present axiomatic treatment. In Section 4, we prove an abstract Fu bin i

theorem for the integral which generalizes a result found by Nis-

hiura [7]. In Section 5, the difficult question of the semi-continuity of « re-

gular » integrals is taken up. Under the assumption of regularity on the
integrand f together with a suitable notion of convergence, an abstract

semi-continuity theorem for the integral f (~, g~) is given. Here, of course,

f’ is real valued, while it is assumed that C, q take on values in a Hilbert
space H. It should be pointed out, that no representation theorem for the

integral f (~, ~) as a Lebesgue-Stieltjes integral in a measure space (A, B, p)
is used ; the semi-continuity is proved directly for the integral ff (C, 99) as
a Burkill-Cesari integral. As corollaries, one obtains a classical theorem due
to Tonelli as well as the more recent result of Turner’s [9].

The results given in this paper are contained in the author’s doctoral
dissertation submitted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in the University of Michigan, 1966. The author

would like to thank Professor L. Cesari, under whose direction the disser-
tation was written, for his kind advice and encouragement.
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r
1. Existence of the integral f (C, 99). Let F be a uniformly convex 

.

Banach space. Let E and Q’ be Hausdorff locally convex topological vector
spaces with topologies described by the collections of semi-norms (Pu : I
and ~,Rw: respectively. Si will denote the unit sphere in F, whe-
reas for U E c2t, e fjE7, we shall put Emu = ~ : Pu (e) = 1 ~ I with a similar mea-
ning for 1--W. The following conventions will be adhered to through-
out this paper unless the contrary ? explicitly stated. (We shall .assume
the reader is familiar with the concepts and notation of our earlier paper
on this subject [12]).

A will denote a given set, or space, and will denote a collection

of subsets I of A. 4S will denote a collection of interval functions 99 where
92: ~I; --~ F. ~ will denote a collection of interval functions C where C:
;I ; -~ ~ (E) being as usual the set of all subsets of E ; hence is

mnultiple valued »). We assume there exists a fixed set T such that with

each cp E 0 one may associate a partial ordering »=» (q;) of I’ in such

a wa.y that ( T, » (~~) is A directed set. With each t E T there is to be asso- .
ciated a finite collection of disjoint (or non-overlapping) intervals 

[Ii , ... , IN] and an operator Lt which is a finite sum, that is, Zt = Z
le Of

The action of Lt will be prescribed below.
Let us recall that a Banach space F is said to be uniformly convex

if for each E with 0 C e S 2 there is some 6=6(s)&#x3E; 0 such that 

implies whenever The following

estimate will prove to be useful

(1.1) LEMMA. Let I’ be a uniformly convex Banach space. Let £, 0 
e ~ 2, be given. Let i = 1, ... , n~ =:= 1, ... , m~ be two sets of

vectors in F. Define ai = pill for 0, any unit vector otherwise,
and similarly aj. Let J be a mapping from y l, ... , n} into the subsets of

’,. Denote by 2;’ a sum of terms 8 over j for which j E J (i), by ~+
a sum of terms over j for which j E J (i) and and by Zi a
sum of terms over j for which j E J (i) and II ai -  8. Then there exists

a positive number K = K (E) such that

Let i, 1 C i C it, be fixed. Invoking the Hahn-Banach theorem,
let z be an element of F* such that z (pi) = 11 rpi II and II z II = 1. Since F
is uniformly convex, there exists 6 = 8 (E) such that in particular 11 oci -

implies Pick K &#x3E; 0 so that
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Note that if
then

Therefore,

Squaring both sides and remembering 11 z 11 =1 gives

Hence

For any j whatsoever, it is true that Thus we. may write

Summing on i yields the result.
Note that the number .~ so determined depends only on e and not

on the vectors Simple examples show that the lemma fails if the

uniform convexity requirement on F is dropped.
Fix a pair (~, cp) E ~ X 0. Let D be a subset of E with U C (I ) c D. Let

be a mapping such that:

(fl) For each W E ~ there exists a positive real number such

that q))) for all pairs ( p, q) E D X S1 .
(f2) Given there exists U* = U~ (~, IV) and ~=

. ~(8, W)&#x3E; 0 such that qi) - f (p2 ~ q2))  8 for 
and || qi - q2||  E where Pl p2 E E S1.

f (p, aq) = af (p, q) for 
By hypothesis ( f ) we shall mean (ft), (,t2), and 

A choice function c on C (1): is a function c such that

c (~ (I )) E ~ (I ) for each Let e denote the set of all such choice func-

tions c. We shall assume the set function C is subject to a condition (~).
(C) For each E ~ 0 and each U E C’JL, there exists t’ = t’ (e, U) E T such

that for there = t" t~, U, to) such that if t » ~",
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We point out that in condition (~) the ordering «» » being used is

» ~g~). For arbitrary c E e consider the set function

If the limit

exists, we denote this limit by Needless to say, the ordering of

T used in taking the limit is » (g~). The main existence theorem for the

integral is

(l.ii) THEOREM. Suppose 99 is quasi-additive and of
bounded variation, that is, V = [[ ) ~ -~- oo. If conditions (~) and (,f )
hold, then  (I ) = f (c (I ), ()) is quasi-additive and of bounded tv-var-

iation for each W E W. Therefore, if G is complete, the B - C integral of
~~ exists ; that is,

Fnrthermore, for arbitrary c1 , C2 E e we have

that is, the value of the integral is independent of the choice function c.

Proof. We first prove that ~~ is quasi-additive. Let e, 0  E -- 1. and
be given. We know from [ 12, 3. vii] is quasi-additive. Hence

there exists tf (8) such that for every there is also t * _

t1 * (E, to) such that implies

and
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Moreover, since f 11 exists, there exists t. = t. (s) such that t &#x3E;&#x3E; t, implies

The conditions on f give such that

Condition (C) gives, for this c and U* E CJ1, t’ such that for every
there exists t" such that

Let l~ _ .g (~ (~, denote the number determined in Lemma (Li).
Now take t* E T such that

and take any to &#x3E;&#x3E; t# . Let

Take any t &#x3E;&#x3E; t * , and let

Denote by ZI a sum over all by Ej a sum over all J E Denote

by the sum over J c I for which and by the

corresponding sum for which Then we have

Also
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Since E is arbitrary, Øc is quasi-additive as contended, and, if G is com-

plete, ~~ exists in view of [ 12, 3. v). 
’

In order to see that Øc is of bounded W-variation, first observe that

hypothesis (/) may be applied to Ryv o f for each IV E W and consequently
o 0, is quasi additive. Moreover for any to E T,

Since R w o flc is quasi-additive, f Rw o 0, exists ; in fact, Rw 0 0, 
an so Wc is of bounded IY-variation for each WE As a conse-

quence, observe that if the Is are uniformly bounded, that is, if there

exists M &#x3E; 0 such that Mw  M for all W E CW, then 0, is of bounded var-

iation and V ( ~~)  MV.

The fact that flc is independent of c E ~ follows by a standard "e/3"

argument and thus the proof of the theorem is complete.
As mentioned before, (l.ii) represents an extension of a result of Ce-

sari’s [5, p. 111]; (1-ii) also contains a generalization of Cesari’s result due
to Stoddart [8, p, 45].

2. Invariance of f (~, Given pairs of interval functions (~, ~), 

one may ask for conditions under which the corresponding integrals

have the same value. This question was discussed by

Stoddart [8] who in turn was motivated by Cesari’s treatment of the inva-
riance of surface integrals under Fréchet equivalence. The theorems obta-

itied represent extensions to our setting of similar results established in [8]
for 82 - type systems and interval functions (~, q~) with finite dimensional

range. We shall employ freely and without explicit mention the notations
and conventions introduced in the preceding section. ’ 

I

We consider a system A, ~, I ’,, ( T, ») with ~ a map
and while and then a second system A’,

with a map and.

while Let denote the set of all choice functions c

denote the set of all choice functions c’ on

be a map satisfying condition cr).
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We already know in view of Theorem (J .H) sufficient conditions on (C, p)
,0

and (~’ , q’) to ensure the existence of the integrals

points in G.
We shall say that the pair (C, qr) is (g-’related to the pair (~’, 99’) (cf. [8,

p. 58]) if for each pair ~t,~ , t~) E T x T’, each e &#x3E; 0, aud each U E U, there
exists a map m = in (e, U, t. , t~) : A --~ S’ and a pair (t, t’) E T X T’ with

such that

and all we have

where ~tl’~ denotes a sum over all I E Ct such that mI c I’ , and I. de-
notes a sum over all I E 0, such that w7 is contained in no 1’ E 

(2.i) THEOREM. Let f : be a map satisfying condition ( f ).

Suppose (C, (~’, q’) are such that exist as elements

of G, and Then if is p related to

we have

Proof. It is being assumed that the value of or

..

independent of the choice function c E e or c’ E e. Hence fix
0  8’  1, and W E be given. The conditions on f give Mw &#x3E; 0,

such that and

There exists t1 E T such that t » t1 implies
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There exists such that t’ »’ t; implies

There exists t2 E T such that t » t2 implies

Let jE"==~T(~(~~ W)) denote the number determined in Lemma (l.i).
Let e = Min (~’, ~ (~’, ~’ ~2 (E’, W) K-2) and let t.» [t1 , ~ »’ti . Use
8, and the pair (~ ~ t~) in relation o above to get a map nz : A --~ A’ and
a pair (t, t’) E T X T’ with t » t,~ , t’ »’ t~ such that (1), (2) are verified.
We now have

So

Since is arbitrary, W E ~ is arbitrary, and G is Hausdorff, we conclude

that as asserted.

By way of applications, we point out that it is not very hard to prove
that with respect to suitable interval functions C, 99 and sets A, ~I #, T that
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Fr6chet equivalent parametric curves stand in relation o if the map m is

requested to be a homeomorphism. The same is true for Fr6chet equivalent
parametric surfaces although the details are more involved here. We refer
the reader to [8] for the proofs of these assertions. -

One may also discuss «rotational properties » of integrals (1;, p).

This problem arises classically when the interval functions (~, T) are gene-
rated from a variety in Em, that is, a mapping S : A --~ Em. Any ortho-
gonal transformation L : will give a second variety S’ _ .LS in

Em, with will generate corresponding (~’’, ~’) and often » (T’) (cf. [10, p.
923] and [8, pp. 7fi-80J). We shall give below a generalization of a result
of Stoddart [8, p. 77] ] to our setting.

Let N: F -+ F be a linear, bijective distance preserving map of F
onto itself. Let .L11: E -.~ E be a unimorphy, that is, a linear, bijective map
of E onto itself such that for each e2 E E we have PU(Me1’ =

= e.,). Relative to a system A, ;I;, T, we shall consider interval

functions C, C’ from to 9(E), interval functions T, q’ from )7{ ( to F,
and orderings of T, » == » (~)~ »’ = »’ (~p’), Let D e E be such that

D ~ U C (I ), U (1). D X F -+ G be a map satisfying con ~
dition (,f ). We shall say that the pair is e-(M, N) related to the pair
(~’’, if for each pair (t~ , t;~) E (T, ») x (T, »’) = T x T’, 0,
and each U E Ql there exists a pair (t, t’) E T x T’, with t = t (E, U, t,~ , t;~) »t.,
t’ = t’ (~, U, t~, t,~) »’t~ such that ,

(1) For and all c E C, c’ E C’ we have Pu (c’ ’ (I’) -
- - - . - .

where denotes a sum over all I E Ct such that I c 1’? and I’ denotes
a sum over all I E Ct such that I is contained in no 1’ E Ci, .

(2.ii) THEOREM. Let f’ : D x F - G be a map satisfying condition ( f ).
Define g ( p, q) _ ~t~ (M -1 p, N -1 q). Suppose (C, ~), (~’, (p’) are such that

exist as elements of G, and
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Then, if (~’, qJ) is e - (M, N) related to we have

Prool’. With ~~t the identity map, observe that (C, op) is e-related to

or’). Hence by (2.i),

3. Approximation of the integral It is the purpose of this

section to formulate in abstract terms a theorem of approximation for the

integral The discussion is motivated by Cesari’s treatment in [2,

pp. 24-30] of a theorem in the same spirit for surface integrals. We begin
with a preliminary estimate.

(3.i) LEMMA. Let i=1....n’ ;i : be two sets of

vectors in F, F a Hilbert space. Define a~ for (fl, ~ 0, any unit
vector otherwise and similarly (Xi. Suppose  3f. Then

Proof. W’e denote the inner product of two vectors in ~’ with a dot

Observe that

Hence

and so summing over i gives

which completes the proof.
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It is known that every Hilbert space is uniformly convex. We shall

specialize in this section and assume the space F is a Hilbert space.
However the other conventions enumerated earlier are in force.

Let (.C~, &#x3E;)~ be a net in 2 m W, let »R denote the ordering
of T induced let denote the set of choice functions c~ on the
set and let D c E be such that

be a map satisfying condition ( f ). Suppose that the inte-

grals exist - conditions sufficient to
., .,

ensure this were given in (l.ii). Then for the purposes of this section, we
shall mean by the term the net (~~ , ggfl) f-converges to (C, q;) the following :
For each t. E T, for 0, for each U E CJ1, and for each W E CW, there
exists Po = Po (t ., e, U, W) E 12 and to = to (t* , e, U, W) E T such that

( f ~ ) to »p t. for all ~B &#x3E; fio ;
( f2) For all f3 &#x3E; for all c E e, c, for all I E Oeo, we have

We remark that condition ( f2) may be interpreted as « uniform convergence »
of the interval functions (# to ~, while condition ( f3) says roughly that the
integrals 9p are obtained from the approximating sums uniformly with re-
spect to T for  large » fl.

(3.ii) THEOREM. Let f : D x F -+ G be a map satisfying condition (f).
I ,.

Suppose are such that exist and

(~~ , cpp) /-converges to (C, and is of bounded variation V
and ~P~ respectively, then lim 9p = 9 provided li m Vp = Y.

~ 

Proof. It is being assumed that the value of 9 and 9p is independent
of the choice function c E e or ep. Hence fix c E e, ep and let
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t * E T be arbitrary. Let 6’, 0  e’  1, and W E fld be given. The condi-
tions on f give 0, I7~ = ~ (e’, ~’ ) &#x3E; 0 such that Rw ( f ( p, q))  Mw
on D X S’, Rw(f -.f ( 2~Q ~ q2)) e’ for  E and

C~ where P 1 , P2 ED; 
Let e = Min (e’, E (e’, ~t’ ), e’ E2 (6’, W )), t. as above, and take W E ~

with corresponding U. E cY in the definition of f-convergence above. Hence,
we are provided with Po and to such that conditions through ( f4) above
are fulfilled. It may be assumed without loss of generality that Po is chosen
so that f3 &#x3E; /3o implies V - Vp I  6 and to is chosen so that t » to implies

Let fl We shall write Zi for any sum over all 1 E C~~ , It for any
sum over all such that ~~ a (1 ) - a~ (I )’~ ~ ~, ~I for any sum over
all I E C4) such that || a (I ) - all (I) II  E. Then we have

It remains to study the last sum in the line above. From (3.i) we have
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where we have written d~ ( 1 ) .~ ~~ (1 ) - ~ (I ). Observe that

Hence

and so

Similarly

We conclude that

Then

and so

Consequently

Thereby

Writing

we deduce, since 8’ is arbitrary, W E C),19 is arbitrary, and G is ITausdortf,
that lim 9p = ~ as asserted. This completes the proof of the theorem.

Observe that we may take as a particular case the special map

j: D X F -+ F defined by f : (p, q) -+ q then, under the other conditions,
infer that lim g -- g~.

Let us now sketch briefly an illustration of Theorem (3.ii). Let S =

= (S, A), ~ = (&#x26;, A). n = 1, 2,..., be continuous mappings of finite Lebes-
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gue area L (S, ~1.) , respectively. Let [S ], denote the graphs
respectively and suppose [8], c D c E 3. Let f’ ( p, q), p =

= (PI p2 , p3) E D, q = (qi , q2 , qs) E E3 be a real valued function defined on

D such that f ( p, aq) = af ( p, q) for all a ~- 0, p E 1), q E E3, let TI =

= be the unit sphere in E3 and suppose f is bounded

and uniformly contiiiuous on U. Consider the following proposition (’)
[4, p. 571]:

(P) Let f be as above. Let 8 = (S, A), 8n = (Sn, A), ~c = 1, 2,..., be
continuous mappings of finite Lebesgue area. Suppose 8,, -+ 8 uniformly,

L(Sn,A)2013L(S, A) as n - ao. Then we liave also lim (Sn) f = (S) j.
n oo J J

Now actually this proposition follows from (3.ii) For given a closed

simple polygonal region I c A, we define C (I ) = (zc), Cn (1) = U WEI
it = 1, 2, .... ’rake (1), q;n (I ) the interval functions defined in [5, p. 106].
recall that 99, are quasi additive whith respect to certain mesh functions
6, ðn relative to finite systems D of’ nonoverlapping polygonal regions I.

Hence the integrals f (~’, ~), exist,. Since the variations of 99, 9911

are nothing more than the Lebesgue areas of the surfaces (S, A), (Sn, A)
and since by assumption lim L (8ft’ A) = L (S, A), we need only verify that’ 

»

(Cn, I-converges to ((, The / convergence follows since, under the con-
ditions of proposition (P), for arbitrary E&#x3E; 0 Cesari has shown ([1, p. 1385] ; [3])
that one may find a finite system Do= [I ~ _ [Ii , ... , I~] of non-overlapping
polygonal regions and an integer Ni such that

Then, in view of the uniform convergence of to S, and simple but

technical considerations of surface area theory, one may produce an integer
No &#x3E; Nt such that in addition

( f2)~ For all n &#x3E; for all c Ee, Cn E en for all we have
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These facts are worked out in detail in [2, pp. 27-28). Hence 

f convergent to (~, 4p) and so proposition (P) follows from Theorem (3.ii).
We remark that similar considerations may be applied to parametric

curves. 
,

4. A Fubini theorem for It is the purpose of this section to

supplement the results of Section 4 in [12] by formulating a Fubini type

theorem for the integrals f (C, The results obtained represent extensions

of those in [7].
In what follows ~ i » will run over 1, 2. Let Ei be Hausdorff locally

convex topological vector spaces with associated families of semi-norms given
by Ui E Let F2 be Hilbert spaces as in j7] and let be

their tensor product - thus for q. E Fl, q2 E F2, q, ® q2 F2’ and one
® q2 ~ ~ = II 9i ° Let S i , S ~ denote the spheres of radius 06

in Ft, F2 respectively. Let A1 and A2 be sets with corresponding collections
of intervals ; h ~, ;I2;. Let (Lti: ti E (Ti, »1)) be as usual. Let (pi be interval

functions where (I : -+ 9)(Ei) and q;i: ;Ii; --~ Fi. Let C.’i denote the set
of all choice functions ei on the collection ~~i (Ii) : Ii E Let Ci (li).
Let (T, ») be the directed set T2 (« m » meas Cartesian product) where
K » » is the usual product ordering induced by »~ (cpt) and »2 (T2). We
then define A = At x A2’ I = r, X 12,,, ct = Otl X ct., t = t2) E T. The
space E = is a Hausdorff locally convex topological vector space if
we equip it with the topology determined by the semi-norms P~~1, Ut) den
ned by (el, e,) = (el) + PU.(e2) for e2) E Et x E2 . Define the

El) 1~y 
Suppose the maps Ci satisfy condition (Ci). Then we claim that the product
map C satisfies condition (C) with respect to the collection P(Ul’ u.) and the
set (T, »). Indeed, let s &#x3E; 0 and Uv) be given. Since ~~ i satisfies con-

dition (~2), there exists ti = ti (E/2, Ui) E (Ti , »i) such that for every toi »~ t~
there exists ~==~’(~/2,C~~) such that lf if 

then

Let e denote the set of choice functions c on the collection
-- thus each c E e determines such that

for all Let t’ _ (ti ~ t2) and let

suitable toi E Ti and toi »~ ti. Defining
take any Then
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we see tb at

Likewise (J) - c’ ~ (J)) C s. Hence the map ~ satisfies condition (C)
as claimed. Next we define by the rela.tion

observe Recall [12, 4.ii] which asserted that if

the qi were quasi additive and of bounded variation, then the product 9’ =
= 9’t () qJ2 was also quasi-additive and of bounded variation. Let D e E1 X E2
and suppose Di c D. Let f : G a complete Hausdorff locally
convex topological vector space whose topology is described by semi-norms

W E W. Assuming f satisfies condition (f ), we know from with

our assumptions on ( and cp, that j ((, q) exists. Our problem will be to
relate this « double integral » to certain «iterated integrals » which will be
defined below.

In the Hilbert space F, denote the sphere of radius a by Let

j’: and assume f satisfies condition ( f ). Then for each WEW there
exists a positive real number M w such that RMtr ( f ( p, for all pairs

q) E D / ~1. Let Writing f (p, q#) = f’(p~ q#l ~~ q~ II) II q# II, we see

that (/(?) q#))  a for all pairs (p, q) E D X Sa. Likewise there exists
and $ = $ (e, IV( &#x3E; 0 such that 

~’c ~1, U:) - P2)  ~ and !! qi - q2 ~~  ~ where qi’ q2 E S1. 

q # E then as above we see that 7~ ( f ( pl , qi ) -, f ( p2 , q2 )) for 

(Pi - p2) C E and II qf C a e. Keeping these facts in mind, we prove-

Suppose f : D satisfies condition ( f ).
(a) Let qi) be a fixed point in D~ X Pi. Then g (p2 , q2) = f (p, q) ==

= .~’ (( p1 , P2)’ qi function on D2 X F2 satisfies condition (g).
(b) Let qJ2: -+F2 be quasi-additive and of bounded variation. Then

l (Pi ? q~) = f (PI X ~2’ q1 @ CfJ2) exists for each E D~ X .Fi . Moreover
l regarded as a function on D satisfies condition (1).

By Ilt we mean a sum over all I2 E Ots. Statement (a) is quite
clear in view’ of the remarks preceding the Lemma and the fact that ( ) q1 ()q2 -
|| ( q1||1 ||q2||2 . Let m prove (b). First of all the existence of l is a conse-

2. Annali della SC1,wla Nc,Tm. Sup. - Pisa.
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quence of (l.ii). Homogeneity of I (that is, condition (t3)) follows since for

a &#x3E; 0,

For each WE there exists a positive real nnmber Mlv such that

q))  Mw for all pairs ( p, q) E D x S1.
Hence

Therefore

Hence

for all pairs (p~ , q1) E D~ X Si and so is satisfied.

Now there exists and E = E (e, &#x3E; 0 such that 

 e for P(uf, (Fi - P2)  E and q1 - q2 !!  E where Fi 

Hence if and

Hence

and thereby (l2) is fulfilled. Thus 1 regarded as a function on Ð1 satis-

fies condition (I) as required and this completes the proof of the Lemma.
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(4.ii) THEOREM. Let f : D x be a map satisfying condition ( f ).
Suppose (pi: Ili ---~ Pi is quasi-additive and of bounded variation Vi and

that ~~ : (~~ ~ -~ ~ (E~ ) satisfies condition (~’~ ). Then, with the other assump-
tions cited earlier, we have

exists ;

exists for each

exists for

Moreover l, k satisfy conditions (1), k respectively;

(c) the iterated integrals exist, that is and

(d) the iterated integrals = the double integral of (a).

Proof.. We have commented on (a) above. Statement (b) is Lemma (4.i).
Statement (c) follows from (b) and (1, ii) ; (d) is obvious.

5. Semi-continuity of the In this section we shall prove,

under appropriate assumptions, an abstract semi-continuity theorem for inte-

grals of the form Usually such theorems are proved for integrals

of the forni t being a suitable measure on a measure space X.

However, to do this one has to introduce various axioms and obtain a re-

presentation theorem for the B-C integral as a Lebesgue integral. Using such
a representation of the B- C integral, Stoddart [8] succeded in establishing
a very general theorem of semi continuity which in turn contained many of
the classical results. On the other hand, Turner [9, p. 112] proved directly
a semi-continuity theorem for the Cesari-Weierstrass surface integral without
recourse to any representation theorem. We shall give a theorem in this

direction which, although not entirely analogous to Turner’s, is in the same

spirit.
Let H be a real Hilbert space and let 8’ denote the unit sphere in H.

Let be an orthonormal basis for H. Let Hw denote H equipped with

the weak topology. A weak neighborhood lV of a point ho E H is determi-

ned by specifying a and n continuous linear functionals Z1 ...

It is known that H and have the same set of continuous
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linear functionals and if z is such a functional, then there exists a unique
vector a E H such that z (h) _ (h., a) _ (a, h) for all h E H ((, ) ) means inner

product in H). Moreover, regarding z as an element of R*, 11 z = ~~ a~ 11. Fi-
nally, since ~I is reflexive, spheres in H are weakly compact.

We shall consider a set d of pairs (~, g) where ( : (1) -+ 1J (H), 9?: 
(so, in our previous notation, we are taking E = H, F = H). We shall as-
sume that the elements of S are « preserved &#x3E;&#x3E; under isometrys. Precisely,
let m : be a bounded, linear, bijective map such that if hi , 9 h2 E g,
then ]) mh1 - _ ~i 2013 ~ ~ . Given an arbitrary ((, cp) E (~, let I’ = m~
and suppose that there is associated with I’ a map g’ : (I) - H such that
(~’, E cS. We then assume

Let f : D X H- R, R the real numbers, D c H to be specified presently.
Conditions ( f ) and (~) are assumed to be in force liere for each (~, g) E d.
If we let D m U U C (I), then condition ( f ) now reads : f is bounded on

c5I
D M 81, ( f 2) f is uniformly continuous on D X ~S’ ; ( f3,) ,t’ ( p, aq) = qf (p, q)
for all a 0, p E D, q E Si. For a given pair (~, q) E S, it is desirable to be

I

able to speak of

for each I E I I I where (Z~, »I(~)) is a certain directed set that is, we
want to consider 9 as a map, 9: cS X ~I1--~ 1~. For this purpose, it is cle-

arly enough to have at hand a method for extending the definition of the
integral of f over A to a corresponding integral of f over each 2 E ~I~. In appli-
cations this situation always exists. Abstractly such an extension may be
realized by a generalization of the method given by Cesari in [6]. In a future
paper, we shall give the details of this procedure, but for our purposes
here we shall proceed axiomatically and make the following assumptions
(which are consquences of the general extension process):

(PI) With each pair (C, q) E c5 and with each I E there is associated
a directed set 9’), &#x3E;&#x3E;.r cp)) = (Tz, »i (g)) and a collection of inter-
vals ~J For given we assume the set T, and the col-

lection )J( I are fixed and independent of the pair (C, q&#x3E; (although 
will in general depent upon the pair (C, 99)). With each tr E T1 there is asso-

ciated a finite collection Ctl of intervals J E JJJ and an operator = ¿.

It is assumed that for each (C, q) E cS, for each I E {I},
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exists and is independent of the choice function c.

(P2) We shall suppose that for all ( p, q) E D X S1, then
for arbitrary t E T, we have

(’, ~) being an arbitrary element of d.
We shall assume that given (C, cp) E ~ I E and any isometry m, then

the orderings cp) and »I are comparable.
It will prove to be useful to consider « special neighborhood » systems

of elements so i- (~, , CPo) in cS. Thus, for arbitrary So E c~ it will be said

that a net in S is ill-convergent to so E c5 if the following
conditions are satisfiied :

(1B11) For each E &#x3E; 0 and t * E T, there exists ao = ao (s, t *) and t ** =
= t ~~ (t *, s) such that for all a &#x3E; cxo

(M2) For for each there exists such

that for each x &#x3E; ag there = ~I (a, e) such that for every t§# &#x3E;&#x3E; (qa)
tl we may find a subsystem c satisfying

I 1

I’ a sum over all J E CI# , e1 an element of the orthonormal basis I

We remarl; that the second condition of M-convergence is related to

a lemma of 3IcShane used in surface area theory (see [10, p. 923]). Fur-

tliermore, the use of a special type of convergence is not new; thus the

« %"convergence » of [8, p. 89] is in the same spirit as -ill- convergence
although quite different in content. Finally we shall assume that isometrys
preserve M-convergence, that is, if 7n ; 8 -~ H is an isometry and 80. is

M convergent to sa then is M-convergent to 
Assuming axioms (Pi), (p2/7 we are now in a position to prove a gene-

ral theorem concerning the lower semi-continuity of integrals

(5.1) THEOREM. Consider a pair (Co, cpo) satisfying the following coiiili-

tions :

(1) There exists o &#x3E; 0 such that the set I

has the property that ~1’(p, q) ~ 0 for p E c)(, q E H. Assume



184

(2) At each point (po , po E u ~o (I), 11 qo 11 - 1, for 0,
there exists a Loo &#x3E; 0, a weakly continuous linear functional wo : H -+ R

(hence ivo (h) = (h, ao) for some ao E H), and weak neighborhood W (po ; Zi ...
..., zn ; 3Loo) of po such that for all ..., zn ; 3eo) we have

for all q E H such that

1V. a certain weak neighborhood of
constant to be defined below.

(3) Condition (,f ) is satisfied by,f, and ~((~,~),A) exists for each (~, 99) E c5.
(4) Each (~’, q) E cS is such that condition (C) holds for the map ( while

4p is of bounded variation.

(5) U Co (1) is a weakly compact subset of H.

Then is lower semi-continuous at with respect to M-con-
I

vergence.

Proof. Let 8 &#x3E; 0 be given. Let M be a constant such that

From (2), for every point and there exists eo &#x3E; 0, a
weakly continuous linear functional and weak neigh -
borhoods W (Po, ... , Zn ; 3eo), "fir- (qo ; ..., 300) of qo respectively
such that for all p E W we have

for all q E ~ such that

Since S1 is weakly compact, invoking (5) we see that Y = u ’0 (I) X ~1
is compact Hence Y may be covered by a finite number of

the open sets

Let the centers of such a covering be ( p; , i = 1, ... , r, let the « radii &#x3E;&#x3E;

be o; , let the associated functions be 1V, (q) = (ai, q), and let the neighbor -
hoods be

Now by assumption each tvi is a weakly continuous linear functional

on H and hence a fortiori is strongly continuous. We claim that II wi 11 =
= II a~ II  M. In fact, we find from (2) - (a) above that M &#x3E; f ai /11 ai 11)

as desired. Let
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i =1, ... , r ; j =1, .., ~ n~ ; k =1, ... , With a playing the role of e in the
definition of condition (~0), we may 6nd a t" E T so that, among other
things, t » t" yields (» == » (To))

We chose t such that t.» t implies

Here co is an arbitrary element of C~o which will remain fixed throughout
the remainder of the proof. Now the point
one of the sets of the cover above

and thus will not effect our calculations). Denote this element of the cover by

or more simply by

Suppose the is M-convergent to 80. tn the definition

(~’~f, ) of M-con vergence, let o play the role of 8, and take t. » (t", t). Hence
there exists stl and t ~~ E ~" such that the relations stated there hold. In

particular, t ** &#x3E;&#x3E; (qa) t. for all ao and t ** » t.. Thus t ** » (t", t) and
relations (5.2), (5.3) above are in force. We shall let t. = t ~r~ . Let N be

the number of elements Í. E Associate with each I. E Ot. an isometry
mi(I..) which will be defined below. Then for each I* E Ot.., = Ca, y

CPa) = («, is M.convergent to =(nir) _ ((( , Qo)
in view of our general hypotheses. We remember that by assumption
the orderings and are comparable. Employing
part of the definition of M convergence, use the constant o. =

for and thus obtain N elements a~ (a~’ , I,~), one

for each I. E Ct.. Let a &#x3E; (ao (~~, I~) ; Consider any Then we
infer the existence of N elements I) (a, Q*), one for each I. E such

that if t,I » then there is a subsystem satisfying.... I.. Iff
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Odserve that it may be assumed tf so selected as to ensure in addition

that if »I.. (lpa) tl.’ then 
*

ca being a fixed choice function in ea. Here, in (5.4) and (5.5), ~’ denotes
a sum over all a sum over all 

4 * I*
Next we note that for any and any Ct we have, for arbi.

trary 

where we used relation (5.2) in passing from the second to the third line.

Similarly, for arbitrary 

Hence we may conclude

each I. E Ot*. Therefore, inequality (5.1 )-(cr) holds for all
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Wre shall now examine the sums ai (i = 1~..., 7). It follow8 from axiom (P2)
that o, ~ 0. Relation (5,5) implies 1021 ( C e/7. Since

since c and since J
we see that and hence 03 h 0. Next, given
and J c I., an argument used before shows that

Thus, in virtue of (5.1)-(a), Q4 &#x3E; ~. To discuss 05’ observe that our isome-

try may be chosen so that

adjoint of Hence
denoting the

Consequently

where we recalled

From (5.1 )-(b) we deduce

Therefore

Relation (5.3) implies



188

Thus we see that

for all a&#x3E;a, and from this it follows that I is lower-semicontinuous at

(~~, CPo) with respect to J1f-convergence. This completes the proof.
We shall refer to condition (1) in (5.1) by saying that f is « non-nega-

tive near 8°’» and condition (2) by saying that f is K s0-conveg. »
We now give two illustrations of the preceding theorem.

EXAMPLE 1. Let the set A be a finite closed interval, say [0, 1], of

the line; let (I) I be the class of all intervals I [a, b] c A, and T = T) the
class of all finite subdivisions t = D = = 1,..., N] of [0, 1]. Consider

the collection S2 (L) of all continuous parametric rectifiable curves C :

X = x (w), 0 1, x = ... , xk) with range in some set L e Ek. Then
with each such x we may associate an interval function ~x (I ) _ ~ (I ) _
= U x (w). Each E’x satisfies condition ((x) . Moreover put x (I ) = g (I ) _WEI

= ( ,... , ), () == (&#x26;) 2013 . ( = 1... , for every I == [a, b] c A.
Our collection cS will then be the collection of all pairs Given a

pair ((x, ggx), the set 2’ _ T) is directed by the mesh function bx (D) = hx (D) +
+ max h I, where hx (D) = max (oscillation of x on I ), if we require that

IE D

provided 6x (Dl)!!:::-: ax (1)2). Given x, an orthogonal
transformation m : Ek -+ Ek determines a new map mx and corresponding
’mx in the obvious way. Moreover, it is known that m qx (see [9, p.

21]), hence condition (m) is satisfied by the collection cS. Suppose is a

sequence of continuous parametric rectifiable curves which converge unit

formly to a continuous parametric rectitiable curve xo, that is, sup 11 Xu. (1V) -

as Then we claim that the sequence (Cm is M-convergent
to (~o , In fact, let 8 &#x3E; 0 and 1 = [a, b] c A be given. Let us first verify

- (a) Evidently, for this purpose. it suffices to show that there exists

an integer Na and a system t * *==D**E CJJ such that for all n&#x3E; No we have
6. (D **) C E and ðo (D**)  E. Since xn converges uniformly to xo, these fune-
tions (x,, , n = 0, 1, ...) are equicontinuous and so there is a rational number

of the form q-1  e/4 such that )) xn (ic’) - xn (ic") ~~  E/4 2c’ - 1V" C q-1.
Subdivide [0, 1] into q equal parts, and let t * * = denote the subdivision

so obtained. Notice that for all it, /~(D**)~/4. Choose No such that
’ 

n ~ No (w) - xo (w) 11  E/4 for all w E [0, 1]. We then have
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Fix. and let We consider

where

Thus

The fact that sup is clear. Hence (.iV,) is verified.

Next, we check condition (M2). In order to do this we first have to specify,
for each I E (I) in accordance with (Pi), the set TI and intervals (J) c I.
So, if I = [a, 6]c [0,1], we let TI be the set of a.ll finite subdivisions of [a, b] and
JJ) = j[c, d] : [.o, d] c I). We can then de6ne, in an analogous way to the case
A = (o, 1 J, the mesh functions 6,r and the orderings of TI. Having
done this, we now observe, since one interval is as good as the next, that
it is sufficient to check for I = [0, 1] only. But, noticing that for any
subdivision D = (h : j = 1, ... ,1’1T ) of [0, 1] ] whatsoever we have in general
lp ([0, 1]) = x (1) - x (0) = ¿j q; (Jj) , one easily sees that is trivially true.
Hence we may conclude: Uniform convergence of Xn to xo implies M-con-

vergence of to (Co, (p,). Moreover, since uniform convegence is pre-
served under isometrys tit, we infer that is M-convergent to

..

Now let f : be a parametric integrand satisfying the usual
hypotheses of continuity (that is, condition (/)). For each I E and pair

(C, op) E c5, it is evident that (1)f f ((, cp) is meaningful (each 99 is quasi-add-

ittive, see [5, p. 103]) and conditions (P1) , (P2) above are satisfied. The in-
tegral which arises here then is nothing more than the classical Weierstrass
integral over a rectifiable continuous curve. Observe that U Co (I) = range
xo is a compact subset of Ek. Thus, if the conditions (1), (2) of Theorem

(5.i) on f are satisfied, we are able to state a semi-continuity theorem in

the calculus of variations due to Tonelli.

Theorem (Tonelli). Let f : L X Ek -+ R satisfy condition ( f ). Let D be
the class of all continuous rectifiable parametric curves x : (0, 1~ -+ L c Ek.
If X0 E Q is such that f is non-negative near go = (Co’ and is 80-convex,
then the is lower semi-continuous at xo in 92 with the
uniform topology.

EXAMPLE 2. VVe wish to deduce here a theorem proved by Turner

[9, p. 112] on the semi-continuity of the Cesari-Weierstrass surface inte-

gral. The reader is referred to ~12, Section 5] for the notations and defi-

nitions to be employed here. Let the admissible set A be the square. Let
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be the class of all closed simple polygonal regions Ic A, and T==T)
the class of all finite systems D = [JT] = [1, ... , of non-overlapping
regions Let Q == Q (L) be the class of all continuous B V mappings

(in other words, continuous surfaces S in L with finite

Lebesgue area). Then with each such x we may associate an interval func-
U (.r(w). Moreover, we put

2, 3 where v (xr , I ) is the relative variation (signed area) of the plane map-
ping (x,. , I). It is known that rp is quasi-additive with respect to (D and

a (D) [12, Section 5]. Our collection cS will then be the collection of all

pairs (’x, The set T = CJ) is directed in the usual fashion for S2-type
systems. Given x, an orthogonal transformation 1n: E3 - .~’3 determines a
new map mv and corresponding Cmx in the obvious way. The fact that

= is well-known [4]; hence condition (ni) is satisfied by the col-

lection cS. Suppose is a sequence of continuous parametric surfaces of

finite Lebesgue area which converge uniformly to a continuous parametric
surface xo of finite Lebesgue area, that is sup X’n (w) - xo (iz) " -+ o. Then
we claim that the sequence HCn, is M.convergent to ((0’ Let us

first verify (l’~f1)-(ci). It suflices to show that there exists an integer No and
a -system t = D* * E fb such that for all it &#x3E; No wfe lmve ~n (D* *)  B
and $o (D ~: :~)  B. This fact, however, is a consequence of a lemma proved
by L. Cesari [1. p. 1385]. Likewise. is immediate (for details see

[2, pp. 27-28]). Hence holds. It remains to verify In order to do

this, we first have to specify for each 7E r,,, in accordance with (Pi), the
set T1 and intervals So, given we take for T, the set of

all simple closed polygonal regions J such that .7 e I. We can then define

the mesh functions 8I and the orderings »I (rp) of 1’[ in the usual way.
be given along with I E ~I;. Let e 2 e3; I be the usual ortho-

normal basis of Euclidean space E3 . Then (’Po-’ el) _ q)ot where moi is the

signed area function of the plane mapping ft Xo = A 2013&#x3E; B2, . I denoting
the projection of E3 onto the yz plane. According to a lemma to be found
in [11, p. 198], there is a number v &#x3E; 0 with the following property :

For every continuous B Y plane mapping y : A -+ E2 with II y (1V) -

- xo! (w) 11  v for all w E A, there is an 17 = il (E, y) &#x3E; 0 such that every
finite system D E CJ) with ~y ( l~)  ~ has a subsystem D satisying

where In’ denotes a sum over all J E D’. The lemma is equally applicable
if we take A = I, 
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Hence choose so that

(thus No plays the role of a~ in condition (j}tf2)). Then take any

certainly and thus

on I too. Hence there exists ’YjI = qI (e, xn) &#x3E; 0 such that every = DI#
with has a subsystem Di’ c satisfying  e

that is (J)),  ~ where Z’ denotes a sum over all J E D"
So select t) = D~ with dx~i (DI)  qI . If tI# = DI# » (qJn) tI = Di , that is,
if then (D##),.-- (DI~)  YJI from a known

property of the mesh 9 (see [4, p. 331)). Therefore condition (llf2) follows.
We conclude: Uniform convergence of to x, implies M convergence of

to (l , 7 q?o). Since umiform convergence is preserved under isometrys
m, we infer that is .convergent to (1nCo, m(po).

Let ,f : be a parametric integrand with the usual pro-

perties. The conditions (P,), ( P2) above are satisfied here, the integral (I )

f f (C, Ip) being the Cesari-Weierstrass integral over a continuous B V surface.
Finally, = range xo is a compact subset of E3. We can now deduce
from Theorem (5.i) the Turner theorem.

’rveorem (Turner). Let f : L X E3 --~ .R satisfy condition (f). Let

S~ = Q (L) be the clnss of all continuous surfaces of finite Lebesgue area

If X0 E Q is such that f’ is non negative near so = (Co, 90)
and is So convex, then the integral 9 ((C, g~), A ) is lower semi-continuous at

xo iu 0 with the uniform topology.
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