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THE GENERALIZED WEIERSTRASS-TYPE INTEGRAL

ff(Ca ?)

by GARTH WARNER

Introduction.

In a recent paper [5] Cesari showed [5, p. 111] that the Weierstrass-
type integrals f S (Y, @) relative to a mapping (variety) V: A — E™ and a .

set function ¢ which is quasi-additive and of bounded variation with respect
to a mesh function § can be obtained by a standard process of limit as
é (D) — 0. Indeed, Cesari showed under general assumptions on V and f
that the set function @ = f(%V, ¢) is again quasi-additive and of bounded

variation with respect to the same mesh function J, and hence j (V)
can be defined as a Burkill-Cesari integral j F(V, @)= f @. In a second
paper [6] Cesari proved, under a convenient system of axioms, that [ J(Ysq)
can be represented as a Lebesgue-Stieltjes integral, i.e. f J (Y, p)= (A)"

/f(CV, B)du in a certain measure space (4, B, u).

The main purpose of this paper is to continue the axiomatic a Stroach
of Cesari’s and to present in an abstract and general setting some of the

main properties of the generalized Weierstrass-type integrals f F(V, @) In

an earlier paper [12], we carried out this program for the general Burkill-
Cesari integral. For the sake of continuity, we adopt the notations and
conventions introduced there.
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164 GARTH WARNER: The generaliced

In more detail, in this paper generalized Weierstrass-type integrals
f(, ¢) where now both { and @ are set functions, and ¢ is quasi-additive

and of bounded variation will be investigated. The function f is assumed
to satisfy convenient hypotheses of continuity but f is not assumed to be
real valued. In fact f and { take on values in general locally convex topo-
logical vector spaces while the range of ¢ is assumed to be a uniformly
convex Banach space. In Section 1, we show that the set function & = f({, ¢)
is again quasi-additive and of bounded variation with respect to the same

directed set (T, >> (¢)), and hence f f& )= f & is again a Burkill-Cesari
integral. Thus this result represents an extension of a main theorem [5,
p. 111] of Cesari’s to the general setting. In Section 2, we discuss the ques-
tion of the invariance of f J (&, @) with respect to change of the generating
set functions ({, ¢). The results obtained extend those of Stoddart [8]. In
Section 3 we coﬁsider the question of approximation of the integral | f((, @)

That is, using a convenient notion of convergence of a net of pairs ({,, @a)
to a pair ({, ¢), we give conditions which enable us to conclude that

[ fay@a) —> f f (&, @). The results obtained extend those proved by Cesari

in surface area theory, and show, therefore, that also these results hold in
the present axiomatic treatment. In Section 4, we prove an abstract Fubini

theorem for the integral f f(, @) which generalizes a result found by Nis-

hiura [7]. In Section 5, the difficult question of the semi-continuity of «re-
gular » integrals is taken up. Under the assumption of regularity on the
integrand f together with a sunitable notion of convergence, an abstract

semi-continuity theorem for the integral f f(,p) is given. Here, of course,

f is real valued, while it is assumed that {, ¢ take on values in a Hilbert
space H. It should be pointed out, that no representation theorem for the

integral f f (&, ¢) as a Lebesgue-Stieltjes integral in a measure space (4, B, u)

is used ; the semi-continuity is proved directly for the integral | f({, ¢) as

a Burkill-Cesari integral. As corollaries, one obtains a classical theorem due
to Tonelli as well as the more recent result of Turner’s [9].

The results given in this paper are contained in the author’s doctoral
dissertation submitted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in the University of Michigan, 1966. The author
would like to thank Professor L. Cesari, under whose direction the disser-
tation was written, for his kind advice and encouragement.
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1. Existence of the integral [ J@& @) Let F be a uniformly convex

Banach space. Let E and G be Hausdorff locally convex topological vector
spaces with topologies described by the collections of semi-norms }Py: UeU}
and JRw: We W/ respectively. 8! will denote the unit sphere in F, whe-
reas for U€Y, e ¢E, we shall put Ey=}e: Py(e) = 1} with a similar mea-
ning for Gy, W e W. The following conventions will be adhered to through-
out this paper unless the contrary is explicitly stated. (We shall assume
the reader is familiar with the concepts and notation of our earlier paper
on this subject [12]).

A will denote a given set, or space, and }I! will denote a collection
of subsets I of A. @ will denote a collection of interval functions ¢ where
¢: Il — F. & will denote a collection of interval functions { where {:
\[{— P(E) (P(E) being as usual the set of all subsets of E; hence { is
« multiple valued »). We assume there exists a fixed set 7 such that with
each ¢ € d one may associate a partial ordering >> = >> () of 7' in such
a way that (T, >> (¢)) is 4 directed set. With each t€ T there is to be asso-
ciated a finite collection of disjoint (or non-overlapping) intervals C,=

[ ;..,In] and an operator L, which is a finite sum, that is, Li= X .
I:O,

The action of L, will be prescribed below,
Let us recall that a Banach space F is said to be uniformly convex
if for each & with 0 < e < 2 there is some 8 =24(¢) > 0 such that ||z — y||=e

—;— (x+v) . < 1—06/2 whenever ||«| =] y| =1. The following

estimate will prove to be useful

implies

(1.1) LEMMA. Let F be a uniformly convex Banach space. Let ¢ 0 <<
e<< 2, be given. Let };:i=1,..,n{ and }gpj:j==1,...,m{ be two sets of
vectors in F. Define a;= @;/|| ¢i|| for ;=5=0, any unit vector otherwise,
and similarly «j. Let J be a mapping from }1,...,n}{ into the subsets of
‘1, ..., m{. Denote by 2% a sum of terms over j for which j€J (i), by.Z’:,.
a sum of terms over j for which j€J (i) and ||a;— aj||=¢, and by 3_ a
sum of terms over j for which j€J (i) and || a; — «j|| < & Then there exists
a positive number K = K (¢) such that

EL2K° S 3L | g | < Sill i — ol + Si | il — = [l 9 1]

Proof. Let i, 1 <<i<_n, be tixed. Invoking the Hahn-Banach theorem,
let z be an element of F* such that z(¢) = ¢:|| and || 2|| = 1. Since F
is uniformly convex, there exists 6 = d(¢) such that in particular || «;—

o, ||= ¢ implies '—;—(ai—i— oj) || <1 — /2. Pick K > 0 so that ¢2K < d/2.
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Note that if || || << 1 — §/2, then |2(@)| <1 — ¢/2K. Thus, if || o — o || =¢,
then

233 (oot ) = 22 (- @il el + il 1)

< 2[1 —¢/2K]= 2 —¢/K.
Therefore,

2l ol — gl i D=1 —=z(@ill i D> 1+ /K —1=¢/K.
Squaring both sides and remembering ||z | =1 gives

e K—2 < 2 — 22 (gj/|| 95 ||)-
Hence
e K22 || gj | < || @j [l — 2 (¢)) -

For any j whatsoever, it is true that 0 << | ;|| — 2 (). Thus we.may write
& K22 2% || @l < Z*(|| 5 1| — 2 (#5))
=2 gill =l pell + 2 (i — 2 @))

<[Zleill=llell |+l p: — ZF g5 ]| -

Summing on ¢ yields the result.

Note that the number K so determined depends only on & and not
on the vectors ¢;, ;. Simple examples show that the lemma fails if the
uniform convexity requirement on F is dropped.

Fix a pair (£, p)€ & < &. Let D be a subset of E with U{ (I) c D. Let
f:D X F— @ be a mapping such that:

(f) For each W € W there exists a positive real number My such
that Ry (f(p, @) < My for all pairs (p,q)€D x S8t.

(f,) Given We Y and ¢ >0, there exists U* = U*(¢, W) and & =
&(g, W) > 0 such that Rw (f (9, , ) — f(pey @) < & for Py« (p,— py) <&
and || g, — ¢, || < & where p, ,p, € D3¢, €8,

(fy) f(p,aq) =af(p,q) for all a=0,peD,qc F.
By hypothesis (f) we shall mean (f)),(f;), and (fs).

A choice function ¢ on }((I): I€}I{ is a function ¢ such that
e(C(I)eL(I) for each I€}I{. Let C denote the set of all such choice func-
tions ¢. We shall assume the set function { is subject to a condition ({).

(C) For each ¢ >0 and each U€ U, there exists t’ = t' (¢, U)€ T such
that for every t,>>t’ there exists t"=1"(e, U,t,) such that if ¢>>1"
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if ¢,¢’€¢C,J 1, I€0C,,JEC,, then
Pyl I)—c¢' {(J) <eand Pyl (J)—c' () <e.

We point out that in condition (f) the ordering « >>» being used is
>> (@). For arbitrary ¢ € @ consider the set function

b, (I)=f(0C(I), ‘P(I)),IEH%'
If the limit
lim 3 & (I)=1im X f(c{(I), D))
T IeO, T IeO,
exists, we denote this limit by f f(et, @). Needless to say, the ordering of
T used in taking the limit is >> (¢). The main existence theorem for the

integral is

(1.ii) THEOREM. Let ¢@:}I{— F. Suppose ¢ is quasi-additive and of
bounded variation, that is, V= V (|| ¢||) < + co. If conditions ({) and (f)
hold, then @, (I)= f(c{(I), ¢ (I)) is quasi-additive and of bounded W-var-
iation for each W € W. Therefore, if @ is complete, the B — (' integral of
P, exists ; that is,

f o, = f,ﬂcc, g)=lim X (et (D), ¢ ().
I¢ Ot
Furthermore, for arbitrary ¢, ,c, € C we have

ff("i & o) =[f(cz &y o)y

that is, the value of the integral is independent of the choice function ec.

Proof. We first prove that @, is quasi-additive. Let ¢ 0 < € << 1. and
Ry be given. We know from [12, 3. vii] that || ¢ || is quasi-additive. Hence
there exists ¢f =t} (¢) such that for every t,>>t] there is also ¢, » =
t, * (g, ty) such that ¢>>t, « implies

2 e — e <o S (o] =20 ew) <
€%

€ 01.,

and
e <e
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Moreover, since f || @ || exists, there exists t, = ¢, (¢) such that ¢ >> ¢, implies
| 2 leD]—V|<e
IeO,
The conditions on f give My > 0, U*€ U, & = &(s, W) > 0 such that
Rw (f(p,9) < Mw on D < 8, and Rw (f(py,9) — (P2, q.) <e for
Pye(p, —p) < & and | ¢, — g, || <& where p,,p, €D, q,,g,€8".

Condition () gives, for this e and U* €Y, ¢’ such that for every t,>>t’
there exists t” such that if ¢>>t", if ¢,¢’€C,J cI,I€C,,dJ € C,, then

Pyx(el(I)—c'E(J)<eand Pys(cl (J)—c {(J) <e.
Let K = K (&(e, W)) denote the number determined in Lemma (1.i).
Now take t* € T such that t* >> [t/ (& (s, W)), tf (¢), t} (e&°(¢, W) K7
and take any t,>>t* . Let ¢« =tx(s, Ry ,t)>>[t; * (e& (e, W) K2, 8,
t, % (g, ), t, (e), t" (& (e, W), t))]. Take any t>>t», and let O, =[J], C;, =[I]
Denote by X7 a sum over all I€C,, by Z; a sum over all J € (;,. Denote
by 3 the sum over J c I for which ||a(I) —a(J)||=§, and by 3 the
corresponding sum for which ||« (I) — a (J)||<é. Then we have
St Rw (f(el (), o I) — 2D f(el (), ¢ (J))
=ZrRBw(f(cT)aI)||@oI)||—ZDflI)yad)|leC)]
+ 2D e @yaI)|e@)]—ZDfel @ya) e )]
=ZrBw (f( I, aIN][@D) [ —Z" W)
4+ 21D+ ZO) Ry (flel Iy (D) — f(el (T ), a( )] ¢ (T) ]|
<MwZr|@) = ZD|lpW) |||+ e 2] o) ]
+AMw K2E-2 (e, W) [ 21|l o () — ZD @ ()| + 31 flo )| = 20| @[]
<OMw+ V+ee
Also
Z'Bw (f(W)yo)=2"Rw(f(cl()ya)] )]

SMWZ’ “l}’(t])” <]'[u/£.
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Since ¢ is arbitrary, @, is quasi-additive as contended, and, if @ is com-
plete,f@c exists in view of [12, 3. v]

In order to see that &, is of bounded W-variation, first observe that
hypothesis (f) may be applied to Ry o f for each W€ W and consequently
Rw o @, is quasi-additive. Moreover for any t,¢€ T,

Zr(Bw o $o)(I) = 21 Rw (f (el (I), ¢ ()

=21 Bw (f(el(D)ya(I) | @), <<MwZr| ()]

Since Ry o @, is quasi-additive,wa o @, exists ; in fact,wao D, <

My V an so @, is of bounded W-variation for each We Y. As a conse.
quence, observe that if the My, ’s are uniformly bounded, that is, if there
exists M > 0 such that My < M for all W e Y, then D, is of bounded var-
iation and V(®,) << MV.

The fact that f @, is independent of ¢€ @ follows by a standard "¢/3"

argument and thus the proof of the theorem is complete.

As mentioned before, (1.ii) represents an extension of a result of Ce-
sari’s [3, p. 111]; (1.il) also contains a generalization of Cesari’s result due
to Stoddart [8, p, 45].

2. Invariance of [ 1, »). Given pairs of interval functions (¢, ¢), (', ¢")
one may ask for c(;nditions under which the corresponding integrals
f JG o), f f(¢’,@’) have the same value. This question was discussed by

Stoddart [8] who in turn was motivated by Cesari’s treatment of the inva-
riance of surface integrals under Fréchet equivalence. The theorems obta-
ined represent extensions to our setting of similar results established in [8]
for S,-type systems and interval functions ({, ) with finite dimensional
range. We shall employ freely and without explicit mention the notations
and conventions introduced in the preceding section.

We consider a system A4,}I{, (T,>>) with { a map : }I{— P(B),
D c E and D> UZ(I), while ¢: }I!— F; and then a second system A’,
%, (T ,>>"), with ¢’ a map ¢': }I'{— P(E),Dc E and D> UL’/ ('),
while ¢’ :} I’ — F. Let C=1}c¢’{ denote the set of all choice functions ¢
on YC(I): T€}Ill,C ='¢’! denote the set of all choice functions ¢’ on
eIy I7ed I’ Let f: DX F— G be a map satisfying condition (/).
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We already know in view of Theorem (1.ii) sufficient conditions on ({, ¢)
and ({’,¢’) to ensure the existence of the integrals / S @), / S, 9’)as

points in G.

We shall say that the pair (£, @) is (g-related to the pair ({’, ¢’) (cf. [8,
p. 58)) if for each pair (¢,,%,)€T < T, each ¢ > 0, aud each U¢€ U, there
exists a map m=m(e, U,t,,t,): A— 8’ and a pair (¢,¢')€ T >< T’ with
t=1t(, U,t,,t,)>>t,,t =1t( U,t,,t,)>>"t, such that

(1) For mIcI’,I€C,, I’€Cy, and all c€C,¢'€C’ we have
Py (e’ ' (I") — el (1) < &

2 () = l"T)—ZT o) <
I'¢ 0y
@) 2 |llg" @) =2 e M| <
€ Uy .

(iii) S* e )] <e,

where () denotes a sum over all I€ C, such that mI c I’, and 3* de-
notes a sum over all 7€ ¢, such that mI is contained in no I‘€ C,.

(2.i) THEOREM. Let f: D < F— G be a map satisfying condition (f).
Suppose (£, ¢), ({’, ¢’) are such that / f&, o), f (&, ¢’) exist as elements
of @, and V=limsup 3 || ¢(I)|| < + co. Then if (£, q) is g-related to

IeQ,

¢, ¢’), we have

f 7€ P = f 7, 9).

Proof. 1t is being assumed that the value of [f(t, @) or ff(t’, ¢’) is

independent of the choice function ¢€ C or ¢’ € C’. Hence fix c€C, ¢’ €.
Let ¢/, 0 <&’ <1, and W e W be given. The conditions on f give My > 0,
U*eU, E=¢E(’, W)> 0 such that Ry (f(p,q) < Mw on D x 8! and
Bw(f(py>4) —f(Pg; ) <& for Pys(p, —p,) <& and [|g —q,ll <&
where p,, p, €D; q,, g, €8

There exists #, € T such that ¢>>¢, implies

RW(IZO Fetd) o(I)— / 76 «p)) <.
€0,
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There exists ¢; € T/ such that ¢’ >>’t; implies
Rw( 2 st vy — / @) <.
€Uy .

There exists ¢, € T such that ¢>>¢, implies

S le)||<V+e.
Ie¢Q,

Let K= K (¢(¢/, W)) denote the number determined in Lemma (1.i).
Let e = Min (¢/, & (¢, W), &’ £2(¢/, W) K—2) and let ¢, >> [t,, 8,), t, >>'t;. Use
&, and the pair (¢, ,t,) in relation ¢ above to get a map m: A — A’ and
a pair (¢, t)e€T < T’ with t>>t¢,, t/>>"t, such that (1), (2) are verified.
We now have

Rw( 2 f' &I, ¢"I") — 120 Sel(I), ¢(I))
€0

I'c0y

< 3 RBw (S (I "INl TN —=Z" @]

I'eOp
+ ST fer e d), 2 I — fled ), a(D)]||@@])
+ S*Rw(fleld)y o) | @)l

<My Z [|l¢"IN|—=2D eI+ 2 [lod]
I'e Oy IeO,
+ 4Mw K2 ¢? (e’)pzo (lg X)) =D oI ||+
€Uy
+le I =20 o)+ w2 o]
€C

< (10 My 4 V4 ¢)é.
So

Rw([j-(é", q")—f.l‘(Cy‘P)><(10 My +V4+24¢)¢.

Since ¢’ is arbitrary, W e 9 is arbitrary, and G is Hausdorff, we conclude
that f J¢, o= f f (&, @) as asserted.

By way of applications, we point out that it is not very hard to prove
that with respect to suitable interval functions , ¢ and sets A, }I{, T that
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Fréchet equivalent parametric curves stand in relation p if the map m is
requested to be a homeomorphism. The same is true for Fréchet equivalent
parametric surfaces although the details are more involved here. We refer
the reader to [8] for the proofs of these assertions.

One may also discuss «rotational properties » of integrals [ f& o).

This problem arises classically when the interval functions ({, ¢) are gene-
rated from a variety in E™, that is, a mapping §: A — E™. Any ortho-
gonal transformation L: E™ — E™ will give a second variety 8’ = LS in
E™, with will generate corresponding ({’, ¢’) and often >> (¢’) (cf. [10, p.
923] and (8, pp. 76-80]). We shall give below a generalization of a result
of Stoddart [8, p. 77) to our setting.

Let N: F— F be a linear, bijective distance preserving map of F
onto itself. Let M : E — F be a unimorphy, that is, a linear, bijective map
of E onto itself such that for each U€Y, all e, , ¢, € E we have Py(Me,, Me,) =
= Py (e, , ¢,). Relative to a system A, }I{, T, we shall consider interval
functions £, {’ from }I{ to P(E), interval functions ¢, ¢’ from }I! to F,
and orderings of T, >> = >>(¢), >>’" =>>'(¢’). Let D < E be such that
DoUZ(I), DODUM—'(I). Let f: D < F— G be a map satisfying con-
dition (/). We shall say that the pair ({, p) is o-(M, N) related to the pair
¢’y @) if for each pair (t,,t,)€(T,>>) < (T,>>")=T < T’, each ¢> 0,
and each U € U there exists a pair (¢, t')€ T >< T/, with t=1(¢, U, ¢, , t,) >>1t,,
V=1t (¢ U,t,,t,)>>"t, such that -

(1) For I€C,, I’€Cy and all ¢c€C, ¢’ €’ we have Py(c’ (" (I’) —
—Mel(I)< e

@) ) eI =NED ] <e
€Oy
(i) 2 eI =2 o) <e
I'e Oy
(iii) e <e

where 2'I) denotes a sum over all I € C, such that I < I/, and 3’ denotes
a sum over all I€ 0, such that I is contained in no I’€ (.

(2.ii) THEOREM. Let f: D < F— G be a map satisfying condition (f).
Define g(p,q) =f (M~ p, N~1¢q). Suppose (¢, ), (¢’,¢’) are such that

ff (¢, ), fg(c’, ¢’) exist as elements of G, and

V=Ilimsup I |od)| <+ oo.
IeO,
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Then, if (£, ¢) is ¢ — (M, N) related to ({’, ¢’) we have

[rem= [ocom

Proof. With m the identity wmap, observe that ({,¢) is p-related to
(M—1¢’, N—1¢’). Hence by (2.i),

f.f(C, ¥) =ff(M‘l ¢y N-to)= fy(C’, ).

3. Approximation of the integral f f&,p). It is the purpose of this
section to formulate in abstract terms a theorem of approximation for the
integral f f (¢, ®). The discussion is motivated by Cesari’s treatment in [2,

pp. 24-30] of a theorem in the same spirit for surface integrals. We begin
with a preliminary estimate.

(3.i) LEMMA. Let @it i=1,...n{ jpi: i =1,..,n{ be two sets of
vectors in F, F a Hilbert space. Define a;= ¢/|| ;| for @;=F 0, any unit
vector otherwise and similarly «i. Suppose 37 || || < M. Then

Sl el llai— ai | < 2(M — =3 i ]| i ] )

Proof. We denote the inner product of two vectors in F' with a dot
«+». Observe that

r 1 ' ' ' 1 '
l—a[-a,‘=—;z—[ ]ai||2—2a;-a¢+|l“i||2]=_2_”az;-a,-||2.

Hence
ol | = ailP=2[l| |l — @. - @i/ || @il].

and so summing over i gives
S el o —ai P = 2[37 || @il — 2T o - willl 92 ]

< 2(M— = gi- i pi |}

which completes the proof.
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It is known that every Hilbert space is uniformly convex. We shall
specialize in this section and assume the space F is a Hilbert space.
However the other conventions enumerated earlier are in force.

Let }(Cs, ¢p): BE(L, »)! be a net in & < @, let >>; denote the ordering
of T induced by @z, let C; denote the set of choice functions c¢gz on the
set 3p(I): I€}l{l, and let Dc E be such that ﬂlzl o {pI)ye D. Let

Ie)ly
f: D>x F— G be a map satisfying condition (f). Suppose that the inte-

grals 9=ff(C, ), 9,9=ff(é'p, ®s), (B€L) exist — conditions sufficient to

ensure this were given in (1.ii). Then for the purposes of this section, we
shall mean by the term the net ({z, @g) f-converges to ({, ) the following :
For each t«€ T, for each ¢ > 0, for each U €Y, and for each W € Y, there
exists B, =f,(tv, e U, W)e.L and t,=1¢,(tx, e, U, W)€ T such that

(f)) ty>>pt= for all 8 >f,;

(f;) For all 8 > 8,, for all c€C, cz€Cy4, for all 1€ C,, we have

Pp(el(I)—cz8pI));
(f3) Tor all 8> f8,, for all c€C, cz€Cy,

()  Bw( 2 fleglp), pp(I) — Tp) < e
Te Oy

(ii) Ry( 2 flcl(I), o) —I)<e&;

Ie 0,0

(f) For all 8> 8,
IZ | e (I) — @ ()] < &

€0y

We remark that condition (f,) may be interpreted as «nniform convergence »
of the interval functions (z; to {, while condition (f;) says roughly that the
integrals J; are obtained from the approximating sums uniformly with re-
spect to T for «large» B.

(3.ii) THEOREM. Let f: D < F— G be a map satisfying condition (f).

Suppose (£, ), £z, @), PB€.L are such that jf(c, ), ff(c,e, @p) exist and

(Cs y pp) f-converges to ({, ). If ¢ and each ¢ is of bounded variation V
and V;, respectively, then lim I; = 9 provided lim V;= V.

Proof. 1t is being assumed that the value of J and J; is independent
of the choice function c¢€C or cz€(Cp. Hence fix ¢€C, cz€ 4 and let
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t»€T be arbitrary. Let ¢/, 0 <& <1, and We W be given. The condi-
tions on f give My-> 0, U*€ WU, E=E&(e’, W) >0 such that Ry (f(p,9) < Mw
on DX 8Y Rw(f(py,q) —F(ps,q) <& for Pys(p, —p)) <& and
llas — gz || <& where p,, p, €D; gy, g, € 8"

Let &-—= Min (¢/, £(¢/, W), &’ £2(¢’, W)), t» as above, and take We Y
with corresponding U*€ )/ in the definition of f-convergence above. Hence,
we are provided with £, and ¢, such that conditions (f,) through (f,) above
are fulfilled. Tt may be assumed without loss of generality that f, is chosen
so that g > f, implies | V — V;| < e and ¢, is chosen so that ¢>>¢, implies

Vee< 3 |loD)||<V+e
IeO,

Let 8 > f,. We shall write 3; for any sum over all I€C,, 3T for any
sum over all 1€ C, such that |a(I)—ag(I)||=4¢, =7 for any sum over
all T€ C,, such that ||« (I) — ag(I)|| < & Then we have

Ry (Zrf(el(I), o(I)— Z1f(cplp(I), pp(I))

< Z1Rw(f(eglp ), ag(IN) ||l @ )| — | @s) ]|
4+ ZrRw (fel(I)ya(I))— f(eglaT),ap(I)) | o ()|

<MwZ oD —lles D |
+ ST R (f(el(Dya(l)) —fleglpD), ap (D) || ¢ (I) ]
+ 3T R (el (I)ya (D) — fleaCs D)y ap (I || @ (D) ]
< My e + & (V+ &)+ 2Mw 37 | o (D) ||
It remains to study the last sum in the line above. From (3.i) we have
St |l ad) — ag)|?
< ZrlleM|llad) — ag(D)|P
<2[V—=Z2red)es)||@pD)|]] 4 2¢
=2[V —ZropD)f|| @p (D ||-(ps (T) — dg (I)) + 2¢

<2V =Vl + 2| Vp—ZrllesD|l |+ 221 || dp(D) ]| + 2¢
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where we have written A;(I) = @z(I) — @ (I). Observe that

o) = [@g) —@UN+ o) ||=|leD)]| — ||gpgd) — @ I) .
Hence

—SrlleggMil=<Z1l gy —@U) | — ZtlleD) || <2e—V
and so
V—2r |<pﬁ(1)"<2e.
Similarly
Sillep || — V< 2
We conclude that
[V —=21llgp(D)] | < 2e

Then
[ Ve—ZrlopgM<|V—=Ve|4+ V=21 lga) ]| < 3e
and so
z‘;”Hq,(l)” ’a(I)—aﬁ(I)|[2<2s+Ge+2s+2e=128.
Consequently

23t ile)]| << 2“|‘P(U|| [[e(I)—ag(I)||? < 12 &2 < 12¢".
Thereby
Ry (Zrf(el )y o)) — Zrflegla(l), pp(l))
< Mwe +e(V4e)F24My e’ =& (25My + V 4+ &)
Writing
Rw (I — )
< BRw(I—Z1f(elT), o)+ Bw(Tpg— Z1f(cplp(I), ps(l))
+ Bw (Zrfel (L), o)) — ZrfleslpI), @p (1))
L& 25My+ V424 ¢,

we deduce, since ¢’ is arbitrary, W e Y’ is arbitrary, and G is ITausdorft,

that lim Js = J as asserted. This completes the proof of the theorem.
Observe that we may take as a particular case the special map

f: D < F— F defined by f: (p, q) —q then, under the other conditions,

infer that lim f @ = | .

Let us now sketch briefly an illustration of Theorem (3.ii). Let S =
= (8, 4), 8,, = (8, A).n =1, 2, ..., be continuous mappings of finite Lebes-
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gue area L (8, A), L(S,, A) respectively. Let [S], [S.] denote the graphs
of 8, 8, respectively and suppose [S), [S,] c D c E3 Let f(p,q), p=
= (Py,De,03) €D, ¢ =14y, 9p,9s) € E* be a real valued function defined on
D < F? such that f(p,aq) = af(p,q) for all a =0, pe D, q€ B3, let U=
= {q€ E3, || ¢|| = 1} be the unit sphere in E3 and suppose f is bounded
and uniformly continuous on D < U. Consider the following proposition (P)
(4, p. 571]:

(P) Let f be as above. Let S = (8, 4), 8, =(8,, 4), n=1,2,..., be
continuous mappings of finite Lebesgue area. Suppose §,-— 8 uniformly,
L(S,,A)— L(8, A) as n—> co. Then we have also lim (S,) fj‘:(S)ff.

n — oo

Now actually this proposition follows from (3.ii) For given a closed
simple polygonal region I c A, we define { (I) =wlejz S (w), Ln(I) = W!.;!IS,, (2c),
n=1,2,... Take for ¢ (I), ¢, (I) the interval functions defined in [5, p. 106}
recall that ¢, ¢, are quasi-additive whith respect to certain mesh functions
é, 0, relative to finite systems D of nonoverlapping polygonal regions I.

Hence the integrals f f& o), f f (ny ®n) exist. Since the variations of ¢, @,
are nothing more than the Lebesgue areas of the surfaces (S, A), (8., 4)
and since by assumption lim L (8,, 4) = L (8, 4), we need only verify that

(Cny pn) f-converges to (£, (p)’l The f-convergence follows since, under the con-
ditions of proposition (P), for arbitrary ¢>>0 Cesari has shown ([1, p. 1385]; [3])
that one may find a finite system Dy=[I]|=[I,,..., Iu] of non-overlapping
polygonal regions I€{I} and an integer N, such that

(fi)p 6(Dg)<eg 0,(Dy) < e for all n > N, ;

(f)p For all n > N,

p) “(P,,(I)—"(P(I)“<€.
IeD,

Then, in view of the uniform convergence of }S,! to S, and simple but
technical considerations of surfuce area theory, one may produce an integer
N, > N, such that in addition

(fo)p TFor all n > N,, for all c€C, ¢, €C, for all T€ D, we have

”c((I) —chn(I)“ L&
(fa)p For all m > N, for all c€C, ¢, €C,,

(i) S |fleld)yed)—I|<e

IeD,

(") Izl‘) ij.(chﬂ(I)’ q‘ﬂ(I))—gpl| <8'
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These facts are worked out in detail in [2, pp. 27-28]. Hence (ln, @n) if
Jf-convergent to ({, ¢) and so proposition (P) follows from Theorem (3.ii).

We remark that similar considerations may be applied to parametric
curves.

4. A Fubini theorem for f S @) It is the purpose of this section to
supplement the results of Section 4 in [12] by formulating a Fubini type
theorem for the integrals f S, ). The results obtained represent extensions

of those in [7].

In what follows «¢» will run over 1, 2. Let E; be Hausdorff locally
convex topological vector spaces with associated families of semi-norms given
by }Py,: U:€ U Let F,, F, be Hilbert spaces as in [7] and let F=F,QF, be
their tensor product — thus for ¢, € F,, ¢, € Fp, ¢, X ¢, € F, ® F,, and one
bas ||¢, ® ¢l =11¢ |l || ¢ ||ls- Let ST, 85 denote the spheres of radius «
in F,, F, respectively. Let A, and A, be sets with corresponding collections
of intervals }I,{, }I,!. Let (L, : t;€ (T, >>,) be as usual. Let {;, ¢; be interval
functions where {;: }I;{ — P(E;) and ¢@;: }I;{ — F;. Let @; denote the set
of all choice functions ¢; on the collection };(I;): I, €}I;{{. Let D;> U;(I,).
Let (T, >>) be the directed set T, < T, (« > » meas Cartesian product) where
«>>» is the usual product ordering induced by >>, (¢,) and >>, (p,). We
then define A = A, < 4,, I = I,{ < I}, C,= C,, < Cy, t = (t,,%,) € T. The
space £ = E,>< E, is a Hausdorff locally convex topological vector space if
we equip it with the topology determined by the semi-norms Py, g, defi-
ned by Py, v, (e;, €;) = Py, (e,) + Puy,(ey) for (e, e,) € B, < E,. Define the
map {: }I{ — P (B, < E,) by stipulating ¢ (I) = {, (I,)<{, (I,) for I=1, <I,.
Suppose the maps ; satisfy condition (;). Then we claim that the product
map [ satisfies condition ({) with respect to the collection Py,  y, and the
set (T, >>). Indeed, let ¢ >0 and Py, v, be given. Since {; satisfies con-
dition (;), there exists ¢; = ¢, (¢/2, U;) € (T, >>;) such that for every #,;>>;¢:
there exists &' =t (¢/2, U;, tp,) such that if &>>:t', if ¢, ¢ €C;, J; c
cl;, I« 0‘01” J;€ C‘i then

Py, (e;§i (i) — ¢i £i(J)) < &/2, P (eili(d) — i Li(]) < /2.

it @ denote the set of choice functions ¢ on the collection ¢ (I): I€ {I}
~ thus each ¢€C determines ¢, €C,, ¢,€C, such that ¢¢ (I)= (¢, L, (1)),
I, (I,) for all T€}I{. Let ¢' = (t;,%) and let t,>>t. Now &, = (to1, to2)
suitable ¢y; € T; and ¢y >>;t;. Defining t'' = (¢;', t2') = (&' (¢/2, Uy, to1),
/2, Uy, ty)), take any ¢=(¢,,¢,) >>t". Then if ¢,c'€C, J I, I€C,,
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J € C,, we see that
Py, oy lelI)— e L) =
= P, vy (¢4 &y (1)) — €1 &y (), €3 &y (T) — €385 (J))
Py, (e &y (1) — 1 8y (J)) + Py (e (o (Tp) — es Ly (Jy) < e

Likewise Py, g, (¢ ¢ (J) — ¢’ £ (J)) < &. Hence the map ¢ satisfies condition &)

as claimed. Next we define ¢ = ¢, Q@ @,: }I|— F, @ F, by the relation

pI)=g@, 1)@ @, (I,) and for t=(t,,t,) €T, we let Ly(p) =IZO¢(I);
€0

observe L, (p) = L;(p,) @ L, (p,). Recall [12, 4.ii] which asserted that if
the ¢; were quasi-additive and of bounded variation, then the product ¢ =
= ¢, @ @, was also quasi-additive and of bounded variation. Let Dc E, < E,
and suppose D;c D. Let f: D < F— G, G a complete Hausdorff locally
convex topological vector space whose topology is described by semi-norms
{Rw: We ! Assuming f satisfies condition (f), we know from (1.ii), with

our assumptions on { and ¢, that | f(, ¢) exists. Our problem will be to

relate this « double integral » to certain « iterated integrals» which will be
defined below.

In the Hilbert space F, denote the sphere of radius « by S°. Let
J: D<F—@ and assume f satisfies condition (f). Then for each W€ there
exists a positive real number My, such that Ry (f(p, q)) << My for all pairs
(pa)€ D < 8. Let g*e 8. Writing f(p,¢")=r(p,¢*/ || a* DIl ¢* ||, we see
that By (f(p,q¥) < o My for all pairs (p,q)€ D < 8. Likewise there exists
Pot,eyy and &= &(e, W) > 0 such that Ry (f(p,,q,) —f(Py,q) <e& for
Py, o (py —py) < & and || g, — ¢, || < & where p, 1P €D gy, 9, €8N IfQ: ’
g} €8, then us above we see that Ry (f (p, ,qf )—f(ps2, qg ) < ae for Py o)
(py —py) < ¢ and || g% — ¢} || < ae Keeping these facts in mind, we prove-

(4.i). LEMMA. Suppose f: D <X F— G satisfies condition (f).
(a) Let (p, , ¢,) be a fixed point in D, < F, . Then g (p,, ¢;) =f(p, q) =
=1 ((py,P2), 1 Q g) as a function on D, < F, satisfies condition (g).
(b) Let @, : {I,y —F, be quasi-additive and of bounded variation. Then

L(pyq) = | S(py <&, a0, Q p,) exists for each (p, ,q,) € D, <X F, . Moreover

l regarded as a function on D, >< F, satisfies condition (I).

Proof. By 2, we mean a sum over all I, € C, . Statement (a) is quite
clear in view of the remarks preceding the Lemma and the fact that || ¢, ¢, || =
Hagllill ggll,- Let us prove (b). First of all the existence of ! is a conse-

2. Annalt della Scuola Norm. Sup. - Pisa.
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quence of (1.ii). Homogeneity of ! (that is, condition (l;)) follows since for

a>0,
al(py,q)=ualim 3, f(p, X ¢, (L), ¢, Q ps(Ly)
= lim ZI,f(p, X €y Cg (Ig)y aq, ®‘P2 (Ig)) = lL(p,, aq,).

For each W e )Y there exists a positive real number My, such that

Rw(f(p, q) < Mw for all pairs (p,q)€D x S
Hence

Bw (f (P4 71’2);% ReN< Mw|le, Qaell=Mwlalllal-

Therefore
Rw (L (p,, qt)) = Ry (lim 2y, f(p, < Cy Cg (Ig), q ® @y (Ip))
< lim 21: Rw (f(p, < Cy :2 (Iz)- q, ® Ps (I2 (Ig)))
<lim 25 Mw| gl || 9e T llo < Mw | gy Iy V (|| @2 o)
Hence

Rwl(py,q) <MuV(||ols)

for all pairs (p,,q,) €D, < 8] and so (I,) is satisfied.

Now there exists P(y:, vy) and & = & (e, W) > 0 such that Bw (f(p,,q,) —
f(ngQg)) < ¢ for Pr, g3y (py — Py < ¢ and H 9 — 4 ” < & where p, ,p, € D;
q1,9, € 8.

Hence if (p{t), ¢{V), (PP, )€ D, >< 8] and Pry» (p{® —p?) <§, [ ¢ —
¢ ||, < &, then

Rw (F (20 P 4V @ g2) — f (PP, p2), 4P @ ¢2)) < ¢ [| g Iz -
Hence

Rw (L(p, ¢) — U (2P, ¢®))
<1lim 37, Rw (f (p{) X ¢2 85 (1), ¢ @ 2 (I2)
—F (PP X e &2 (In)y 4P @ 2 (1))
<lim Zpe| g (L) [ =1¢ V(i @l

and thereby (l,) is fulfilled. Thus ! regarded as a function on D, > F, satis-
fies condition (I) as required and this completes the proof of the Lemma.
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(4.ii)) THEOREM. Let f: D < F— G be a map satisfying condition (f).
Suppose ¢;: {I;} — F; is quasi-additive and of bounded variation V; and
that ¢;: {I;} — P(E:) satisfies condition ({;). Then, with the other assump-
tions cited earlier, we have

(@) (4) f 7, ¢) exists;
®) 1(py,q) = (Ay) f F(pi < Ly, 4, @ gy) exists for each (p,,q))€ D,

X Fy k(py,qy) = (A,)ff(é‘i X Py Py @ q,) exists for eaclh~,, ;= )\€ Dy <X F,
Moreover I, k satisfy conditions (I), k respectively ;

(c) the iterated integrals exist, that is(4,) [ (4,) f f¢, @) and

(4y) f(A,)ff(C, ¢) exist;
(d) the iterated integrals = the double integral of (a).

Proof. We have commented on (a) above. Statement (b) is Lemma (4.i).
Statement (¢) follows from (b) and (1,ii); (d) is obvious.

5. Semi-continnity of the integral f f(, ¢). In this section we shall prove,

under appropriate assumptions, an abstract semi-continuity theorem for inte-

grals of the form [ J (¢, ). Usually such theorems are proved for integrals

of the form (X) f f (&, @) du, p being a suitable measure on a measure space X.

However, to do this one has to introduce various axioms and obtain a re-
presentation theorem for the B-C integral as a Lebesgue integral. Using sueh
a representation of the B-C integral, Stoddart [8] succeded in establishing
a very general theorem of semi-continuity which in turn contained many of
the classical results. On the other hand, Turner [9, p. 112] proved directly
a semi-continuity theorem for the Cesari-Weierstrass surface integral without
recourse to any representation theorem. We shall give a theorem in this
direction which, although not entirely analogous to Turner’s, is in the same
spirit.

Let H be a real Hilbert space and let 8! denote the unit sphere in H.
Let [e,} be an orthonormal basis for H. Let Hy denote H equipped with
the weak topology. A weak neighborhood W of a point h € H is determi-
ned by specifying a number ¢ > 0 and » continuous linear functionals 2, ,...
ey 2y then W= Wi(lg;2z,,..,2,;8)=|h: he€H and |z — 2z ()| <e,
i=1,..,n}). It is known that H and H, have the same set of continuous
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linear functionals and if z is such a functional, then there exists a unique
vector a € H such that 2 (k) = (h,a)=(a, h) for all h€ H(( , ) means inner
product in H). Moreover, regarding z as an element of H*, | z| = | a|. Fi-
nally, since H is reflexive, spheres in H are weakly compact.

We shall consider a set o of pairs (£, ¢) where {: (I} — P (H), ¢:{I| > H
(so, in our previous notation, we are taking F = H, F = H). We shall as-
sume that the elements of S are «preserved » under isometrys. Precisely,
let m: H— H be a bounded, linear, bijective map such that if 2, , &, , € H,
then || mh, — mhy || =| hy — hy||. Given an arbitrary (¢, p)€d, let (/= m(
and suppose that there is associated with {’ a map ¢’: {I|— H such that
&’y p")€S. We then assume

(m) ¢’ = m .

Let f: D < H— R, R the real numbers, D c H to be specified presently.
Conditions (f) and ({) are assumed to be in force here for each ({, ¢)€d.
If we let Do gUC(I), then condition (f) now reads: (f,) f is bounded on

I

D < 8, (fy) f is uniformly continuous on D > 8'; (f;) f(p,aq)=af(p,q)
for all a =0, p€ D, g€ 8. For a given pair ({, p)€S, it is desirable to be
able to speak of I, ), I) = (I) f o=  lim 3 fel)eW)
(ITr.>>1(®) Je Oy

for each T€{I} where (I7,>>;(p) is a certain directed set that is, we
want to consider J as a map, J: & < {I} — R. For this purpose, it is cle-
arly enough to have at hand a method for extending the definition of the
integral of f over A to a corresponding integral of f over each 1€}I{. In appli-
cations this situation always exists. Abstractly such an extension may be
realized by a generalization of the method given by Cesari in [6]. In a future
paper, we shall give the details of this procedure, but for our purposes
here we shall proceed axiomatically and make the following assumptions
(which are consquences of the general extension process):

(P,) With each pair ([, ¢)€Jd and with each I€}I{ there is associated
a directed set (T7(f, @), >>1(L, ¢)) = (T1,>>1(p)) and a collection of inter-
vals }J{ cI,J€}I!{. For given I€}I{, we assume the set 7T; and the col-
lection }J{ are fixed and independent of the pair ({, ) (although >>7(¢)
will in general depent upon the pair ({, ¢)). With each t;€ T; there is asso-

ciated a finite collection C;, of intervals J €}J{ and an operator L,= X.
Jel, I

It is assumed that for each (, ¢)€d, for each €I},

0)) f S p)= lm Z flel)e)

(Tr->>7le) TeOyy
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exists and is independent of the choice function c.
(P,) We shall suppose that if f(p,q) =0 for all (p,q)€ D < 8!, then
for arbitrary t€ T, we have

g((ta ®),A) = 120 I @) I),
€0

(¢, @) being an arbitrary element of J.

We shall assume that given (£, ¢)€d, I €3I}, and any isometry m, then
the orderings >>y(m ¢) and >>;(¢p) are comparable.

It will prove to be useful to consider « special neighborhood » systems
of elements 8, = (,, ¢, in &. Thus, for arbitrary sy€d, it will be said
that a net (s,,ax€4al,>)) in S is M-convergent to s € if the following
conditions are satisfiied :

(M,) For each ¢ > 0 and t« € T, there exists o, = a, (s, ¢ *) and {+x =
=1 *» (t %, ¢) such that for all a>a;:
(@) tax >> (@) tx,t #x >> ()t *;
(b) For all ¢y € Cy,c.€Ca, for all T€ O, »=
lleo Co (I) — €ala(I)]| < & and sup lieoCo(L) —calali) ] <e.

(M,) For each &> 0, for each I€}I{, there exists af= af(¢, I) such
that for each a>af there exists 1§ = t¥(a, &) such that for every thE >> (q)
t% we may find a subsystem Cé}w c C,slw satisfying

' (0o (I) — 37 @a ()], €,) | <¢&

>’ a sum over all J€ O;s5, ¢, an element of the orthonormal basis je,!.
SAR RS 1)

We remark that the second condition of M-convergence is related to
a lemma of McShane used in surface area theory (see [10, p. 923]). Faur-
thermore, the use of a special type of convergence is not new; thus the
« V-convergence » of [8, p. 89] is in the same spirit as M-convergence
although quite different in content. Finally we shall assume that isometrys
preserve M-convergence, that is, if m:H— H is an isometry and s, is
JM-convergent to s, then ms, is M-convergent to ms,.

Assuming axioms (P,),(P,), we are now in a position to prove a gene-

ral theorem concerning the lower semi-continuity of integrals f f &, )

(5.1) TEEOREM. Consider a pair ({,, p,) satisfying the following cond:-
tions :
(1) There exists ¢ > 0 such that the set 9 =\p:||p — u, (1)} <o}
has the property that f(p,q)=0 for p€ ), g€ H. Assume DX
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(2) At each point (p,, qo), Py € ULy ()|l ge]| — 1, for given &> 0,
there exists a g, > 0, a weakly continuous linear functional w,: H — E
(hence w, (k) = (h, a,) for some a, € H), and weak neighborhood W (p,; z, , ...
vy 2n 3 30,) Of p, such that for all p€ W(p,;2,,...,2.;30,) we have

(a) F(py q) = 1w, (q) for every q€ H

®) f(p,q) < 1w,(q)+ ¢/TM || q| for all g€ H such that g/||q|eW*
(903 2%y ey 243 30)), W* a certain weak neighborhood of g,. Here M is a
constant to be defined below.

(3) Condition (f) is satisfied by f, and J(({, ), 4) exists for each ({, p)€ .

(4) Each (£,p)€J is such that condition ({) holds for the map { while
@ is of bounded variation.

(5) Uy (I) is a weakly compact subset of H.

Then f J(C. @) is lower semi-continuous at ({,, ¢,) with respect to M-con-
vergence.

Proof. Let ¢ > 0 be given. Let M be a constant such that
M=sup}f(p,a):(p, ) €N < SL,M= V(|

From (2), for every point p,€ul,(I) and g¢,€8', there exists g, > 0, a
weakly continuous linear functional w,(q) = (a,.q)(q € H), and weak neigh-
borhoods W (Do, 2,y y2n3 300 W*(qy; 25, ..., 2m; 30,) Of Py, g, respectively
such that for all p€ W we have
(5.1) () f(p,q) == w,(q) for all g€ H;
(b) (9> 9) =< 00 (4) << w4 (q) + &/TM || g || for all q € H such that /] ||

€ W™

Since S! is weakly compact, invoking (5) we see that Y =y ¢, (I) < 8!
is compact in H, < H,. Hence Y may be covered by a finite number of
the open sets

W Dg32y ey 2500 X W32ty ey 23 00 )

Let the centers of such a covering be(p;,q), i =1,...,r, let the «radii»
be g;, let the associated functions be w;(9) = (a;, q), and let the neighbor-
hoods be

WiPi5 215 s 2ng5 00 W@i; 22 ey 2 00

Now by assumption each w; is a weakly continuous linear functional
on H and hence a fortiori is strongly continuous. We claim that | w;| =
= ||a:|| << M. In fact, we find from (2) — (a) above that M =f(p;, a: /|| a:]|)

= wi(a;/| a:|]) = || a;]| as desired. Let o < Min [¢/TM, g, 0., 0i/|] 2 IYIEAE
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i=1,..,r;j=1,..,m;k=1,..,m] With o playing the role of ¢ in the
definition of condition ({;), we may find a ¢’’€¢ T so that, among other
things, ¢t >> t" yields (>> = >> (¢,))

(5.2) [l eo o) — i 8o () ]| < o for ¢q,cr€Cy, T ECe.

We chose ¢ such that t, >>¢ implies

(5.3) |9 Py 4) = 2 F(eg 8oLy, o (L) | < ¢/7.
*€ l“

Here Zo is an arbitrary element of G, which will remain fixed throughout
the remainder of the proof. Now the point (¢, ¢, (1), Po (Iy)/|| o (L) ||) is in

one of the sets of the cover above (if || @, (L,)|| = 0, f(co Lo (L) Po (L) =0
and thus will not effect our calculations). Denote this element of the cover by

Wiz, (Pizo zi"",uu#,ﬂ{}bi oir) < Wi, (g:1,),

anilln) o awill) :
T e fmin) 0i1,)

or more simply by
Wiy (eury) < Wit (eur)-

Suppose the net (s,, a € (A, >)) is M-convergent to 8,. In the definition
(M,) of M-convergence, let ¢ play the role of ¢, and take ¢+ >> (t",t). Hence
there exists a, € of and ¢ =€ T such that the relations stated there hold. In
particular, ¢xs >> (p,) t* for all @ >, and t #x >>t » Thus t x« >> (¢’/, t) and
relations (5.2), (5.3) above are in force. We shall let ¢, = t#x. Let N be
the number of elements I, € C, . Associate with each I, € 0, an isometry
myr, which will be defined below. Then for each I, € C,,, myz,) 8a = (Mmyz,) {a,
M) Pa) = (Cay pa) I8 M-convergent to myz, s, =(myz,) Lo, Miz,) Po) = (Lo, o)
in view of our general hypotheses. We remember that by assumption
the orderings >>r, (myr,) ¢a) and >>p (p,) are comparable. Employing
part (M,) of the definition of M-convergence, use the constant o* =
= Min (0, ¢/TMN) for myz,) 8,, and thus obtain N elements a«f(s*, 1,), one

for each I,€C,. Let a> [z} (0" 1,); I, € Oy} . Consider any a >« Then we
infer the existence of N elements ¢} = t}. (a, 0*), one for each I, € C, , such
that if t4% >> I (@,) t}ﬁ, then there is a subsystem 0{;& c 0,;# satisfying

(5.4) [ (@ (1) — 2/ @a(J), e,)| < &/TMN.
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Odserve that it may be assumed tt‘: 8o selected as to ensure in addition
that if t}f >>71, (Pa) 4 , then

(5.5) | I(ar @)y L) — 31, f (0aCa (), 9a () | < /TN,

¢, being a fixed choice function in ©,. Here, in (5.4) and (5.5), 3’ denotes
a sum over all J€ O’,H 2y, a sum over all Je€ O,##

Next we note that for any ¢, € C, and any I, E C,, we have, for arbi-

trary 20 (j=1,...,m,, )

' z;:(l,,) (co CO (I#) - pi\I*)) |
< |27 (e &o) — €0 Lo (L) | + 125 (e Lo (1) — puz) |
e o+ ei1) < 2 oir,

where we used relation (5.2) in passing from the second to the third line.
Similarly, for arbitrary ¢, € C,,

<l%

| 257 (ca Lo (T,) — par,) | < 201, -

Hence we may conclude CO (I') c W,‘([*‘, (395(1‘,), La (I*) [ ‘Vi([*) (391'(\1“)), for
each I, € C,,. Therefore, inequality (5.1)-(a) holds for all q € H, (1,) or p € {o(I,),
and (5.1)-(b) for ¢, (L)/|| o (L,) |- Then

g((Ca’ @a)y A) — 9((50, ‘Po)a A) =
=[g((¢aﬂpa7-A)— z 9((5«”9‘%); I*)]

I,‘z0t*
+ 2 (I(Cw 9 L) — 21,/ (€a Lo (I )y Tal))]
*€0,
+ = (55 f(Cala ), @ald) — 2 f(Calal)y Pald)]
I,¢C t,

+, 5; (2 falad)y @ald) — (s Pald)))

+ 2 [(at(I*) ) 2’ %( ) — @0 (I*))]

L€ Oy,

+ 2 [aip, , 0o (1) — f(co Lo (L)) s @ (L)

I,eCy,

f(c Co(I )’(7)0(1 )_ (Coy‘Po)’A)]
Lie Oy,

=0, + 0y + 05 + 0, + 05 + 05+ 0.
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We shall now examine the sums o;(i = 1,..., 7). It follows from axiom (P,)
that o, = 0. Relation (5,5) implies |0, | < &/7. Since

sup |6 (L) —cla) || <0< e.

Jcr
coeeo‘,ca(ea

since G, < C,; , and since f (p,q) =0 forpe W ={p: ||[p — VYU I)|| <ol
g€ H, we see that f (Calald), Pa(J)=0 and hence o3 = 0. Next, given
I.eC, and J cI,, an argument used before shows that

| 25" (o La () — piry) | < 3 0itzy-

Thus, in virtue of (5.1)-(a), o, = 0. To discuss o5, observe that our isome-
try m;z, may be chosen so that a,s, /| @iy, || = mfr, e,, m}s,, denoting the
adjoint of mys,. Hence

[(@iras 27 @a () — o (L) | <
< |l auz, ||| 3z, €1, 27 @a (J) — @y (1) |
< || aua, || | (&, Mz, (7 Pa(]) — @4 (1) |
< @iyl (e, (Z 9’a(J — @0 (1) |
< &/TMN || ayz, || (by relation (5.4).)

Consequently

|og| << e&/TMN X || ayry || < ¢/TMN MN = ¢/7,
Lec

*€ ty

where we recalled ” ayr,) H = KI WL, ” << M.
From (5.1)-(b) we deduce

F (€0 8o (L) @0 (1) < (airy), @, (I, ) e/ TH || 9o (L) |
Therefore
05= 3 — &/TM || oo (I)|| = ¢/TM (— V) = — ¢/7.

Ix € O, e

Relation (5.3) implies | o, | < ¢/7.
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Thus we see that
g((Ca,‘Pa)rA)—g((Coy‘Po)a A)> —46/T> —¢

for all 2 » «, and from this it follows that I is lower-semicontinuous at
($oy @y) With respect to M-convergence. This completes the proof.

We shall refer to condition (1) in (5.1) by saying that f is « non-nega-
tive near s,,» and condition (2) by saying that f is «s;convex.»

We now give two illustrations of the preceding theorem.

ExaMPLE 1. Let the set A be a finite closed interval, say [0,1], of
the line; let {I} be the class of all intervals I = [a,b] c A, and T = D the
class of all finite subdivisions ¢ = D =[I;: j=1,..., N] of [0, 1]. Consider
the collection Q = Q (L) of all continuous parametric rectifiable curves C:
r=2z(w),0<<w<1, r=(r,..,2) with range in some set L c E*. Then
with each such » we may associate an interval function (,(J)={((I)=
=WU€I:v (w). Each {, satisfies condition ({;). Moreover put ¢,(I)=¢ ()=
=(@Pg,ee @), @ (I) =2, (b)) — 2, (@), r =1, ..., k, for every I =/[a,b] c A.
Our collection & will then be the collection of all pairs ({,, ;). Given a
pair (£, @.), the set T = D is directed by the mesh function §, (D) = h, (D) +

+ max | I;|, where h, (D)= max (oscillation of x on I), if we require that
IeD

D, = t, >> (ps) t, = D, provided o,(D,)<<d,(D,). Given x, an orthogonal

transformation m: E*¥ — E* determines a new wmap mx and corresponding

{mz in the obvious way. Moreover, it is known that ¢,,, = m @, (see [9, p.

21]), hence condition (m) is satisfied by the collection 5. Suppose {r,} is a

sequence of continuous parametric rectifiable curves which converge uni-

formly to a continuous parametric rectitiable curve x,, that is, sup ||z, (w) —
Wed

—a(w)|[—0 as n—>oo. Then we claim that the sequence ({,, ¢.) is M-convergent
to (o, @,). In fact, let ¢ > 0 and I = [a,b] c A be given. Let us first verify
(M,) — (a) Evidently, for this purpose. it suffices to show that there exists
an integer Ny and a system ¢»==Dxx€ ) such that for all n==N, we have
On (D #x) < gand 6, (D#+) < e. Since x, converges uniformly to x,, these func-
tions (x,,n =0,1,...) are equicontinuous and so there is a rational number
of the form ¢—! < &/4 such that || x, (1) — x, (w”") || < /4 if| 2w’ — w’" | <q
Subdivide [0, 1] into ¢ equal parts, and let ¢t ¥+ = I) »x denote the subdivision
so obtained. Notice that for all n, h,(D#*x)<e/4. Choose N, such that
n == N, implies ||, (w) — x, (w) || < ¢/4 for all we[0,1]. We then have

(@) On (Dxx) = Max | I;| 4+ h, (D*+) < &/4 4 ¢/4 < & for all n=0,
1,2...
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(b) Fix I€ Dss = C,,,, and let n > N,. We consider |c¢,{,(I)—
—enlalI)|. Let ¢yCo(I) = my(w0'), €nln(l)=m, (w’’) where w’, w’’ €l
Thus

H 00C0<I)—cn¢n(I)H

< [l @0 (") — 200" || 4[| % (") — @ (") [| < e

The fact that sap || ¢yl (I) — ¢aln(J)|| < & is clear. Hence (M,) is verified.
Jer

Next, we check condition (M,). In order to do this we first have to specify,
for each I€{Il} in accordance with (P,), the set T; and intervals {J} c L.
So, if I=[a,b]c [0, 1], we let T be the set of all finite subdivisions of [a, b] and
{J}=1{[c,d]: [¢,d] € IT}. We can then define, in an analogous way to the case
A = [0, 1], the mesh functions é; and the orderings >>;(¢) of T;. Having
done this, we now observe, since one interval is as good as the next, that
it is sufficient to check (M,) for I =0, 1] only. But, noticing that for any
subdivision D =[I;: j=1,..., N] of [0, 1] whatsoever we have in general
¢ ([0,1) =z (1) — x (0) = Z; @ (Ij), one easily sees that (Jf,) is trivially true.
Hence we may conclude: Uniform convergence of z, to x, implies M-con-
vergence of ((», ¢,) to ({,, ¢,). Moreover, since uniform convegence is pre-
served under isometrys m, we infer that (m{,,me,) is M-convergent to
(mly, mp,). .

Now let f: L < E*— R be a parametric integrand satisfying the usual
hypotheses of continuity (that is, condition (f)). For each I'€{I}, and pair

(¢, @) €ed, it is evident that (I)ff(C, @) is meaningful (each ¢ is quasi-add-

ittive, see [5, p. 103]) and conditions (P,), (P,) above are satisfied. The in-
tegral which arises here then is nothing more than the classical Weierstrass
integral over a rectifiable continuous curve. Observe that y{,(I)= range
x, is a compact subset of E*. Thus, if the conditions (1), (2) of Theorem
(b.i) on f are satisfied, we are able to state a semi-continuity theorem in
the calculus of variations due to Tonelli.

Theorem (Tonelli). Let f: L < E* — R satisfy condition (f). Let 2 be
the class of all continuous rectifiable parametric curves x: [0,1]— Lc EX.
If x,€ 8 is such that f is non-negative near s, = ({,, ¢,) and is §,convex,
then the integral J((, @), 4) is lower semi-continuous at z,in 2 with the
uniform topology.

ExAamPLE 2. We wish to deduce here a theorem proved by Turner
[9, p. 112] on the semi-continuity of the Cesari-Weierstrass surface inte-
gral. The reader is referred to |12, Section 5| for the notations and defi-
nitions to be employed here. Let the admissible set A be the square. Let
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(I} be the class of all closed simple polygonal regions Ic 4, and T=
the class of all finite systems D =[I]=[I,,..,Iy] of non-overlapping
regions T€}I}. Let 2 = 2(L) be the class of all continuous BV mappings
z:A— Lc E® (in other words, continuous surfaces § in L with finite
Lebesgue area). Then with each such x we may associate an interval func-
tion {(I)=2¢, (I)=wLEJI(x (w). Moreover, we put

'I’(I)’-—"q’z(I)=(q71(I)’¢2([)7'P3(I));‘Pr(I)=”(wr71)7'r=1:

2,3 where v(x,, I) is the relative variation (signed area) of the plane map-
ping (x,, I). It is known that ¢ is quasi-additive with respect to @ and
8(D) [12, Section 5]. Our collection I will then be the collection of all
pairs ({;, ). The set T =D is directed in the usual fashion for S,-type
systems. Given x, an orthogonal transformation m: E3 — E® determines a
new map mx and corresponding (., in the obvious way. The fact that
Pmz = mp, i well-known [4]; hence condition (m) is satisfied by the col-
lection . Suppose }x,} is a sequence of continuous parametric surfaces of
finite Lebesgue area which converge uniformly to a continuous parametric

surface «, of finite Lebesgue area, that is sup |, (it) — @, () || — 0. Then
we A
we claim that the sequence }(,, ¢n){ is M-convergent to ({,, ¢,). Let us

first verify (M,){(a). 1t suffices to show that there exists an integer N, and
a system ts»= D« €D such that for all n = N, we have 4, (Dss)<¢
and &, (D = ») < &. This fact, however, is a consequence of a lemma proved
by L. Cesari [1. p. 1385]. Likewise. (M,)-(b) is immediate (for details see
[2, pp. 27-28)). Hence (M,) holds. It remains to verify (M,). In order to do
this, we first have to specify for each I¢€}I!, in accordance with (P,), the
set T, and intervals }J{c I. So, given I€}l!{, we take for T, the set of
all simple closed polygonal regions J such that .J € I. We can then define
the mesh functions é; and the orderings >>; (p) of 7'y in the usual way.
Let ¢ > 0 be given along with Ie€}I{. Let le ,e,,e;! be the usunal ortho-
normal basis of Euclidean space E,;. Then (p,,e,) = ¢, where ¢, is the
signed area function of the plane mapping », , = ®, : A — E? », denoting
the projection of E® onto the yz plane. According to a lemma to be found
in [11, p. 198], there is a number » > 0 with the following property :

For every continuous BV plane mapping y: A — E? with ||y (w) —
— &y, (w) || < » for all we A, there is an 5 =1 (¢, y) >0 such that every
finite system D €< with d,(D) < 7 has a subsystem [)’c D satisying

| Po (A) — Zp oy (J) | <&

where Xy denotes a sum over all J ¢ D’. The lemma is equally applicable
if we take A =1, I€}I{.
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Hence choose N, so that sup ||, (10) — xy(w)|| < »; for all n =N,
wel

(thus N, plays the role of aﬁ in condition (M,)). Then take any n > N,;
certainly sup || @, (1) — x, (w) || < v, and thus
weA

|| 21 () — @1 (1) || = || 1 2 (20) — 1, 2 (0) ||
< || ®n (10) — &y () || < 21

on I too. Hence there exists 5= ns(s, #,) > 0 such that every t}* = D}*
with 6,”1(D}'*)<171 has a subsystem D}*c D}* satisfying |t (D=2 (J)]| < &
that is | (@, (I) — 2’ @ (J)), €, | < & where 3’ denotes a sum over all J € D}‘”-
So select t;= D} with &, (DY) < yr. If t}* = DI* >> ()t} = D, that is,
if 8, (D¥) << 0, (DD < uz, then & (D¥)<é,, (DF) < prfrom a known
property of the mesh o (see [4, p. 331]). Therefore condition (M,) follows.
We conclude : Uniform convergence of }x,| to «, implies M-convergence of
WCn s Pn)t to (Lo, o). Since uniform convergence is preserved under isometrys
m, we infer that }(ml,,me,){ is M-convergent to (ml,, mey).

Let f: L < E®— R be a parametric integrand with the usual pro-
perties. The conditions (P,), (P,) above are satisfied here, the integral (I)

f (&, 9) being the Cesari-Weierstrass integral over a continuous BV surface.

Finally, U¢,(I) = range x, is a compact subset of E3, We can now deduce
from Theorem (5.i) the Turner theorem.

Theorem (Turner). Let f: L < E® — R satisfy condition (f). Let
£Q = Q (L) be the class of all continuous surfaces of finite Iebesgue area
¥:A— LcE3 If 2y€ Q is such that f is non negative near s, = ({,, @,)
and is s, convex, then the integral J((, @), A) is lower semi-continuous at
z, in £ with the uniform topology.
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