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ON ONE INEQUALITY IN WEIGHTED Lp SPACES
CONNECTED WITH THE PROBLEM OF EXISTENCE

OF TRACES ON HYPERPLANES

JAN KADLEC ~ (*)

1. Introductiou.

Let it be given a hyperplane II, 0 E 77 in the Euclidean N-space 
If u is a function of variable x E RN we can consider the function Zu = M/77
defined on the hyperplane II such that

Let , Bi E RN be certain basis of = Z xi Bi. Then
*2013i 1

we can treat the function u as a function of N xN

Suppose that is a basis of the hyperplane II. Then

So, the basis -0 is connected with II.

In Rv let us have a fundamental basis Eo = ... , BN*‘~. A relation
between f and Eo is described by the N x N-matrix

where
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The space of all infinitely differentiable functions in RN with compact
support will be denoted by Cj) (RN).,

We use this notation :

If ~ . _ (~1, ... , ~,~,), ... , ~N 1 ), ~ .- (~, ~N ) and similary x = (x, xN).
If A is a matrix then the inverse and transpose of A we denote by A-’
and A’ is product of the vector $ and the matrix A.

Let M (x) = u ..., xN) be a function of N variables, (RN). Put

the Fourier transform of zc. If ~c is a function of points in R N then put

and similary for functions of N - 1 variables.

Let Then by lemma 2.3 one has

From properties of we can deduce properties of Zu. So, in
this paper we will study properties of the operator T given by

that is of T = 9-L, 
Properties of T are dependent on the position of hyperplane /7. Suppose
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where

Theorem 2.5. gives us the possibility to take

that is

In the following we shall study spaces given by a convex
set c)( and by p real, 1  ~  oo. 

’

We say ~1 if the set C)(e of all extremal points of the bounded

convex set 9C is finite. Put

where

Then ~~p~&#x3E; (R‘~r) is the space of all measurable functions f for which

is finite.

In this paper are given necessary and sufficient conditions for

Put

(for the precise sense of Fourier transform 7 see Lizorkin [9]; let us note only
that is not generally a subspace of’ temperated distributions ~5’).
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The inequality (1.5) can be rewritten in the form

where .

For u E (D (RN) n (RN) one has Z* u = So Z* u can be treated
q

as trace of u on 1I.

Validity of (1.5) depends on the mutual position of the set

and the (h’ - r - 1) dimensional simplex c5 given by the coordinate vectors

Necessary and sufficient conditions for (1.5) are described in theorem 4.7
and theorem 6.7 (see remark 6.8). It must be q cK n c5 ~ 0 and the set q~C
must be in a certain sense « well distributed * with respect to d.

In the following we also use this notation : if x = (xi ~ ,.. , xN) E RN then

Here the number r is given by (1.2).

2. Dual traces.

2.1 LEMMA. Let Then

Proof. Using the substitutions xB = y and u~, (x~ = it,,0(xB) one obtains
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By a similar argument one obtains

2.2 LEMMA. Let

2.3 LEMMA. Let 1t E (D (R-v). Let us denote v = Zu on II, the trace of
u on the hyperplane 77. Then

Proof : It is known

Using the lemma 2.1 one obtains (2.3).
If we put u = f in (2.3) we have

2.4 DEFINITION. Let f be a measurable function in RN such that the

(Lebesgue) integral ,

exists for a. e. ~ Then the function i
variables given by

is said to be the dual trace (in the basis f’) of the (dual) function f on
the hyperplane 11.
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2.5 THEOREM. The dual trace of the function f is independent on the
basis .e in this sense : if E. = I Bl , ... , BNI f is another basis which fulfils

our conditions,

where C is a regular ( l).matrix and

then

In other words : if g is the Fourier transform :J 12’ v of some function v
defined on 1I then g* = v.

Proof. Put

Then there is a vector such that for

one has



7

By (2.6) we have

(using the substitution

using the substitution

This completes the proof of the first part of theorem 2.5.

Let, now, g = v. Then by lemma 2.1 one has

wliere D is the matrix of coordinates of vectors B~ , ... , 1 in the basis 12’.
WTe have lB. = C93 and so D = C. By (2.7) we have

and so

This completes the proof.
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3. Conditions for continuity of the operator T.

3.1 THEOREM. The operator continuous from (

and
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This completes the proof.

The main aim of this paper is to find necessary and snfficient condi-

tions for g and B for (3.1) to hold, that is to estimate the integral

Without loss of generality we can suppose q =1.
In the following, it is denoted by I" _ (1, ... ,1), 1J§’= (0,..., 0,1, 0,..., 0),

where 1 is on the place ~Z==(0,r~ Ik = (0, It’).

3.2 LEMMA. Let

where Then

is finite iff it is finite the number

One has
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Using the substitutions

one has

and the proof is finished.

and put

Further put

3.3 LEMMA. Let Then

is finite iff
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Proof. To fix the ideas put k = 1. Obviously, (3.6) is less or equal to (3.7).

Let l1 be such that
I I

Without loss of generality, changing arrangement of indices, one can suppose

Put

1°hrn

and f one has

one has

use this procedure for a set of li of positive measure and
finish the proof.

) and
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Proof. Put

we have

and so

Let 6 ~ 0 . Then for we have

and so

Now

is a bounded function iff any of these integrals is a bounded
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function of 1j. In the integral and we can use (for 6 =t= 0) (3.10) and

Tk+ 9/&#x26;-
write ! instead - nk+r 1. Using the substitution tit+, - T -&#x3E; r

and lemma 3.3 we finally obtain that and

I- ~

are bounded iff y k)  oo.

For

Then where 9N is a set of measure zero.

Let E 01lil , i, . Then, using (3.9), we can write I instead of

On the other hand if

then taking --~ ~ia we have

4. Sufficient conditions for ;

4.1 LEMMA. Let and Then for ~i + 0 we have

proof.
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4.2 LEMMA. If

Proof. We use lemma 4.1.

4.3 LEMMA. If C then

Proof. Lemma is immediate consequence of (4.1).

4.4 LEMMA. Let there be A(O) E such that

Then

Proof. For example, let k = 8. Then
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where

Proof. Suppose lv = 8. Then

4.6 DEFINITION. The convex hull of the set [I-, ... , is denoted by
cS. We say that CK regularly penetrates the hyperplane = 1 if there

is a segment such that Ik E A(l) A~2~ , A;.+k  1 - A(l) E CK,
A(2&#x3E; E .

The mapping

(that is

is said to be the admissible projection of order
is defined as the identity.

4.7 THEOREM. E p and

1) ex n c5 =t= ø
2) if Pt is the admissible projection of order t and
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then Pt 9C regularly penetrates the hyperplane Xr+k = 1 (in R1V-t).
Then y (CK, 8)  oo (~).

Proof. use mathematical induction. We prove that for any admis.
sible projection of order t (0  t  x - 1) is

tion 2) and lemma 4.5 we have y
Let y - t) C oo for any admissible projection P~ of order t &#x3E; to.

Suppose Pt" is an admissible projection of order to . 1. ’l’lien

for any r  i2 ~ ~ 2013 to . On the other hand .
Using condition 1) we have If

then using lemma 4.4 one has

using condition 2) and lemma 4.5, one obtains (4.3). It follows from (4.2),
(4.3) and lemma 3.4 that

So we can conclude = 0)

and the proof is finished.

(1) For t = 0 the condition 2) takes the forni : ’
the hyperplane I.

regularly penetrates
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In the following we will prove that sufficient conditions 1, 2) of theo-
rem 4.7 are also necessary for y (% 8)  oo.

5. Some geometrical lemmas.

5.1 LEMMA (Helly, cfr. [5], [19], [20]). Let ’)/Yi (i = 17 000 , n) be convex

sets in RN Let be for jN+1

Ther

Proof. Obviously, for 1 the lemma is true. Let the lemma take

place in any Euclidean space of dimension C N.

First suppose Then there is

X ~i~ E The convex hull of X ~1~ , ... , I X (i-1) ... , is denoted by
Ai ; the convex hull of ... , X(N+2) is denoted by A. Obviously

If the dimension of ~ ’-
1

then
i

and so

If the dimension of A is N then there is at least one Ai whose dimension
is N. Suppose that this is for AN+2. Then

Without loss of generality we can suppose
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Then

and

the assertion of the lemma is true.

Now suppose that the lemma takes place for any n Let 0Jl1 ... , 9N,
be convex sets such that for any

»

first part of the proof we know Q j2 , ... jN+2 . Put 
= n cmno (i == 1,..., no - 1). The number of convex sets is no - 1 and

intersection of any N -E-1 sets 9£t is not empty.
and the proof is finished.

5.2 LEMMA. = 1, 2,..., n), f be linear functionals on R.v such that

Then there 0 such that

Proof. Let this assertion be true for any Euclidean space of dimension
 N. Put 

--

n n

The sets are convex and n 0. On the other hand 0 E fl 
~=1 1 =f --

and, using lemma 5.1, there are sets ... , such that 
i

it is 
, , -. - - , . - --, - . -, - -

Sol in the following, we can can consider only the case n = N. Obviously

Put
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If fi are linearly dependent then the dimension of is C N. For
- -- -. A .- . ..ø

 0 and there 0 such that and so j

If fi are linearly independent then there are X ~1 ~, ... , X(-ff ) such that
= - ~~~ (it is = 0 for i =1= j, = - 1 for i = j). Obviously X ~1~ ~ ... , XN) E

E cmi (i = 1,..., 11~T) and so  0 (i = 1, ..., N). Using (5.1) we have

and 0.

In case A 9N = 9N for Â &#x3E; 0 the convex set 0rl is said to be a cone.

So the cones need not be closed. 

5.3 LEMMA. Let 0Jl be a cone in IJN, Cfll =~= RN. Then there is a linear

functional f# 0 such that for X E it is f (X ) &#x3E; 0 and in any inner point
X of 9K it is f (X ) &#x3E; U.

Proof. There are P # 0 on the boundary of em, a constant C and a func-
0 such that for X E em one has f (X ) + C &#x3E; 0 and f (P) + C = 0.

The points A P (A &#x3E; 0) are boundary points of 9N and so

From (5.2) it and so for X E cW one has f (X) &#x3E;~ 0.
The rest of assertion is obvious.

5.4 LEMMA Let 01l, 9~: be cones, and Tl fl 9l c (0). Then
there is a linear functional f 4= 0 such that

and the inequalities are sharp inside of and 9~.

m/n(2013M) is a convex cone and so
I

dim I
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So under the hypotheses of the lemma

and there is

The convex hull of will be denoted by 9C and suppose

and so

If either ~, _ ~c = U or ~, _ ,u = 1 then Z E n 9~ and this is in contra-
diction with the fact that 9N n (o). So A + ~ =~ 0 =)= 2 - (~1 -+- ,u). Put

Then

; 1 r

On the other hand Zi E Z2 E - Cfl and so 21 E c)k f1 cx which is in

contradiction with and Z jx 0.
So we have proved that either Z f CK or - (Z ~ 0) and so 9C ~ RN.

Using lemma 5.3 we can find a linear functional f # 0 such that for X E 

and the proof is finished.

5.5 LEMMA. Let CK E P and II be a hyperplane in RN. Suppose that there
is at most one extremal point of 9( in 17. Let X E CK n II and be not ex-

tremal point of 9C. Then there is B E RN such that X -~- B E 7C - 
E X-II (that is the segment X -+- B, X - B penetrates the hyperplane Il).

Assertion of this lemma is sufficiently obvious.

5.6 LEMMA Let 9(6 p. Let

have empty interior. Then
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Proof. Let 0 E (R.,’v - Then there is a hyperplane II such that
0 E II, 77n CKc and 9C lies in one of the semispaces BI R2 defined by
117 RN = 77 U Ri U R2. Suppose 9Cc Il. There is a point S E R2 , ~3 + 0,
 ~, ~Y ~ = 0 ~ .X E II. Then there is certain neighborhood 0L of S such that
CJ1 c: em and this is a contradiction. So 0 E c)C - 

5.7 LEMMA. Let c)C E p and

Then CK is a neighbourhood of 0.

By lemma 5.6, 0 E %. If 0 is boundary point of c)C then there 

is a linear functional f jx U, f (~ )  0 -V X E c)C. Let f (X ) =  A, Then,
asing lemma 5.2, one has

Obviously

I and this is the contradiction.

6. Necessary conditions for

For X E R+ put

r put

then

then

put
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6.1 LEMMA. Let and

Then the interior of the set

is empty.

Proof. Suppose k = s, that is

Then

One has

and m (~) is a segment ends inf so (~) and sup m (~)) or it is empty.
On the other hand



23

The set (x) is a cone. If (%) has at least one inner point then
there is a ball 9~ c such that 1 CJ1 c 95s (%) (1 &#x3E; 0). Then, obviously,
using (6.1), one has

00

which is the contradiction. So the interior of (J() must be empty.

6.2 LEMMA. Under the hypotheses of lemma 6.1 is Ik E ~C - C)CII . If there
is at most one extremal point of C)( on the hyperplane Xr+k == 1 then ~C
regularly penetrates the hyperplane == 1.

Proof. Using the lemma 5.6 one has Ik E Then one can use

the lemma 5.5.

6.3 LEMMA. Let and

Then LK regularly penetrates the hyperplane Xr+k = 1.

Suppose k = s. Let us denote

and by C)(a the convex hull of9Q , = gee - 9(., ,exp the convex hull of C)(p.
Then

JU’ .

For

Then



24

By a similar argument as in the proof of lemma 6.1 one has

Further

By (6.2) one has

The interior of 9~ will be denoted by and the projection 
will be denoted by P.

From X E it follows

On the other hand
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is a continuous function (because d &#x3E; 0, that is ,u (95, ~x) is a continuous
function of X) and so supess f (~.’) = oo ; this is the contradiction. So one has

Evidently, is closed and is open.
There are three possibilities:

I and there is .

Ad 1) P9i = (0). Then is a neighbourhood of 7, in the hyperplane
XN = 1 and by (6.3) there is at least one point X -~-~--- 0 such that

X)  oo . So, there are E X~2~ E ~7C such that  1,
&#x3E; 1. Then the convex hull BY of X ~2~ ~ i s a neighbourhood

of I8 in 7C and the assertion of lemma 6.3 is true.

Ad 2) 01lo = 0 . Then by lemma 5.6 I8 E gca. There is no extremal

point of 9(a in the hyperplane 1. By lemma 5.5 9Ca regularly penetra.
tes the hyperplane XN = 1 and the assertion of lemma 6.3 is true too.

Ad 3) 01[0 =f= 0 and th’ere is X E Pcft, Then X E and so

=~ 0 implies =~ ø ; there is Y E Y ==)= 0. So

t~y lemma 5.4 there is Z E Z =~ 0 such that for X E 
one has ~ Z. 0 and for X E one has ~ Z, ~.’ ~  0. Then

By lemma 5.2

and obviously ,{ == M lx ] 0 and W1 Z E PKO. Therefore.
Further d &#x3E; 0 and so there is ~’ &#x3E; 0 such that
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(6.4) implies

The convex hull of C)(: U will be denoted by 
Then

The set m (~) is either empty or a segment. Put

Then

Let 11tn ~ 0. Then there is

That is

Let i , Then there is . .. such that I
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Using (6.5), (6.6), (6.7) one has

By lemma 6.2 9C regularly penetrates the hyperplane XN = 1, C’JCð c ex and
the proof is finished.

Let C)C E p. The convex hull of the set ’ I will be deno-
------ -1 ... I-

ted by 

6.4 LEMMA

Proof. Let , Then

and

6.5 LEMMA. Let ’-)~ E p and

Proof. By lemmas 6.4,

Then

By lemma
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Then 9( regularly penetrates the hyperplane X,+k = 1.

Proof. The convex hull of ; U ~ i 21k - will be denoted by By
lemma 6.3 there is B such that that is there

: such that

Obviously A -r- It ~ 2. Suppose Then

where

Then

and

Obviusly
Let oc  1. Then Ik E %, Y(3) E C)C implies

and so which is the contradiction.

Let  1. Then Ik E c5, 2Ik - X ~~&#x3E; E d and so
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Therefore

and it is a contradiction too. 
’

Assumption A + p ~ 0 is false and = 0 and Ik -(- 

6.7 THEOREM. Let CJ( E p. Then the conditions 1), 2) of theorem 4.7 are
sufficient and necessary for y (CX, s)  oo .

Proof. The assertion is an immediate consequence of theorem 4.7,
lemma 6.5, lemma 6.4, lemma 6.6 and lemma 3.4.

6.8 REMARK. Validity of the inequality (1.5) is equivalent to r(qCJ(, s)Coo
where 1 /q = 1 - 1 /p, (see theorem 3.1 and lemma 3.2).
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