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ON ONE INEQUALITY IN WEIGHTED L, SPACES
CONNECTED WITH THE PROBLEM OF EXISTENCE
OF TRACES ON HYPERPLANES

JAN KaADLEO T (%)
1. Introduction.

Let it be given a hyperplane IT,0€ Il in the Euclidean N-space RY.
If u is a function of variable x € RY we can consider the function Zu = u/IT
defined on the hyperplane I7 such that

Zu (x) = u (x) M xell
Let 2= (B!,..., BY}, B'¢ RY be certain basis of RY ,x =.41‘.‘V x; B*. Then
we can treat the function » as a function u, of N \;'ariables‘jv:l1 yorey TN
Up (B s ooy Ty) = u (X).
Suppose that .2 = {B!,..., B¥~!} is a basis of the hyperplane II. Then
Zu (®) = (Zu) o (g 5 oo y BN_1) = Up (@) ey N1, 0).
So, the basis .2 is connected with IT.

In R¥ let us have a fundamental basis 2, = {B'*, ..., B¥*]. A relation
between .2 and 2, is described by the N < N-matrix

B}, B;,..,By
p—| Bl ,B},..,BY

N N N
Bl ,Bz ,...,BN
det B== 0
N
where Bi= 3 B; B’ .
j=1
Pervenuto alla Redazione il 18 Maggio 1967.
(*) Dead in Rome on June 22, 1967.
During the preparation of this paper the author was visiting professor at the

University of Pisa, supported by the Conmsiglio Nazionale delle Ricerche.
The Editorial Committee deeply regrets the author’s untimely death.
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The space of all infinitely differentiable functions in R¥ with compact
support will be denoted by D (R¥).
We use this notation: If § = (&, ,.., &), # = (2, ..., x,) then

<$,§>=§fi@‘i.

=1
If £ = (&), er, b))y, DU & = (&, e, ény), & = (§,&x) and similary z = (z,2y).
If A is a matrix then the inverse and transpose of A we denote by A—!

and A’ resp., £ A i8 product of the vector £ and the matrix A.
Let u () = u (%, ,...,%y) be a function of N variables, u € D (R¥). Put

Fu (&) =fe—‘<fv”u(w) dx

RrN
the Fourier transform of w. If u is a function of points in R¥ then put
Fpou (&) = Fup (&)

and similary for functions of N — 1 variables.
Let v €D (RY) Then by lemma 2.3 one has

For Zu (&) = ;2—1; | det B |—1f 7£>0u (EB—Y)déy.

From properties of 7,0014 we can deduce properties of %, Zu. So, in
this paper we will study properties of the operator 7' given by

Tf ( )_—=—2!7—l|detBl—1ff(EB"")dEN,

that is of T'= T ZF, .
Properties of T are dependent on the position of hyperplane /1. Suppose

N N
(1.1) I = {J) =3B, 3 xa= 0%
et ;

i=1

=
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where

(1.2) UG =0y = ... =0 = 0
rp1 F 0, 042540, . yay—; = 0,0y = 1.
Theorem 2.5. gives us the possibility to take

1,0,0,...,0,—a,

(1.3) Bel oo

that is

(1‘4) &B—}’ = (51 [} 529 ere g Er ) §r+1 + a’1‘+1 EN g oery §N—-1 + ay EN ) EN)'

In the following we shall study spaces ng?") (RN) given by a convex
set ) and by p real, 1 <<p < co.

We say K ep if the set K¢ of all extremal points of the bounded
convex set K is finite. Put

Py (§)=max | §|4 =max | {4
A€ 4eN

where | £ = | & |"]& | | &x|*V.

Then Wﬂp"")(R‘v) is the space of all measurable functions f for which

Iflq,l;(’r)\')(RN) = I g’«’)\‘fle(RN)

is finite.
In this paper are given necessary and sufficient conditions for

(1.5) |71y vy S €1 Py f e, (€ < o).

Put H(RY)=F"" L (R"), H{N (R")=F7" WM (RY),1/p +1/g=1

q

(for the precise sense of Fourier transform ¥ see Lizorkin [9]; let us note only
that H,(, ) (RY) is not generally a subspace of temperated distributions S°).
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The inequality (1.5) can be rewritten in the form
|Z*“|H£10)(RN—1)é C|“|H‘§<K)’

where Z* = F 1 T Fp,

For ueD(R")n H(;K) (R”) one has Z*u = Zu. So Z*u can be treated
as trace of u on II.

Validity of (1.5) depends on the mutual position of the set
qK=|(XeR¥, g1 XX}, g+ 1/p=1
and the (N — r — 1)-dimensional simplex & given by the coordinate vectors

1,=,..,0,1,0,...,0,0)

Iy_y=(0,...,0,0,0,..,01).

Necessary and sufficient conditions for (1.5) are described in theorem 4.7
and theorem 6.7 (see remark 6.8). It must be ¢ X NS+ @ and the set ¢°K
must be in a certain sense « well distributed » with respect to .

In the following we also use this notation : if # = (2, , ..., x) € R¥ then

=, &) ER ;2" = (Tryy, .., aN)ER 2= (& ,2") s =N — 1.

Here the number » is given by (1.2).

2. Dual traces.
2.1 LEMMA. Let % € QD (R¥). Then

(2.1) Fou () =|det B|-1 Fp u(¢B-1).

Proof. Using the substitutions xB =y and u,(x) =u 2, (¢B) one obtains

‘.7_L)u (&) = | det B |—lf e—i<v. i8> Up (y)dy = [ det B I—l C]_po (¢B1).
’ BN
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By a similar argument one obtains
2.2 LEMMA. Let v €D (R¥). Put v (x) = u (x 4 x,). Then
(2.2) Fpv (§) = 6 <=0:6> Fpu (&),

2.3 LEMMA. Let v € D (RY). Let us denote v = Zu on II, the trace of
u on the hyperplane II. Then

—_ 1 F ,
(2.3) ‘]_U v (&) = ‘—2—; I det B |—l f (.'7_00 u(§B—V)déy .
Proof: It is known

Cfgv<5=§1;f%u(e>dsy.
T

Using the lemma 2.1 one obtains (2.3).
If we put v = F5' fin (2.3) we have

Tf = Fpr Z‘}'Eolf(g) = 21; | det B|™ ff(fB“') déy .

2.4 DEFINITION. Let f be a measurable function in RY such that the
(Lebesgue) integral

ff(EB“') dén

exists for a.e. .§—= (&) y eve y EN—1) € R¥-1. Then the function g = Tf of N — 1
variables given by

oo

! det B -1 ff (EB-Y)déy

o |

(24) 9=

is said to be the dual trace (in the basis .2’) of the (dual) function f on
the hyperplane /1.
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2.5 THEOREM. The dual trace of the function f is independent on the
basis .2 in this sense: if 2, = (BL,..., BY} is another basis which fulfils
our conditions,

B,
B# = . )
By
Bl B!
(2.5) : =0 . ,
BYN-1 BN—1

where C is a regular (N — 1) < (N — 1)-matrix and

_ 1 r
0" ® = gyl a6t B, [ 1 emr) asy

then
98 =|det C| g*(EC).

In other words : if g is the Fourier transform 7, v of some fanction v
defined on II then g* = Fp, v.

B! B
B=| : ) B, =

N—1 N—1
B BY

Proof. Put

Then there is a vector d =((i, dy);dy &= 0 such that for

C |0
e= hae—l bl Y
d |dy
one has
(3.6) B, = CB,
B~V = ¢ BpV

|det By | =|det C||dy||det B|

— — N ‘
(€ éx) € = (5 ¢, 2 dit).

i=1
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By (2.6) we have

— 1 r ,
9 = g et B [ 71687 dw =

= (using the substitution &, = d3't) =

= % |dy || det B l"ff((z, 7 jdy) B~Y) dv =

= % l det CI ’ det, B“ |"'1ff((§; T/d}v) e/ B;.ll) d‘t —_

1 - a N—1
— et 0| 5 et B [ [ 7((F 0, 2 desiot o) ) ax
\ =1

i=1

N—-1
= (using the substitution 6 = X d;& + z) =

= det C'| g* (& C").

This completes the proof of the first part of theorem 2.5
Let, now, g = %, v. Then by lemma 2.1 one has

2.7 Fp, v (&) = | det D |- Fp v (& DY),
where D is the matrix of coordinates of vectors B}, .., B¥~! in the basis .2’.
We have '3, = C93 and so D = (. By (2.7) we have

g (& = TFpo@ =|det 0| Fp, v(E ") =|det C| g* (& C)
and so

This completes the proof.
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3. Conditions for continuity of the operator T

3.1 THEOREM. The operator 7' is continuous from CW;") into L, (p > 1) iff
for 1/¢=1—1/p one has

(3.1) | T| ——IdetB |- (supess f [Poy (€B- 1)]_.,) "< oo

Ee¢ RV—1
Proof. Let g =Tf, h(£) =h(E), u=P,f. Then

l9|e, = sup f h(E)g@di=
‘ Iz =1

rN—1

= sup —|det31—l/7{(5)f(53—1') de

|h|L =1 <N
u (& B—YV)
= —_— -1 - d
5 L et B | f O o gy @
RV
and
|T|= s | If|s, =

ICW(kF

~  w(EB-1)
=5~ det B |—! h(§) s——Fdé =
B [ Ko 5
R

= (using the substitution & = 9B’) =

k(g B 1 h(y B’)
=-— B8sup 8su w(n)dy = — su
\ 2n |h|L =1 |"|L p._l fN?%( (’7) n 27 ML:_)—_, 17’()\‘ (1])

Lq

1 4 1q
= — | ' (f ih (nB )] ) = (using the substitution » = éB~ V) =
h L —-l

2n SDC)\ (n)
=§1; sup IdetBl—'/q(f | k(&) |'7(f|§’,\(5B— l—qdﬁv)d&)

|blg, =1
9 RN—1

oo

= |det B (supess ] ‘ [Py(EB-Y)1d &v)wf
FerN-1J
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This completes the proof.
The main aim of this paper is to find necessary and sufficient condi-
tions for K and B for (3.1) to hold, that is to estimate the integral

oo

(3.2) f (Poy BV dey .

Without loss of generality we can suppose q¢ = 1.
In the following, it is denoted by I"=(1, ..., 1), I¥=(0,...,0,1,0,..,0),
where 1 is on the place k, I = (0,1"), I, = (0, I}).

3.2 LEMMA. Let

(3.3) B=|0,...,01,0,..., a4
0y 0,1,0, y Qr—2
. Y8
9% ¢ o s s e s e y 0, 1, a/N_.l ’
0, , 0,1
where a,4;, 30, ..., ay—; 3= 0. Then
=)
(3.4) supess f [Py (& B—Y)|déy
Se V-1
is finite iff it is finite the number
(o)
(3.5) 7 (K, 8) = supessf [max | & |4 | & — «I" |4"] 1 dv.
serY ) At K

Proof. One has

E B-V = (Ei 3 seey Er, Er—]—l + Qriyq EN yeoey EN-—] + aN—1 EN, éN)-
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Using the substitutions

£N=17y—1,a;EN+£.~=m (i=1’+1,...,N—1)

one has
(3.4) supe§§ ][;nea(;; [ 7|4 | @41 |Ar+1 o | an— \AN—-I |y — oI A" de
ne R Y o
= [max | a4 |*7+1 ... | ay_1 [*¥-1]~1 supess j[@c,(((é’, & — ") de
4eX ge RN

and the proof is finished.

Take k,1 =k < 8 and put
§=(|§1|y--~,|§r+k—1|, | Ertrtt ]y ey | EN])
E@ = (& |)es |1 5 T |Ergrgr |y oy [ Ex])
@) = my sy |0y [epr — |5 ooy | rpmy — me |5 7,
[ Mrdiets — e ]y s [y — i |)

for £=(& ey én)s n=(y, ., qn)
Further put (i, < iy < ... < 1)

-Pil,...,it 5 = (51 g ey 6!'1—1, §i1+1 3 veey éi,—l 9 Eiﬁ-l g ey Eit—-l ]
§i¢+l 3 eer EN ) 5&1 + o '+' fit)-
3.3 LEMMA. Let 1 < k < s. Then

L o [ gy— ;|
) Kb 'I]

r<istisN
(3.6) supess [Py ()] de
ne RN

is finite iff

min | §;

réiéNl

i£k-+r
37 7 (K, 8, k) = supess [P (& @)1 dr < oo .

Ek ¢ RV—1
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Proof. To fix the ideas put k¥ = 1. Obviously, (3.6) is less or equal to (3.7).
Let £, be such that

min | §; |
r+1<ISN

70M8ﬂd<2f (P (&, (I de.

0

Without loss of generality, changing arrangement of indices, one can suppose

0 < | Erpa] <o < | Ex].
Put
7 =& (f=1,..,7)
Nr41 = 0
i
Nrpi = 2 | & (i=2,..,8)
j=r42
Then
min |7 —g;' = min [&]
152§ 1+7r<IiZSN
r<i, jJ=N
and for i : » + 1. » < { =< N one has
(3.8 V&S 2 = | = || = 8] &]
it s
min | 7y — g5 |
rliFEjSN
e 22 @@
D}
. . 1
Usip - - 11 1 e substitution r—>—2— 7 one has
%min | 9y — y]jl
) IEJEN
7K s 1) = C f [(Po¢ (n* ()] de.

0

Now, we use this procedure for a set of Zf'i of positive measure and
finish the proof.

3.4 LEMMA. y (K, 8) < oo iff y (K, 8,i) < oo (i=1,2..,s) and

}'(Pi,i,:)(,s—l)<°° (7'+1§i1<i2§N)-
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Proof. Put

1 .
d=— min_|n—un|
rliFEjSN

é
It = (nr+k, et + 7)

- 8
T = (Mrte — s Mtk ) (k=1,..,8

8
Jp=(—00, 00) —U FFUT.
1
Let 6=—2—|17.-l+,-—m,+,[, r < i, < iy, = N. Then for €, we have

[T — Bie | = |7 = Niatr | + | Bitr — Niatr | =

=7 — Nutr| + 20 = 5[ — 7iryr |
and so

. 1
(3.9) —5—ff—'7-',+rlél'-—'l-'1+r|§5|1—’7f.+r|-

Let 6 3=0. Then for €97 UJ ™, j==k we have

[e—mptr | = | jpr — e | | S|t — nigr | =
<< 6 <
S5 = |’71+r—ﬂk+r|
and so
3 5
(3.10) 7 [ = M | St — e | = it — et |-
Now

fimgioretw —ream [ (4.
—o +

f is a bounded function of 5 iff any of these integrals f ) j ) f is a bounded
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function of 7. In the integral f and f we can use (for é==0) (3.10) and
CA
write | 94-—7k+4- | instead of | T — mi4-|. Using the substitution pey, —7—>7
and lemma 3.3 we finally obtain that f and f are bounded iff y (X, 8, k) < co.
gt 9
For i, F=1,, r <t <i, = N put

Wi, o =1In, 0 min |ni—n;|=]n — 74|}
r<istis N

Then l?.!” M, ,, = BY — N, where N is a set of measure zero.
3,

gt
Let €9, . Then, using (3.9), we can write |t — #;, | instead of

| T— ;| in the integral f So f§ Cy (P iy K, 8 —1).

A %
On the other hand if

supess f[ max |y’ [4' | 9" — ¢ I |4} dr < oo,
n € RN . % AeX
then taking #; —> 7, we have

y(Py, 4K, 8 — 1) < co.

4. Sufficient conditions for y (°K, s, i) < oo.

4.1 LEMMA. Let K ep and A© €Y, Then for &= 0 we have

|64 < max |£]4.
AdexK®

Proof. AO = 3 i4A, s =0, I 14=1 and so
4€%° A€K°

|E|A(O)= I (IflA)"Aé i (max|5|“)’"‘=
4exe AN AeK’

= ( max |£[4**4 = max |&]4.
A4€%K° 4K’
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4.2 LEMMA. If G € A€ p then

(4.1) Py, (§) = max |4 = max [{[4 = max [§[4 =Py (4
4€%, 4K deN®

Proof. We use lemma 4.1.

4.3 LEMMA. If K, € N €p then
7 (K, 8) Z 7 (K, 9)
Y (K, ,8,0) = 7 (K, 8,19) (i=1,2,..,5).
Proof. Lemma is immediate consequence of (4.1).
4.4 LEMMA. Let there be A©® €)Y €p such that
A"=0@G@=1,0,n,0=< A4 G =r4+1,..,N), 4, <1 and i=%lA$°> =1.

Then y (K, 8, k) < oo.

Proof. For example, let k¥ = s. Then

min | & |
r<i<N
7 (K 8,8) = 7 ({49}, 8, 8) = supess | & (t) —4 de =
Ee g1 4
min | & |
r<i<N
— 0
= supess |40 -4V & <

EER "1

< supess |E|-49 (1 — AW~ ( min | &4V <
i<N

Ee RN r<t
N
z A£°) o _ igv )
=< supess ( min |&]) (1 — AP)"'( min |&]) < PRI
EE RN-—I ri< N r<i<N A
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4.5 LEMMA, Let K, © X ep and let X, be a segment A A® where

AV =1, 4+ 49, A® =1, — 4", A%; > 0. Then
¥ (K, 8, k) < oco.

Proof. Suppose k = s. Then

1 1
?7(%,373)§?7(Cxia393)§

min | £ |
r<li<N
120 40 = i_a0 (0)
=< supess (|E[A9 AN 4 | & |49 1=4¥)-1 -1 gr <
Ee RV
] oy .

(0)

JeS—— |— pE—
< supess | < supess < | & |4 f N N I e
0

Ee gN-1 e VN1 .
’ HEQ

2
éz‘@<°°-

)=

4.6 DEFINITION. The convex hull of the set {I,,..,I,} is denoted by
d. We say that °X regularly penetrates the hyperplane X, ;=1 if there
is a segment AW A® such that i€ AD A®, AU, <1< A%, A0,

r+k 9y
A@¢ X.

The mapping
P,= P‘.(lz) . i(zz) Pigt—-l) i) e P‘.gn ,‘.(21)
(that is .
P X =Py 0 (Pr—1) =1 (e (P X))
1% 1 % 1%

is said to be the admissible projection oforder t (1 < ¢t <s— 1) if r }-1 <

=i i< N—k+ 1. P, is defined as the identity.

4.7 THEOREM. Let X €p and
1) Knd+= o
2) if P, is the admissible projection of order ¢ and

P,X N P,S = {0,..,0,0,..,0,1, 0, ..., 0))

r k s—t—k
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then P, X regularly penetrates the hyperplane X, ;=1 (in R¥—Y),
Then y (°K, 8) << oo (1),

Proof. We use mathematical induction. We prove that for any admis-
sible projection of order t (0 <t < s — 1) is

7 (PK, 8 — 1) < oo,

First, if t=3—1 then P,= P, , . ,. It is clear that P,_;d ={(0,...,0,1)}
and P, KNPy S+ @. So, P,y °KND S ={0,..,0,1)}, By condi-
tion 2) and lemma 4.5 we have y (P, N, 1) =y (Ps—;,1,1) < oco.

Let y (P,°K, 8 — t) < oo for any admissible projection P, of order t > ¢, .

Suppose P, is an admissible projection of order ;. Then

(4.2) Y(Pil.hploc)crs_to"'l)<°°

for any r < i, < i, = N —¢,. On the other band P; , P, K = P, i (P, X).
Using condition 1) we have P, X n P, S+ @. If

P,KN P S (0 ey 0, 0,00y 0,1, 0, ..., 0)

————

r k s—t—k
then using lemma 4.4 one has

(4.3) y (P, K, 8 — ty, k) < oo,

It
P&,CKnP&)c5=[(0,...,0, 0,...,0, 1, 0,...,0)},

r k ;;;3—

using condition 2) and lemma 4.5, one obtains (4.3). It follows from (4.2),
(4.3) and lemma 3.4 that

7 (P, K, 8 — t,) < oo,
So we can conclude (for {, = 0)
7 (K, 8) < oco.

and the proof is finished.

(*) For t =0 the condition 2) takes the form : ‘A’ < =}/ { => ‘' regularly penetrates
the hyperplane Xr+k =1,
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In the following we will prove that sufficient conditions 1, 2) of theo-
rem 4.7 are also necessary for y (K, 8) <C co.

5. Some geometrical lemmas.

5.1 LeMMA (Helly, efr. [5), [19], [20]). Let (i =1,...,n) be convex
sets in RY¥. Let be for any j, , j,, . jnt1

N+1
‘Ql M &= @
Then

i\l W+ @.

Proof. Obviously, for N =1 the lemma is true. Let the lemma take
place in any Euclidean space of dimension < N.

N42
First suppose n = N + 2. Put 9= k_fl'\k#. M 4= @. Then there is

X®e 9. The convex hull of X, .. X0 X1 .,  X¥+2) jg denoted by
4;; the convex hull of X, .., X(¥+2) ig denoted by 4. Obviously

dic M y XOeg n 4;.
s

N+42 N42
If the dimension of 4 is <N then N 4;== & and 80 N W £ .
=1

i=1
If the dimension of 4 is N then there is at least one 4; whose dimension
is N. Suppose that this is for Ayy,. Then

N+1 N4
XM= 3 LX0, 3 =1

i=1 i=]
Without loss of generality we can suppose

'11 g 0, ey lk ; 0 lk-}-l < 0, very }“\’+1 < 0.
Put

Mi == UN+2 Ai (1= 1,.., k)

Wi = — pxta i (i=k+1,..,N+1)

k —1
,uN+2=(2 1;) .

i=1
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Then
k N+2
m=0, 2 = 3 pw=1
=1 i=k+1
and

k . N2 .
X*=3IuX0= 3 uX0,

i=1 i=k+1

N42 N2
So X*€4;(i=1,2,...,N+42) and X"E‘Ql 4 cigl W= @. So, for n =N + 2

the agsertion of the lemma is true.
Now suppose that the lemma takes place for any = < nO Let Ny yoeey M,

be convex sets such that for any j,,.., jy4; one has ﬂ M, += . By the

first part of the proof we know Ezcmjizlz D My sdoy ey Jnge. Put W=
= W N N, (¢ = 1, ..., ny — 1). The number of convex sets Nk is no — 1 and
intersection of any N -1 sets N(¥ is not empty. So n N = ﬂ R/(PEN!
and the proof is finished.

5.2 LEMMA. Let f;(i = 1, 2,..., n), f be linear functionals on R~ such that
fiX)=0i=1..a—=>f(X)=0.

Then there are A; = 0 such that f= X 1;f;.
i=1
Proof. Let this assertion be true for any Euclidean space of dimension

< N. Put
= (X€RY; f:(X) = 0)

M = {XeRY; f (X)>0).
n n
The sets N(; , N are convex and .Qlcm,' N {= . On the other hand 0¢ ,91%4: %)
and, using lemma 5.1, there are sets N, ... , Wi, such that ‘ﬂl N N M= @,
j=
it is
f,-j(X)_s_O (j=1,..,N)=>f(X)=0
So, in the following, we can can consider only the case n = N. Obviously
N

(5.1) f= 2 Afi.

i=1

Put R=(X€RY; f;(X)=0Vi=1,..,N|



Ly spaces connected with the problem ete. 19

If f; are linearly dependent then the dimension of R¥/R is <CN. Fer

XeXeRYRputf¥X) =f:(X),f* (X) =7 (X). Then £} (X)=0=>r*X)=
N N

= 0 and there are 4;= 0 such that f*= 3,4, ffandsof= 3 A4 f; (4= 0).
=1 =1

If f; are linearly independent then there are X(1), .., X(¥) guch that
Ji(X9) = — §;; (it is=0 for i == j, = — 1 for i = j). Obviously X®, ..., XM¢
ENM;(i=1,..,N) and so f( XN <0 (i=1,..,N). Using (5.1) we have

N
X0 = Zhfi(XD)=—H=0
i=1

and so 4;= 0.
In case 4 M = N for 1 > 0 the convex set Y is said to be a cone.
So the cones need not be closed.

5.3 LEMMA. Let W be a cone in R¥, ) == R¥. Then there is a linear
functional f== 0 such that for X €9 it is f(X)= 0 and in any inner point
X of QM it is f(X) > 0.

Proof. There are I’ 3= 0 on the boundary of M, a constant ¢ and a func-

tional f==0 such that for X € W one has f(X) 4 C =0 and f(P) }+ 0=0.
The points 1 P (4 > 0) are boundary points of 9 and so

(5.2) Af(P)+C=fAP)+C=0 4> 0).

From (5.2) it follows f(P)= C =10 and so for X€ one has f(X)=0.
The rest of assertion is obvious.

5.4 LEMMA Let I, ) be cones, W 5= RY == Y and W n N c (0}. Then
there is a linear functional f == 0 such that

f(X)=0 for X €N
J(X)=0 for XeX
and the inequalities are sharp inside of N and 9.

Proof. ‘Wi n(— M) is a convex cone and so

\
|
i

dim W N —N)=N—">MN — W= RY => W = R".
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So under the hypotheses of the lemma
dim (M n — M) < N, dim (NN — Q<N

and there is Z¢ (M N — W)U (XN — NV {0}.

The convex hull of N N (— N) will be denoted by X and suppose Z € K,
— Z€K. Then thereare 4, 4, 0 < 1<1,0=u=<1,X, €M, Y, €M, X, €Y,
Y, € N such that

Z=AX, 4+ 1 —-N)X,=—nY, —(1—nY,
and so

A, +uY, +(1—DX,+0—pY,=0.

If either A= =0 or 1 = u =1 then Z € W n Y and this is in contra-
diction with the fact that W N Nc {0}. So A4+ u40F2— (24 p). Put

g _AXi+pY, , _ A=A +1—pn]T,
T 2—(A+p) ‘

_2—(A4p
A+t p

Then

Z, = Z,.

On the other hand Z, € M, Z,€ — N and so Z, €N NN which is in
contradiction with WP NN {0} and Z == 0.

So we have proved that either Z¢ K or — Z ¢ K (Z 3= 0) and so K =+ R¥,
Using lemma 5.3 we can find a linear functional f == 0 such that for X € )} o
SMN(— N)

f(xX=0
and the proof is finished.

5.5 LEMMA. Let X € p and II be a hyperplane in RY. Suppose that there
is at most one extremal point of X in II. Let X€ X n Il and X be not ex-
tremal point of K. Then there is B € R¥ such that X + B€ X — II, Y — B¢
€ X—1II (that is the segment X 4 B, X — B penetrates the hyperplane IT).

Proof. Assertion of this lemma is sufficiently obvious.

5.6 LEMMA Let ‘X € p. Let
WM (K)={XERY; (A, X) =0 A€

have empty interior. Then 0 € Y — K.
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Proof. Let 0 €(R¥ — ) U “X°. Then there is a hyperplane II such that
0€Il, IIn Xc {0} and °X lies in one of the semispaces E,, B, defined by
II,R¥ = IIVU R, UR,. Suppose Xc R, UIl. There is a point S€R,, 8= 0,
(8, X)=0>% XelIl Then there is certain neighborhood % of S such that
WUe N (K) and this is a contradiction. So 0€ Y — K°.

5.7 LEMMA. Let K €p and
NC(K) = {0}.
Then X is a neighbourhood of 0.

Proof. By lemma 5.6, 0€ K. If 0 is boundary point of X then there
is a linear fanctional f34=0, f(X) < 0% X€K. Let f(X)= (A4, X). Then,
using lemma 5.2, one has

A= 3 I X, ;= 0.
Xex®

Obviously A= X 1,> 0 and 1-1 4 €Y. Further f(A 1 4)=(4,114)=
Xewn*
=1"7¢4,A4) >0 and this is the contradiction.

6. Necessary conditions for y (°K, s,k) << co.

Put
R_‘X:[XGRN, XY= (X,,.., Xy); X, >0 M.

For Xe¢ R:z put
g X=(lgX, .. lgXy)=(g X" lgX"’)=(ly X, lg Xy).

For X € R¥ put

6 = (eX1, ..., e*N),

If W e RY then

lg W = [X€RY, eX € )|
If W< RY then

eM = (XeRY, lg XeN).
If 9 € (0, co) put
dt
.-

My P”(j = [
M
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6.1 LEMMA. Let ‘X €p and

supess
RN—-I
§g € +

[[PLK (& ()] dr < oo

0
Then the interior of the set

Wi (K) ={(XERY, (A —I;;, X) S 0 A€K]
is empty.

Proof. Suppose k = s, that is & (1) = @_, 7). Put for ke RQV.

m(E) = [r,1€(0,00); | & @[T =13 A€
Then

TEm (£) <—

— Po- (&
—>~3-(iﬁ)—§1<—:>

<=>(A—I,,lg& () S0 A€ K <=>lg&(t)€ W, (K).
One has

i dz T dr
/ g’q\ (Es (1) ;/@(x & @) - = iy m (&)
’ m(E)

Put X(T)=1Ig(£(x)) = (X, T). For X = lg& one has

infm (§) = inf eT = inf ¢T ,
<A—I,X(T)»><0x 4k  X(T)e Ws(h)

supm (&) = sup e
X (T)e M, (N)

and m (£) is a segment (with ends inf m (£) and sup m (&) or it is empty.
On the other hand

(6.1) g m (£) B
= lgsup m (&) — lg infm (§) =

=sup 7 —inf 7T itm (&) Q.
X(T)e N, (h) X(T)e M (k)
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The set ), (K) is a cone. If W, (°A) has at least one inner point then
there i8 a ball W c W, (°K) such that 1 W c N, (°X) (A > 0). Then, obviously,
using (6.1), one has

00 = supess m (£) = supess
fenr g m () = EegN_l/fi&kf(r)

which is the contradiction. So the interior of W (') must be empty.

6.2 LeEMMA. Under the hypotheses of lemma 6.1 is I € K — K¢. If there
is at most one extremal point of A on the hyperplane X,;,=1 then X
regularly penetrates the hyperplane X, ; = 1.

Proof. Using the lemma 5.6 one has I,€ K — X*. Then one can use
the lemma 5.5.

6.3 LEMMA. Let X €p and
d dr
(6.2 supess - <o
) % ¢ gV P (& (7))
0
Then ‘X regularly penetrates the hyperplane X, , =

Proof. Suppose k=3s. Let us denote ;=K — [X¢€ RY , Xy =1}
and by K, the convex hull of UK , “Kj = K° — K, , A the convex hull of X .
Then
d=dist (S, {Xe R, Xy=1})>0.
For &€ Ri—l put

m@E)=(re(0,00); &@|* T 1 AN =
=[1€(0,00); & (@) [T = 1 A €N

Then
r a
[N R EEN O
0 m (5
1 d
>.[max (1, r‘lg’«;\ & @) T : = [max (1, P, Pl (& @D pug m (5)- (B)

m (E)

@y M A= 1|XeRY, X + A€M
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Put X(T)=1g¢ (v),
M={XeRY (A —1,,X)< 0¥ A€ N
N=[XeRY, (A —1,,X) <0V A€W,

p (N, X) = p (T e(— oo, 00);(X, T)e Nj.
By a similar argument as in the proof of lemma 6.1 one has

tig m () = p (WM, X).

Further
max <d-—1I,,X> max <4, X>
e e
?fx,s*l, (Eo(x) = e e =N
By (6.2) one has
(6.3) supess —”(—%—%—‘Q— < co
X e RV—1 max (<4,X>,0)
4 €K
e B

The interior of ¥ will be denoted by (° and the projection (¥, Xy) — X
will be denoted by P.

It XEPYN PN, X0 then for >0 one has iX€ P n P,
(4,2X) < 0+ A €9 and

u (M, 4 X)
max (<A-, AX> ,0)
AENS
e 3

g() = = p (M A X) = du (W, X).

From X € P° it follows #(N, X)>0 and so

lim ¢ (1) = oo.
A -+ o0

On the other hand
w (sz, f )

max (<Z,f>‘0)
e
eAe )\ﬁ

f(X)=
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isa continuolxs function of X (begause d > 0, that is u (N, X) is a continuous
function of X)and so supess f(X) = oo ; this is the contradiction. So one has
- N—
XeR

(6.4) PY 0 PO < (o).

Evidently, P is closed and P9)/° is open.
There are three possibilities :

1) PY = {0}
2) M =@
3) M° == @ and there is X € PO, X == 0.

Ad 1) PY = {0}. Then ), is a neighbourhood of I, in the hyperplane
Xy=1 and by (6.3) there is at least one point X == 0 such that
w (M, X) < co. So, there are XM ek, X®¢Y such that p<i,
X@® > 1. Then the convex hull K, of Ay {X®, X@} is a neighbourhood
of I, in R¥, K,c X and the assertion of lemma 6.3 is true.

Ad 2) Y°= @ . Then by lemma 5.6 I,€K,. There is no extremal
point of K, in the hyperplane Xy = 1. By lemma 5.5 X, regularly penetra-
tes the hyperplane Xy = 1 and the assertion of lemma 6.3 is true too.

Ad 3) M° == @ and there is X€ P9{, X==0. Then X € PO/° and so
PP 4= R¥—1.Y(° == & implies PN = ¢ ; there is Y€ PN, Y+ 0. So
P == R¥-1. By lemma 5.4 there is Z€ R¥—!, Z == 0 such that for X € P
one has (Z, X) >0 and for X€ P one has {Z, X) < 0. Then

((Z,0), X)>0 for XeN°

((Z,0), Y)=<0 for XeN.
By lemma 5.2
Z= 3 ixZX, ix=0
Xe Ky
and obviously A=J3 Ax > 0 and A~! Z€ P'X;. Therefore B=1I,+1-(Z, 0)¢ NKs-
Further d > 0 and so there is C > 0 such that

(6.4) p M, X)=0 if (Z X)

lIA

0

M, X)< €2, Xy if (Z, 1)

N
%

0.
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(6.4) implies
u M, Xye 25 =0 if (Z.X)=0

w (M, X)e—$25 < €7, X) <20 if (Z,X)= 0.

The convex hull of °A; U (B} will be denoted by K,.

Then
4 dt ) 1 dz w (M, X)
6.5 e 22 - = !~ 0
@ / AL ‘j e T T san =0<e:
m E) m(E)
The set m(f_) is either empty or a segment. Put
m, = max (0, infm () — —”->
— 1
M, = sup m (§) + w7
Then
dr — lim dr
: Ky (&, (7)) n-—-oo Cp/\"s (&s (t)).
(0, c0)—tn,, , M)

'.0, co)—m(g)
Let m, == 0. Then there is A€ K such that |&(r)]|4"-%=1 for
€ (0, m,). That is AW < 1 and m, < | & [4"—4%), Then

ERATYY 1
My [ IA(U/“—AN))

. dr dr 1
6.6 — < s = .
o [mEwE e

Let M,=Foco. Then there is A® €K* such that | & (x)[4®?—% =1 for
)
¥ . Then

1€ (M, , ), that is AP > 1 and M, = | & 4%/0-4

(6.7) / d—té %2'*2’1‘ .
J Py, &) |& |40 4T A% 1

n |3 |Im'<1— Af\zy);



Lp spaces connected with the problem etc. 27

Using (6.5), (6.6), (6.7) one has

supess f[?,\ (&s(x)] 1 dr < 0o .
,tR -
By lemma 6.2 °X; regularly penetrates the hyperplane Xy =1, ;< K and

the proof is finished.
The convex hull of the set CKu,gk(2I,,-— I} will be deno-

Let X ep.
=1, 2,....8
ted by K® .
6.4 LEMMA
. : dr .
(6.8) supess / — =< y (K, s, k) + 1.
. oN—1 P k()
S € R+ o K
Proof. Let min |&| = || (j F=k 4 ). Then
el
) / dr < / dt —1
J @»}\m) (§e () — 2| &)1
min | & | |£j|
r<i=EN
i=ktr
and
min | $41 min | £; |
riSN r<iEN
i£k+4r ik—-r
" ’ dr

dz N
7 Emm=1 e =k
?)\-ku(fk('[)) —'/ j))\(ék('t)) 7()\, 8, f)

0

6.5 LEMMA. Let ‘Kep and yp(°K,s, k)<< oo for k=1,2,..,s Then

‘Knd £ @.

Proof. By lemmas 6.4, 6.2 I, € }'*. Put

X=34l, =0 Zk=1!.

s K3
Then = ,f_\l ar. Put A *= KN L_JI ar. Then I, € K® implies ,anin K*+=0.

§
By lemma 5.1 Ql N K* 4= @ and so KNS @.
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6.6 LEMMA. Let "N €p, KNS =} and

3 dt
Supes, / P Ca) =
=y

e R
k 0

Then K regularly penetrates the hyperplane X, =1.

Proof. The convex hull of _gk {21, — I;} will be denoted by S* . By

lemma 6.3 there is B such that I, 4 B€ K®, I, — Be K'®, that is there
are 4, 4, 0=1=1,0=p=<1; X0, X2k ; YW, Y® €Y such that

ILi4+B=2X"4+(1—=2)Y®D
I, — B=pX0 4+ (1—pn)Y®,

Obviously 4 4+ x 3= 2. Suppose 1 4 x 3= 0. Then

2L = (+ W) X0 4 (2 — 1 — ) YO

where

X — AXOD 4 px® Es® .y — I—HY V(1 —p Y cox.

At p ' 2—1—p
Put
a=(2—1—w/k+mp>0
Then
2I; — X® = a¥Y® 4+ (1 —a) I;

and

YO = I + o=} (I — X0,

ObVillBly 21 — X®e¢ C§, 21, — xX® :I: I .
Let & =< 1. Then I; €K, Y® €Y implies

oIy — X® = (1 — o) [ + Y9 €K

and so I = 2I; — X®e - NS which is the contradiction.
Let a—! << 1. Then Ix€d, 2I;— X®eJS and so

Y® = (1 —a ) I + a=! (2L — YO) €.
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Therefore
L, +=Y®eXnd

and it is a contradiction too.

Assumption 41 -+ u=3=0 is false and s0 A=u=0 and I, + Be€,
Iy — BeX.

6.7 THEOREM. Let X € p. Then the conditions 1), 2) of theorem 4.7 are
sufficient and necessary for y (K, s) << oo.

Proof. The assertion is an immediate consequence of theorem 4.7,
lemma 6.5, lemma 6.4, lemma 6.6 and lemma 3.4.

6.8 REMARK. Validity of the inequality (1.5) is equivalent to y(¢°K, s)<<oo
where 1/g=1—1/p, 1 < p < oo (see theorem 3.1 and lemma 3.2).
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