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BEHAVIOR OF THE ERROR OF THE APPROXIMATE
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FOR LINEAR ELLIPTIC OPERATORS BY
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§ 1. Introduction.

Let S be a sufficiently smooth open subset of Rn with boundary -V, and
let us consider a Neumann problem for an elliptic operator of order 2m

under suitable assumptions (cf. § 2) the operator A is an isomorphism bet-
ween the Sobolev and its (anti-)dual V’.

Pervenuto alla Redazione il 5 Giugno 1967. 
’

(*) Visiting at University of Wisconsin, Madison. This lectures were given in Decem-
ber 1966.
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Our goal is to construct approximate problems. For this, we associate
with a parameter h

a finite dimensional space D~~

an isomorphism Ah mapping Vh onto Vh

an element fh of Vh

and we consider the problem :
Find Ith in ~h such that

We will first give a~ suitable definition of « convergence &#x3E;&#x3E;, and then we

will give a process for constructing Ah and fh if ~~ is given. This will be
done by constritctiitg an operator Ph Vh into V, and then we will say
that converges to u » if

We can give here the simplest process for the construction of Ah and f~ .
Let i-* denote the transposed operator of ph , so that

We then obtain the following scheme

and we can take

Then if P~ and V) are given, formula (1.5) permits us to
construct approximate problems for any choice of operators A and elements
f of V’.

For a given class of operators A (for example, linear coercive opera-

tors) we have to look for suitable assumptions about the spaces Vh and the
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operators p~ to obtain the following results :

there exists a solution Uh of (1.3)

uh converges to u

and to study the behavior of the error

An example of the operators Ph is well known. Let be a «basis»

for the (real separable) Hilbert space V. If h -= 1 we take
&#x3E;1

Then the process of construction (1.5) is called Galerkin’s Method. (See § 4).
We now return to our original problem. The space V is then a Sobolev

space. We shall construct a class of operators ~h such that the approximate
operators associated with A are « fl nite- difference &#x3E;&#x3E; operators. We will meet
during this construction all the « technical aspects &#x3E;&#x3E; of numerical analysis:
but, this being done once and for all, we will be able to use these opera-
tors for the construction of « finite-difference » schemes for other classes of
differential operators defined on Sobolev spaces.

We will associate with S a parameter h = ... a suitable mesh

of multi-integers a = ... , an), and the space Vh of sequences
Uh = (uk) defined on Rh (S~). We consider a function a (x) which is an 
fold convolution of the characteristic functions of the cube [- 1, and

we then define

The operators Ph will have the form



602

We shall construct operators rh from V into Vh so that we have

We will be able to deduce from this inequality a similar inequality for
the so that if the solution 2c of (1.1) belongs to Hq (Q)
we have

§ 2. Coercive Boundary Value Problems. 
’

We summarize here some known results concerning variational methods
in the study of boundary value problems.

Let S2 be a sufficiently smooth bounded open subset of Rn with boun-

dary 11 We denote by Hm (S~) the Sobolev space of functions u in Z2 (S~)
that have all derivatives (in the sense of distributions) of order I k 
also in L2 (S~), This is a Hilbert space with the norm

where

and

We will consider a Neumann problem for the differential operator

Introduce the sesquilinear form

If we assume that the coefficients a,pq (x) belong to L°° (S~), then this
form is continuous on Hm (-Q).
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Assume that Q and the coefficients apq satisfy conditions suffleient
to obtain the coercivness inequality

Write the formal Green’s formula in the form

where yj v is the trace operator of order j on r, do is the surface measure

on F, and Si u is a differential operator of order 2m - j - 1. Then we can
prove that the following two problems are equivalent :

PROBLEM P. Let f be a given function in E2 (Q). Find a function u in
H- (Q) that satisfies

(in a suitable sense).

PROBLEM P’. Let f be a given function in L2 (S2). Find a fuqiction u in
Hm (S2) satisfyirtg tlze variational equation

The problem P’ is a particular example of the following abstract si-

tuation : Denote by Y the Hilbert space ~’~ ~S~), and by H the Hilbert
space L2 (SQ). On H we use the scalar product

and we identify .g with its (anti-)dual ~’. Then we have :

(2.9) V is a dense subspace of H, and I it ( C )c ~ zc 11.

Thus the space H is identified as a dense subspace of the (anti-) dual
V’ of V, and a Hilbert space with the dual norm
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We then have the following situation :

each space is dense in the one that contains it

If we are given the continuous sesquilinear form a (it, v), define a con-
tinuous linear operator A from V into Tv ’ by the variational equality

However, this also defines an unbounded linear operator A on the Hilbert

space H.

Denote by D (A) the space (possibly null)
such that there exists ku with

Then if u E D (A) the map Au : u - a (u, v) is continuous on the space
V with the H-norm. Thus by an extension argument this map belongs to
H’ = .8. The subspace D (A) is a pre-Hilbert space for the graph norm

and A is a continuous linear operator from D (A) onto H. Define a* (1£, v) =
a (v, u) and (A’~ it, v) = a* (u, v), so that we have the following :

THEOREM 2.1. Assume that the form a (u, v) is coercive, so that

Then D (A) is a -Hilbert space the graph norm, D (A) is dense in V
and H, and A is an isomorphisiii

from D (A) onto H

from V onto V’

from H onto D (A*)’.

Since has the same properties as A, we see immediately that D (A~)
is dense in V, and that dense in D (A*)’. But since IT is dense in

~ the transpose A*’ of A~ maps H into D (A~‘)’ and is an extension of A.
This is the reason for putting A*’ = A in (2.15 iii).
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We conclude from this theorem that there exist unique solutions to
the problems P and P’.

For the study of Sobolev spaces and boundary value problems, we can
refer to lectures of J. L. Lions at the University of Montreal ( Problemes
aux limites pour les equations aux derivees partielles H. Editions de Funi-
versite de Montreal (2nd edition, 1965)) where supplementary bibliographical
notes can be obtained. We can find more precise results in a book of

J. L. Lions and H. Magenes (to appear).
We now look for suitable approximations for solutions to the problem P.

§ 3. Abstract theorems about approximation.

We want to prove here some  abstract results &#x3E;&#x3E; which are due to

J. Cea, J. L. Lions, and J. P. Aubin.

3.1 Approxi&#x3E;iation by restriction schenaes.

Let V be a Hilbert space, and let a (u, v) be a continuous coercive

sesquilinear form on V. We then look for approximations to the solution
1t of the

PROBLEM P. Let f be an of v’ . Find an element u of V such that

Let lz be a «parameter », which will eventually converge to 0. Asso-

ciate with h the following :

a finite dimensional space Vh

an injective linear operator Ph

from Vh into V.

Let rh be the map from V onto T7h such that ph rh is the orthogonal
projection onto ph Vh (l)-

(1) Since is a Hilbert space, this map exists and satisfies

If A is the canonical isomorphism between V and VI defined by

In other words, Ph 1’h u is the best approximation of u by elements of 
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Assume that we have

We will construct such operators when V = .g"~ (S~~ in § 7. We then

define a norm on Vh by

Now consider the following approximate problem :

PROBLEM Ph . Let f be an element of V". Find element ~ch in Vh that

satisfies

THEOREM 3.1. The SOlUtiOlIS Uh of’ (3.5) converge to the solution u of (3.1)
in the sense that

More precisely, the errors u - ~a~ zch satisfy the inequality

and the asymptotic behavior of II u - Ph uh II is the same as the best approxi-
mation to the solution u by elements of -Ph If we define

then the errors u - Ph Uh satisfy the inequality in H :

Since a v) = ( f, v) and a Ith ph Vh) = (f,Ph Vh) we can set v = Ph Vh
to obtain the equation a (u - ph Uh, ph vh) = 0. Putting vh = rh zr, we deduce:

and this implies that
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Notice that this inequality is independent of the choice of the operator
rh from V onto V’h . In particular, y we can take for rh the orthogonal pro-
jection in V of u onto the Hilbert space Ph Vh . Now define Eh 
and zh = 1 --Ph rh so that we have

Denote by zf the transposed operator of 7:h, so that equation (3.10) is equi-
valent to

But z~ is an operator from D (A~) into V with norm y (h), so that Th
is an operator from ~’ into D (A*)’ with the same norm y (h). Then we have,
by Theorem 2.], the scheme

and this implies that

NOTE 3.1.

In the following examples we will compute the function y (h). If the

injection from V into H is compact, then the injection from D (A*) into V
is also compact. Since

then the function y (h) converges to 0 with h by the Banach-Steinhaus Theorem.

NOTE 3.2.

Suppose that A is a continuous operator from V into a Banach space
E with the property that (2)

there exists a continuous linear operator .L from

V into V’ such that

Re (Au, Lit) ~ for c &#x3E; 0 and all u E V.

(2) This class of operators, called « L-positive definite &#x3E;&#x3E; operators, was first introduced

by Martynink (See [9], [10]).
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Denote by L’ the transpose of L. Then if A is an isomorphism the equations

and

are equivalent. We can approximate the solution it to (3.15) by the solu-
tions Ith to

for all

Then if ei is the norm of L and If the norm of A, we can prove in the
same way that

For example, if E is a Hilbert space and A is an isomorphism we may
take L = A. If E = V’ and A is coercive, we may I.

NOTE 3.3. (regularised restriction schemes).

Let W be a Hilbert space contained in the space V, and assume that
the solution it to Au = f belongs to the subspace If we do not make

suitable assumptions about the operators Ph and rh, y then we cannot deduce
the convergence of approximate solutions Uh to U in IV. Nevertheless, we
can construct a perturbed scheme which gives approximations in the space W.

Let b (u, v) be a coercive sesquilinear continuous from on W (for example,
take b (u, v) to be the scalar product of W). Let 8 (h) be a positive nume-
rical function, and define y (h) by

where 111.111 is the norm of W. Assume also that Ph Vh is contained in W.

We then propose the following approximate problem :

PROBLEM Ph . Find an element Uh in Vh that satisfies

for all ’l’h E Vh .

THEOREM 3.2. Assu?&#x3E;ie that
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and that there exists a constant mi such that

where

Then if Uh is a solution to Ph we have

Ph Uh converges uealcly to u in W.

If zae assume in addition that

and

then we have

Let in (3.1 ) and put to obtain

Thus we have

But we also have

and

Use these equations to obtain the inequality
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This inequality implies (3.23 i), and :

Then converges vTeakly in ~’ to an element which is necessarily equal
to ’l1J (since ph 2cj2 converges to u in V).

We then have

and so b ~~h , ~h) converges to 0, because from (3.26) we have

and the right hand side converges to 0. In addition, Ph rhU converges

strongly to 2c in W, and bh converges weakly to 0 in W.
Under the same hypotheses of Theorem 3.2 we can also approximate

the transposed problems and obtain, in this fashion, approximations of non-
homogeneous problems for elliptic boundary value problems. See a paper
of J. L. Lions and J. P. Aubin (to appear).

3.2. Approxi1nation by partial restriction schemes.

We now consider a particular case of the problem. Assume that V is

a closed subspace of a finite intersection of Hilbert spaces y which are

all subsets of the same space H. We define a norm on Y by

Assume that we also have

and that (u, v) is strongly coercive in the sense that

We shall then construct approximation schemes under these conditions.
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Assume that we have the following:

a finite dimensional space Vh

operators ph from Vh into Vq

an operator rh from H into Vh

and that these satisfy :

If converges weakly to uq in Yq for all q,
then there exists u E ~ such that u = uq for all q.

We can then write an element f E V’ " in the form

for

We consider now the problem :

PROBLEM Ph , Find a solution Uh E Vh of

It is clear from (3.32) that there is a unique solution to the problem Ph-
In face, we can prove the following :

THEOREM 3.3. Asstt1ne that conditions (3.30.34) are satisfied. Then the
solutions Uh of Probleiii Ph3 converge to u in the sense that

If we also assume that there is a mapping Ph from Vh into V that satisfies
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then we have

We will first prove that

By taking Vh = Uh in (3.36), it follows from (3.22) that

Then, for each q, Ph uh is bounded in and a suitable subsequence of

Ph Uh converges weakly to Thus by (3.34iii) V, and this u is

a solution to the Problem P. To see this, it is sufficient to take vh = rh v
in (3.36) and, by (3.33ii), to take the limit, which converges to 0. We will

now prove that converges strongly to u in Vq. Notice that

and the right hand side of this equation converges to 0.

Methods for obtaining the solution of (3.36) are avalaible in [13].

3.3. General approximation criteria.

We have constructed approximate problems Ph. We shall now consider
an equation

and we will give sufficient conditions to ensure the strong convergence of
the solutions tth-

Let Ah be an operator from V’h into Vh, and define

We also define the functions
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We consider the problem :

PROBLEM Ph . Find a solution Uh E ~h of

If we assume that

then there is a unique solution to (3.41). In fact, we can prove the follo-
wing :

THEOREE 3.4. The solution uh of (3.41) satisfies the inequality

If we also have

then

We compute

From this we conclude that

and converges to 0 if (3.43ii) is satisfied. This then implies
(3.44) by equation (3.43i).

§ 4. Study of the error for a self adjoint Galerkin’s method : optimal
approximation. 

"

Let V and .g be Hilbert spaces, with V dense in H. Assume that

(4.1) the injection from V into .g is compact.
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Let ~1 be the self-adjoint positive operator defined in terms of the scalar

product ((it, v)) by

By (4.1) is compact, and so there exists an orthonormal basis (Ùn for

H such that

We now consider the operators 10 (for 0 &#x3E; 0) and their domains

supplied with the inner product ((it, v))e = A e v), so = ~ 
(We will take Vo = H, and note that V = Vl/2)- Since J~ is an isomorphism
from T~e onto H, by transposition All is an isomorphism from H onto
Y-e = Ve supplied with the norm I = , where A-0 = 

We want to construct approximations which hold for all the spaces Ye ,
and we will call these « self-adjoint Galerkin’s approximations ».

Set It = 1 , and consider
n

The self-adjoint Galerkin’s approximation will be defined by giving the
operators j?~ where

and is the basis consisting of the eigenvectors of A.
Then we obtain the following commutation property :

On the other hand, since the basis (À.;:8 is ortho-
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normal in and

is the continuous orthogonal projection
from Vo onto V*

More precisely, we have:

PROPOSITION 4.1. Assuine that

T Jien :

(so that and

and

We have:

Thus

If we take and

so that
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This proves equation (4.9). To prove (4.10), let so that

Finally, (4.11) follows immediately from (4.8).
Moreover, we will show that the self-adjoint Galerkin’s method is

« optimal ». For that, we will use the notion of n-width of Kolmogorov.
(See [5], [6]).

We now introduce the set ~n of all injective operators from Rn or
on into Vp . Define

(Thus 7P (qn) is the  distance » in the fl.norm between the unit ball of Va

and qn We now let Pn = Ph with jz = 1 and we have the following
n

theorem :

THEOREM 4.1. If qn E Qn and a ~ ~ then

Since n = dim qn R~1  dim Rn+l = n + 1 we have :

were 
°

Choose

and ~1 is the orthogonal subspace of W in Vp.
so then inf because

uo E (qn Vn)I and since
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Thus we have:

We now apply this theorem to the study of the error behavior. From
Theorems 3.1, 3.2, and 4.1 we have the following :

COROLLAP,Y 4.1. Let a (u, v) be a continuous coerciro sesquilinear form on
V X V. Assume that the solution u of

for all v E V

-

actually belongs to D (A a) with a &#x3E; 1/2. Let or On be the solution of

Z’laerc u~, converges to u, and satisfies.

If 0 is a parameter with 0  0 C 1, then the solution Un of

converges to it, and satisfies

Thus un converges to u in Ya strongly if 0  1 and weakly if 0 = 1.
Moreover, we know by Theorem 4.1 that the solutions of (4.16) are

optimal in the following sense : for any qn E Qn the solutions un of

satisfy the inequality
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where

In the case where IT is a Sobolev space and a (u, ro) is an integrodifferen-
tial form, we will construct in the next section examples of other ph and

rh operators. If they are not optimal, they yield matrices Ah which contain
a small number of non-zero elements, while the elements a (COi’ Wj) of the
matrices obtained by the self-adjoint Galerkin’s method are A priori non-
zero. On the other hand except in the case of the simplest examples we
don’t know explicitly the eigenfunctions and we can encounter diffi-

culties in the computation of the elements a (Wi, (0j). (3)

§ 5. Construction of the ph and rh operators in Sobolev space.

’7BTe first study the construction of the Ph and rh operators in the So-

bolev space Hm (R). For that, we will use the convolution powers of cba-

racteristic functions « which map derivative operators into finite difference

operators» .

5.1. Convolution _powers of characteristic functions.

be the homothetic of the characteristic function
, "

of {o,1) defined by

0 otherwise

I 0 otherwise.
.

(3) We will only give a simple example.
Let

Then
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Letting * denote the convolution product and b ~x) the Dirac measure at

x~ we note that the derivative of Xh is

Then we introduce the following notations :

We then see that

After computation we obtain the following results ~ 1, (t = 0) :

is a polynomial of degree 1n with

5.2. The spaces H m (R, It).
We consider the space Z2 (Z) of sequences that satisfy :
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We define finite difference operators on sequences by

We will denote by gm (R, h) the space 12 (Z) with the (Sobolev discrete)
norm :

We then have :

5.3. The operators p7;.
We now define an operator from I? (Z ) into the Sobolev space Hq (R)

where we have (4)

5.4. Construction of the rh operators.
Let e (x) be a function with compact support such that

(4) On each (ah, (a + 1) h), the function is a polynomial of degree m. In other

words, the are « Spline-functions » of degree introduced by Schoenberg (See for
instance [12]).
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We then set

and we define the 1-h operators on the spaces H?n (R) for m ~ 0 by:

(More generally, we can assume that e is a distribution on Hm (R)
with compact support such that (e, 1) =1; for example, if &#x3E;i &#x3E; 1 we can

take e to be the Dirac measure.)
In the next section we will give examples of functions 0 to obtain a

precise estimate on the truncation error In particular, if we

take (2 = a = we will set r = rh since in this case we have :

where

and

THEOREM 5.1. The follottoing relations between the operators
arcd rh are valid for q ---- m :

These then irraply that :

and also that
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Finally, there is a restriction such tha,t

and

is a continuo2cs projection on Hq (R).

We first note that the translation operators commute with the ph and

rh operators :

Thus the finite difference operators commute with the jh and rh operators :

and

Then since to obtain

and this proves (5.16).
Now notice that

and
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But it is clear that

since

Then since we obtain the inequality

This establishes the first inequality of (5.17i).
Similarly, we see that there exists a constant c such that

Indeed, using the Cauchy-Schwarz inequality we have :

where and Then (5.22) implies (5.17ii)

with the use of (5.16ii).
We have to now prove (5.18). Since by (5.17) we have

it suffices to prove (5.18) for infinitely differentiable functions with compact
support (which are dense in Sobolev spaces).

On the other hand, by (5.16) we have :
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where It thus suffices to prove that converges to 4Y

in L2 (R). But

and it is well known j2 ~ ~ converges to 0 in L2 (R), and that pO h rh 0
converges to 0 in .L2 (R).

Finally, there exists a function orn (x) such that

For instance, we can try to find om (x) in the form

Noting that the polynomials 2013r and are linearly independent for 0 
q 1 

1n

 q a2 and 0 (5, 24 leads to a Carmer’s system for determining
the coefficien ts e.

Then, since Z a, = ], we have
a

If we denote by r¡;’n the operator defined by Q1n in (5.14), equation
(5.24) implies that :

It follows from (5.27) that there is a constant c, independent of h, such
that :

for all q c m.

Thus the and are equivalent « globally in h ».
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§ 6. Behavior of a truncation error in Sobolev spaces.

In this section we will construct operators ry: for which we can obtain
estimates of the truncation error.

THEOREM 6.1. The14e exists e1n (x) which compact support and

such that if rh is defined by

then if 0 E H1n+l (R) whe have

Let us denote the jth moment of the function g,n :

Then the truncation error can be written in the form

where:

Let us assume that (P is infinitely differentiable with compact support.
Using the Taylor expansion formula

where

We obtain the formula
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where

LEMMA 6.1. For 0 --- q C l1t the _polynomials

have the following p’foperties :

This lemma is true for i)t = 0. Let us assume that it is true for 1n -1,
and the proof for m will follow from the recursion formula

This formula is obtained by noting that

Since we have
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Then, since we obtain

By the inductive assumption

In this case, it follows from (6.14) that

On the other hand, if we have from (6.11) the equation :

Then, since and

we have :

Taking 0  q = i, - j C ~~z - I if 0  r C »i and 1  j  m, it follows from

(6.15) and (6.16) that

Moreover, (6.15) provides a recursive formula between the b7n (q, 0) and

bm-l (q, 0) for 
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Now defime the numbers em, j (0 c 1n) by the following recursive

formula:

Then we obtain from Lemma 6.1:

and the polinomials p7 (x) of (6.9) are identica,lly zero for 0  ~ C m. No-

tice also that there exists the following recursive relation between the mo-
ments and 

Let em (x) be a function with compact support such that

and denote the operator defined by gm (x) in (6.1). Then, by (6.8) and
(6.19), if s we have

Then, 7 by (6.20), the
v

moments of ona-r are the numbers since the jth moment of X (x) =

Then we have the following relation:

Indeed, it is clear from (6.7) that if r ~ s we have
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On the other hand, it follows from (6.11) that:

Then (6.23) follows from (6.24) and (6.25).
Theorem 6.1 is now a consequence of the following:

LEMMA 6.2. .

We note first that

On the other hand, since we deduce from

the following inequality :

where (a, b) is the support of (!1n (x), a’= min (1, a - m), and b’ = max (2, b).
Then integrate (6.29) with respect to x using (6.27), and sum over a E Z to
obtain (6.26).

§ 7. Approximations of the Sobolev spaces (0).

In this section we will extend the results of Sections 5 and 6 to ge-
neral Sobolev spaces on a bounded open subset D of Rn. We first consider
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the case where S~ = and we replace Z by We will introduce the

following notations :

Then we will take

Let m be a multi-integer, and define :

Then Theorems 5.1 and 6.1 remain valid, since the space of functions

0 (a?) = ø1 (Xi) ... (xn) where each (Pj is infinitely differentiable with com-
pact support is dense in the Sobolev space Hm 
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Consider now a bounded open subset Q of Rn that is smooth enough
to satisfy the following property :

there exists a continuous linear operator n mapping

into H8 (RII) for all s c m such that

Let h = (hi, .. , h~2), and define

Let be the number of elements in Rh (D). Since Q is bounded, the

(h) functions (x) are linearly independent on ,~. Thus the restriction

to Q of

m

defines an injective operator mapping the space of sequences =

on into the space L2 (Q). More precisely, if s is an

integer such we will put

the space of sequences u/t on

with the norm

Then is an isometry from H s (Rh (£2)) into H s (0). If is a function

provided by Theorem 6.1, then the restriction to Rh~ (Q) of the operator r;:"n
is a continuous operator mapping .ff s (Q) into H8 (Rh (S)). We deduce from
Theorems 5.1 and 6.1 the following :

THEOREM 7.1. If (s) f::-: m, the operators p’ are (Q))
into Hs (Q) that satisfy :
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and

The assumptions of Theorems 3.1 aud 3.2 are then satisfied, so now

we have to fulfill the hypoteses (3.33) end (3.34) of Theorem 3.3.
Let V = g S (S~), and if q = (qi,..., qn) is a multi-integer such that q ~ 

let yq be the partial Sobolev space Hq (S~) consiting of the functions u E Z2 (S~)
such that Dq u E E2 (S~). Then it is clear that:

if .gq (S~) is supplied with the norm

(5) Consider the example where Q = (0, a). Let n be an integer and let us put

is a space of dimension it. By (7.8), we have

By the foot-note (3), if qn denotes the optimal approximation, we have

Then, comparing this two estimates, we see that there exists a constant c such that:

In other words, we will say that the ph are «alnt08t optintal » in H m (Q) -
(6) If we assnme moreover that the derivative

to L2 (Q), we have the stronger estimate
of u belongs
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be a sequence of multi-integers mq &#x3E; q. We define

Then the restriction to S~ of Ph 1 2th defines a (non-injective) operator map-
ping the space of sequences on (12) into L2 (Q). It is clear that

is a norm for the space of sequences on Rh (SQ). This space with this norm
will be denoted by Hs (Q)).

The restriction to R~i (Q) of the sequences ro defines an operator

mapping H8 (Q) into and it is clear that :

We can now prove the following :

THEOREM 7.2. uh converges weakly to uq in Hq (Q) f or all I qs,
then there exists u E H-1 (Q) such that u = ttq for all I qs.

Choose an infinitely differentiable function 43 of compact support. Let
m = max and kq - mq. Then, for h sufficiently small, the support

v

of is contained in S~ for all I q gn. Thus we have

Since converges strongly to 4S in .L2 (Q), we can take the limit

and obtain for all 0 with compact support. This proves

that all the uq are equal to some element u. Then since converges

weakly to Dq uq = Dq M in L2 belongs to L2 (~~.
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§ 8. Construction of finite difference schemes. Behavior of the error.

In this section we will apply the results of Sections 3 and 7 to the

problem P of Section 2. Let V be the space H1n (£2) and consider the fol-

lowing problem :

where apq (x) E .Leo (Q), f E L2 (Q), and g~ (x) is a function belonging to a sui-
table Sobolev space on the boundary F of ,~. We will assume that S~, a,q , f,
and gj are smooth enough so that the following conditions are satisfied:

where N is the number of multi-integers p such that I p c 1n.

(8.4) The solution u of (8.1) belongs in fact to = W.

We associate with h and a sequence , the space j
We then define

matrix defined by :
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Assume that for each j (0 -1) there exists a qj such that the

following expression is well defined :

THEOREM 8.1. Under the assitinptions (8.2) and (8.4), if kq = k for all

I q I C m ’In -:---- lc C s -1 the solutions Uh of 
’

exist, are unique, anrl the errors u - ~h it satisfy

Under the assurnption (8.3), the soltttions Uh of (8.7) exist and satisfy

is defined by

then the solutions Uh of

exist, are unique under the aS8u1nptions (8.2) and (8.4), and satisfy

uh converges to u in .~s (0) strongly if 0  1 and

weakly if 0 == 1.

The first part of Theorem 8.1 follows from Theorems 3.1 and 7.1, the se-

cond part from Theorems 3.3 and 7.2, and the last part from Theorems 3.2

and 7.1. By (6), if we assume that ... D1:n+l u belongs to .~2 (Q), we

have stronger estimates of error in (8.8) and (8.12), replacing hk-m by
hi I k I -’Tn and h,9(s-m) by respectively.
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Consider the following example :

We then obtain the Neumann problem for the operator - A + 1, and if
~3 is smooth, conditions (8.2), (8.3), and (8.4) are satisfied. In this example,
we obtain the classical finite difference schemes. For example, if n = 2 we
obtain the particular schemes :

and so on.

We can also study the special structure of the matrices For

example, the general coefficient fl) of this matrix is
pql t

and can be computed easily as a function of the terms

If (support 8~,) f1 I’ ~ ~~ this term (8.16) includes the boundary conditions.
The coefficient ak (a, fJ) is zero if the intersection of the supports of

2,q, h (a’ P)
the flinctioins O’kp, h (x) and is empty. This class of matrix posses-
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ses a small number of non-zero elements. Nevertheless, by (5), the speed of
coitvei-gence is a,l1nost optimal (of the same order then the speed of conver-
gence obtained by Galerkin’s method for a same order of regularity of the
solution).

We can easily see, for example, that if q ~ 0, then :

This is true since

and the restriction of the function

stant Vh.

is equal to the con-
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