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FRACTIONAL POWERS OF ELLIPTIC

DIFFERENTIAL OPERATORS (*)

by TAMAR BURAK

1. Introduction and notations.

We investigate in this work fractional powers of elliptic differential ope-
rators on a compact C°° it dimensional manifold X, without a boundary. Let
A be an elliptic differential operator of order m with coefficients in C°° (X).
We define fractional powers of A under the assumptions that the range of
the symbol (A) of A is disjoint to a ray in the complex plane and that
zero is a regular point or a pole of the first order of the resolvent of A, 7
the closure of A in Ho (X). We show that AS, restricted to 000 (~~), in an
elliptic pseudodifferential operator of order wis.

Our proofs are based on the possibility of expanding (q’4 - A)-k, k=1,
2, ..., considered as a family of operators depending on a parameter q in
the angle 01 - , arg q c 02 into an asymptotic sum of canonical families which
are defined in the same angle. This sort of expansion does not carry over
to the more general case of (qm - A)-k with A an elliptic pseudodifferential
operator. In particular we obtain as a consequence of the validity of such
an expansion a pointwise asymptotic expansion in an angle for the diagona,l
values of the kernels of (I - with the aid of the powers

I À .

Recently R. T. Seeley (11) has proved that also if A is an elliptic in-

vertible pseudodifferential operator with the range of (A) disjoint to a

ray A~ is an elliptic pseudodifferential operator of order Furthermore

Pervenuto alla Redazione il 2 Agosto 1967.
(’) The results presented here are part of a Ph. D. thesis written under the direction

of Professor S. Agnion at the Hebrew University of Jormalhm. I am gratefull to Professor
Agmon for his help and a (1 vie (B.
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he has investigated the kernels K (xys) of A~ with s  - and proved
that has an extension to a meromorphic function of s with simple
poles at ( j - n)/m, j = 0, 1, 2, .., and j # n.

In case A is restricted to be a differential operator it is convenient to

investigate properties of using the above mentioned expansion of’

[A - In particular we obtain that the poles of’ are situa-

ted at ( j - = 0, 1, 2,... and ( j - #i)/fii different from a non negative
integer. The results thus obtained generalize results in Minakshisundaram
and Pleijel (9) where in order to obtain the distribution of the eigenvalues
of a Laplacian of a Riemannian manifold the series I A 8 (x) 0. (y) is in-

vestigated. Here A,, and øn are the eigenvalues and the eigenfunctions of

the Laplacian. In this case the poles On (x) ~~y (x) are situated at

when n is odd and at when M

is even.

We add that the above methods can be adjusted to investigate interior
properties of A8 or of resolvents of realizations of A where A is an elliptic
differential operator in a bounded domain in The results on A$ thus

obtained generalize results in Kotaké-Narasimhan (8). It is shown there that

if A has a positive self adjoint realization All ha,s a very regular kernel.
In an appendix we mention results concerning the existence of rays of

minimal growth of the resolvent of A, with A an elliptic pseudodifferential
operator on X and concerning the completeness of the generalized eigenfunc-
tions of A.

We refer to Iiohn-Nirenberg (7) and to R. S. Palais (10) for the defini-
tions and basic properties of pseudodifferential operators on Rn and on a

manifold respectively. -

We mention also that the results in section 2 here are proved with

the aid of a technique similar to tha,t of Kohn-Nirenberg (7) and R. S. Pa-
lais (10) and we do not repeat the proofs here. Main details of the proofs
are given in (4).

We introduce now the following notations :
Let Rn be the n dimensional Euclidean space. Let xy be the scalar

product in Rn. For a multi index 1

Similarly and

As usual let S be the space of C°° complex functions defined in R~
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which together with all their derivatives die down faster than any power of

I x I at infinity. In 8 we denote
J

For u E S and real s we denote by 11 the s norm of it given by

Hs is then the completion of S in the s norm. For every real s and com-

plex q we introduce in S an 8, q norm which is equivalent to the s norm

and is given by

Let A (q) be a family of linear operators from S to S defined in a

truncated angle Jjf == (q,91 c arg q ~ 82 , ~ q y with 01 - 02 and

J&#x3E;1 &#x3E; 0. Let a be a real number. We say that A (q) is of order a in AM if

for every s there is a C such that if q E Ajr and u E S

A family as above is of order - oo in Jjf if it is of order a for every g.
It is clear that if A (q) is of order - oo in Jjfy for every real s 

dies down as q --~ oo in faster than any power of I q I. . If M = 

put = A .

Let X be an n dimensional compact C°° manifold without a boundary.
We fix on ...1 a finite complete set Xj, j = 1, 2, ... K, of coordinates and

denote by Oj the open set where Xj is defined. Let ~~ , j = 1 ....K, be a

partition of unity on X subordinate to j0j).
we denote by J14i the transformation from C°° (X) to

given by be a set of coordinates defined in

C°°(0). We denote by x ~ the transformation from C°° x (o) to C°°(0) given
by ( y ’~ it) (x) = it (X (x)) and we denote the transformation from COO (0)
to C- y (0) given by (X. (.1’) = it (X -1 (x)).

As usual for every real s and zc E C°° (~’ ) we put

and denote by ll - the completion 01° C°" (.X’ ) in the s norm.
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For u E H, and we put

with this scalar product Ho is a Hilbert space.
In C°° (X) we introduce the s, q norm by

Again we say that a family A (q), q E of linear operators from

C°° (X) to C°°(X) is of order a in d3z if for every s there is a C such that

1.3 holds.

We remind that a pseudodifferential operator of order s, on X, is el-

liptic if ag (A) ~ 0 on T- (x). Here a8(A) is the symbol of A which is a

complex valued function defined on T* (a?): i the bundle obtained from the

cotangent bundle of X by deleting zero from each fiber.
We abbreviate in the following « pseudo differential operator » by P.D.O.

2. Expansible families of pseudodifleiential operators.

We consider in this section one parametric families A (q), q E d, of

P.D.O. on X that have an asymptotic expansion, in a sense made precise
in definition 3 below, into a sum of canonical families defined as follows :

DEFINITION 1. A family A (q), q E .1, of linear operators from S to

is a canonical family of real degree a if

is defined for x E 

E E and q E d, that satisfy 1 $ 12 -+-  q (2 + Q, and has the following proper-
ties : For every x E l~n ao (x~q) is positive homogeneous of degree zero ill

(~q), ao is infinitely differentiable in x, ~, q, = Re. q and q2 = q .
There exists lim ao (x~q). Let ao (00 E q) = lim ao then

X - oo x - cx&#x3E;

uniformly in (~, q) such that
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The function 1p (~q) is defined for ~ E R’~ and complex y is infinitely
differentiable and q2 and satisfie$ : 0 c  (Yq)  1, y (Eq) = 0 when

when ) I is called the

symbol of A (q). 
-, _

Let A (q), q E A, be a canonical family of degree o. For every q E d A (q)
is a P.D.O. of true order less than or equal to a. If fre46; r &#x3E; 0) if a fixed

ray in d the symbol of the operator A (reie) is given by .

DEFINITION 2. A family A’(q), q E A, of linear operators from S to S
is canonical of degree a and of second kind if

with a and ip (tlq) as in definition 3.1.

W’e have

LEMMA 1. Let A (q), q E J, be a canonical family of degree o. A (q) is

of order a in ~1 in the sense of 1.3.

We define now

DEFINITION 3. A family A (q), q E A, of linear operators from S is

called expansible in d, if there exists a sequence Aj (q), q E 4, j = 1, 2, ...
of canonical families af respective degrees rj with the following properties:
1"j is monotonically decreasing to - oo and for every n the order of

n

A (q) - I Aj (q) in 11 is less than rn.
Let a (x~q) be the symbol of Aj (q). The formal snm I aj (x~q) is called

a symbol of A (q). A (q) is called of degree a’1 (x~q) is the top order

symbol of ~l (q) and we put arl [A (q)] (x$q) = a1 (x~q). Lemma 2 below as

as lemma 1 above are proved in analogy to proofs in Kohn-Nirenberg
(7). l)etails of the proofs are given in (4).

LEMMA 2. a) Let A (q) q E L1, and B (q), q E L1, be canonical families of

respective degree s and a. Let a (xEq) be the symbol of A (q) and let b 
be the symbol of 1; ~~~). The family A (y) I&#x3E; (q), q E A, is expansible of fleg-ree
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0+8. A symbol of A (q) · B (q) is given by

b) Let A’ (q), q E A, be the canonical family of second kind with

symbol a (x~q) A’ (q) is expansible in A and a symbol of A’ (q) is given by

The following theorem ensures the uniqueness of the expansion of an
expansible family :

THEOREM 1. Let A (q), q E A, be a canonical family of degree a with
symbol a (x~q). 1 f the order of A (q) in L1 is less than a a (x~q) = 0.

PROOF : We rely in the proof on the following theorem in S. Agmon (3):
Let T be a bounded linear operator in ,L2 Q an open set in R" posses-

sing the cone property. Suppose that the range of T and the range of

its adjoint T* are contained in H,n (0) for some n. (1n not necessarily

an integer if D = Rn). Then T is an integral operator,
J!

IE L2 with a continuous and bounded kernel k (xy) satisfy7ing

where y is a constant depending only on m, n and on the dimension of

the cone in the cone property of ~3.
It is easily seen that it is suffcient to prove the theorem for g  - n.

We suppose first ~ 0. Let a - 3 with 3 &#x3E; 0 be the order

of A (q) in 4. Let A’ (q) be the canonical family of second kind with sym.
bol a (xEq). For every u, v E S (A (q) 1£, v) = (u, A’ (q) v). As a result also A’ (q)
is of order a - ~ in LI. It follows from 1.3 and 1.2 that there exists a con-
stant c such that

Let K (xyq) be the kernel of A (q). From 2.6 it follows by 2.7 that
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But from definition 1 of canonical families it follows that

Combining 2.8 with 2.9 we obtain that if (reie ; r:~&#x3E; 0) is a ray in 4 and

q = 2.9 holds only if
I

1

for every x E It follows then

from the assumption a (xEq) &#x3E; 0 that a (xEq) = 0.
In the general case where we do not assume a (x~q) &#x3E; 0, let C (q),
be the canonical family of degree 2a and symbol ~2. As p&#x3E;0.

to prove that a - 0 it is sufficient to show that the order of C (q) in
A is less than 2o. Let a - a with 6 &#x3E; 0 be the order of A (q) in A. Let
A’ (q), q E L1, be the canonical family of second kind with symbol a (x$q).
Again A’ (q) is of order a - 8 in L1 and A (q) A’ (q) is of order 2Q - 2~ in

A. By lemma 2, a and b, A (q) A’ (q) differs from C (q) by a family of order
less than 2a in 4. Thus the order of C (q) in L1 is also less that 2Q.

We mention the following properties of canonical families which we

need in the following sections :

THEOREM 2. a) Let A (’1) q E 11, and B (q) q E Jy be expansible families

of respective degrees a and s A (q) is expansible of degree in

11. The symbol of A (q) B (q) is given by

where Z aj (.v;q) is the symbol of A (q) and ’-F bj (x;q) is the symbol of B (q).
b) Let E A, j = 1, 2, ... be a sequence of symbols of cano-

nical families of respective degrees Suppose rj is monotonically decrea-

sing to - oo. There exists a family A (q), expansible in J, with symbol
I aj (xEq).

c) Let A (q) be expansible in 4, there exist families A* (q) and A’ (q)
expansible in ¿J such that A (q) - .4’ (q) is of order - oo in A and such

that for every u, v (A’ (q) u, v) = A* (q) v). Let I aj (.~~q) be the symbol
of A (q). The symbol of A*(q) is given by

d) Let .4 (q) be expansible in A. Let Q;, i = 1, 2, be open set.in

R" with positive distance. For every real s there is a C sucli that it’ 
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~, = 1, 2 and has its support in Di then for every q E L1

e) Let 0 be an open set in R". Let v be a C°° difleomorphism from
S~ into Let ~~ (x) E C4 (S~) i = 1, 2, . Let A (q) be an expansible family
in 4 of degree 8. Let a (x$q) be the top order symbol of A (q). Let It (q) be
the family defined in 4 by B (q) = MØ1X. A (q) x. M~l . B (q) is expansible
in 4 and of degree s. Let b (x$q) be the top order symbol of 13 (q)

where J (x) is the adjoint ot’ dx .
d.r

Theorem 2 is proved in analogy to proofs in Iiohn-Nirenberg (7) and
It. S. Palais (10). Details of the proofs are given in (4).

Let X be a compact n dimensional C°° manifold without a boundary.
We introduce families A (q) of linear operators from C°° (X) to Coo (X)
which are expansible in d in the sense of the following definition :

DEFINITION 4. Let A (q) q E 4 be a family of linear operators from 
to C°° (X). A (q) is expansible in d if it satisfies:

1) Let be functions in C°° (~L’) with disjoint supports. Tile

family A (q) is of order - oo in 4.

2) Let 0 be an open set in X. Let y be a set of local coordinates

defined in o. Let ~1 and tP2 be in C°° (X) with supports in 0. ’rhe family
y, A (q) iI! Ø2 z* is expansible in 4 in the sense of definition 3.

If for every 0, ø, and X as above Z. (q) X. is of degree, s,
A (q) is called of degree s.

The validity of definition 4 follows from properties (d) and (e) in theo-
rem 2.

Let A (q), q E d, be an expansible family as in definition 4 of degree .~.

It follows from property (e) in theorem 2 that there exists a function

(q)] defined in a subset of the cartesian product of the cotangent bundle
of .~ and .d and such that

for in the cotangent bundle of JT and q E A that satisfv
~2 + q I2 # U. (q)] is called the symbol of A (q).
~’e define also 

’



121

DEFINITION 5. Let ~Vf &#x3E; 0. A family A (q), q E of linear operators
from C°° (x) to C°° (~’) is expansible in Jjf if there exists a family A’ (q)
expansible in A such that A (q) - A’ (q) is of order - oo in AM.

3. Expansible families with non vanishing s,’lnbols.

The asymptotic expansion of the diagonal values of the kernels

(;L2013~)-~]-i .

THEOREM 1. Let ~1 (q), be an expansible family of degree s. Let

(q)] (x), q) =1= 0 when q E d and ¿~] + q ~~~ =~= 0. There exists a

family B (q) expansible of degree - s in J such that A (q) 8 (q) - I and
B (q) A (q) - I are of order - oo iu J.

PROOF. Let A (q) be an expansible family of P,n.O. in Rn of degree r.

Let a (x~q) = or [A (q)] and let a (.r;q) ~ 0 when x E ~ ~6 R", q E 4 and
1 $ |2 + q |2 # 0. Let 0 and Q be in (Q) such that 9Ø = 0. There exist
families and B2 (q), of P.D.O. in expansible in 4 and of degree
- l’ such that (q) Bi (q) .1.118 - 310 and (q) A (q) - Mp are of
order - oo in 4. In fact let’ y E C’o (Q) and let y0 = 9. 1p (x) a is a

symbol of a canonical family of degree - f in 4. If follows from
theorem 2 (a) in 2 that ~~1 (q)=-,4 (q) 11’ and St (q) = - lV (q) A 
are expansible and of negative order in 4.

Let ~S (q), be an expansible family of 1". D.O. in Rn of negative
order - Lo. There exists then an expansible family q’ (q), q E A, such that
(I - S (q)) T (q) - I and 7’ (q) (I - S (q)) - I are of order - oo in 4. In fact
T (q) is a family corresponding by theorem 2, (b), 2 to the symbol whose
terms of degrees bigger than - (&#x3E;1 + 1) o coincide with the terms of degrees

&#x3E;1

bigger than - (n + 1 ) o in the expansion of Z S (q)i.
i=o

Let i =1, 2 be expansible families such that (I -Si (q)) Ti (q) - I
and T2 (q) (I - 8 2 (q)) - I are of order - oo in 4. Let B1 (q) = fV (q) T, (q)
and Jf., (q) = T.~ (q) 1~’ (q). It is easily seen that Bi (q) are families as required
and that 0_,. ( 13i (q)] (x~q) = o,. [A (q)] for evey x such that 6 (x) = 1.

Let ¿4 (q) be as in the statement of this theorem. With the aid of a

suitable choice of partitions of unity on X and the above local result we

obtain families B~ (q) and B2 (q) of P.D.O. on X, expansible in 4 and of
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degree - s such that A (q) B, (q) - I and B2 (q) A (q) - I are of order - oo in
A, and (q)) = 1, i = 1, 2. As and 132 (q) A (q) - I
are of order - oo in A also B, (q) - B2 (q) is of order - oo there. Thus

B (q) = B, (q) satisfies the theorem.
It follows from the proof of this theorem and from the proof of theo-

rem 2 (b) 2 that B (q) can be chosen so that for every u E C°° (X) B (q) u is a

continuous function from A to Ho (X).
Let A be an elliptic differential operator of order m with coefficients

in Coo (X). Let the range of a,n (A) be disjoint to .h = (1; A = qm q E A). The
family A - qm, q E A, satisfies the assumptions of theorem 1 here. It is

well known, and it follows also from theorem 1 here, that there exist con-
stants M and C such that = qm q E 4M) c e (A), with o (A) the resolvent
set of A, and in ( 1’n C I-In. Compari ng E Am,
with the family B (q) given by theorem 1 we obtain easily

THEOREM 2. Let A be an elliptic differential operator of order m with
coefficients in Coo (X). Let the range of Ofn (A) be disjoint to r= (l ; ~i =

E L1}. Let JI &#x3E; 0 be such that [A; A = q’~ Am e g (A). (qm - A)-~ ,
restricted to Coo (X), is an expansible family in d~ of degree_ - m.

It follows from theorem 2 that for every natural k, (q- - a)-k restricted
to Coo (X), is an expansible family of’ degree - ink in Am. In particular for

every real a there is C such that if u E Coo 

W’e mention also the following lemma which we need in section 4.

LEMMA 1. Let A satisfy the assumptions of theorem 2. Let zero be a

regular point or a pole of first order of the resolvent of A. Let (A )
if A = qm, Â. ~ 0 and q E 4. Ijet B (q), q E A, be the family corresponding to
A (q) = q’~ - A by theorem 1 here. Let M &#x3E;. o. For every real s and o
there is a C such that if q E 4, 

with the aid of theorem 2 here and theorem 3.1 in S. Agmon (3) which
we already mentioned in the proof of theorem 1.2 we obtain the following
result:

THEOREM 3. Let A be an elliptic differential operator of order w with
coefficients in Let the range of be disjoint to 1’ = ~~,; ~, :~.
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a set of local coordinates detined in .1
with support in D such that I

the symbol of the canonical family of degree
For every k there is a Ck such

that if x E 0 and A with

aj (x’ Eei9) is determined recursively by the coefficients of A.

PROOF : To justify the statement of the theorem we notice that for

every A E e (A), (A - A)- in’ml -1 and (A - A)- ~~t~’~~ -1~ are bounded operators
from go (X) to Hm + 1 ) (X) and as a result (À - has a con-

tinuous kernel. Let be the canonical family with symbol aj (x’ ~q). For
every « E S and q E A such &#x3E; 1 we have

As a result the diagonal values x’ q) of the kernel, a~ (x’, y’ q), of 
satisfy

It follows from definition 3.2 of an expansible family of P.D.O. in Rn, and
from the above mentioned theorem in S. Agmon (3) that for every k there
is a Ck and an N (k) such that for we have

Combining 3.6 with 3.7 we obtain 3.4.
It follows from theorem 2 (a).2 and from the relation (q- - A)- 

(qm - +1 = I that aj (x’ Eei8), with x E 0, are determined recursively
by the coefficients of A.
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We mention also the following result of theorem 2.

THEOREM 4. Let the assumptions of theorem 3 be satisfied. Let .R (xyl)
be the kernel of [), - A]-~’~’"~~-’ . Let y. For every a, fl ax a~ II (xyl) tends
rapidly to zero as ), --~ oo in I ; uniformly in (xy) E Di X D2 where D, and
Q2 are disjoint sets in X with positive distance.

PROOF : To justify the statement of’ the theorem we notice that for

every 1 (~.), (~, - is a P. f).O. on X and as a result the kernel

of (A - is infinitely differentiable in the complement of the diago-
nal The statement of the theorem follows easily from theorem

2 here, from property 1 in the definition 4.2 of an expansible family, from
theorem 13.9 in S. Agmon (2) and from Sobolev’s theorems.

4. Fractional powers of elliptic differential operators.

l.et A be an elliptic differential operator of order m with coefficients
in C°° (X). We define fractional powers of A under the assumption that the
range of a,n (A) is disjoint to a fixed ray in the complex plane. It follows

then that a whole angle, [A; 1 ~ 0, 0, c arg A c 02) is disjoint to the range
of Om (A). We assume also that zero is a regular point or a pole of first

order of the resolvent of ;I. It follows from the discreteness of the spec-

trum of A and from the known behavior of’ (1 - at infinity that a su-

bangle, h, of the above angle belongs to g (A) and that there is a C such

that if Â. E h !~ ~ (~, - C C. For simplicity «Te have assumed that r

contains the negative real axis. We have the following theorem :

THEOREM 1 : Let A be as above. Let 0  0153  1. Let Aa be the

operator defined in C°° (X) by

Aa is an elliptic P.D.O of order nux.

PROOF : It follows form the assumption on A that, in an angle 4 that,
, contains the positive axis, A + q’n satisfies the assumptions of tlleorein 1..3

Let B(q), qE4 , y be a family expansible in d such that (A -+- q’ln) lB (q) -
- I and are of order - oo in 1, chosen so that for
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every u E C°° (X) B (q) u is a continuous function from d to 80 (JT). It fol-

lows form theorem 2.3 and lemma 1.3 that the operator 8 defined in

000 (X) by

is of order - oo in A. Thus it is sufficient to show that the operator Ba de-
fined in C°° (~ ) by

00

is an elliptic P.D.O. of order (a-1) (Ra). am (A)I-o = 1. It

follows easily from the definition of an expansible family of P.D.O on X
that to prove this result it is sufficient to check that if A (q) is a cano-

nical family of P.D.O. in defined in d, of degree a  - ni and witll
symbol a the operator P defined in S b3~

differs by an operatar of order - oo from the canonical operator with

symbol 111 !q-l+Nla a Let A’ (q), q E A, be the family of linear opera-
tors froni S given by

where as in the definition of a canonical P.D.O. in

when

defined in S by

It follows from uefinition 1.2 of canonical families, from 4.4, 4.5 and 4.6
P - P’ is of order - oo. Let u, v E S then



126

It follows from Parseval’s equality that

It follows from Fubini~s theorem with the aid of 4.5 that

and as a result 1’’ coincides with the canonical determined by the

symbol
v

Let Aa be the closure of Aa in It follows from the ellipticity of
Aa that the domain of definition of Aa is (..Y). 

-

As A is a closed operator, densely defined in such that 

contains a whole angle 0 1 arg A  92, except possibly the origin, and an
estimate I: 1 (I - II  C holds in this angle, a definition for the power
-a _ _a

A is given by Kato (6)..lLa coincides with A . In fact the closed opera-
_a

tor A is defined in Kato (6) indirectly by

which holds for ¡ &#x3E; 0 (and for ~, ~ 0 i f 0 ( A )). 
_

In our case where zero is at most a pole of the resolvent of A if’ 1’01-

lows easily from 4.10 that

a -a.c

So that A is closed extension of Aa with (A, ; A, &#x3E; (A ). But it follows

from the ellipticity of Aa , from and from the re-
marks in the appendix 5 that if À &#x3E; 0 is sufficiently large 

. 

80 that Aa = A . ....._ _ -- - 

-- 
. _

As usual we put for s = n + a with n natural and
Again it follows from the ellipticity of A and that the domain ot’ den.
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We investigate now properties of the kernels A g , 9 with s  - 
or more generally properties of the kernels of the operators  - n/ni,
given by

where Eo is the spectral projection on the null space of A.
_ _a

In case 0 E g (A) K, = A. Ks satisfies the following lemma :

LEMMA 1. Let s ; 2013~/w and let Kx be given by 4.12 K, has a con-

tinuous kernel 

PROOF: In we consider the following expression for h’.= :

From 3.2 it follows

4.15 is obtained by an application of 3.2 to (A -’- which coincides

with (A -f- where A*‘ is the formal adjoint of A in C°° (X). It

follows from 4.14, 4.15 and 2.6 that the continuous kernel of

(A + satisfies

Also is a continuous function of for (xy) E XxX and A ~ 1.
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As a result if 8  - has a continous kernel given by

Here R (xy ~) is the kernel of’ (4 and (xy) is the C°° kernel of Eo

THEOREM 2. Let Let x ~ y. bas an extension to an

entire analytic function of s which vanishes at the positive integers and

also at zero if The extension K (xy.s) thus obtained belongs to COO

in the complement of the diagonal of 

PROOF. Let 0 and y be functions in C’°° (X) with disjoint supports. Let
be the infinitely differentiable kernel of (1 -f- A)-] It follows

from theorem 4.3 that for every tends rapidly to zero as

1 --&#x3E; uniformly in’(0153y). Also 61 &#x26;§ 8 (xy A) is a continuous function of (xy A).
As a result the operator

with s  has the infinitely differentiable kernel given by

and for every (xy) L (xy8) has an extension to an entire analytic fuvction of s
which vanishes at the integers. The extension L (xys) thus obtained is in

C°° (XxX). Similarly the operator
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with s  - n/ni has the infinitely differentiable kernel given by

Here R (xy 1) is the kernel of (A - A)-1 and Eo (.xy) is the kernel of Eo .
For every (xy)M (xys) has an extension to an entire analytic function of s which
vanishes at the non negative integers as a result of the regularity of

in the closed unit circle. The extension M (xys)

thus obtained is in C°° (XxX).
To complete the proof we notice that if Eo =1= 0 and s  - n/wi

has the infinitely differentiable kernel

For x = y we have the following result :

THEOREM :3: I,et Ii (.xys) be the kernel of Ka with s  -- a tt,

every x E ~1’ K (xxs) has an extension to a meromorphic functiozz 

simple poles at the points ( j - nl/m, j = 0, 1, 2, ... , that diner from

naturals and from zero.

Let y be a set of local coordinates defined in ,~ c X. Let x’ = x (x).
Let 0 be a~i open set such that 0 e 0 c Q. Let 0 be in G °° (.X) with support
in S~ and let 8 (x) = 1 in 0. Let K’ (x’x’s) be the kernel of ~,~ Me x~‘.
Let aj (x’$q) he the symbol of the canonical family of -f-1) - j
in the expansion of X.llle (q- + X*. Let i be a natural number

If’ Eo _--- 0 5.24 holds also for i = 0.

be the kernel of tlleii
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The residues of (K’ (x’x’s) are as follows :
Let i be a negative integer with The residue of 

at s = i is given by

Let be different from an integer. The residues of
are given by

PROOF : We consider the expression 4.13 for Let It

is easily seen that

|A|

dl has a continuous kernel M(xy.9) and for every (xy) 1V1 (xys) has

an extension to an entire analytic function Of 8 which vanishes at the bigger
from - n/m integers. Thus to prove the theorem it is sufficient to show

that if N (xys) w ilh s  - is the kernel of

N (xxa) has an extension to a meromorphic function of x with simple poles
at (j - n)/m, j = 0, 1, 2,..., with ( j - different from the non negative
integers, and to determine N (xxi) and the residues of N (xxs).

. An application of theorem 3.3 to (A + with A ~ l, yields
the asymptotic expansion

for the diagonal values of the kernel of where

a~ (x’~1) are as in the statement’ of the theorem.
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Let N’ (z’,r’,q) be the kernel of x~ l~e N, hte ’1.,*. The location of the poles
of N’ follows from 4.28, 4.29 and from

The values of g’ (x’x’i) and the residues of K’ (x’x’s) are given by 4.24-
4.27 as a result of 4.28, 4.29, 4.30 and the relation of N’ (x’x’8) to K’(x’x’.R).

5. Appendix.

We add here some remarks concerning the existence of rays of minimal
growth of the resolvent of an elliptic P. D. O. on X and concerning the
completeness of the generalized eigenfunctions of A.

We prove in (4) the following theorems which we do not prove here :

THEOREM 1 : Let A be an elliptic P. D. 0 of positive order s. Let the
range of o8 (A) be disjoint to the angle T = ~~, ; 81  92) with 9i c 82 .
Let A be the closure of A in Ho (X). There exist constants M and C such
that if &#x3E; M A:)-t II C C.

We have also the following:

THEOREM 2 : Let A be an elliptic P. D. O. of positive order 8. Let

AO E o ( A ). For every B &#x3E; 0 (20 - E Cnls+E · 
-

The proof of this theorem is based on (10 - A)-1 , restricted to C °° (X),
being an elliptic P. D. 0. of order - m and on the following lemma in
S. Agmon (1) :

Let T be a compact operator in Ho which carries Ho into Ho with
a &#x3E; 0. Let be the sequence of eigenvalues of T each repeated according
to the multiplicity. For every

From theorems 2 and 3 it follows with the aid of (XI.9.31) in Dun-
ford-Schwartz (.5) :

THEOREM 3. Let A be an elliptic P. 1). U. of positive order s. Let the

range of a,,; (A) be contained in an angle 1’ : 12; 9{  arg I  02) with

02 - 01 less than The generalized eigenfunctions of A are complete
in "0 (X).
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