ANNALI DELLA
SCUOLA NORMALE SUPERIORE DI PIsA
Classe di Scienze

JEAN PIERRE AUBIN

Behavior of the error of the approximate solutions of
boundary value problems for linear elliptic operators by
Galerkin’s and finite difference methods

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3¢ série, tome 21,

n°4 (1967), p. 599-637
<http://www.numdam.org/item?id=ASNSP_1967_3_21_4_599 0>

© Scuola Normale Superiore, Pisa, 1967, tous droits réservés.

L’acces aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique I’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ASNSP_1967_3_21_4_599_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

BEHAVIOR OF THE ERROR OF THE APPROXIMATE
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§ 1. Introduetion.

Let 2 be a sufticiently smooth open subset of R* with boundary [ and
let us consider a Neumann problem for an elliptic operator of order 2m

(1.1) Au(@)= = (—1)21D1(ay, (x) D? u (x)) = f (x)

Izl lgl=m

under suitable assumptions (cf. § 2) the operator A is an isomorphism bet-
ween the Sobolev space V = H™(£2) and its (anti-)dual V”.

Pervenuto alla Redazione il 5 Giugno 1967.
(*) Visiting at University of Wisconsin, Madison. This lectures were given in Decem-
ber 1966,
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Our goal is to construct approximate problems. For this, we associate
with a parameter h

a finite dimensional space V,
1.2) an isomorphism A, mapping V; onto V;

an element f; of V,

and we consider the problem :
Find w; in V; such that

(1.3) Ah Uy =.fh ill Vh .

We will first give a sunitable definition of « convergence », and then we
will give a process for constructing A4; and f, if V, is given. This will be

done by constructing an operator py from V; into V, and then we will say
that «u, converges to u» if

(1.4) lim ||u — p, up |ly = 0.
B0

We can give here the simplest process for the construction of A; and f.
Let #§ denote the transposed operator of p;, so that

(ph Un 'U) = (’lth y ’)’;‘1t ’U)h .

We then obtain the following scheme

A
ueV — V'3f

Ton 1ok
A

s
ur € Vi, — Vasfa

and we can take
(i) Aw= 1% Aps

(i) fa=1r%Sf.

(1.5)

Then if V, and p,€.2(V,, V) are given, formula (1.5) permits us to
construct approximate problems for any choice of operators A and elements
f of V.

For a given class of operators A (for example, linear coercive opera-
tors) we have to look for suitable assumptions about the spaces V; and the



of the approximate solutions of boundary value problems ete. 601
operators p; to obtain the following results :

(i) there exists a solution w, of (1.3)

(1.6)
(i) wu, converges to u

and to study the behavior of the error
(1.7) || U — Pp Uy ”V .

An example of the operators p, is well known. Let (w,), be a « basis »

. 1
for the (real separable) Hilbert space V. If h = we take

/ Vh — Rn

— (i
uy, = (Uy); <i<n

(1.8) s
|

n
— ;
\Ph“h-*fl ", @; -

Then the process of construction (1.5)is called Galerkin’s Method. (See § 4).

‘We now return to our original problem. The space V is then a Sobolev
space. We shall construct a class of operators p; such that the approximate
operators associated with A are « finite-difference » operators. We will meet
during this construction all the « technical aspects » of numerical analysis:
but, this being done once and for all, we will be able to use these opera-
tors for the construction of «finite-difference » schemes for other classes of
differential operators defined on Sobolev spaces.

We will associate with £ a parameter h = (h,, ..., h,), a suitable mesh
R, (2) of multi-integers « = (o, ,..., ), and the space V, of sequences
u, = (u2) defined on R, ({2). We consider a funetion o (x) which is an m-th
fold convolution of the characteristic functions of the cube [— 1,1]*, and

we then define

1 1 1
(1.9) o;(w):TLo(Tw—a):mlo(hl Yo, — oy e, TR, — an).

The operators p, will have the form

1.10 u, (€)= 2 u?o®(x).
(1.10) b, v, (X) wet ) O
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We shall construct operators r, from V into V, so that we have
(1.11) e —prrnw || gm g < CRI=™ || ]| 5 q g (@ = m).

We will be able to deduce from this inequality a similar inequality for
the errors u — p,u;, So that if the solution w of (1.1) belongs to H?(L)
we have

(1.12) | % — pn un ”Hm(g) < Cha—m,

§ 2. Coercive Boundary Value Problems.

We summarize here some known results concerning variational methods
in the study of boundary value problems.

Let 2 be a sufficiently smooth bounded open subset of R™ with boun-
dary I. We denote by H™ (L) the Sobolev space of functions » in IL?(£)
that have all derivatives D*u (in the sense of distributions) of order | k| << m
also in L? (). This is a Hilbert space with the norm

(2.1) [t|m=( = |DFuppPr

|El=m
where

1/2
|v|=(f|v(w)|2d.v>

Q

and
olkl gy
DFy = T - y [k =ki+ i+ kn.
9%t oxt

We will consider a Neumann problem for the differential operator

(2.2) Au= 3 (— 1)l D (a,, D? u).
el lglsm

Introduce the sesquilinear form

(2.3) a(u,v)= 3 f g (@) DP u (x) Do (2) da.

Izl lgl=m
Q2

If we assume that the coefficients ap, () belong to L= (£2), then this
form is continuous on H™ (Q).
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Assume that 2 and the coefficients ay, () satisfy conditions sufficient
to obtain the coercivness inequality

(2.4) Re a(v,v) = C||v|? (C>0,ve H™(Q)).
Write the formal Green’s formula in the form
—_ m—1 —
(2.5) [Au @v@de —a(u,v)= 2 | Sjuyjvdo
2

where y;v is the trace operator of order j on I, do is the surface measure
on I, and S;u is a differential operator of order 2m — j — 1. Then we can
prove that the following two problems are equivalent:

PROBLEM P. Let f be a given function in L% (). Find a function w in
H™ () that satisfies
( (i) Auw=7fin L*(Q)
(2.6)
(i) Sjulp=10 for 0 <j<<m —1 (in a suitable sense).

PROBLEM P’. Let f be a given function in L? (£2). Find a function u in
H™ (Q) satisfying the variational equation

(2.7 a (u, v) = (f,v) for all v in H™(£).
The problem P’ is a particular example of the following abstract si-

tuation : Denote by V the Hilbert space H™ (Q), and by H the Hilbert
space L?(£2). On H we use the scalar product

(2.8) (u, v) =fu(w) v (2) de, |u| =1Vu, u)

Q

and we identify H with its (anti-)dual H’. Then we have:
(2.9) V is a dense subspace of H, and |u|<<k| u|.

Thus the space H is identified as a dense subspace of the (anti-) dual
V’ of V, and V"’ is a Hilbert space with the dual norm

(2.10) I/ 1l = sup [ ][72] (f; ).

10. Annalt della Scuola Norm. Sup. - Pisa.
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‘We then have the following situation :

VeHcV’
(2.11) each space is dense in the one that contains it

< Ju] < k]l

If we are given the continuous sesquilinear form a (u, v), define a con-
tinuous linear operator A from V into ¥V’ by the variational equality

(2.12) (Au, v) = a (u,v) for all ve V.

However, this also defines an unbounded linear operator A on the Hilbert
space H.
Denote by D (A) the space (possibly null)

$u € V such that there exists k., With{
(2.13) D (4) = .
la(u, )| < ky|v] for all ve ¥ |

Then if u €D (A) the map Au:u— a (u,v) is continuous on the space
V with the H-norm. Thus by an extension argument this map belongs to
H’ = H. The subspace D (A4) is a pre-Hilbert space for the graph norm

[ulp) = (Ju [ + | Au [Py
and A is a continuous linear operator from D (A) onto H. Define a* (u, v) =
a (v, u) and (A* u, v) = a* (u, v), so that we have the following :
THEOREM 2.1. Assume that the form a (u,v) is coercive, so that

(2.14) Re a(v,v)= C|lv]|? for all veV.

Then D (A) is a Hilbert space with the graph norm, D (A) is dense in V
and H, and A is an isomorphism

[ (i) from D(A) onto H
(2.15) ) (i)  from V onto V'
L(iil)  from H onto D (A*).

Since A* has the same properties as A4, we see immediately that D (4%)
is dense in V, and that V'’ is dense in D (A*). But since V is dense in
H the transpose A* of A* maps H into D (A*) and is an extension of A.
This is the reason for putting A* == 4 in (2.15 iii).
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‘We conclude from this theorem that there exist unique solutions to
the problems P and P’.

For the study of Sobolev spaces and boundary value problems, we can
refer to lectures of J. L. Lions at the University of Montreal (« Problemes
aux limites pour les equations aux derivees partielles ». Editions de I’uni-
versite de Montreal (2nd edition, 1965)) where supplementary bibliographical
notes can be obtained. We can find more precise results in a book of
J. L. Lions and H. Magenes (to appear).

We now look for suitable approximations for solutions to the problem P.

§ 3. Abstract theorems about approximation.

We want to prove here some « abstract results» which are due to
J. Cea, J. L. Lions, and J. P. Aubin.

3.1 Approximation by restriction schemes.

Let V be a Hilbert space, and let a(u,v) be a continuous coercive
sesquilinear form on V. We then look for approximations to the solution
u of the

PROBLEM P. Let f be an element of V’. Find an element w of V such that
(3.1) a(u, v) = (f, v) for all veE V.
Let h be a «parameter », which will eventually converge to 0. Asso-
ciate with h the following:
! (i) a finite dimensional space V3
(3.2) s(ii) an injective linear operator p
( from Vj; into V.

Let r; be the map from V onto Vj such that pjr;, is the orthogonal
projection onto pp V3 (1).

(*) Since ¥V is a Hilbert space, this map exists and satisfies

||u—ph7'hu||= min || —p,v,|.
thVh

If 4 is the canonical isomorphism between 7 and V7’ defined by
(Au,v) = ((u, v)), then r, = (r¥ 4 ph)—‘l % A.

In other words, p, 7, u is the best approximation of u by elements of p, ' -
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Assume that we have

(3.3) lim |4 —prrau| =0 for all fixed win V.
h—0

We will construct such operators when V= H™(£) in § 7. We then
define a norm on V, by

(3.4 |un|ln = prual] for all u,€ V,.
Now consider the following approximate problem :

PROBLEM P;l,. Let f be an element of V', Find an element uy, in V), that
satisfies

(3.5) a(prunypron) = (f,prvy) for all v, € V.

THEOREM 3.1. The solutions uy of (3.5) converge to the solution u of (3.1)
in the sense that

(8.6) lim || — prup || = 0.
h—0

More precisely, the errors w — py up Satisfy the imequality
(3.7) [ —prun|<<e M| w—ppryul

and the asymptotic behavior of ||u — Pruy || is the same as the best approwi-
mation to the solution u by elements of pp V. If we define

(8.8) y ()= sup [u]5{sm|lw—psrau]
we D(4A¥)

then the errors w — pj u; satisfy the inequality in H :
(3.9) |u—prua| <M yh)||v—prur|| << Myy )| u—prraul.

Since a (u, v) = (f, v) and @ (Pr ¥ny Pr Vi) = (f, pr Vs) We can set v = p; vy
to obtain the equation a (u — pp vn , Pr v3) = 0. Putting v, = r; v, we deduce:

(% —PpUp U — Prtp)=a(U — Py Uy, ¥ — Py ThU)

and this implies that

cllu —prwp [P M||w—prup|||v—parnul.
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Notice that this inequality is independent of the choice of the operator
ry from V onto V,. In particular, we can take for r; the orthogonal pro-
jection in V of u onto the Hilbert space pn V. Now define & = u — p; us
and 7, = 1 — pp vy S0 that we have

(3.10) a(en,v)=a(e,,nv) for all ve D(A*) c V.

Denote by =i the transposed operator of t;, so that equation (3.10) is equi-
valent to
(3.11) Ep = A1 ‘tz A Ep o

But 7; is an operator from D (A*) into V with norm y (k), so that zj
is an operator from V'’ into D (A*) with the same norm y (k). Then we have,
by Theorem 2.1, the scheme

VsV’ — DAY — H
A t’;: A—1
and this implies that
en ] < Dy () [ o |
NOTE 3.1.

In the following examples we will compute the function y (k). If the
injection from V into H is compact, then the injection from D (4*) into V
is also compact. Since

[2n rnw || <[]

(3.12) ,
lim |u —pyrpu||=0 for all ue V
h—0

then the function y (k) converges to 0 with » by the Banach-Steinhaus Theorem.

NOTE 3.2.

Suppose that A is a continuous operator from V into a Banach space
E with the property that (%)

there exists a continuous linear operator L from
(3.13) V into V’ such that
Re (Au, Lu)=c¢ || u|]? for ¢ >0 and all u€ V.

(?) This class of operators, called « L-positive definite » operators, was first introduced
by Martyniuk (See [9], [10]).
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Denote by L’ the transpose of L. Then if A is an isomorphism the equations

(3.14) Au=f
and
(3.15) L Au=L"f

are equivalent. We can approximate the solution » to (3.15) by the solu-
tions u; to

(3.16) (Apn up , Lppvr) = (f, Lpn vn) for all v,e V.
Then if ¢, is the norm of L and M the norm of A, we can prove in the
same way that

(3.17) o —prun||<<Me e ||u—prrru].

For example, if E is a Hilbert space and A is an isomorphism we may
take L = A. If E = V’ and A is coercive, we may take L = I.

NOTE 3.3. (regularised restriction schemes).

Let W be a Hilbert space contained in the space V, and assume that
the solution u to Aw =f belongs to the subspace W. If we do not make
suitable assnmptions about the operators p, and r,, then we cannot deduce
the convergence of approximate solutions u;, to w in W. Nevertheless, we
can construct a perturbed scheme which gives approximations in the space W.

Let b (u, v) be a coercive sesquilinear continuous from on W (for example,
take b (u, v) to be the scalar product of W). Let ¢(h) be a positive nume-
rical function, and define y (k) by

(3.18) y® = sup [~ u—pursu]
U €

where ||-||| is the norm of W. Assume also that p; V, is contained in W.
‘We then propose the following approximate problem :

PROBLEM th . Iind an element u, in V, that satisfies

(3.19) e (k)b (prun, pnvn) + & (pr wn , Prva) = (f, Pn )
for all v, € Vy .
THEOREM 3.2. Assume that

(3.20) o rnwl] << m|||w] Jor all ueWw
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and that there exists a constant m, such that

3.21) y(h) << m,Ve(h)
1
where
(3.22) lim ¢ (k) = 0.
h—0

Then if up is a solution to Ph2 we have
() ||w—prunl| <cle)

(3.23)
(ii) pn un converges weakly to w in W.

If we assume in addition that

lim y () (e (R)=2 =0, and

h—0
(3.24)
lim ||u—paraul|=0 for all ueWw
h—0
then we have
(3.25) }zim | — pa un ||| = 0.
-0

Let v =pr v in (3.1) and put dp = pr ur — pir rr v to obtain

(3.26) e(h)b(prun, o) 4 & (0n 4 Parhu — u, Os) = 0.

Thus we have

(3.27)  e(h)b(prun, prwr) + a (O, 6n) =

==a (U — pp rau, Op) + &(h) b (Pn up , Pr vy ).

But we also have

la@—parnw, &) [ < M|lw—purau| | onl<er®[ull]lonl]

and

| (pnrn, Prraw) | < c |l pnwnll] | onrnw ||| < me | w ||| [I| powa |||

Use these equations to obtain the inequality

(3.28) e®) ||| pnun ||+ || On|P<<c(e(h) 4+ y (W) || w]|.

609
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This inequality implies (3.23 i), and :

(3.29) Il Pn un ||| < constant.

Then p; w;, converges weakly in W to an element which is necessarily equal

to u (since pju, converges to » in V),
‘We then have

b(On, On) =0 (Prun, dp) — b (Prrnu, 6p)
and so b(dy, ;) converges to 0, because from (3.26) we have

7 (k)
Ve (h)

Ib(Phuh;éhléc

(el

and the right hand side converges to 0. In addition, pj 7, % converges
strongly to w in W, and ¢; converges weakly to 0 in W,

Under the same hypotheses of Theorem 3.2 we can also approximate
the transposed problems and obtain, in this fashion, approximations of non-
homogeneous problems for elliptic boundary value problems. See a paper
of J. L. Lions and J. P. Aubin (to appear).

3.2. Approximation by partial restriction schemes.

We now consider a particular case of the problem. Assume that V is
a closed subspace of a finite intersection of Hilbert spaces V,, which are
all subsets of the same space H. We define a norm on V by

VeNV,cH
7

(3.30)
loll= (2; (KX o

Agsume that we also have

a (U, V) == X apq (%, V)
(3.31) B

| g (w0, 0) | << Mg || % ][ [| 0]l

and that a (u,v) is strongly coercive in the sense that

(3.32) Re 3 ay, (uy, ) =0 3 || uy |3 for wu,€V,.
»,q q

We shall then construet approximation schemes under these conditions.
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Assume that we have the following :

(i) a finite dimensional space V;
(3.33) (ii) operators p? from Vj into V,
(iii) an operator 7, from H into V,
and that these satisfy:
(@) [l =(§||1"§L“h 212 is & norm for V,
(3.34) (ii) ;}Iinoﬂu —pirpull, =0 for all ¢ and ueV,

(iii) If pf u, converges weakly to u, in V, for all ¢,
then there exists u € V such that w = u, for all g.

We can then write an element f€ V’ in the form
(3.35) f= %‘fq for SV,
We consider now the problem :

PROBLEM Pj. Find a solution u,€ V, of

(3.36) Z pg (PP uns pfon) = 2 (fy, D§vn) (for all v, € V).
v q q

It is clear from (3.32) that there is a unique solution to the problem P; .
In face, we can prove the following :

THEOREM 3.3. Assume that conditions (3.30.34) are satisfied. Then the
solutions w; of Problem P; converge to u in the sense that

(3.37) lim 3 ||w —pfuw, |>=0.
h—-0 ¢q

If we also assume that there is a mapping p, from Vi into V that satisfies

1) [ pnwn | < M| unlln

(3.38) o _ .
(ii) hh—I—no | w5 [ 2y, w, — 22wy, l,=0 for all q
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then we have

(3.39) lim || w — pp up || = 0.
B0

‘We will first prove that
“ Uy ||h < M.

By taking v, = u in (3.36), it follows from (3.22) that

el < Re 20, phu) < 2y [, (117, e

Then, for each ¢, pju, is bounded in Vq, and a suitable subsequence of
pdu, converges weakly to uw,. Thus by (3.34iii) w,=wu€ V, and this » is
a solution to the Problem P. To see this, it is sufficient to take v, = r,v
in (3.36) and, by (3.33ii), to take the limit, which converges to 0. We will
now prove that p7 u, converges strongly to w in V,. Notice that

= a, (u—p}fuh’u—p%uh)=p2¢; apq(u’u_p%uh)_l_f (fyr P () — 1, w)

»q q

> » —
+qu a’pq (ph u’h ’ P% rhu Ol/)

and the right hand side of this equation converges to 0.
Methods for obtaining the solution of (3.36) are avalaible in [13].

3.3. General approximation criteria.

We have constructed approximate problems P,. We shall now consider
an equation
A U = fh in Vh

and we will give sufficient conditions to ensure the strong convergence of
the solutions wuy.
Let Aj; be an operator from V3 into V,, and define

ap (g, V) == (Ap Upy Vp)p -
We also define the functions
memm=swmeWﬂmm—mwm|
vp eV,

(3.40)
(i) wu®)= sup | onllu’| @, ppvs) — an(ruu, vy)].
v € Vh
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We consider the problem :
PROBLEM Pj,. Find a solution w,€ V; of

(3.41) ap (Up 5 Vp) = (fn;s Vnln Jor all v, € V.
If we assume that
Re ay, (v, , vp) = ¢ || v ||%, for all v,€ V,,

then there is a unique solution to (3.41). In fact, we can prove the follo-
wing :

THEOREM 3.4. The solution w;, of (3.41) satisfies the inequality

(3.42) [ — i [lo << ¢ (e (F; fi) + u (B).
If we also have

1) ||poun| < M| uplln and Jimoll U—Pprpt|| =0
(3.43) (i) lm & (f, fp) = lim o (h) = 0
h—0 B0
then
h—0

We compute az (up — v, u, u, — rpu):
ap (U — v, wp — rpu) = (fu, wp — vy — (f, pn (U, — 7 )
+ a (u, pn (up — 1 0)) — ap (rn u, uy — 7y w).
From this we conclude that

ol un— rau << (e (f, fu) + wu W) || — vy

and ||u, — 7, u |, converges to 0 if (3,43ii) is satisfied. This then implies
(3.44) by equation (3.43i).

§ 4. Study of the error for a self adjoint Galerkin’s method : optimal
approximation. :

Let V and H be Hilbert spaces, with V dense in H. Assume that

(4.1) the injection from V into H is compact.
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Let A be the self-adjoint positive operator defined in terms of the scalar
product ((, v)) of V by

(4.2) (Au, vy = ((u, v)).

By (4.1) A~ is compact, and so there exists an orthonormal basis w, for
H such that

Aw, = 4, w,
(4'3) (o , wp) = 6np

0 < Ay << hy << Ay = e

‘We now consider the operators .1° (for 6 > 0) and their domains
(4.4) D (A% =V,

supplied with the inner product ((u,v))s = (A%u, A%v), so that || v|e=|A%0|.
(We will take V,= H, and note that V = V). Since A% is an isomorphism
from V, onto H, by transposition A? is an isomorphism from H onto
V_g == Vg supplied with the norm || u|-¢ =] A% u|, where A= = (A%~1.
We want to construct approximations which hold for all the spaces Vy,
and we will call these « self-adjoint Galerkin’s approximations ».

Set h = % , and consider
(4.5) V,=R" or ("

The self-adjoint Galerkin’s approximation will be defined by giving the
operators p; and 7}, where

(= 5 vion
(4.6) ,( i=1

75 = (4, 0i)1=izn

and {w;} is the basis consisting of the eigenvectors of A.
Then we obtain the following commutation property :

(4.7) A% py v} w = py i A%,

On the other hand, since || w;|lo =

6 .6 . .0 .
A wi| = A; the basis (4y wn)s is ortho-
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normal in Vg, and

purhu= 2 ((u, 277 w)e 478 wi
t=1

(4.8)
is the continuous orthogonal projection

from V4 onto V.

More precisely, we have:

PROPOSITION 4.1. Assume that o= f (so that V,c Vy) and h = i
n
Then :

(4.9) ya(m) = pou e —prielp= sup_ inf % — pyonlls = 1211
(4.10) | 2w o =< 2577 || s ||
(4.11) | pnrholla<<||u|a and iif)o | w—pnrkul, =o.
‘We have :
|w—puriulf= S 2P| (e, )
i=n+1

= 3 3% (u, 27 o)) "

i=n-|—1

<= ELI-iﬁ——l_a) 2 l u) i wi))a '2
=0

=24

Thus
sup infllu —ppon|p<= sup |u—puriu|p<— —-
Hullg=1 v g =1 n+1
. Wyp41
If we take uy= —— then [[u, [« =1, and
n4-1
. 1
inf [|uy — puonlls = [ %o lls = 7=
®h n-+1
so that
1

— sup inf || w — ps v |lg-
BT Hule=1
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This proves equation (4.9). To prove (4.10), let u = p,us, 80 that

lwlf= = 2% (u, o) [

i=1

= 3 20 (it s

=1
< 20 3 | (wy 47 wi)p
=1

=577 w5

Finally, (4.11) follows immediately from (4.8).

Moreover, we will show that the self-adjoint Galerkin’s method is
«optimal ». For that, we will use the notion of n-width of Kolmogorov.
(See [5], [6]).

We now introduce the set (), of all injective operators ¢, from R"™ or
C™ into Vs, Define

(4.12) 7& (gu) = sup inf ||u— quvallp-

llwlla=<1 o cgn

(Thus »#(q,) is the «distance » in the g-norm between the unit ball of V,

1
and ¢, R"). We now let p, = p; with h = o and we have the following

theorem :

THEOREM 4.1. If ¢, € Q, and o= f then

1
(4.13) (D) =5 =<7(g,).

1n—|—1

Since n = dim ¢, B* < dim p,y; R**' =n 4 1 we have:

(4.14) (@ Vot N Vi == 0

where V.4, = pny1 B"*! and W1 is the orthogonal subspace of W in Vg .

Choose uy€ (g, Vo) N VA, so then inf || u,— . % |js =] %, ||z because
vnERﬂ

%y € (qn V)L and since u, € V.5, by (4.10)

1
Il 240 lls = —=5 Il 2 lla -
An41
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Thus we have:

1 ” “o”ﬂ
E(p) = < inf |u, —gq, < yh(
V=T = gl ~ Taglh 0, 10 = %l =7ita,)-

We now apply this theorem to the study of the error behavior. From
Theorems 3.1, 3.2, and 4.1 we have the following :

COROLLARY 4.1. Let a(u,v) be a continuous coerciv sesquilinear form on
V < V. Assume that the solution w of

(4.15) a (u, v) = (f,v) for all ve V

actually belongs to D (A*) with o >=1/2. Let ;\ne R"™ or C™ be the solution of

/\

n
(4.16) 2 a(w;,w) = (f, w) (1 << i< n).
j=1

N\
Then u, converges to w, and satisfies.

(4.17)

o

’ u Znu”'\ !
— w,
| =1 " ' ]/ 26—

n+l

If 0 is a parameter with 0 < 0 << 1, then the solution wu, of

(4.18) s a (@5, ) Uy + (@ (i, 0) + 9208wy = (f, ) (1<<i<n)
j=1
J#i

converges to u, and satisfies
n

1
(4.19) w— 3 U o ‘<c[|u||l( =),
=1

Thus uy converges to u in V, strongly if 0 <1 and weakly if 6 = 1.
Moreover, we know by Theorem 4.1 that the solutions of (4.16) are
optimal in the following sense: for any ¢, € @, the solutions u, of

(4.20) @ (Gn Un 5 @n V) = ( [y Qu Vp) for all v, € R"
satisfy the inequality

(4.21) | u— guon || << Me™ || [|a 5 (g)
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where

1
Y = ==

V!

In the case where V is a Sobolev space and a (u, v) is an integrodifferen-
tial form, we will construct in the next section examples of other p; and
75, operators. If they are not optimal, they yield matrices A, which contain
a small number of non-zero elements, while the elements a (w;, w;) of the
matrices obtained by the self-adjoint Galerkin’s method are a priori non-
zero, On the other hand except in the case of the simplest examples we
don’t know explicitly the eigenfunctions w;, and we can encounter diffi-
culties in the computation of the elements a (w;, w;). (3)

§ 5. Construction of the p, and », operators in Sobolev space.

We first study the construction of the p, and r, operators in the So-
bolev space H™ (R). For that, we will use the convolution powers of cha-

racteristic funetions « which map derivative operators into finite difference
operators ».

5.1. Convolution powers of characteristic functions.

1
Let g5 () = —h—x(—;—) be the homothetic of the characteristic function
of (0,1) defined by

— it 0= _;”— =1
o (@) ={" ¢
0 otherwise
(5.1) {
1 .
W if ah<<ax<Z(x+ 1)k
15 (X)) =
0 otherwise.

(®) We will only give a simple example,
Let
Q= (0, n), H=L?(Q), A=—D2 41,
Then

Vo = H® () and Vinepaje = A" (@),

Wy = @y = cosjx and L; =1 + j2— (1 =),

If n==2 — 1 or n = 2j, then y¥%  ,(q,) = (T + ;2°~"1,
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Letting * denote the convolution product and J (x) the Dirac measure at
%, we note that the derivative of y, is

0 — 6 (h)
Dl;, = —
(5.2)
D (x) — D (x — h)

V,®=Dy,+d= W

Then we introduce the following notations :

(i) omn(x)= Vﬁxh ® L, * % 7, (@)

(m+ 1) times

(5.3) - (71ﬁ_> Fns (%)

=V g, 1 (@)

(i) of , @ =0, ,@—ah)=|hy, ,*7@.

We then see that

Dy =" 2 (— 1)k cq’:@ o (kh)
! E=<m
(5.4)
pir = D" L, 1 *

After computation we obtain the following results (for h =1, a = 0):
F (1) o (@) = 2 6(k)* (), (@) y (%)) where
k=m .

q
(5.5) (i) vk (@)= 3 ank q f—! is a polynomial of degree i with
: q=<k q

k = ¥ 1) ¢t (k -_ ’i)m-q
(ili) am (%, q) == (— Ot m—gq)! °

5.2. The spaces H™ (R, h).

We consider the space 1*(Z) of sequences u, = (u}) that satisfy :

(5.6) | = (5 | g [0 <+ oo,

11. Annali della Scuola Norm. Sup. - Pisa.
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We define finite difference operators on sequences by

(5.7) (i) =17t 2 (= e 6

‘We will denote by H™ (R, k) the space 1*(Z) with the (Sobolev discrete)

norm :
wnlyn="C = [Vgu, [
’ lgl=m

(5.8)
l| wn flo,n= | wa |-
We then have:
(5.9) [t | <= ] [ = el [

5.3. The operators py-

We now define an operator p;’ from I? (Z) into the Sobolev space H1 (R)
for 0 <<qg<"m:

Py, (€) = 2 ug o 4 (x)

=k Iy (@) 3 usk oyt (i — oc)
(5.10) * k=

=)1Z @ 2 (QLu,)
a g=m

where we have (%)

(@8, w) = = a, (kq)uz
(5.11) k=m

Qm = k" VY.
5.4, Construction of the ry operators.
Let o (x) be a function with eompact support such that
o (x) € L (R)
(6.12) fgf(w) de =1,

R

(*) On each (ah, (« 4 1) k), the function p:' uy, is a polynomial of degree m. In other

words, the p;f are « Spline-functions » of degree m, introduced by Schoénberg (See for
instance [12]).
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We then set
1 x

(5.13) i@ = e[

and we define the »;, operators on the spaces H™ (R) for m = 0 by:

o @ =17 [ @ @) g (0) 0
R
(5.14)
= l/ﬁf D (xh + ah) o (x) da.

R

(More generally, we can assume that ¢ is a distribution on H™ (R)
with compact support such that (g, 1) = 1; for example, if m >1 we can
take ¢ to be the Dirac measure.)

In the next section we will give examples of functions o to obtain a
precise estimate on the truncation error w — pj'r, w. In particular, if we
take ¢ =0, =y, ., We will set r, =" since in this case we have:

(5.15) (ppru, , D)= (u,, ri"™ D)

h "h? h

where
aa
(up, V) = Z up vy

and

(w, @):fu (x) D (x) de.
R

THEOREM b5.1. The following relations between the operators D1, pi, pi
and r, are valid for ¢ <m:

(i) D piwn = pr " Vi
(5.16)
(i) Vira @ =rpVi @ =7 (gq,n* D1 D).
These then imply that :
) gl < w1l =< e llpi

j
(5.17) )
() [ @ llonsel Pll

and also that
(5.18) l}]—]—no” D —pirr, @, = 0.
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Finally, there is a restriction v; ™ such that

PR, =, and

(5.19) . . Lo
pyr,™ 18 a continuous projection on H(R).

‘We first note that the translation operators commute with the p; and
1, operators :

Ty D Wy, (@) = f up ot (%)
= ‘f upf op, (@)
=Py 1%, (@)

(ty 1, P = ﬁ[ D (x) 0i~# (x) do
R

=Vh T, D (x) 0% (%) do
R

=(r, Ty, D)=,

Thus the finite difference operators commute with the p, and r, operators:

Vi phun = pi Vi w
and
V%')"h(p:’l‘hV%@.

Then since D? ym 5= Vi fm—q,n We set k =m — ¢ to obtain
D py’ wn = Vi, pp " wn = pp " Vi

and this proves (5.16).
Now notice that

m — 0
Py ¥y == Yo, n * P U,
and

P u, (@) = Ih = uf x5 (@).
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But it is clear that

(5.20) | phn| = | u |
since

j|p2uh(w) 2 dwzh[Z[u; | 2 (x) ]2d.v=2|u;:|2,
% 'R a o

Then since [ Za.n(®)dr =1 we obtain the inequality
b
(5.21) | D7 piwn| = | 2, n® DV F |
< | pa Vi |

This establishes the first inequality of (5.17i).
Similarly, we see that there exists a constant ¢ such that

(5.22) I @|<c|D|.

Indeed, using the Cauchy-Schwarz inequality we have:

2

2
[o@ @<= (10w gw] e [loe]a)
® ‘& i

<ol PP
where ¢, =[| 0¢ ()| dr and ¢, = sup 2o (r — ). Then (5.22) implies (5.17ii)
@ a
R

with the use of (5.16ii).
‘We have to now prove (5.18). Since by (5.17) we have

I @ fla < el 2,

it suffices to prove (5.18) for infinitely differentiable functions with compact
support (which are dense in Sobolev spaces).
On the other hand, by (5.16) we have:

(5.23) D1 ppr, @ — D1 @ = pi=ir, (xq,n * DI P) — D1 D=

=pp—1s, (D* P) — D* D
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where 8, = o5 * ;;q,h. It thus suffices to prove that pj r, & converges to P
in L?(R). But

pzrh@——@:lk'h*(p%’rh@— D)+ (1, * P — D)

and it is well known that y, , *+ @ converges to @ in L?(R), and that p) », @
converges to @ in L?(R).
Finally, there exists a function g, (x) such that

0 if a=Ep
1 if a=24.

(5.24) (057", om) = (om, 1 VT 0, 1) =

For instance, we can try to find g (#) in the form

m 24
(5.25) om (@) =72 @) |2 @3,;7)-
g==0 Q’
q
Noting that the polynomials %!— and w* are linearly independent for 0 <<

< qg<"m and 0 <"k <Cm, (5.24) leads to a Carmer’s system for determining
the coefficients o? .

Then, since = oy, = 1, we have
a

(5.26) fgm (@) doe = ngm (%) 02, (%) dw
® ‘&

==me (%) ogn (%) do
y:3

=1,
If we denote by r,™ the operator defined by 0,, in (5.14), equation
(5.24) implies that :

(5'27) T;m p;’f’uh = Up .

It follows from (5.27) that there is a constant ¢, independent of h, such
that :

” Un ”q,hS"“ﬁn“th for all ¢ << m.

Thus the norms |[uy|lg,» and ||py w, ||, are equivalent « globally in h ».
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§ 6. Behavior of a truncation error w — p»7*u in Sobolev spaces.

In this section we will construct operators »}' for which we can obtain
estimates of the truncation error.

THEOREM 6.1. There exists a function on (x) which compact support and
fgm(x) dz =1 such that if »}* is defined by

b4
(6.1) op O =14k [ D (@) g5, @)
E
then if @€ H™+! (R) whe have
(6.2) || Di(pmair @ — D) || << ch*~I | D*D| if j<<s<m-4 1.

Let us denote by g, j the jth moment of the function g,, :

@
(6.3) Om,j = |Om (zv)j—' dr; @ = [0 m(®)de = 1.
B ) R

Then the truncation error pj*+7* & — & can be written in the form

(6.4) o d— 9= f 0575, 5, (D)
where :
m ax
(6.5) T2 h((b) = 3 (9, an"’;f) zpfﬂn (,— — oc) — D ().
! k=0 g h

Let us assume that & is infinitely differentiable with compact support.
Using the Taylor expansion formula

8 7
(6.6) D)= 2 I M'L@ ({0_ —_ a)q + hsH1 @st1 (DsH D)
q=0 q. h ah
where
1
(6.7) w31 (D) = m] (x — t)* D(t) dt.

ah
‘We obtain the formula

(6.8) 7@, (D)= 3 k1 D1 D (ah)pt, (; - a) + It aa @t (D )

9=1
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where

a?
Pl @) =5 — 11, 2)

(6.9)

mo( Ky
e (x 2 m,g—j >
m() 0 qjk() J'

LEMMA 6.1. For 0<<q<Cm the polynomials B? (x)

have the following properties :

q af
Bl (x) = X b (@ —J, O)j——' where
j=0 !

am (ky J)

L™ (—
bm(q,J)=k-§0( q,)

(6.10) = D/ By (0)

b (0,0) = 1

Vb (j,0) =0 if j<O.

yh (x).

=bm(q_j70) ¢f0£JSQZ£m

This lemma is true for m = 0. Let us assume that it is true for m —1,
and the proof for m will follow from the recursion formula

(6.11) vk (2) = f (wE,_, (&) — kY, (0) db +- f WEL, (1) dt.
0

This formula is obtained by noting that

‘ Xm+1 =X * Ym
(6.12)

1

Since ay, (k, 0) = pk (0) =f k1 (t) dt we have
0

M gy (B — 1,7)
(6.13) m(ky 0) = 3 “’_
’ =0 U+1

21})’5@:0 if k<0 or k>m,
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. : n(— k) . .
Then, since b, (¢,j) = 2 7! @y (k,J) Wwe obtain
k=0 .
mSl1 o (—1pp
(6.14) bn (q,0)= X 7 2 bin—1 (D, j).

=0 U+ 1!y= (g—p)!
By the inductive assumption
bm—l (Q7J) = bm—l (q ‘_j; 0) if 0 = q SJ < m—1,

In this case, it follows from (6.14) that
b (@, 0) = — 3 by (k, 0) (DT (S
mih == 2 Ot )(q-k+1>!<£o ”'ff-’“rl)

g (— 1)2—*+1

(6.15)
bm—l (k) 0) if 0 << q<<m —1.

On the other hand, if 1 <<j<_m we have from (6.11) the equation :

m (k J) = DIy, (0) = Di=! pk_ (0) — Di=1 k=1 (0)

m—1

= @m—y (kyj — 1) — @pp—y (k — 1,j—1).

Then, since bu—1(p;J—1) =bpy(p —j+ 1,0 if 0 <<p<m —1 and
0<j—1<m—1, we have:

TEI (_ l)r—p

b (1, J) = — p=UW

b1 (pyj — 1) =

(1.16)
r=i (— 1)kt

T —j— k1)

bm—1 (ky 0) if 1 <<j << m.

Taking 0 <g=1r—j<<m — 1 if 0 <<r<mand 1 < j=<m, it follows from
(6.15) and (6.16) that

(6.17) by (1, §) = by (r — j, 0) for 0 < r <<m, 0 <<j << m.

Moreover, (6.15) provides a recursive formula between the by, (g, 0) and
bm— (g, 0) for 0 << g <<m — 1.
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Now defime the numbers g, ;(0 <{j<Cm) by the following recursive
formula :

Qm,0=1

(6.18) q A
> Om, g—j bin (.77 0) =0 for 1 < q=m.
j=0

Then we obtain from Lemma 6.1:

q . x4
(6.19) L (x) = ji om,q—1 B (®) = 7 for 0 <qg=<=m

and the polinomials p? (x) of (6.9) are identically zero for 0 << q<<m. No-
tice also that there exists the following recursive relation between the mo-
ments 0, ; and om_1 ;;

(— 1)1

. q
6.20 —_ = Z myg—1 | vt *
( ) Om—1,4q o Qm, g—1 G+ 1!

Let o () be a function with compact support such that

@ .
[Qm (2) = At = om,; (0 =j<m)
(6.21) : J:

where g,,,; is defined by (6.18)

and denote by r;* the operator defined by g (#) in (6.1). Then, by (6.8) and
(6.19), if s << m we have

(6.22) T h (D)= hs+1 LA wﬂ;l (D5t D),

Let gm—r (@) = — 0 (@) * (— 1)" gp(— &) = Qm (@) * ¥, (x). Then, by (6.20), the

moments of g,_, are the numbers g, ,, since the jth moment of y(x) =
(— 1)+

= — y (— «) is equal to W)—'

Then we have the following relation :
(6.23) D L, (D) = hs+1-r T h wij;l—' (D5t D).
Indeed, it is clear from (6.7) that if » <<s we have

(6.24) D" w1 (B) = b7 iti—r (@),
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On the other hand, it follows from (6.11) that:

(> (e%7%, D)yt (i — oc))) =
F—0 m m h

=13 et o2 =i (- )
k=0 =0 h
(6.25)

z'(érh*ea —k D" D) yb ,(j%—a)

x
=S et 0 B (§ — ).
Then (6.23) follows from (6.24) and (6.25).

Theorem 6.1 is now a consequence of the following :

LEMMA 6.2.
(6.26) ’29“ ‘ta (@) |ngc]@]m.
We note first that

(6.27) MW@WWs%€—ﬁM7mmﬁm

On the other hand, since / om,n (®) de =1, we deduce from
R

[
(6.28) 72, it (D) (x) = s wE (g—a> fg;*,;,’;( (@5 (D) (@) — w, (D) (y) dy

k=0

E
the following inequality :
(6.29) |03 72, i1 (D) (@) P < C sup | 031 (D) (@) [2

(@ +ah=e=<(b'+a)h

where (@, b) is the support of g, (). a’= min (1, @ — m), and b’ = max (2, b).
Then integrate (6.29) with respect to x using (6.27), and sum over « € Z to
obtain (6.26).

§ 7. Approximations of the Sobolev spaces H™ (L)

In this section we will extend the results of Sections 5 and 6 to ge-
neral Sobolev spaces on a bounded open subset £ of R". We first consider
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the case where 2 = R", and we replace Z by Z". We will introduce the
following notations :

Z= (B yues Bn)y h={(hy,yln) Oor b =1y by..bhy,
n
0= (0t youeyOn)y |00]= _2'1 ], m=(my,..,m),
1=
(m) = (my .. ,m), al=o0y!..oa,!,
b = kg2 o how
a=<<f if o;<<f; for 1<Ci<n,etec.
Then we will take
Om (T) == Qm (Ty 5 e Tn) = Omy (1) Om, (“’2) ces Omy, (¢n)
'/’f:, (x) = w'f,:l (@) oo ‘Pf,:bn ()

(7.1)
A (®) = Zmy (21} cer Zon,, (¥n)

\ 1 x 1 z, Xy
\eﬂ%==59ﬁ“‘ﬁ==hpumgﬁg‘““"Wﬁ;‘“ﬁ'
Let m be a multi-integer, and define:
(i) P;’: wp =V Am, b %’ ur 0%
(7.2) (ii) (1™ D) = Vb (0%, 5 » P) where

(@w=f¢m5mm.

Then Theorems 5.1 and 6.1 remain valid, since the space of functions
D (v) = P, (x,) ... Pp(x,) Where each @P; is infinitely differentiable with com-
pact support is dense in the Sobolev space H™ (R").
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Consider now a bounded open subset £ of E™ that is smooth enough
to satisfy the following property :

there exists a continuous linear operator = mapping

(7.3) Hs (9) into H® (R™) for all s <<m such that
ad o=@ in H™(Q).

Let h=(hy,.. ,h,), and define

(7.4) Ry (Q) = [a € Z™ | (support o2 , )N 2 == D).

Let N'g(h) be the number of elements in Rj (£2). Since £ is bounded, the
N'G (k) functions o, (¢) are linearly independent on £. Thus the restriction
to Q of

p;t"uh=l/h > u“m,h*eg
ae By ()

=VEZu“o"‘

h “myh

No(h)

defines an injective operator mapping the space R of sequences wu; =

= (u%) e OB Ry (Q) into the space L?(£). More precisely, if s is an
ac€ fvp

integer such that s <<m we will put

H? (R (Q2)) = the space of sequences u; on R™(Q)
(7.6)
with the norm || piun ||zsq, -

Then pj is an isometry from H$(R; (2)) into H* (2). If g, (@) is a function
provided by Theorem 6.1, then the restriction to R}’ (£2) of the operator r;'n
is a continuous operator mapping H* (L) into H*(Rj (£2)). We deduce from
Theorems 5.1 and 6.1 the following :

THEOREM 7.1. If (s) << m, the operators py are isometries from H* (R; (Q))
into HS () that satisfy:

(7.7) Dipmuy = ppripiw, for g<m



632 JEAN PIerre AUBIN: Behavior of the error

and
(i) im; | o rma®— & ”HS(Q)= 0
(7.8) (il) if m = (m) = (m, m, ... , m) then

L a® = @y = e @ g - (0 )

The assumptions of Theorems 3.1 and 3.2 are then satisfied, so now
we bave to fulfill the hypoteses (3.33) end (3.34) of Theorem 3.3.

Let V = H*(Q), and if ¢ =(q, , ..., ¢n) is a multi-integer such that |¢|<s,
let Y74 be the partial Sobolev space H () consiting of the functions u € L? (Q)
such that D? u € L?(£2). Then it is clear that:

(7.9) H:(Q)= N H1(Q)

lgl=<s

if H7(Q) is supplied with the norm

(7.10 gy = (| | Do e,

(°) Consider the example where 2= (0,n). Let » be an integer and let us put

h = nn—::Tl Then ¥, = Hs(RZL (£2)) is a space of dimension n. By (7.8), we have
2 7 m-1-—s
= S =), <o (2"
“u”m+1 n—m

By the foot-note (3), if ¢, denotes the optimal approximation, we have

B A - S
oot 3t 42 w1z @0 “Vm+ 1242

Then, comparing this two estimates, we see that there exists a constant c¢ such that:

i 2
’}lino 7ttll+1/2 (p;;n)h’:,{‘i_]ﬂ (qn) ¢

In other words, we will say that the phm are «almost optimal» in H™ (Q).

(¢) If we assume moreover that the derivative D'{""H D;""H D:’:”VH u of u belongs
to L2 (£2), we have the stronger estimate

| DF (u— p vy | epm Il — 1kl pmtl [ pimatly, |
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Let m = (my) 41 <s be a sequence of multi-integers m, = q. We define

(7.11) Ef (@)= U R Q).

Then the restriction to 2 of p), 7w, defines a (non-injective) operator map-
ping the space of sequences on R () into L2 (). It is clear that

(7.12) [ Uy, Hg mh (2 ||10;an u, ||259(g))1/2

lg]=s

is a norm for the space of sequences on Rj" (£2). This space with this norm
will be denoted by H® (Rl (%))

The restriction to R;,f (2) of the sequences 73, 7P defines an operator
mapping H°®(2) into HS(RE(Q)), and it is clear that:

(7.13) lim ||u —pypirhau |, =0 for all |q|<s.
B0

We can now prove the following :

THEOREM 7.2. If p,?w, converges weakly to u, in H?(Q) for all |¢|<s,
then there ewists w€ H* () such that uw = u, for all | q|<s.
Choose an infinitely differentiable function @ of compact support. Let

m = max m,, and ky = m — m,. Then, for h sufficiently small, the support
lgl=s

of qu,h# @ is contained in £ for all | ¢|<<m. Thus we have:

/(P;»nq un) (xk, , n * D) do =f(102@q up) (xk,, n* P)dw
Q 7

— f (ol ) (B) dw
Rn

= [p},” u, D de.
Q

Since x5 * @ converges strongly to @ in L?(Q), we can take the limit

and obtain f ug D de = |u®D dx for all @ with compact support. This proves

that all the u, are equal to some element u. Then since qu;'bq Uy, converges

weakly to D?uy = D?u in L?(£2), « belongs to L?(Q).
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§ 8. Construction of finite difference schemes. Behavior of the error.

In this section we will apply the results of Sections 3 and 7 to the
problem P of Section 2. Let V be the space H™ (£2) and consider the fol-
lowing problem :

m—1

(8.1) > fupq (®) DPu DI do = [fv de + 2 | gj@)yjvdo
y j=0
ol r

Izl . lgl=m,
Q

where ap, (x) € L (8), f€ L? (), and ¢,(x) is a function belonging to a sui-
table Sobolev space on the boundary I' of 2. We will assume that £, ay,, f,
and g; are smooth enough so that the following conditions are satisfied:

(8.2) > fa,@pruDudezelulhe>0
Ipl,lgl=m,
Q
(8.3) P fapq (x) D?uy, DIuy dw+—1— > ay () | up |* de
012 lg|<m | N p=m

=>c( X |lu |2
o (lplSm” iy

where N is the number of multi-integers p such that |p | < m.

(8.4) The solution u of (8.1) belongs in fact to H*®(Q) = W.

‘We associate with k and a sequence %:(lcq)] ¢|<m the space H m(R';L ()= V3.
We then define (up, vp)p= 3  wjv). Let Ab= 3 Ak, . be the

P Ipl.lg|=m
aERh(.Q)

matrix defined by:

[k .
(Apg, n Un s Vi) = | apq (®) D? p;’fl’ uy, D? pﬁq v,de if p=fFgq
Q

(App, 1 n» Vp) =
(8.5) . . 1 T
= | pp(@) D? p3¥ up, DP p1? v div + | o (2) Pr® U P? 0y AT
g 2

r 1 2 b2
(Ago,n Up s Vr)p == v fa,o (%) Py’ Wy, py vy da.
83
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Assume that for each j (0 <<j<Cm — 1) there exists a ¢; such that the
following expression is well defined :

m—1

kg,
(5.6) (s o = f S@pmar+ = [ g5 50,8 vudo
@ =g
THEOREM 8.1. Under the assumptions (8.2) and (8.4), if k,=1F for all
lg|<<m for m <<k<_s—1 the solutions w, of
(8.7) Afup=1/, in V,
exist, are unique, and the errors w — pku, satisfy
(8.8) | w—p%u, |, < ch*—™.
Under the assumption (8.3), the solutions w; of (8.7) exist and satisfy

(8.9) lim 5 || u—pou, 9y = ©-
h—0 ¢q
If k=s, and if B (0<<0<1) is defined by

(8.10) Blug, = = |1t D? p} wp, D? pj, v, dw
IPISSQ

then the solutions u; of

(8.11) (Bh + A5) wn = fi

exist, are unique under the assumptions (8.2) and (8.4), and satisfy

(8.12) ” w — p; u, ”m < chfs—m)

(8.13) p;, w, converges to w in H* (L) strongly if 6 <1 and
weakly if 6 = 1.

The first part of Theorem 8.1 follows from Theorems 3.1 and 7.1, the se-
cond part from Theorems 3.3 and 7.2, and the last part from Theorems 3.2

and 7.1. By (%), if we assume that DT .. D' belongs to IL?(R), we
have stronger estimates of error in (8.8) and (8.12), replacing A*—™ by

htIEl=m and RhOGs—m) by ROms—m) regpectively.

12. Annali della Scuola Norm. Sup. - Pisa.
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Consider the following example :

=1

(8.14) a(u,v) =2 fl)iu D;v dr - [m: dr = /fv dax.
2 2 Q

We then obtain the Neumann problem for the operator — A - 1, and if
£2 is smooth, conditions (8.2), (8.3), and (8.4) are satisfied. In this example,
we obtain the classical finite difference schemes. For example, if n = 2 we
obtain the particular schemes :

X
XXX it k= (0,0), (0,1), (1,0)

XXX
XXX if t=(,1)

XXX

xxxxx if k=(0,0), (0,2), (20)

and so on.

We can also study the special structure of the matrices A;‘,q,h. For
example, the general coefficient azq‘ u (2 B) of this matrix is

(8.15) af, (% ) = f Gy @ Do (@) DUof | @)dw  (f pq0)
Q

and can be computed easily as a function of the terms

< x )H—’”
'h— —
(8.16) 9; Qg () T dz.

If (support 0;) N I'== &, this term (8.16) includes the boundary conditions.
The coefficient a:q , (@, B) is zero if the intersection of the supports of
the functions azp|h(ac) and ofq,h(x) is empty. This class of matrix posses-
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ses a small number of non-zero elements. Nevertheless, by (%), the speed of
convergence is almost optimal (of the same order then the speed of conver-
gence obtained by Galerkin’s method for a same order of regularity of the

solution).

We can easily see, for example, that if ¢ 3= 0, then:

(8.17)

Zﬂ: azq, h (“7 ﬂ) = 0.

This is true since

oD = [ a,,@ Dr oy D7 (3 o, (o) o
o

and the restriction to £ of the function 3 of ,(x) is equal to the con-
B £

stant Vf.
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