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ON THE LOCAL ZETA FUNCTION

OF A CUBIC THREEFOLD

E. BOMBIERI and H. P. F. SWINNERTON-DYER

I. The object of this paper is to determine the Zeta function of a

non-singular cubic threefold in projective four space, defined over a finite

field, to give a canonical interpretation of it, and to show that it satisfies

the Riemann hypothesis.
Let Fq denote the finite field of q elements, let be a complete

non-singular threefold in projective four-space P4, defined over Fq, and let

y n = vrz ( V ) denote the number of points of V defined over Fqn . It follows

from the theorem of Dwork [2] that

where the wh are algebraic integers, depending on V and q but not on 7z.
Among other things, we shall show that

(hypothesis of Riemann-Weil)

and indicate how to determine the wh by solving a simpler problem.
We remark that in order to prove (2) we may freely allow ourselves

finite field extensions, for it is obvious from (1) that replacing the field

Fq by F q rn replaces the wh by and the new version of (2) is equivalent
to the old. This very fruitful device, which enables one to assume that

subsidiary objects obtained in the course of the proof are defined over the
ground field, is due to Davenport and Lewis [1]. In this way it is possible
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to obtain a simple proof of (2) by reducing our problem to a problem
about the Zeta function of a curve, to which we can apply Weil’s well-

known results. However, in order to give a canonical form to the Zeta

function of V we need some information about the geometry of V. Our
result is expressed by means of the Albanese variety A (X) of the variety

parametrizing the lines of V. We shall prove the following

THEOREM 1. We have, if char (Fq) # 2,

where Tr (nn) denotes the trace of the n-th power of the .Frobenius endomor-

of A (X)/Fq, in the endomorphism algebra of A(X) over the rationals Q.
By standard arguments and by Weil’s results on the endomorphism

algebra of an abelian variety, we know that (3) implies the validity of the
Weil conjectures for the Zeta function Z (t ; V/Fq) ; see for instance [4],
Ch. Th. 2.

It might be useful to give some indications about the general plan of
this paper and the methods of proof of our Theorem 1. Our techniques
are of three kinds. Firstly, a projective study of the variety X and some
associated geometric objects, i.e. properties depending on the embedding.
Secondly, a study from a birational point of view, and mostly up to isoge-
nies, of the abelian varieties associated to the geometric objects previously
introduced. Thirdly, there is the proof of Theorem 1, where we make use
of arithmetical methods related to finite field techniques. Finally, in the
last section of this paper we shall discuss some conjectures and problems
arising in a natural way from our Theorem 1. In particular, we shall point
out the relationships of our result to the theory of higher jacobians, as
introduced by Weil [6].

The language of this paper will be that of Weil’s Foundations, and
for concepts related to abelian varieties we refer to Lang [4].

We end this introduction by expressing our indebtedness to Professor
Davenport, who is responsible for our originally attacking the problem
and who has given us valuable advice and encouragement.

II. In this section we shall study the geometry of the variety X of
lines of V. It is convenient to look at the more general case where V is

defined over a field k, of characteristic not 2. This variety X has been

studied in some detail by Fano [3] when 1~ = C, the field of complex num-
bers. His methods can be easily extended to the case char (k) ~= 2, while
if char (k) = 2 there are some difficulties because of presence of insepara-
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ble field extensions. We believe that our method can be modified so as to

give a proof of Theorem 1, even when char (k) = 2.
We begin by proving a result (Lemma 3 below) which was explicitly

used by Fano [3] but for which we have found no satisfactory reference.

We consider X as the algebraic set which parametrizes the lines of

V, embedded in the appropriate Grassmannian. For this model X we have

LEMMA 1. X is a disjoint union o f absolutely irreducible algebraic surfaces,
complete and non-singular. The algebraic set X is defined over k.

PROOF. Let 2c be a point of X, and consider the local ring Ou of all
functions on X regular at u. Let 11t be the maximal ideal of au, and let
kzi r- denote the residue class field of Ou . We shall prove that for

every u the Zariski tangent space m/m2 at u is a vector space of dimension
2 over k,,. In other words, the local ring ~~~ has exactly two generators
for every point u of X.

We show first how Lemma 1 follows from this result.

The algebraic set .X is defined over k (obvious); also every component
of X is complete, because every specialization over k of a line of V is a
linear space of dimension at least one, hence a line because V cannot

contain planes by the hypothesis of non-singularity. Let X2 , ... , X.
be the absolutely irreducible components of .X and choose a simple point
u E X~ such that e £ ~~ for j ~ i. The local ring Ou is regular because u is

simple and does not belong to any Xj with j ~ i ; also we know that Ou
has two generators. Hence Õu has dimension two and Xi is a surface.

Hence every has dimension two, so it is regular because it has exactly
two generators. Let supposing the intersection is

not empty; then the local ring ~u has zero divisors and it is not regular, a
contradiction. Hence the surfaces X~ are disjoint, complete and non-singular,
the latter because every Ou is regular. This will prove Lemma 1 and it

remains to show thas the vector space in/m2 has dimeusion two over ku .
Without loss of generality we may assume that is algebraically

closed and that the line -Z~ corresponding to the point 2c of X is given
by the system of equations

in the ambient projective space x2 ~ ... ~ x5) of V. A generic point (ro) of
G over lc, where G is the Grassmannian of lines of the ambient space of

V, corresponds to a line Lv meeting the hyperplanes X4 = 0 and X5 = 0 in
two points = y2 , 0, 1) and Q = 1, 0) respectively, and
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we take 2/2 ? Y3 , ?1 ~2 ? z3) as local parameters at (v). The birational map

is biregular at (0, 0, 0, 0, 0, 0) which corresponds to the point it E X previously
defined, so that these parameters are indeed local uniformizing parameters
on G at the point u. The condition that the line PQ lies on V is just that
its generic point lies on V ; substituting into the defining equation
of V and equating coefficients of ~3, ).2 It, AIA2 p3 separately to 0 we obtain
four conditions

i = 1, 2, 3, 4, where the fi are polynomials defined over lc. Also, in this

case the residue class field ku is the field k, and it follows that m/tn2 is
the vector space over k generated by yl y2 , ... , Z. together with the rela-

tions gi = 0, where gi denotes the linear part of f; . The linear part of fi
clearly comes from the terms in the defining equation for Y which are

quadratic in X4’ Xs together and linear in x3 together. We now

split cases.

Case 1. The coefficients 7 X4 x~ , I X5 2 in the equation for V are linear
forms in Xi’ 7 x2 , x3 linearly independent over k.

Then by a linear change of variables we may take the terms we are

interested in to be

Then gi = z1, 92 + 93 -- y2 + -’3 1 94 = Y3 and clearly 1n/m2
has dimension two over 7o.

Case 2. The coefficients X4 the equation for ~P are linear

forms in x1, y X2 1 x3 linearly dependent over k.

They cannot be all multiples of the same form ; for if they were then
by a linear transformation over k on x4, x5 only we could reduce the coef-

ficient Of X2 in the equation for T~ to 0, and then (0, 0, 0, 0, 1) would be
a singular point of V, which is contrary to hypothesis. Hence we may
make a linear transformation only so that the coefficients of

x2 4 and X2 5 are linearly independent, 1 and then by a linear transformation

on xj 9 xz , 1 x3 only we may write the terms we are interested in the form
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92 = y, + + g3 = 94 = y2 and

again we obtain that m/m2 has dimension two over k, provided 
Finally if ab = 1, then (0, 0, 0, a, -1) is a singular point of V, contrary
to hypothesis.

This completes the proof of Lemma 1.

We shall show later that X is connected, so that by Lemma 1 X is a
complete, non-singular, absolutely irreducible surface defined over k. In

order to prove this it is convenient to study the geometry of some curves

Cu and which we are going to define.
Let Cu denote the algebraic set, embedded in X, which parametrizes

all lines on V meeting a line Lu corresponding to a point ti of X, with
the convention that the point u itself is a point of Cu if and only if there
is a plane tangent at V along the line Lu. Note that if such a plane exists,
it is unique.

Let v be a point of Cu : the two lines Lu, Lv are coplanar and

determine uniquely a plane which will meet V residually in a third line,
say L,, . Il is clear that w E Ou, so that writing ju (v) = it, we have defi-
ned an application ju: Cu - Cu , I such that ju = identity. Plainly ju is an
equivalence relation on the algebraic set Cu and the quotient parame-

trizes all planes through Lu which meet V in three lines. The planes
through Lu are parametrized in a natural way (Pliicker coordinates) by a

projective plane P u 2 whence the algebraic set has a natural model

hz4 in this plane U.
It is easily seen, by the same argument used in the proof of Lemma

1, that every component of the algebraic sets Cu and ru is complete.

LEMMA 2. We have

(a) (possibly reducible) plane curve, of degree 5 ;
(b) tjze singular points of T’2~, ~af there are any, are ordinary double points

but not cusps. The double points of hu correspond to tlze fixed points of
ju 

REMARK. In the proof of this lemma we need the hypothesis char (lc) ~ 2.

COROLLARY. Every the algebraic set Cu is a curve.

PROOF OF COROLLARY TO LEMMA 2. Apply (a) of Lemma 2 to =’- ’tG
and note that the application ju is everywhere defined.

PROOF OF LEMMA 2. The statements of Lemma 2 do not involve the
fields of definition of the various geometric objects we are studying, so that
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we may suppose that K is an algebraically closed field of definition for V

and Lu, and that Lu is given by the system of equations

in the ambient projective space (x, , ... , x5) of V. For this reason we shall

write L, C, r for L,, , C~ , 7 
Any plane through L is defined by the system of equations

and ~2 , Â3) are homogeneous Pliicker coordinates of this plane ; the
algebraic set T is embedded in the projective plane of the Ai. The residual
section of the plane (4) with V is a conic Q, and to obtain the equation
for Q we write x. = Åi t, x2 = 22 t, x3 = A3 t and use (t, X4 X5) as homoge-
neous coordinates on the plane (4) containing Q. A simple calculation then
shows that the equation for Q can be written in the form

where A,..., F are homogeneous polynomials in the ),i, A being cubic, B
and C quadratic, and D, E, F linear. The conic Q splits in two lines if

and only if

and equation (6) defines the model r of Clj we are studying. An immediate
consequence of (6) is assertion (a) of Lemma 2, unless T is the entire plane
of the Âi.

The fact that equation (6) is not identically satisfied will be clear from

the following analysis, which at the same time will prove assertion (b)
of Lemma 2.

We consider the five ways Q can degenerate ; these are
(i) two distinct lines whose intersection is not on L ;
(ii) two distinct lines which meet on L ;
(iii) L and another line distinct from it;
(iv) .L as a double line ;
(v) a double line other than L.

Our curve T is in one-to-one correspondence with the degenerate Q,
and our aim is to show that the left hand side of (6) is not identically 0
and that in cases (i), (ii), (iii) we have a simple point of F, while in cases
(iv) and (v) we have an ordinary double point at which the branches have
distinct tangents. In cases (iv) and (v) we need the fact that char (K) =~ 2.
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By a linear change of variables we may assume that the plane conta-
ining the degenerate Q is x2 = x3 = 0, and we use the linear change of
variables to make such further simplifications as we can. Also we make

repeated use of the fact that V is non-singular, which implies easily that
the left hand side of (5) is at least quadratic in À,1 and neither D nor F
can vanish identically.

Case (i). We may take Q to be X4 X5 = 0; thus the coefficient of li in
E is non zero. Moreover A, B~ C, D, F all vanish at (1, 0, 0) so that D and
F are independent of I B and C are at most linear in 2i and A is at
most quadratic. Hence A must genuinely be quadratic in A, . Now the left

hand side of (6) contains a non-zero multiple Of A4 , y arising from the term
A.E2; since (6) represents a quintic equation, it follows that (1, 0, 0) is a

non-singular point of 1’.

Cases (ii) and (iii). Here we may take Q to be X4 (X4 + t) = 0 or x4 t = 0
respectively. The proof that (1, 0, 0) is a simple point of 1’ is similar to that
for case (i), the only difference being that the non-zero multiple of A4 arises
from the term FB2.

Case (iv). Now Q is t2 = 0 ; thus the coefficient of A3 in A is non-zero,
D, E, F are independent of Ål and B and C are at most linear in )1.1 .
There is no term in A4 in the left hand side of (6), and the term in A3
arises from A (4DF - E2). To prove that (1, 0, 0) is an ordinary double
point of ~’a therefore, we have to show that 4DF - E 2, viewed as a qua-
dratic form in À,2’ A3 I is neither zero nor a perfect square ; note that here
we make use of the hypothesis char (.g) ~ 2.

Suppose that 4DF - .F. ~ is zero or a square in the field K (Âz, ?,3).
This implies that the quadratic form in X4, X5: + x5 -~- Fx5 fac-

torizes ~,3) and since D, E, F are linear in A 2 1 A3 one of the
factors must be defined over K. Let c~ x4 - C4 X5 be this factor ; then

(0, 0, 0, C4’ °5) is a singular point of V, which is impossible.
Case (v). We may take Q to = 0, so that the coefficient of Â1

in D is non-zero. Moreover E and F are independent of I B and C are

at most linear in Â1 and A is quadratic in Â1. Suppose that the coefficient

of A2 I in A is a, which does not vanish identically, and that the coefficient
of ~1 in C is c, which may vanish identically. There is no term in A4 in the
left hand side of (6) and the term in A3 1 arises from D (4AF - C2) ; to prove
that (1, 0, 0) is an ordinary double point of T, therefore, we must show

that 4aF - c2 is neither zero nor a perfect square in the field .~ (22 Â3),
again because char (K) =1= 2.
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As before, we obtain that at2 + + has a linear factor defined

over K ; then if c5 t - c, X5 is this factor, the point (Cl’ 0, 0, 0, C5) is a

singular point of V, which is impossible.
This contradiction proves our assertion and completes the proof of

Lemma 2.

LEMMA 3. X is an absolutely irreducible surface, c01nplete and non-sin-
gular, defined over k. 

’

PROOF. In view of Lemma 1, it is enough to prove that X is connected
and we may assume that the field k is algebraically closed. Let Xs , X2 ~ ... , Xm
be the absolutely irreducible components of X and let u be a point of X.
We prove first that Xi is non-empty for every i, so that if X is not

connected then no Ou is connected.
To prove this assertion, let Di be a complete curve on Xi defined over

k and such that u ~ Dv , let (y) be a generic point of Di over )c, and con-
sider the surface on V given by Fi = locusk L(y) . This surface is complete
and ruled and there is at least one line on Fi passing through a given
point of which is parametrized by a point of It is well-known

that the cubic threefold V is regular, hence Fi is linearly equivalent to a
positive multiple of a hyperplane section of V, hence the intersection L2L f1 
is never empty. Hence there is a line of distinct from Lu, parametrized
by a point y of Di and meeting y because by the large choice of the

curve D; we may suppose that .~u is not a line of Fi. This implies
y E Ou n Xi, as asserted.

We write C24 as the union of absolutely irreducible components loll 1
i =1, .., n, and noting that j~ = identity we may describe the action of

iu on C~ as follows

(A) ju maps Cu into itself for i =1, ... , 1~ ;
(B) fzt interchanges and for i = ~~ -~-1, ... , r --+- s where r + 2s = n.

Now the quotient T’u may be written as the union of absolutely irre-
ducible curves ~ ’ r --~ s where = (0,’ ))Ij,, . By the
theorem of B6zout, the intersection is non-empty for also

every point of this intersection is a singular point of because the curves

are all distinct. By assertion (b) of Lemma 2, these points come from
fixed points of ju .

Suppose first r 1. Taking inverse images of 7~ f1 Tb/ we find that,
for every i, fl + ju (C,’ )) conta,ins a fixed point of ju. This result

proves that Cu is connected in case A similar argument applies if
r = 0 and s = 2, therefore if X is not connected we have i- = 0 and 8 =1,
that is C~, always consists of two absolutely irreducible components which
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are interchanged by ju. Hence X would consist of two absolutely irreducible
components, each of them containing a component of Cu . Finally, y we get
a contradiction by destroying the symmetry of the previous result, which

implies that two meeting lines of 1T belong to distinct algebraic systems ;
in fact, it is enough to consider three coplanar lines of V.

This contradiction proves that -LY is connected, and completes the proof
of Lemma 3.

By Lemma 3 we have that Cu is a divisor on X, defined over (it).
VTe are now interested in the behaviour of Cu when u is a generic point of
X over lc.

LEMMA 4. If (u) is a generic point of X over 1c then Cu is absolutely
irreducible and defined over k (u).

PROOF. The algebraic family of divisors (Cu) is absolutely irreducible

and in fact parametrized by X, becase it is easily seen that if 71, =F v
then C~ ~ Cv. A simple consequence of this result is that if D is a

divisor on X then the intersection number (Cu.D) is independent of 2~.

Now we recall that, given a non-singular cubic surface Z, there are

exactly five lines of I meeting two given skew lines of ~. It follows easily
from this remark and the well-known fact that the generic hyperplane section
of V is a non-singular cubic surface, that if (u) and (v) are two independent
generic points of X over k then C2~ and intersect properly in five points.
In particular we have

Suppose that if (u) is a generic point of X over k then Cu splits into
absolutely irreducible components I using the same notation as in the

proof of Lemma 3. We have just shown that if (u) and (v) are two inde-
pendent generic points of X over k then Cu. Cv is a positive 0-cycle on X
of degree 5 ; it follows that for each i the algebraic system of divisors 
is absolutely irreducible, also

for all i, j, and

On considering the action of ju on C2~ we find by the same argument
used in the proof of Lemma 3 that
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if

also

(11)

if

and

if

These inequalities (8), (9),..., (12) are compatible with the obvious relation
(assertion (a) of Lemma 2)

only if r=1, s=0 or y. = 0, s = I .
The first alternative says that C~ is absolutely irreducible. The second

one implies that C~ = C~ + Cu where ju interchanges the components Cui
We assert that this last alternative is impossible.

Let ~ be a non-singular hyperplane section of V containing Lu, so that
Z is a non-singular cubic surface, let Lv be another line of E not meeting
L’It, and let Mi , ...1~1~ be the five lines of E meeting Lu and Let 3C[
be the residual section of Z with the plane determined by Mi and Lu ; the
five lines are all distinct from the lines lVh,, and there is a line of I,
say Lv’ , other than Lu, meeting the five lines 3fi’. This implies that the

Cu intersect properly with Cv and Cv, ; also

because ju interchanges the components of C~ .
By the remark made at the beginning of the proof of Lemma 4 we

obtain

a contradiction because (Cu. Cu) = 5 is odd.

This contradiction completes the proof of Lemma 4.

LEMMA 5. Let A (X) be the k-Albanese variety of X. Then
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PROOF. The dimension of A (X) } is the irregularity q of the surface X,
so that we have to prove that q = 5. We shall consider here first the

case where k is a field of zero characteristic and then apply a specialization
argument when char (k) # 0.

By Lemma 3, we may apply surface theory to X, and in case char (k) = 0
we have

where pg and p. are the geometric and arithmetic genus of X. These inva-
riants of the surface X have been computed by Fano [3], who found pg = 10
and pa = 5. As Fano’s paper is not easily available we shall sketch brieny
his arguments.

It is proved first that the canonical system K of X is the class of a
hyperplane section ([3], pag. 784) so that pg is the dimension of the linear
system of hyperplane sections of X, that is 1 is the dimension of the

projective space where X is embedded. Obviously X is embedded in projective
space P 9 because so is the Grassmannian of lines of P4. The fact that X
is not embedded in projective space P8 is more difficult to prove ([3~,
pp. 782-783).

The computation of pa is based on the classical formula

where is the Euler-Poincaré characteristic of X. The value of the

self-intersection (K. K) is easily found. Let Lu, Lv, Zw be three coplanar
lines on V; then C~ + C, -~- is a hyperplane section of X, hence a

canonical divisor, and by the remark in the first paragraph of the proof
of Lemma 4 and by equation (7) we obtain

Finally, the Euler-Poincaré characteristic Z (X) of X is computed by using
the classical definition of the Zeuthen-Segre invariant I = X (X) - 4. One
obtains ([3], pp. 786-788) X (X)=27 whence pa = 5 by equations (13) and (14).

Now suppose that char (k) ~ 0. The statement of Lemma 5 is indepen-
dent of ground field extensions ([4], Ch. Th. 12) so that we may assume
that is algebraically closed. Let .R denote the ring of Witt vectors over

lc. Then R is a valuation ring of characteristic zero and k is the residue

class field of R. The cubic threefold V is a projective hypersurface
= 0 and if Cijk denotes the Teichmüller representative of Cijk in

R the cubic hypersurface = 0 is again a non-singular cubic
threefold whose reduction modulo the maximal ideal I in R gives V. Let
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X be the variety of lines of the lifted threefold V. We know that every

specialization mod I of a line of V is a linear space on V, hence a line

because V is non-singular, and it follows from this that the reduction mod I
of .X is a component of X of dimension two. By Lemma 3, we deduce that
X is the reduction of X mod 1 (0. Zariski : Theory of holomorphic functions,
pp. 80-82). By Lemma 3 again, we know that both X and Y are non-sin-
gular surfaces, where by the recent results of Grothendieck about Picard

varieties we have that the Albanese varieties of X and X have the same

dimension. In fact, dimak A (X) and dim A (X) are respectively half of

the first Betti number (in the I-adic sense, where 1 =F char (k)) of X

and X, and these numbers are the same because X is non-singular, hence
X is a « good » reduction of X mod 1 (see 31. Artin - A. Grothendieck - Coho-
mologie 6tale des schémas, S6m. G6om. Alg., 1963/64 exp. XII, cor. 5.4).
Otherwise, and more simply, one may use the fact that the part prime to

char (k) of the fundamental group is the same for X and X (see S6m. 
Alg., 1961, exp. X or Bourbaki, mai 1959, exp. 182 and exp. 236 p. 14).

This proves Lemma 5, because it has already been proved in case

char (k) = 0, and the pair (V, X) is defined over a ring R of characteristic

zero, with no zero-divisors.

III. We shall prove here some results on the Albanese varieties of

Cu and 1"’u, which will be needed in the proof of Theorem 1.

Let A ( C~) and A (Tu) denote the k (u)-Albanese varieties of Gu, and Tu,
where (u) is a generic point of X over k ; these exist because by Lemma 4

both C1L and are absolutely irreducible. Let fu : be a

canonical admissible map defined over k (it), and in the same way let

f : be a canonical admissible map defined over k.

We shall denote by (A, and (B, pii) the k (u)/k-Images of A (Fu) and
A respectively.

THEOREM 2. There exist homomorphisms a : A - B, fl: B - A (X).
defined over k, such tlzact the sequence of abelian varieties

is exact tip to isogenies. The is the homomorphism induced

by the 7nap iu : Cu --~ X and the universal mapping properties of the
Albanese variety and the 



13

Let i,,: Ou X 01’- -+ X M X be the inclusion map, and consider the

commutative diagram

where i* is the homomorphism induced by i. (universal mapping property
of the Albanese variety) and f1 is the homomorphism induced by i~ (uni-
versal mapping property of the k (u)/k-Image). Clearly i* is defined over k (u
and f3 is defined over k.

LEMMA 6. The surjective,

PROOF. From the commutativity of the triangle in our diagram it is

enough to show that the homomorphism i* is surjective.
Let (x), (y) be two independent generic points of Cu over k (u) ~ we

assert that (x)~ (y) are two independent generic points of X over k. In fact,
consider the tower of fields
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We have dinik (u) = 2 and dimk (u) (x) = dimk ~~,~ (y) = 1 by our definitions,
and as (x) and (y) are independent generic over k (zc) we have dimk (u) (x, y) = 2,
whence di1nk (u, x, y) = 4. On the other hand, the field k (u, x, y) is algebraic
over k (x, y) because (Ox. Cy)=5&#x3E;0 by equation (7). It follows that y)=4
and our assertion follows from this.

The image of the restriction of f to Ou X Cu is a subvariety of A (X)
going through the origin and defined over a regular extension k (u) of k.
The abelian subvariety of A (X) generated by this subvariety is defined

over (u), hence over k by Chow’s theorem ([41, Ch. II1, y Th. 5). Also, it

contains a point f (x, y} where (x, y) is a generic point of over le.

Hence it contains the image of f in A (X) and it follows that it coincides

with A (X). Going the other way round the square in our diagram we
obtain that the homomorphism i* is surjective, and Lemma 6 is proved.

Let Z be the three-dimensional variety defined by Z = locusk (u, v)
where (u) is a generic point of X over 15 and (v) is a generic point of C~
over k (u). By Lemma 4, Z is absolutely irreducible and is defined over k.

Clearly Z is the graph on X of the divisorial correspondence X --~ X
defined by u --~ Cu . Our next step is to define an admissible rational map

(i. e. vanishing on the diagonal) h : Z X Z - A (X) X A (X) X B’, defined

over k and such that the pair (Z X Z, ja) generates A (.X) x A (X} x B’.
Here B’ denotes the connected component of the kernel of # ; it is an

abelian variety, a priori defined over a purely inseparable extension of k,
hence defined over k by Chow’s theorem ([4], Ch. 11, , Th. 5). By Poineard’s
complete reducibility theorem ([4], Ch. y Th. 6) there exists a homomor-

phism q : B --&#x3E; B’ with the following properties :
(I) q is defined over k and is surjective ; &#x3E;

(ii) the A (X) x B’ is an isogeny.
Let (u), (u’) be two independent generic points of X over k and (v, v’)

a generic point of Cu X C~~ over k (u, u’). Let Pi (u, u’) + ... + P~ (u, u’) be
the zero cycle of degree 5 on Cu and Cu, given by the intersection Ou. Cu,.

The point (u, v, u’~ v’) is a generic point of Z X Z over k, and we define
a rational map h : Z m Z - A (X ) x A (X) X B’ by

LEMMA 7. The ’rational map h is ad1nissible and defined over k. The

pair (Z X Z, h) generates A (X) X A (X) X B’.
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PROOF. It is clear that 71 is admissible because h v’) +
+ h (u’, v’, u, v) = (o, o, o), the origin of the abelian variety A (X) X A (X ) X B’.
Also it is defined over k because the zero cycle Cu - Cu, is defined over

k (u, u’) whence the point h (u, v, u’, v’) is defined u’, v’). It

remains to prove that the pair (Z ~a) generates A (X) X A (.~) X B’.
Let h’ : Z x Z - A (X) ;~ B be the rational admissible map defined by

We have the identities

and

hence

where e is the identity on the first factor of A &#x3E;C B. It follows from

the fact that the homomorphism q is an isogeny that (Z m Z, h) generates
A (X) X A (.X ) X B’ if and only if the pair h’) generates A (.~) X B.

For every point P of Cu the curve (v, P) is a generating
curve of the Albanese variety A ( Cu), whence the same is true for the curve
locus7, (v, Pi (u, u’)) + ... fu (v, P5 (u, u’))), for this last curve is a tran-
slation of the previous generating curve, multiplied by 5. It follows that

the curve

is a product of the point 5f (u, u’) of A (X) with a generating curve of B.
Taking the sum of this curve with itself a sufficiently high number of

times, say m times, we find that the pair (Z h’) generates the subva-
riety (5mf (u, u’)) X B of A (X) x B. Taking the locus of this subvariety
over k we see that the pair (Z h’) generates A (X) x B, and Lemma
7 is proved.

The following lemma is the key to our proof of Theorem 2.

LEMMA 8. Tlaere exists a homomorphism a’ : A -+ B’ defined k and

with finite kerfnel.
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PROOF. We begin with the very simple remark that if .Lu and Lv are
two meeting lines of V, then v is a point of Cu and conversely u is a

point of Cv. It follows that the rational map j : Z - Z defined by j (u, v) =

(v, u) is an involution on Z of order two and defined over k. We shall denote

by Y the quotient variety of Z by the cyclic group of order two generated
by j. Clearly Y is an algebraic variety (say Z is projective) defined over

k, and we shall denote by A (Y) the k-Albanese variety of Y. Let A (Z) be
the k-Albanese variety of Z, let g : Z X Z --~ A (Z) and g’ : Y x Y -~ A ( Y)
be canonical admissible maps, and L’ denote the covering pre-

viously defined.
Consider the commutative diagram

where g e-1) : Y x Y - A (Z) is the admissible rational map of Y X Y
into A (Z), given by the sum ;
Q2 + Q3 + Q4 is the inverse image by x Q-1 of a generic point P of
Y X Y over k.

On applying the result in [4], App. 1 , Th. 5 we see = 4~(r) ~
where 6A(Y) is the identity map on A (Y), because Y

is generically a covering of degree four. It is obvious that Q* is surjective
and defined over k, hence (2* has finite kernel and is separable, the latter

because char (k) ~= 2. Hence Q* is defined over k.

We have a commutative diagram

whence we obtain a homorphism defined over k

we assert that this homomorphism has finite kernel.
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We already know that ()* has finite kernel, so that in order to prove
our assertion we have to prove that the kernel of h~ is finite too. On the

other hand, by Lemma 7 the pair h) generates A (X) X A (X) X B’,
whence h. is surjective. Hence if h* has finite kernel it must be an isogeny,
and to prove both these facts it is enough to show that A (Z) and A (X) x
X A (X) X B’ have the same dimension.

The variety Z is a fibre space over X, with generic fibre C~ , as we can

see from the generically exact sequence of varieties

where iu is the inclusion (v) = (u, v) and where p is the projection 
’

~ (u, v) = u.
On applying the result in [4], Ch. YIII6 , Th. 13 we obtain that A (Z)

is isogenous to A (~’) X B over the algebraic closure k of the field k ; also
B is isogenous over k to A (X) x B’ (compare the proof of Lemma 7).
Hence A (Z) and A (~) ~ A (X) X B’ have the same dimension and our as-
sertion is proved.

The image in A (X ) &#x3E;C A (X) X B’ is the abelian subvariety of

where (u, v, u’, v’) is a generic point of Z X Z over k, as we can see from

the previous commutative diagram. On the other hand, by the definition of
our rational map h we see that this locus is contained in 4 ~C B’, where d
denotes the diagonal of A (X) X A (X). It is clear that d is an abelian

subvariety of A (X) x A (X), isomorphic over k to A (X), thus if d : A (X) -
A (X) X A (X ) is the diagonal map there exists a homomorphism (p over k
such that the following diagram commutes

In particular cp has finite kernel because so has a, o . .
On the other hand, Y is the variety which parametrizes the pairs of

points (u, ro) such that v E without regard to the order of them. Hence Y
parametrizes the pairs of incident lines Lu, L, on V. Given any such pair,

2. Annali della Seuola Norni. Sup. - Pisa.
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the plane determined by them cuts V residually in a third line, say Lw ,
defined over k (u, v). The locus over k (w) of the point (u, v) -~- (v, it) of Y is
simply the curve As before, we obtain a generically exact sequence of
varieties

where iw is an inclusion map and p a projection, therefore from [4], Ch.

VIII6 , y Th. 13 we obtain that A (Y) is isogenous to A (X) X A over the

algebraic closure k of k.
To find an isogeny over k we proceed as in the proof of Lemma 7. Let

~ : ~ --~ Y be the Galois covering previously defined, and let Cu --~ _I ~4
be the Galois covering of degree two induced by the equivalence relation

ju on C~ . Let (u, v ; u’, v’) be a generic point of Z m Z over k, so that

(g (a, v), e (u’, v’)) is a generic point of Y x Y over k, and define a rational
admissible map

.by

where w and w’ are the two points of X uniquely determined by the pairs
(u, v) and (u’, v’), where Uw: Fav X Tw -+ A is a canonical admissible

map and where P1 (w, w’) + ... -~- P5 (w, w’) is the 0-cycle on C,, and Cv,
given by the intersection.

By the same argument as in the proof of Lemma 7 we have that the
rational map h" is defined over k and that the pair h") generates
A (X) X A. Hence the induced homomorphism 7~ : A ( Y) - A (X) x A is

defined over k and is surjective. Hence h’ ’ is an isogeny because we have
already proved that A (Y) and A (X) ~~ A have the same dimension.

On combining this isogeny h" with the homomorphism T previously
found we get a homomorphism : A (X) X A -+ A (X ) x B’ defined over k
and with finite kernel.

Let Al and A2 be the images of A (X) x 0 and of 0 &#x3E;C A by 1Jl. Then

A1 and A2 are isogenous to A (X) and A over k ; also A2 is a finite

group because V has finite kernel. Now by Poincaré’s complete reducibility
theorem ([4], Ch. IIIi, I Th. 6) there is an abelian subvariety B1 of B’,
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defined over k and such that

is a finite group.

Hence A (X) x B’ is isogenous over to (A i + A2) X ~~, and so also
to A1 X A2 X B1 since Al n A2 is finite. Since A1 is isogenous to A (X)
over k, A2 x Bi is isogenous to B’ over k ; hence there is a map 1: : A2 -+ B’
defined over k and with finite kernel. Let 1P2: A --&#x3E;- A2 be the isogeny over
k given by the restriction of 1p to the second factor; then Lemma 8 follows
from the series of homomorphisms

defined over k and with finite kernel.

PROOF OF THEOREM 2. Let a’ : A-B’ be the homomorphism considered
in Lemma 8, and let i : B’ --~ B be the inclusion map. Let a = ra’.

We assert that the sequence of abelian varieties

is exact, up to isogenies.
In fact, a has finite kernel by Lemma 8 and fl is surjective by Lemma

6. Again by Lemma 8 and the definition of a, we have iin (a) C B’, and B’
was the connected component of ker (~). The required exactness will follow
if we show that i1n (a) = B’, that is if we prove

From the inclusion i1n (a) C B’ we find

The covering Q. : Ou 2013~ ru gives rise to a surjective homomorphism
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and looking at the commutative diagram

where y is the homomorphism induced by the universal mapping property
of the k we see that

because the connected component of ker (y), together with the appropriate
restriction of pu as canonical map, is the k of the connected

component of ker (eu)1)E: .
By Lemma 2, (b) the covering e. is unramified at the simple points of
and ramified with ramification index two at the singular points of 

which are ordinary double points but not cusps. Let C* and Tat be k (it)-
normalizations of Cu and let 61* --&#x3E; be the induced covering. To a

simple point of 1’~ there correspond one point of r::, two distinct points
of Cu and hence two points of 0: ; for C* is a double covering of ru . If
t is a singular point of ru, there correspond to it two points t* t2 of ru
and only one point v of Cu . We wish to show that to v there correspond
just two of Cu , that is the points t2 are branch points
of the covering y with ramification index two.

In the notation of the proof of Lemma 2, we deal here with case (iv),
the argument for case (v) being similar but less symmetric. By a change of
variables ~,3 we may ensure that 4 DF - E2 = 4 Â,2Å3 and then by a
change of variables x5 we can also have + + F x~ =
--- 2 x2 4 + ~3 X2 . 5 Â,1 is a uniformizing parameter for one of the

branches of T’u through t, and 13/li for the other. The function field of C,~
is that quadratic extension of the function field of ~’u which is needed to

factorize the quadratic equation for the degenerate Q. Looking at the terms
of (5) independent of X5’ y we see that Å2 / Al cannot be a uniformizing para-
meter at a point of 0* above v. Hence these points are branch points of
the covering, and so there are just two points v~‘ , v2 of above v.

Let d denote the number of double points of we have proved that
the double covering ou : 0: -~ ru* is ramified at exactly 2d points, where

the ramification index is two. If 91 1 92 are the genus of ru and Cu respec-
tively, on applying the Hurwitz-Zeuthen formula to the covering au (note
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that char (k (u)) + 2) we get

On the other hand, by Lemma 2, (a), ru is a plane curve of degree 5
with d ordinary double points. Hence

and combining this result with the previous equation we obtain 92-91=5, i.e.

On combining equation (17) with inequalities (15) and (16) we have

By Lemma 5 and this last inequality, Theorem 2 is proved.
The following result will be needed in the proof of Theorem 1.

LEMMA 9..Let 1£ be a point of X 8uch that Cu is absolutely irreducible.

Then there are homomorphisms

defined over k (u), such that the sequence of abelian varieties

is exact, tttp to isogenies.
The homomorphism i, is the homomorphism induced by the inclusion

map iu : Cu -+ X and the universal mapping property of the Albanese variety.

PROOF. Suppose first that u is a generic point of X over k, and let Bu
and Au denote the kernels of the homomorphisms flu: A (0u) -+ Band

A (ru) - A. Then Bu and Au are abelian varieties defined over k (u) by
[4], Ch. VIlli, prop. 3 and Chow’s theorem. By Poinear6ls complete redu-

cibility theorem there are isogenies over k (u)
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Also, from the Cu -~ ht, we deduce by taking inverse images
a homomorphism

defined over k (it) and with finite kernel (see the analogous construction of (2*,
at the beginning of the proof of Lemma 8).

We have also isogenies over k (ai)

thus we obtain a homomorphism with finite kernel

By [4], Ch. II1, y Th. 3 this homomorphism factorizes as a sum Tu + I

where A -+ B x Bu and r’ : Au - B x B,~ are the restrictions of (pu * ’u
to the first and the second factors of A ~ Au . Let vi : B x Bu - B and

-+ Bu be the projections. We obtain homomorphisms

defined over k (u), and ib = T;t , P2 ij) has finite kernel.

On the other hand, the k (~(¡) / k-Image of Au is a point, whence Pi i§§ is
the constant map of Au into the origin of B. It follows at once that the

homomorphism P2 1:~ has finite kernel.
Let a be the homomorphism considered in Theorem 2 and let

be the product mapping 8u = Then 0,, is defined over k (u) and

has finite kernel. Finally define au by

Vre assert that the sequence

is exact, up to isogenies.
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"7" e have proved that au has finite kernel, that i~ is surjective, also we
know that

by equation (17) and Lemma 5.
Consider the commutative diagram

The homomorphism gg,’, factorizes as a sum yu + where y. : B - A 
and y,~ : B~~ - A are two homomorphisms defined over k (u) and with

finite kernel. We have ker (i~) = It;;1 (ker (fl)), also ker = Bu and it follows
that the connected component of ker (i~ is B’ X Bu because the homo-

morphism is a multiple of the identity on B and B’ is the connected

component of ker 
On the other hand, the image of 0. 1/lu : A -+ B X Bu is contained

in I1nage (a) ~C Bu, 1 hence in B’ x hence in the kernel of i$ 99’ . u This

proves that is the constant map of A (1u) into the origin of A (X),
thus in view of the previous checking of dimensions in our sequence Qj
abelian varieties we obtain the required exactness up to isogenies.

The proof of Lemma 9 finally is completed by an obvious specialization
argument, because equation (17) has been proved not only when (it) is a

generic point of X over k, but also when u is any point of .~ such that C~
is absolutely irreducible. This remark completes the proof of Lemma 9.

In the next section we shall show how a combination of arithmetical

methods with the result of Lemma 9 will give the proof of our Theorem 1.

IV. PROOF oF THEOREM 1. Let VI k be our cubic threefold, defined

over a finite field k = Fq of char (k) ~= 2.
We may give V the structure of a fibre space over a projective plane

in the following way. Let .Lu be a line of V, defined over k (u) ; the planes
through Lu are parametrized by a projective plane Pu defined over k (t1),
and a point 2v of Pu determines uniquely a conic Qw on V which is the

residual section of V with the plane through Z~ determined by tv. Also, by
the obvious fact that a line and a point not on this line determine uniquely
a plane, we have a projection Pu: V --~ defined over k (it) and regular
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on V except at Lu , I by taking for a point x of V not on Lu, pu (x) to be

the point of Pu corresponding to the plane determined by Lu and x.
Thus we have obtained a generically exact sequence of varieties

where i,, is the inclusion map and pu the previously defined projection.
We already know that the generic curve Cz4 is absolutely irreducible,

also X is absolutely irreducible. The points u on X such that C~ is abso-
lutely irreducible then form a Zariski open set on X, whence from the

well-known fact that the points u of .X algebraic over k are dense in .X we
deduce that as soon as n is sufficiently large there is a point u of X such
that k (u) C kn and 0,, is absolutely irreducible. Here we have written kn
for Fqn .

We want to count the number ’Vm (V) of points of V defined over kn = F q 711
and in view of the exact sequence previously written our problem is equi-
valent to counting the number of points defined over kn of the base space
P2 and of the fibres Qw , together with a more accurate analysis of the be-
haviour of the projection p,, along the line L,,. Here of course we take it
to be such that k (u) C kn, which is possible if n is sufficiently large.

The total number of points of P2 defined over kn is exactly q2n + qn -~-1
and it is the total number of fibres Qw defined over kn.

Let Qw be one of the fibres defined over kn. The number of points of
Qw defined over kn is

(i) qn -~-1, if the conic Qw is non-singular ;
(ii) 2qn + 1, if the conic Qw degenerates into two distinct lines, each

defined over kn ;
(iii) 1, if the conic Qw degenerates into two distinct lines, each defined

over a quadratic extension of kn ;
(iv) qn -~-1, if the conic Qw degenerates into a double line.

The behaviour of the degenerate fibres is most conveniently described

by means of the two curves Cu and defined earlier. In fact the curve Cu
parametrizes the components of the degenerate fibres, while the curve ru
parametrizes the degenerate fibres themselves. It follows that if vn (Cu) and
v7z (Tu) denote the number of points defined over kn and lying on Ou and

respectively, then the total number of points defined over kn and lying
on the degenerate conics Q2~ is given by

for every point u such that lc c Hence the total number of points
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defined over kn and lying on the fibres of our fibre system is

for every point u such that lc (u) q the first term being the contribution
of the non-degenerate fibres and the remaing ones being the contribution

of the degenerate conics.
This is not yet the number of points of V defined over kn, because the

projection pu is not a regular map at Lu. Take a point x of Lu; a conic
QtlJ contains x if and only if the plane corresponding to w is tangent at V
in the point x, I and these planes are parametrized by a line of Pu defined
over k (it) (x) C kn (x). It follows that in the previous counting of the ’points
of the fibres of our fibre system the qn -~-1 points of Lu are Counted qn -~-1
times each. Hence the total number of points of V defined over kn is the
total number of points defined over ku of the fibres of our fibre system,
minus + 1). We obtain

for every point it such that k (u) C kn. .
Now suppose that Cu is absolutely irreducible, and let C) and be

k (u)-normalizations of Cu and We assert that

Let t be a simple point of we have proved in section III that to
this point there correspond one point t* of two distinct points of

C~, two distinct points vf, vr, of 0,,*, therefore t and t* have the same field

of rationality and the same is true for roi and y vfl . Now let t be

a singular point of we have proved in section II that t is an ordinary
double point of not a cusp. To this point there correspond two points

of one point v of Ou, two points of Cu , therefore t and v
have the same field of rationality, and the same is true for tl , vt and t2 , v2 .
It is easily seen that equation (19) follows from this.

By equations (18) and (19) and the fact Cu and are non-singular
we obtain using Weil’s well-known results

where Tr (all; A) means the trace of the n-th power of the Frobenius endo-
in the endomorphism algebra over the rationals Q of

the abelian variety A defined over kn. Note we have proved equation (20)
for every point u such that Cu is absolutely irreducible and k (u) C kn.
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Now from the work of Lang [5] we know that two abelian varieties

defined over a finite field k and isogenous over k, have the same number of
points defined over k, whence the traces of the Frobenius endomorphism in
the corresponding endomorphism algebras are equal. By this remark and
the exact sequence (up to isogenies) of Lemma 9 we find

for every point it such that Cu is absolutely irreducible and On

combining this result with equation (20) we obtain Theorem 1 for all suffi-

ciently large n, i. e. for every n such that there exists u such that Cu is

absolutely irreducible and k (u) C kn ,
To prove Theorem 1 for all n, we use a simple argument like the one

used by Davenport and Lewis [1]. Let qi, i =1,2, ... , 10 be the 10 characte-
ristic roots of the Frobenius endomorphism a in the endomorphism algebra
of ~1 (X). We have for all the equation

also by equation (1) (the theorem of Dwork) we find

for all sufficiently large n. Hence the equation between the middle and the
last term is an identity true for all r~, and by equation (1) we know that

the equation between the first and the middle term is true for all Yg ; this

completes the proof of our Theorem 1.
If we had not proved that dimk A (X) = dimk(u) A ( C24 ) - di1Uk(tt) A 

but only the trivial ~~ then at this stage of the proof we would find that
all the were among the but we would not have shown that every Wi
was a We expect that in more general circumstances this will actually
happen.

V. We end this paper with a few comments about our result. There is

no doubt that the case of a cubic threefold, as was pointed out by Weil
at the very end of the second edition of his Foundations, is a good special
case to investigate for making conjectures about the equivalence problem for

cycles of codimension ~ 2, as well as its relation to the abelian varieties

attached to the cohomology.
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Our Theorem 1 is a very special case of a Lefschetz fixed point formula
over the rationals, and such a formula is still lacking except for curves,

abelian varieties, rational surfaces, varieties with « only the algebraic coho-
mology », and varieties obtained by products of varieties of the previous
types. We believe that our result for the cubic threefold is of a new type
and in fact closely related with Weil’s theory [6] of higher jacobians.

To explain this, let (V) be the group of I-cycles of V with integral
coefficients algebraically equivalent to 0, and let Zr t ( Y) be the subgroup of

( Y) consisting of cycles rationally equivalent to 0. It seems that (though
at this moment we have no complete proof) if x is any element of Z 1 (F)~
then x + ( V ) contains an element which is a sum of lines of V taken

with appropriate multiplicity. If this result is true, then there is a homo-

morphism

which is surjective and whose kernel is Z at (V), Thus A (X) appears to be
the higher jacobian of V in dimension 1.

Let f : V - V be a morphism defined over k, Then, accordingly to the
previous discussion f would induce a (contravariant) homomorphism

and we may expect that for every 1 + _p the trace
Tr ( f ~ ~ ( P; Ql)) would be related in some way to the homomorphism

f°. The factor qn in formula (3) may suggest that

where f °’ is the endomorphism of A (X) given by the involution in the

endomorphism algebra of A (X ) determined by a polarization of A (X). Of
course the trace in the right hand side of (21) is taken in the endomorphism
algebra of A (X) tensorized with Qz.

More generally, we are led to the folloving conjectures.
Let V be a non-singular projective variety of dimension n, defined over

a held lc, and let Zaig (V) be the group of i-cycles of V with integral coeffi-

cients and algebraically equivalent to 0. Accordingly to Weil’s conjectures,
we may expect that there are abelian varieties defined over k,
for « functorially » attached to V and with the following properties.

A) parametrizes the group (V) modulo an appropriate equi.
valence relation ; these would be the Albanese varieties of V.

B) J I ( V) parametrizes the group modulo an appropriate
equivalence relation ; these would be the Picard varieties of V.
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C) the varieties Ji (V) and are dual of each other.

D) if IT and V are non-singular projective varieties of dimension m
~ respectively and defined over k, and if f : U -+ V is a morphism defined
over k, then for 2i -~-1 c 1nin (m, n) we have an induced homomorphism

which makes the following diagram commutative

where fi is the homomorphism obtained by direct images.
E) if U, V and f are as in D), then for 2i + 1 ~ 1nin (m, n) we have,

an induced homomorphism, dual to f* in D),

which makes the following diagram commutative

where Ii is the homomorphism obtained by inverse images.
F) if V~ is a generic hyperplane section of ~P, defined over lc (u), and

if j : Vu -+ V is the inclusion map then (Ji ( ( V), j~ ) and (Ji (V ), j~ ) are respe-
ctively the k (u)/k-Images and the k (u)/k-Traces of Ji and for

~-}-1~20131.
Let V be as before, let k = Fq be the finite field of q elements and let

be the Zeta function of V, where V) is the characteristic polynomial
of the Frobenius endomorphism on Hi (V, 
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Then our conjecture can be expressed by saying that
« P, (q~ t, Ji (V)) = P1 (q2 t, Ji (V)) is a Of P2i+l (t, V) ».
Our Theorem 1 can be expressed in the following form.
« If V is a noit-singular cubic threefold defined over Fq, and claar (Fq) ~ 2

then

We conclude with the remark that our result does not seem to be an

isolated one, and that one of the authors has worked out other cases, for

example the complete intersection of two quadrics, with almost the same
result. In this latter case something more can be said and the results obtained
confirm our conjectures about higher jacobians.
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