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ON THE LOCAL ZETA FUNCTION
OF A CUBIC THREEFOLD

E. BoMBIERI and H. P. F. SWINNERTON-DYER

I. The object of this paper is to determine the Zeta function of a
non-singular cubic threefold in projective four space, defined over a finite
field, to give a canonical interpretation of it, and to show that it satisfies
the Riemann hypothesis.

Let F, denote the finite field of q elements, let V/F, be a complete
non-singular threefold in projective four-space P4, defined over F,, and let
v, =, (V) denote the number of points of V defined over Fqn. It follows
from the theorem of Dwork [2] that

10
(1) v,= (" — 1/(g"—1) — hil .

where the w;, are algebraic integers, depending on V and ¢ but not on n.
Among other things, we shall show that

3
2 |wn| = q?  (hypothesis of Riemann-Weil)

and indicate how to determine the w; by solving a simpler problem.

‘We remark that in order to prove (2) we may freely allow ourselves
finite field extensions, for it is obvious from (1) that replacing the field
Fq by qu replaces the w; by w}, and the new version of (2) is equivalent
to the old. This very fruitful device, which enables one to assume that
subsidiary objects obtained in the course of the proof are defined over the

ground field, is due to Davenport and Lewis [1]. In this way it is possible
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to obtain a simple proof of (2) by reducing our problem to a problem
about the Zeta function of a curve, to which we can apply Weil’s well-
known results. However, in order to give a canonical form to the Zeta
function of V we need some information about the geometry of V. Our
result is expressed by means of the Albanese variety A (X) of the variety
X /F, parametrizing the lines of V. We shall prove the following

THEOREM 1. We have, if char (Fg) == 2,
(3) v, == (q4n —_— 1)/(qn —_ 1) _— qn Ty (n'n),

where Tr (m,) denotes the trace of the n-th power of the Frobenius endomor-
phism n of A (X)/F,, in the endomorphism algebra of A(X) over the rationals Q.

By standard arguments and by Weil’s results on the endomorphism
algebra of an abelian variety, we know that (3) implies the validity of the
Weil conjectures for the Zeta function Z(t; V/F,); see for instance [4]
Ch. V,, Th. 2.

It might be useful to give some indications about the general plan of
this paper and the methods of proof of our Theorem 1. Our techniques
are of three kinds. Firstly, a projective study of the variety X and some
associated geometric objects, i.e. properties depending on the embedding.
Secondly, a study from a birational point of view, and mostly up to isoge-
nies, of the abelian varieties associated to the geometric objects previously
introduced. Thirdly, there is the proof of Theorem 1, where we make use
of arithmetical methods related to finite field techniques. Finally, in the
last section of this paper we shall discuss some conjectures and problems
arising in a natural way from our Theorem 1. In particular, we shall point
out the relationships of our result to the theory of higher jacobians, as
introduced by Weil [6].

The language of this paper will be that of Weil’s Foundations, and
for concepts related to abelian varieties we refer to Lang [4].

‘We end this introduction by expressing our indebtedness to Professor
Davenport, who is responsible for our originally attacking the problem
and who has given us valuable advice and encouragement.

II. In this section we shall study the geometry of the variety X of
lines of V. It is convenient to look at the more general case where V is
defined over a field k, of characteristic not 2. This variety X has been
studied in some detail by Fano [3] when k = C, the field of complex num-
bers. His methods can be easily extended to the case char (k)= 2, while
if char (k) = 2 there are some difficulties because of presence of insepara-
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ble field extensions. We believe that our method can be modified so as to
give a proof of Theorem 1, even when char (k) = 2.
We begin by proving a result (Lemma 3 below) which was explicitly
used by Fano [3] but for which we have found no satisfactory reference.
‘We consider X as the algebraic set which parametrizes the lines of
V, embedded in the appropriate Grassmannian. For this model X we have

LeMMA 1. X és a disjoint union of absolutely irreducible algebraic surfaces,
complete and non-singular. The algebraic set X is defined over k.

PROOF. Let w be a point of X, and consider the local ring O, of all
functions on X regular at w. Let m be the maximal ideal of O,, and let
k., = Ou/m denote the residue class field of O,. We shall prove that for
every « the Zariski tangent space 1m/m? at » is a vector space of dimension
2 over k,. In other words, the local ring O, has exactly two generators
for every point u of X,

We show first how Lemma 1 follows from this resulf.

The algebraic set X is defined over & (obvious); also every component
of X is complete, because every specialization over %k of a line of V is a
linear space of dimension at least one, hence a line because V cannot
contain planes by the hypothesis of non-singularity. Let X, ,X,,.., Xp
be the absolutely irreducible components of X and choose a simple point
u € X; such that ¢ X; for j==4. The local ring O, is regular because u is
simple and does not belong to any X; with j3=1; also we know that O,
has two generators. Hence O, has dimension two and X; is a surface.
Hence every O, has dimension two, so it is regular because it has exactly
two generators. Let w€ X;Nn X; where ¢ ==j, supposing the intersection is
not empty ; then the local ring O, has zero divisors and it is not regular, a
contradiction. Hence the surfaces X; are disjoint, complete and non-singular,
the latter because every O, is regular. This will prove Lemma 1 and it
remains to show thas the vector space m/m? has dimension two over k, .

Without loss of generality we may assume that & is algebraically
closed and that the line L, corresponding to the point « of X is given
by the system of equations

w1_—=w2=x‘3=0’

in the ambient projective space (x, , z,, ..., «;) of V. A generic point (v) of
G over k, where G is the Grassmannian of lines of the ambient space of
V, corresponds to a line L, meeting the hyperplanes x, = 0 and z;, = 0 in
two points P = (y,, ¥5,%3, 0, 1) and Q = (2, 2,, 23, 1, 0) respectively, and
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we take (¥y, Ysy Y31 %1 %5 ?3) as local parameters at (v). The birational map
(’D)—)(yi s Yoy Ysy %15 %9y 23)

is biregular at (0, 0, 0, 0, 0, 0) which corresponds to the point « € X previously
defined, so that these parameters are indeed local uniformizing parameters
on @ at the point u. The condition that the line PQ lies on V is just that
its generic point AP 4+ uQ lies on V; substituting into the defining equation
of V and equating coefficients of 13, A2 u, Au?, u® separately to 0 we obtain
four conditions

Jiys Yoy Usy 21y %y y %) =0,

i=1,2,3,4, where the f; are polynomials defined over k. Also, in this
case the residue class field k, is the field %, and it follows that m/m? is
the vector space over k generated by v,, ¥,, ..., #3 together with the rela-
tions ¢g; = 0, where g; denotes the linear part of f;. The linear part of f;
clearly comes from the terms in the defining equation for V which are
quadratic in @,, #; together and linear in w,,x,,x; together. We now
split cases.

Case 1. The coefficients of wi, %, x5, ¥° in the equation for V are linear
forms in «,, #,, #3 linearly independent over F.

Then by a linear change of variables we may take the terms we are
interested in to be

2 2
w1w4+w2$4w'5+w3w5.

Then ¢, =2, go=19, + %, 93=1Y,+ 25, 9,=y; and clearly m/m?
has dimension two over k.

Case 2. The coefficients of @}, u, a5, x> in the equation for V are linear
forms in #,, ,, «; linearly dependent over k.

They cannot be all multiples of the same form ; for if they were then
by a linear transformation over k¥ on x,, x; only we could reduce the coef-
ficient of @7 in the equation for V to 0, and then (0,0, 0,0,1) would be
a singular point of V, which is contrary to hypothesis. Hence we may
make a linear transformation on x,, x; only so that the coefficients of
@2 and 22 are linearly independent, and then by a linear transformation
on x, , ¥, 3 only we may write the terms we are interested in the form

2 2
@y x4 + (ax; - bxy) 24 5 + x5 5 .
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Now g, =2, 9,=Y+az, + b2, gg=oay, + by, + 2, g9, =y, and
again we obtain that M/M? has dimension two over %, provided ab = 1.
Finally if ab = 1, then (0,0,0, a, — 1) is a singular point of V, contrary
to hypothesis.

This completes the proof of Lemma 1.

‘We shall show later that X is connected, so that by Lemma 1 X is a
complete, non-singular, absolutely irreducible surface defined over k. In
order to prove this it is convenient to study the geometry of some curves
C, and I, which we are going to define.

Let O, denote the algebraic set, embedded in X, which parametrizes
all lines on V meeting a line L, corresponding to a point u of X, with
the convention that the point « itself is a point of O, if and only if there
is a plane tangent at V along the line L, . Note that if such a plane exists,
it is unique.

Let v be a point of (,: the two lines L,, L, are coplanar and
determine uniquely a plane which will meet V residually in a third line,
say L, . Il is clear that we C,, so that writing j, (v) = w we have defi-
ned an application j,: 0, — C,, such that j2 = identity. Plainly j, is an
equivalence relation on the algebraic set C, and the quotient C,/j. parame-
trizes all planes through I, which meet V in three lines. The planes
through L, are parametrized in a natural way (Pliicker coordinates) by a
projective plane P2, whence the algebraic set C,/j, has a natural model
I, in this plane P2

It is easily seen, by the same argument used in the proof of Lemma
1, that every component of the algebraic sets O, and I, is complete.

LemMA 2. We have
(@) Iy is & (possibly reducible) plane curve, of degree b5 ;
(b) the singular points of I, , if there are any, are ordinary double points
but not cusps. The double points of I, correspond to the fired points of
Juon C, .

REMARK. In the proof of this lemma we need the hypothesis char (k) ==2.
COROLLARY. Every component of the algebraic set C, is a curve.

PrOOF OF COROLLARY TO LEMMA 2. Apply (a) of Lemma 2 to Oy/ljiy, = I
and note that the application j, is everywhere defined.

PROOF OF LEMMA 2, The statements of Lemma 2 do not involve the
fields of definition of the various geometric objects we are studying, so that
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we may suppose that K is an algebraically closed field of definition for V
and L,, and that L, is given by the system of equations

.’L'1=.%'2=.%'3=0’

in the ambient projective space (x,,..,x;) of V. For this reason we shall
write L, C, I" for L,, C,, I .

Any plane through L is defined by the system of equations
(4) @y [dy = ®y[Ay = @y/15,

and (4,,4,, 1;) are homogeneous Pliicker coordinates of this plane; the
algebraic set I' is embedded in the projective plane of the A;. The residual
section of the plane (4) with V is a conic @, and to obtain the equation
for @ we write o, =1, t, , = A,t, 3 =13t and use (¢, x,, ;) as homoge-
neous coordinates on the plane (4) containing . A simple calculation then
shows that the equation for @ can be written in the form

(5) At* 4 Btx, + Ctwy + Da + Ba, x5 + Fil =0,

where 4,..,F are homogeneous polynomials in the 2;, A being cubic, B
and C quadratic, and D, E, F linear. The conic ¢ splits in two lines if
and only if

(6) 4ADF + BOE — AE? — FB?> — D(C? = 0,

and equation (6) defines the model I" of C/j we are studying. An immediate
consequence of (6) is assertion (a) of Lemma 2, unless I is the entire plane
of the ;.

The fact that equation (6) is not identically satisfied will be clear from
the following analysis, which at the same time will prove assertion (b)
of Lemma 2.

We consider the five ways @ can degenerate ; these are

(i) two distinct lines whose intersection is not on L ;
(ii) two distinct lines which meet on L

(iii) L and another line distinct from it;

(iv) L as a double line;

(v) a double line other than L.

Our curve I' is in one-to-one correspondence with the degenerate ),
and our aim is to show that the left hand side of (6) is not identically 0
and that in cases (i), (ii), (iii) we have a simple point of I, while in cases
(iv) and (v) we have an ordinary double point at which the branches have
distinet tangents. In cases (iv) and (v) we need the fact that char (K)== 2.
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By a linear change of variables we may assume that the plane conta-
ining the degenerate @ is x, = x; = 0, and we use the linear change of
variables to make such further simplifications as we can. Also we make
repeated use of the fact that V is non-singular, which implies easily that
the left hand side of (5) is at least quadratic in A, and neither D nor F
can vanish identically.

Case (i). We may take ¢ to be x,x, = 0; thus the coefficient of 1, in
E is non-zero. Moreover A, B, C, D, F all vanish at (1,0, 0) so that D and
F are independent of 1,, B and C are at most linear in 1, and A4 is at
most quadratic. Hence A must genuinely be quadratic in 1,. Now the left
hand side of (6) contains a non-zero multiple of ij, arising from the term
AE?; since (6) represents a quintic equation, it follows that (1,0,0) is a
non-singular point of I

Cases (ii) and (iii), Here we may take @ to be &4 (244t =0 or .t =20
respectively. The proof that (1, 0, 0) is a simple point of I"is similar to that
for case (i), the only difference being that the non-zero multiple of At arises
from the term FB2

Case (iv). Now @ is t*> = 0; thus the coefficient of 4 in A is non-zero,
D, E, F are independent of 1, and B and C are at most linear in 4, .
There is no term in i in the left hand side of (6), and the term in A
arises from A (4DF — E?. To prove that (1,0,0) is an ordinary double
point of I', therefore, we have to show that 4DF — E? viewed as a qua-
dratic form in 4,, 43, is neither zero nor a perfect square; note that here
we make use of the hypothesis char (K) = 2.

Suppose that 4DF — E? is zero or a square in the field K (4,, 1,).
This implies that the quadratic form in x;, «;: Dxi + Bry x5 + If"w§ fac-
torizes over K (13, 13;) and since D, E, F are linear in A,, i, one of the
factors must be defined over K. Let ¢, x,— ¢, #; be this factor; then
(0,0,0,¢4,c5) is a singular point of ¥V, which is impossible.

Case (v). We may take @ to be a2 = 0, so that the coefficient of 1,
in D is non-zero. Moreover F and F are independent of 1,, B and C are
at most linear in 1, and A is quadratic in 4, . Suppose that the coefficient
of /’Lf in A is a, which does not vanish identically, and that the coefficient
of 1, in € is ¢, which may vanish identically. There is no term in 1; in the
left hand side of (6) and the term in A3 arises from D (4AF — CO%); to prove
that (1,0, 0) is an ordinary double point of I, therefore, we must show
that 4aF — c¢* is neither zero nor a perfect square in the field K (1,, 1),
again because char (K)=E 2.
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As before, we obtain that at® -+ ctw; + Frz: has a linear factor defined
over K ; then if ¢yt — ¢, x; is this factor, the point (¢;, 0,0, 0, ¢ is a
singular point of V, which is impossible.

This contradiction proves our assertion and completes the proof of
Lemma 2.

LEMMA 3. X is an absolutely irreducible surface, complete and non-sin-
gular, defined over k. '

ProOOF. In view of Lemma 1, it is enough to prove that X is connected
and we may assume that the field & is algebraically closed. Let X, X,,..., X,
be the absolutely irreducible components of X and let » be a point of X.
We prove first that €, N X; is non-empty for every ¢, so that if X is not
connected then no C, is connected.

To prove this assertion, let D; be a complete curve on X; defined over
k and such that ¢ D;, let (y) be a generic point of D; over k, and con-
sider the surface F;on V given by F;= locus; Ly, . This surface is complete
and ruled and there is at least one line on F; passing through a given
point of F;, which is parametrized by a point of D;. It is well-known
that the cubic threefold V is regular, hence F; is linearly equivalent to a
positive multiple of a hyperplane section of V, hence the intersection L, n F;
is never empty. Hence there is a line of F;, distinct from L, , parametrized
by a point y of D; and meeting L,, because by the large choice of the
curve D; we may suppose that I, is not a line of F;. This implies
yeC,N X;, as asserted.

We write €, as the union of absolutely irreducible components C’,f,
t=1,..m, and noting that j2= identity we may describe the action of
i, on C, as follows

(A) ju maps G,i into itself for i=1,..,r;
(B) j, interchanges C, and Cit* for i =» 4 1,...,7 48 where r - 2s =n.

Now the quotient I, may be written as the union of absolutely irre-
ducible curves I'i, i=1,..,r 4 s, where I = (C -+ ju(C)))j.. By the
theorem of Bézout, the intersection Iy nI7 is non-empty for i==j, also
every point of this intersection is a singular point of I, because the curves
I'; are all distinct. By assertion (b) of Lemma 2, these points come from
fixed points of j, .

Suppose first » = 1. Taking inverse images of I’y N I} we find that,
for every i, C, N (Cy -+ j.(C)) contains a fixed point of j,. This result
proves that C, is connected in case r = 1. A similar argument applies if
r =0 and s = 2, therefore if X is not connected we have »r =0 and s=1,
that is C, always consists of two absolutely irreducible components which
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are interchanged by j,. Hence X would consist of two absolutely irreducible
components, each of them containing a component of C,. Finally, we get
a contradiction by destroying the symmetry of the previous result, which
implies that two meeting lines of V belong to distinet algebraic systems ;
in fact, it is enough to consider three coplanar lines of V.

This contradiction proves that X is connected, and completes the proof
of Lemma 3.

By Lemma 3 we have that C, is a divisor on X, defined over I (u).
We are now interested in the behaviour of O, when u is a generic point of
X over k.

LemMA 4. If (u) is a generic point of X over &k then C, is absolutely
irreducible and defined over k (u).

ProoOF. The algebraic family of divisors {C,} is absolutely irreducible
and in fact parametrized by X, becase it is easily seen that if uw==v
then O, 3= C,. A simple consequence of this result is that if D is a
divisor on X then the intersection number (C,-D) is independent of w.

Now we recall that, given a non-singular cubic surface 3, there are
exactly five lines of 3 meeting two given skew lines of 3. It follows easily
from this remark and the well-known fact that the generic hyperplane section
of V is a non-singular cubic surface, that if (u) and (v) are two independent
generic points of X over k then C, and C, intersect properly in five points.
In particular we have

(7 (Cu+ Oy) = 5.

Suppose that if (u) is a generic point of X over k then C, gplits into
absolutely irreducible components (;, using the same notation as in the
proof of Lemma 3. We have just shown that if (u) and (v) are two inde-
pendent generic points of X over k then C.-C, is a positive 0-cycle on X
of degree 5; it follows that for each ¢ the algebraic system of divisors {Cy )
is absolutely irreducible, also
(8) (Cu Ci) =0
for all 4, j, and
9) Zi.;(Oy- C) = 5.

On considering the action of j, on C, we find by the same argument

used in the proof of Lemma 3 that

(10) (Cu Cil) = (deg 1) (deg I}
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if i, j<r and 1©=Fj,

also

(11 (Ci - Cu) + (Cu- CiT) = (deg I) (deg ')
if i<<r, r41<j<<r-s,

and

(12)  (Ci- O + (Ci- 03 4 (05 0y + (0. 0y = (deg Ty) (deg I'Y)
if r+1<i,j<<r-4s and izkj.

These inequalities (8), (9), ..., (12) are compatible with the obvious relation
(assertion (a) of Lemma 2)

3 (deg I'y) = 5,

only if r=1,8s=0o0or r=0, s=1.

The first alternative says that C, is absolutely irreducible. The second
one implies that C, = C}L—{— Gi where j, interchanges the components 0,2.
‘We assert that this last alternative is impossible.

Let 2 be a non-singular hyperplane section of V containing L, , so that
2 is a non-singular cubic surface, let L, be another line of 3 not meeting
L,, and let M,,... M; be the five lines of ¥ meeting L, and L,. Let M;
be the residual section of I with the plane determined by M; and L, ; the
five lines M, are all distinct from the lines M;, and there is a line of X,
say L, , other than L,, meeting the five lines M;. This implies that the

O, intersect properly with C, and O, ; also
(Cu+ Co) = (Ciu+ C),

because j, interchanges the components G,f of Cy.
By the remark made at the beginning of the proof of Lemma 4 we
obtain

(Cy C) = (O C) + (02 C,) = 0 (mod 2),

a contradiction because (0,-C,) = 5 is odd.
This contradiction completes the proof of Lemma 4.

LEMMA 5. Let A (X) be the k-Albanese variety of X. Then

dimp A (X) = 5.



Zeta function of a cubic threefold 11

PRrROOF. The dimension of A (X) is the irregularity ¢q of the surface X,
so that we have to prove that ¢ = 5. We shall consider here first the
case where k is a field of zero characteristic and then apply a specialization
argument when char (k) == 0.

By Lemma 3, we may apply surface theory to X, and in case char (k) =0
we have

qQ=DPg— Pa,

where p, and p, are the geometric and arithmetic genus of X. These inva-
riants of the surface X have been computed by Fano [3], who found p,=10
and p, = 5. As Fano’s paper is not easily available we shall sketch briefly
his arguments.

It is proved first that the canonical system K of X is the class of a
hyperplane section ([3], pag. 784) so that p, is the dimension of the linear
system of hyperplane sections of X, that is p, > 1 is the dimension of the
projective space where X is embedded. Obviously X is embedded in projective
space P° because so is the Grassmannian of lines of P% The fact that X
is not embedded in projective space P8 is more difficult to prove ([3],
pp. 782-783).

The computation of p, is based on the classical formula

(13) P+ 1=1/12 (K- K) + » (X)),

where y (X) is the Euler-Poincaré characteristic of X. The value of the
self-intersection (K-K) is easily found. Let L,, L,, L, be three coplanar
lines on V; then C, + C, + C, is a hyperplane section of X, hence a
canonical divisor, and by the remark in the first paragraph of the proof
of Lemma 4 and by equation (7) we obtain

(14) (K-K)=9(0,- () = 45.

Finally, the Euler-Poincaré characteristic y (X) of X is computed by using
the classical definition of the Zeuthen-Segre invariant I = y (X) — 4. One
obtains ([3], pp. 786-788) y (X)=27 whence p, = 5 by equations (13) and (14).

Now suppose that char (k) == 0. The statement of Lemma 5 is indepen-
dent of ground field extensions ([4], Ch. II;, Th. 12) so that we may assume
that % is algebraically closed. Let K denote the ring of Witt vectors over
k. Then R is a valuation ring of characteristic zero and k is the residue
class field of R. The cubic threefold V is a projective hypersurface
Zegr aixjer, = 0 and if ¢ denotes the Teichmiiller representative of ¢y in
R the cubiec hypersurface Ic¢jjrx;x;2r = 0 is again a non-singular cubic
threefold whose reduction modulo the maximal ideal I in R gives V. Let
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X be the variety of lines of the lifted threefold V. We know that every

specialization mod I of a line of V is a linear space on V, hence a line
because V is non-singular, and it follows from this that the reduction mod I

of X is a component of X of dimension two. By Lemma 3, we deduce that
X is the reduction of X mod I (O. Zariski: Theory of holomorphic functions,
pp. 80-82). By Lemma 3 again, we know that both X and X are non-sin-
gular surfaces, where by the recent results of Grothendieck about Picard
varieties we have that the Albanese varieties of X and X have the same
dimension. In fact, dim; A (X) and dim A(f ) are respectively half of
the first Betti number (in the l-adic sense, where [ = char(k)) of X

and X, and these numbers are the same because X is non-singular, hence

X is a « good » reduction of X mod I (see M. Artin - A. Grothendieck - Coho-
mologie étale des schémas, Sém. Géom. Alg., 1963/64 exp. XII, cor. 5.4).
Otherwise, and more simply, one may use the fact that the part prime to

char (k) of the fundamental group is the same for X and X (see Sém. Géom.
Alg., 1961, exp. X or Sém. Bourbaki, mai 1959, exp. 182 and exp. 236 p. 14).
This proves Lemma 5, because it has already been proved in case

char (k) = 0, and the pair (V, X) is defined over a ring R of characteristic
zero, with no zero-divisors.

IT1. We shall prove here some results on the Albanese varieties of
C, and I',, which will be needed in the proof of Theorem 1.

Let A (C,) and A (I',) denote the k (u)-Albanese varieties of C, and I3,
where (u) is a generic point of X over k; these exist because by Lemma 4
both C, and I'y, are absolutely irreducible. Let f,: C, >< Oy — 4 (Cy) be a
canonical admissible map defined over % (x), and in the same way let
f: X< X— A(X) be a canonical admissible map defined over k.

We shall denote by (4, 4,) and (B, u,) the k(u)/k-Images of A (I%,) and
A (C,) respectively.

THEOREM 2. There exist two homomorphisms a: A — B, f: B— A (X).
defined over k, such that the sequence of abelian varieties

0——>d4— "5 ltoax——o

is exact up to isogenies. The homomorphism B is the homomorphism induced
by the inclusion map iy: C,—> X and the universal mapping properties of the
Albanese variety and the k (u)/k-Image.
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Let iy: Oy <X C,—> X < X be the inclusion map, and consider the
commutative diagram

Cy < C, u s X< X
Su J
| !
A (Cy) A (X)
a
¥ “
h B

where i, is the homomorphism induced by ¢, (universal mapping property
of the Albanese variety) and § is the homomorphism induced by ¢, (uni-
versal mapping property of the k (u)/k-Image). Clearly i, is defined over % (u
and f is defined over k.

LEMMA 6. The homomorphism f: B — A (X) is surjective.

PROOF. From the commutativity of the triangle in our diagram it is
enough to show that the homomorphism i, is surjective.

Let (x), (y) be two independent generic points of C, over k(u); we
assert that (x), (y) are two independent generic points of X over k. In fact,
consider the tower of fields

k (u, x, )

N
k (z,y)

k (w)

v
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We have dimy (w) = 2 and dimyg ) () = dimg @) (y) = 1 by our definitions,
and as (x) and (y) are independent generic over k (u) we have dimy ) («, y) =2,
whence dimy (%, #,y) = 4. On the other hand, the field % (u, x, y) is algebraic
over k(x,y) because (C,- C,)=5>0 by equation (7). It follows that dim(»,y)=4
and our assertion follows from this.

The image of the restriction of f to C, >< O, is a subvariety of A (X)
going through the origin and defined over a regular extension k(u) of L.
The abelian subvariety of A(X) generated by this subvariety is defined
over k(u), hence over k¥ by Chow’s theorem ([4], Ch. II,, Th.5). Also, it
contains a point f(x,y) where (x,y) is a generic point of X <X X over Fk.
Hence it containg the image of f in A (X) and it follows that it coincides
with A (X). Going the other way round the square in our diagram we
obtain that the homomorphism 4, is surjective, and Lemma 6 is proved.

Let Z be the three-dimensional variety defined by Z = locus; (u, v)
where (u) is a generic point of X over %k and (v) is a generic point of C,
over k(u). By Lemma 4, Z is absolutely irreducible and is defined over k.
Clearly Z is the graph on X < X of the divisorial correspondence X — X
defined by v — C,. Our next step is to define an admissible rational map
(i. e. vanishing on the diagonal) h:Z < Z— A (X) < A (X) < B’, defined
over k and such that the pair (Z < Z, h) generates A (X) < 4 (X)x B’.
Here B’ denotes the connected component of the kernel of f; it is an
abelian variety, a priori defined over a purely inseparable extension of Fk,
hence defined over & by Chow’s theorem ([4], Ch. II, , Th. 5). By Poincaré’s
complete reducibility theorem ([4], Ch.II,, Th. 6) there exists a homomor-
phism 7 : B —> B’ with the following properties :

(i) n is defined over k¥ and is surjective ;
(ii) the homomorphism g < : B— 4 (X) >< B’ is an isogeny.

Let (u), (u’) be two independent generic points of X over k and (v, v’)
a generic point of O, >< Cy over k(u,u’). Let P, (u,%") 4 ... + Py (u, u’) be
the zero cycle of degree 5 on O, and C, given by the intersection C,-C, .

The point (u, v, w’, v") is a generic point of Z >< Z over k, and we define
a rational map h:7Z < Z— A (X) < A(X) < B’ by

(b (u, v, W, ') =

5
= (5f (u, w'), 5f (v, v’), i=21 (np fu (0, Pi(y 6”)) — qpe four (V5 Pi(u, u'))).

LEMMA 7. The rational map h is admissible and defined over k. The
pair (Z < Z, h) generates A (X) < A (X) < B’.
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PrOOF. It is clear that A is admissible because & (u, v, u’, v") +
+ h(w’,v",u,v) =(0,0,0), the origin of the abelian variety A (X)>< 4(X) < B’.
Also it is defined over k because the zero cycle C,-C, is defined over
k (u,w’) whence the point h(u,v,u’,+’) is defined over k(u, v, w’,v’). 1t
remains to prove that the pair (Z < Z,h) generates A (X)>< A(X) < B’.
Let ' : Z < Z— A(X) < B be the rational admissible map defined by

B (u, v, w, v") = (5f (u, w’), s (P Ju (0, Py (g ') — par for (07, Py (w0, w')))).

=1

‘We have the identities

and

S (70, Pl w) — £ (s Palu, w) = 5 (5, ),

=1

hence
h=(ex<B<nh

where e is the identity on the first factor of A (X) >< B. It follows from
the fact that the homomorphism # is an isogeny that (Z >< Z, h) generates
A(X) < A(X)x B’ if and only if the pair (Z >< Z,h’) generates 4 (X) < B.

For every point P of C, the curve locus,fu (v, P) is a generating
curve of the Albanese variety 4 (C,), whence the same is true for the curve
locusy @, w) (fu (v, Py (uy w”)) + oo fu (v, P5(u, w'))), for this last curve is a tran-
slation of the previous generating curve, multiplied by 5. It follows that
the curve

locusy (u, w, vy b/ (u, v, 0/, v') =

5
= (5f (7"’7 u,)) > (locusk (u, w’, V) 5'; (,uufu (‘D, P; (u; u,)) — Uu' fu' (/U,, P; (uy 1&’))))

is a product of the point 5f(u,u’) of A (X) with a generating curve of B.
Taking the sum of this curve with itself a sufficiently high number of
times, say m times, we find that the pair (Z < Z,1’) generates the subva-
riety (bmf (u,u’)) X B of A(X) < B. Taking the locus of this subvariety
over k we see that the pair (Z < Z, h’) generates A (X) < B, and Lemma
7 is proved.

The following lemma is the key to our proof of Theorem 2.

LEMMA 8. There exists a homomorphism o’ : A — B’ defined over k and
with finite kernel.
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PROOF. We begin with the very simple remark that if L, and L, are
two meeting lines of V, then v is a point of C, and conversely « is a
point of C,. It follows that the rational map j: Z — Z defined by j (u,v) =
(v, ) is an involution on Z of order two and defined over k. We shall denote
by Y the quotient variety of Z by the cyclic group of order two generated
by j. Clearly Y is an algebraic variety (say Z is projective) defined over
k, and we shall denote by A (Y) the k-Albanese variety of Y. Let A (Z) be
the k-Albanese variety of Z, let g: Z <X Z—> A(Z) and ¢’': Y <X Y — A(Y)
be canonical admissible maps, and let ¢:Z-— Y denote the covering pre-
viously defined.

Consider the commutative diagram

—1 > o1, >
Yy 2 ¢ 7% 7 ere s Y Y
9’ g [
o* i, [
A(Y) y A(Z) ——— s A(Y)

where g (0= < 0™1): ¥ >< ¥ — A (Z) is the admissible rational map of ¥ < Y
into A (Z), given by the sum g (@,) + ¢ (@,) -+ ¢ (@3) + g (@, Where @, +
Qs + @3 -+ Q, is the inverse image by o~! < ¢~! of a generic point P of
Y < Y over k.

On applying the result in [4], App.,, Th. 5 we see that o, ¢* = 4d4(y),
where d4(r) is the identity map on A (Y), because ¢ X 0: Z <X Z—>Y <X Y
is generically a covering of degree four. It is obvious that g, is surjective
and defined over k, hence ¢* has finite kernel and is separable, the latter
because char (k) &= 2. Hence ¢* is defined over k.

‘We have a commutative diagram

—l>< —1
Yx<Y e e —Z < Z
y;
g g
\L Q* \l/ h*
A(Y) > A (Z) > A (X)>< AX) < B,

whence we obtain a homorphism defined over %
heo*: A(Y) ——> A X) < A(X) < B

we assert that this homomorphism has finite kernel.
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We already know that ¢* has finite kernel, so that in order to prove
our assertion we have to prove that the kernel of A, is finite too. On the
other hand, by Lemma 7 the pair (Z < Z, h) generates A (X) < A(X) < B/,
whence h, is surjective. Hence if h, has finite kernel it must be an isogeny,
and to prove both these facts it is enough to show that 4 (Z) and A (X) X
> A(X) < B’ have the same dimension.

The variety Z is a fibre space over X, with generic fibre 0, , as we can
see from the generically exact sequence of varieties

C’u—u—> Z—?—+X

where i, is the inclusion map 4, (v) = (u,v) and where p is the projection
p (U, v) = u.

On applying the result in [4], Ch. VIII,, Th. 13 we obtain that A (Z)
is isogenous to A (X)>< B over the algebraic closure & of the field k; also
B is isogenous over k¥ to A (X)>< B’ (compare the proof of Lemma 7).
Hence A (Z) and A (X) < A (X) < B’ have the same dimension and our as-
sertion is proved.

The image of h, o* in A (X) < A (X) < B’ is the abelian subvariety of
A (X) < A (X) < B’ generated by

locusy (h (u, v, w’, v") + & (v, u, v, w’) 4 b (u, v, v’y w’) 4 k (v, u, w’, v’))

where (u, v, ', v’) i3 a generic point of Z >< Z over k, as we can see from
the previous commutative diagram. On the other hand, by the definition of
our rational map h we see that this locus is contained in 4 >< B’, where 4
denotes the diagonal of A (X) < A (X). It is clear that 4 is an abelian
subvariety of A (X) < A (X), isomorphic over k to A (X), thusifd: A (X)—
A (X)x< A(X) is the diagonal map there exists a homomorphism ¢ over k
such that the following diagram commutes

A ()
% on
@
5d >< id e
AX)<B — " S A(X)x AX)x B’

In particular ¢ has finite kernel because so has h, o*.

On the other hand, Y is the variety which parametrizes the pairs of
points (u,v) such that ve€ C,, without regard to the order of them. Hence Y
parametrizes the pairs of incident lines I, , L, on V. Given any such pair,

2. Annali della Scuola Norm. Sup. - Pisa.
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the plane determined by them cuts V residually in a third line, say L, ,
defined over k (u,v). The locus over I (w) of the point (u, v) -+ (v, u) of Y is
simply the curve I’,. As before, we obtain a generically exact sequence of
varieties

iy P
rv—sY——X

where i, is an inclusion map and p a projection, therefore from [4], Ch.
VIII;, Th. 13 we obtain that A (Y) is isogenous to A (X)> A over the
algebraic closure & of k.

To find an isogeny over k¥ we proceed as in the proof of Lemma 7. Let
¢: Z— Y be the Galois covering previously defined, and let g,:C,—> I
be the Galois covering of degree two induced by the equivalence relation
Juon Cy. Let (u, v; w’, v’) be a generic point of Z < Z over k, so that
(e (u, v), ¢ (u’, v)) is a generic point of ¥ < Y over k, and define a rational
admissible map

Y X Y— AX)< A
_by

5
L (@ (u, ), 0 (w’, v")) = (f (w, w’) ;ifl A Goo (0 (% ), 00 (P (0, 207))) —

— A Gu (0 (w’y v); 0w (P (20, w’)))

where w and w’ are the two points of X uniquely determined by the pairs
(u, v) and (u’,?’), where g, : Iy <X Iy, — A (I',) i8 a canonical admissible
map and where P, (w,w’) -} ...+ P;(w,w") is the O0-cycle on O, and O,
given by the intersection.

By the same argument as in the proof of Lemma 7 we have that the
rational map k" is defined over k and that the pair (Y < ¥, k") generates
A(X)x< A. Hence the induced homomorphism %, : A4 (Y)—> A(X) < 4 is
defined over k and is surjective. Hence h, is an isogeny because we have
already proved that A (Y) and A (X) < 4 bave the same dimension.

On combining this isogeny %, with the homomorphism ¢ previously
found we get a homomorphism y: A (X) < A —> A (X) <X B’ defined over k
and with finite kernel.

Let A, and A, be the images of A (X)>< 0 and of 0 <X A by . Then
A4, and A, are isogenous to A (X) and A over k; also A, N A, is a finite
group because y has finite kernel. Now by Poincaré’s complete reducibility
theorem ([4], Ch. IIT,, Th. 6) there is an abelian subvariety B, of A(X) > B/,
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defined over & and such that
) A(X)<B =A,+4,+B,,
(ii) (4, + 4,)n B, 1is a finite group.

Hence A (X) > B’ is isogenous over k to (4, 4 4,) > B,, and so also
to A, < A, >< B since 4, N A, is finite. Since A4, is isogenous to 4 (X)
over k, A, > B, is isogenous to B’ over k; hence there is a mapz: 4,— B’
defined over k¥ and with finite kernel. Let y,: 4 — A, be the isogeny over
k given by the restriction of yw to the second factor; then Lemma 8 follows
from the series of homomorphisms

Y2

A"y 4, — B
defined over & and with finite kernel.

PROOF OF THEOREM 2. Let o’ : A—>B’ be the homomorphism considered
in Lemma 8, and let i: B’ —> B be the inclusion map. Let a = ia’.
We assert that the sequence of abelian varieties

is exact, up to isogenies.
In fact, « has finite kernel by Lemma 8 and § is surjective by Lemma
6. Again by Lemma 8 and the definition of «, we have im () € B/, and B’
was the connected component of ker (f). The required exactness will follow
if we show that im (a) = B’, that is if we prove
dimy B — dimy A = dimp A (X).
From the inclusion im () € B’ we find

(15) dimy B — dimp A = dimp A (X).

The covering g, : C,—> I, gives rise to a surjective homomorphism

(Qu)y + A (Cu) — A (1),
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and looking at the commutative diagram

u\
A (0 _ e 4 ()
Hu A
| » A}
B — A

where y is the homomorphism induced by the universal mapping property
of the k (u)/k-Image, we see that

(16) dimy B — dimp A << dimk(u) A(C,) — dimk(u) A (L)

because the connected component of ker (y), together with the appropriate
restriction of u, as canonical map, is the % (u)/k-Image of the connected
component of ker (ou), -

By Lemma 2, (b) the covering g, is unramified at the simple points of
I, , and ramified with ramification index two at the singular points of I,
which are ordinary double points but not cusps. Let C% and I} be k (v)-
normalizations of O, and let o,: 0f — I} be the induced covering. To a
simple point of I, there correspond one point of If, two distinet points
of (, and hence two points of C}; for Oi is a double covering of I¥. If
t is a singular point of I, there correspond to it two points ¢}, t§ of I
and only one point v of C,,. We wish to show that to v there correspond
just two points v} , v of C}, that is the points ¢}, t¥ are branch points
of the covering o, , with ramification index two.

In the notation of the proof of Lemma 2, we deal here with case (iv),
the argument for case (v) being similar but less symmetric. By a change of
variables on 1,, 3 we may ensure that 4 DF — E? =4 J,4; and then by a
change of variables on x,,x; we can also have Da?+ Hux x4 Fa?=
=A,42 4 A, #2. Now 1,/4, is a uniformizing parameter for one of the
branches of I', through ¢, and Az/i, for the other. The function field of C,
is that quadratic extension of the function field of I, which is needed to
factorize the quadratic equation for the degenerate ¢. Looking at the terms
of (5) independent of x5, we see that 1,/1, cannot be a uniformizing para-
meter at a point of Of above ». Hence these points are branch points of
the covering, and so there are just two points v¥, v§ of OF above v.

Let d denote the number of double points of I,; we have proved that
the double covering o,: C} — I} is ramified at exactly 2d points, where
the ramification index is two. If g,, g, are the genus of I, and C, respec-
tively, on applying the Hurwitz-Zeuthen formula to the covering o, (note
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that char (k (u)) 5= 2) we get
29, — 2 = 2 (29, — 2) 4- 2d.

On the other hand, by Lemma 2, (a), I', is a plane curve of degree 5
with d ordinary double points. Hence

g, =6—ad
and combining this result with the previous equation we obtain g,—g,=>5, i.e.
(17) dimyy A (Cy) — dimpy A (1) = 5.
On combining equation (17) with inequalities (15) and (16) we have
dimy A (X') << dimyp B — dimg, A << 5.

By Lemma 5 and this last inequality, Theorem 2 is proved.
The following result will be needed in the proof of Theorem 1.

LeMMA 9. Let u be a point of X such that C, is absolutely irreducible.
Then there are homomorphisms

AL —> A(Cy), iyt A(C)— A (X)

defined over k(u), such that the sequence of abelian varieties

0 —— A(T) —y A (O) ——s A (X) ——> 0

is exact, wp to isogenies.
The homomorphism i, is the homomorphism induced by the inclusion
map i, : C,— X and the universal mapping property of the Albanese variety.

PROOF. Suppose first that » is a generic point of X over k, and let B,
and A, denote the kernels of the homomorphisms u,: 4(C,)— B and
Aw: AW — A. Then B, and A, are abelian varieties defined over k (u) by
(4], Ch. VIII,, prop. 3 and Chow’s theorem. By Poincaré’s complete redu-
cibility theorem there are isogenies over %k (u)

(pu:A(Cu)_>B><Bu,

ywut A (L) — A< A,.
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Also, from the covering g, : 0, — I, we deduce by taking inverse images
a homomorphism

ot d (W) — A (0

defined over k(w) and with finite kernel (see the analogous construction of o¥,
at the beginning of the proof of Lemma 8).
‘We have also isogenies over & (u)

@u: B >< B, — A (C)
Yy o A < Ay — A (),
thus we obtain a homomorphism with finite kernel
@u 08 Yui A X Ay—> B <X By

By [4], Ch. II,, Th. 3 this homomorphism factorizes as a sum z, 4 =,
where 7, : A — B <X B, and 7, : 4, —> B < B, are the restrictions of ¢, 0% vy
to the first and the second factors of 4 < 4,. Let p, : B < B, — B and
Pyt B <X B,— B, be the projections. We obtain homomorphisms

Pyt Ay — B,
Potu 't Ay —> By

defined over k (u), and 7, = (p, 7, p, 7) has finite kernel.

On the other hand, the k (u)/%-Image of 4, is a point, whence p, 7, is
the constant map of A, into the origin of B. It follows at once that the
homomorphism p, v, has finite kernel.

Let o be the homomorphism considered in Theorem 2 and let

gu:A ><A1,,—*B><Bu

be the product mapping 6, = « < p, 7, . Then 8, is defined over % (u) and
has finite kernel. Finally define o, by

Oy = (Pm’/, 0. Yu »
‘We asgert that the sequence
0— A ([) ——> A (C) ——> A (X) —— 0

is exact, up to isogenies.
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We have proved that «, has finite kernel, that i, is surjective, also we
know that

dimy A (X) = dimppy A (C) — dimyy A (),

by equation (17) and Lemma 5.
Consider the commutative diagram

'

Pu i*
B < B, > A (Cy) — A (X)
M
voop
B—— A(X)

The homomorphism ¢, factorizes as a sum y, - Pu, Where y,: B — A(C,)
and y, : B, — A (C,) are two homomorphisms defined over k(u) and with
finite kernel. We have ker (i,)==pu* (ker (B)), also ker (u,) = B, and it follows
that the connected component of ker (i, ¢u) is B’ >< B, because the homo-
morphism u, y, is a multiple of the identity on B and B’ is the connected
component of ker (f).

On the other hand, the image of 6, vy : A (I',)— B <X B, is contained
in Image (o) >< B,, hence in B’ < B,, hence in the kernel of i, ¢; . This
proves that i, &, is the constant map of A (I%) into the origin of A4 (X),
thus in view of the previous checking of dimensions in our sequence of
abelian varieties we obtain the required exactness up to isogenies.

The proof of Lemma 9 finally is completed by an obvious specialization
argument, because equation (17) has been proved not only when (u) is a
generic point of X over k, but also when » is any point of X such that C,
is absolutely irreducible. This remark completes the proof of Lemma 9,

In the next section we shall show how a combination of arithmetical
methods with the result of Lemma 9 will give the proof of our Theorem 1.

1V. ProoF oF THEOREM 1. Let V/k be our cubic threefold, defined
over a finite field k¥ = F, of char (k) = 2.

We may give V the structure of a fibre space over a projective plane
in the following way. Let L, be a line of V, defined over k (u); the planes
through L, are parametrized by a projective plane P? defined over k (u),
and a point w of P? determines uniquely a conic @, on ¥V which is the
residual section of V with the plane through L, determined by w. Also, by
the obvious fact that a line and a point not on this line determine uniquely
a plane, we have a projection p,: V — P2, defined over k(u) and regular
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on V except at L,, by taking for a point # of V not on L,, p,(x) to be
the point of P2 corresponding to the plane determined by L, and .
Thus we have obtained a generically exact sequence of varieties

1, § P
Qu—— V=P,

where i, is the inclusion map and p, the previously defined projection.

We already know that the generic curve C, is absolutely irreducible,
also X is absolutely irreducible. The points # on X such that C, is abso-
lutely irreducible then form a Zariski open set on X, whence from the
well-known fact that the points u of X algebraic over & are dense in X we
deduce that as soon as = is sufficiently large there is a point u of X such
that & (v) € k, and C, is absolutely irreducible. Here we have written k,
for Fqn .

We want to count the number v, (V) of points of V defined over %, = qu
and in view of the exact sequence previously written our problem is equi-
valent to counting the number of points defined over k, of the base space
P2 and of the fibres @, , together with a more accurate analysis of the be-
haviour of the projection p, along the line L,. Here of course we take
to be such that & (u) € k,, which is possible if » is sufficiently large.

The total number of points of P2 defined over k, is exactly ¢ +¢"+1
and it is the total number of fibres @, defined over k,.

Let @,, be one of the fibres defined over k,. The number of points of
@, defined over k, is

(i) ¢~ + 1, if the conic ¢, is non-singular;

(ii) 2¢™ 4 1, if the conic @,, degenerates into two distinct lines, each
defined over k,;

(iii) 1, if the conic @, degenerates into two distinet lines, each defined
over a quadratic extension of k, ;

(iv) ¢ + 1, if the conic @, degenerates into a double line.

The behaviour of the degenerate fibres is most conveniently deseribed
by means of the two curves C, and I defined earlier. In fact the curve C,
parametrizes the components of the degenerate fibres, while the curve I,
parametrizes the degenerate fibres themselves. It follows that if »,(C,) and
v, (I'y) denote the number of points defined over %k, and lying on O, and
I, respectively, then the total number of points defined over %, and lying
on the degenerate conics @, is given by

q" v (Cu) G+ v (Lu),

for every point w such that k(u) Ck,. Hence the total number of points
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defined over %, and lying on the fibres of our fibre system is

@4 ¢+ 1 — %)@ 4+ 1)+ ¢ v (On) + v (T'u),

for every point w such that k (u) € k,, the first term being the contribution
of the non-degenerate fibres and the remaing ones being the contribution
of the degenerate conics.

This is not yet the number of points of V defined over k,, because the
projection p, is not a regular map at L,. Take a point « of L,; a conic
Q. contains x if and only if the plane corresponding to w is tangent at V
in the point x, and these planes are parametrized by a line of P? defined
over k (u)(x) € k,, (x). It follows that in the previous counting of the ‘points
of the fibres of our fibre system the ¢” 4+ 1 points of L, are counted ¢" + 1
times each. Hence the total number of points of V defined over k, is the
total number of points defined over k+ of the fibres of our fibre system,
minus ¢" (¢ -+ 1). We obtain

(18) u (V)= (¢ — 1)/(@" — 1) + q" (va (Cn) — »,, (I'W)

for every point « such that % (u) C k,.
Now suppose that O, is absolutely irreducible, and let Cf and I.* be
k (u)-normalizations of C, and I',. We assert that

(19) "'n(Ou)—"’n (I"u)—_'vn(ctf)_vn(ru*)'

Let ¢ be a simple point of I',; we have proved in section III that to
this point there correspond one point t* of I}, two distinct points v, , v, of
Oy, two distinet points of, v¥, of 0., therefore ¢ and t* have the same field
of rationality and the same is true for v,,v»{ and for v,, v;. Now let ¢t be
a singular point of I3, ; we have proved in section II that ¢is an ordinary
double point of I, not a cusp. To this point there correspond two points
5, t¥ of I';*, one point v of C,, two points o}, v§ of 0., therefore ¢ and v
have the same field of rationality, and the same is true for T, v and ¢, o¥.
It is easily seen that equation (19) follows from this,

By equations (18) and (19) and the fact C,f and I* are non-singular
we obtain using Weil’s well-known results

20)  wm(V)=(¢"—1/(¢" —1) — ¢"(Tr (z"; 4 (Cy)) — Tr (n"; A (I,))

where T7r (n"; A) means the trace of the n-th power of the Frobenius endo-
morphism = () = »?, in the endomorphism algebra over the rationals @ of
the abelian variety A defined over k,. Note we have proved equation (20)
for every point u such that C, is absolutely irreducible and % (u) C k,.
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Now from the work of Lang [5] we know that two abelian varieties
defined over a finite field ¥ and isogenous over %, have the same number of
points defined over k, whence the traces of the Frobenius endomorphism in
the corresponding endomorphism algebras are equal. By this remark and
the exact sequence (up to isogenies) of Lemma 9 we find

Ty (v A(X)) = Tr (a5 A (Cu) — Tr (a5 A (1))

for every point u such that C, is absolutely irreducible and % (u) € k,. On
combining this result with equation (20) we obtain Theorem 1 for all suffi-
ciently large n, i.e. for every n such that there exists » such that C, is
absolutely irreducible and k(u) € k,.

To prove Theorem 1 for all #, we use a simple argument like the one
used by Davenport and Lewis [1]. Let #;, i = 1,2, ..., 10 be the 10 characte-
ristic roots of the Frobenius endomorphism m in the endomorphism algebra
of A (X). We have for all n the equation

Tr (nll H A (X)) = 17"1" + e + n’lllo’
also by equation (1) (the theorem of Dwork) we find
(V)= (¢ — ))(¢" — 1) — WY — . — 0}, =

= (g4 — 1)/(g" — 1) — (qn)* — ... — (gy)"

for all sufficiently large n. Hence the equation between the middle and the
last term is an identity true for all », and by equation (1) we know that
the equation between the first and the middle term is true for all % ; this
completes the proof of our Theorem 1.

If we had not proved that dimy A (X)= dimyu) A (Cu) — dimyu) A (),
but only the trivial <, then at this stage of the proof we would find that
all the gn; were among the w;, but we would not have shown that every w;
was a qn;. We expect that in more general circumstances this will actually
happen.

V. We end this paper with a few comments about our result. There is
no doubt that the case of a cubic threefold, as was pointed out by Weil
at the very end of the second edition of his Foundations, is a good special
case to investigate for making conjectures about the equivalence problem for
cycles of codimension =2, as well as its relation to the abelian varieties
attached to the cohomology.
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Our Theorem 1 is a very special case of a Lefschetz fixed point formula
over the rationals, and such a formula is still lacking except for curves,
abelian varieties, rational surfaces, varieties with « only the algebraic coho-
mology », and varieties obtained by products of varieties of the previous
types. We believe that our result for the cubic threefold is of a new type
and in fact closely related with Weil’s theory [6] of higher jacobians.

To explain this, let Zally(V) be the group of 1-cycles of V with integral
coefficients algebraically equivalent to 0, and let Z1, (V) be the subgroup of
Za'lg(V) consisting of cycles rationally equivalent to 0. It seems that (though
at this moment we have no complete proof) if x is any element of Zullg(V),
then « 4 Z! (V) contains an element which is a sum of lines of V taken
with appropriate multiplicity. If this result is true, then there is a homo-

morphism
Zy, (V) — A (X)

which is surjective and whose kernel is Z! (V). Thus 4 (X) appears to be
the higher jacobian of V in dimension 1.

Let f: V— V be a morphism defined over k. Then, accordingly to the
previous discussion f would induce a (contravariant) homomorphism

FOrA(X)— A (X)

and we may expect that for every I ==p the trace
Tr(f*|H?®(V; Q) would be related in some way to the homomorphism
f0 The factor ¢ in formula (3) may suggest that

(21) Tr(f* [ H*(V; Q)= Tr(ff”s°

where £ is the endomorphism of A (X) given by the involution in the
endomorphism algebra of A (X) determined by a polarization of 4 (X). Of
course the trace in the right hand side of (21) is taken in the endomorphism
algebra of A (X) tensorized with Q.
More generally, we are led to the following conjectures.
Let V be a non-singular projective variety of dimension =, defined over
a field k, and let Za;'g(V) be the group of i-cycles of V' with integral coeffi-
cients and algebraically equivalent to 0. Accordingly to Weil’s conjectures,
we may expect that there are abelian varieties J;(V),J (V) defined over k,
for 2i=<n —1, «functorially » attached to V and with the following properties.
A) J; (V) parametrizes the group Z;’zg(V) modulo an appropriate equi-
valence relation ; these would be the Albanese varieties of V.
B) J (V) parametrizes the group Z;;g‘l*"(V) modulo an appropriate
equivalence relation ; these would be the Picard varieties of V.
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C) the varieties J;(V) and J*(V) are dual of each other.

D) if U and V are non-singular projective varieties of dimension m
n respectively and defined over %k, and if f: U— V is a morphism defined
over k, then for 2¢ 4+ 1 << min (m, n) we have an induced homomorphism

Ju 1 i (U)—=dJi (V)

which makes the following diagram commutative

) fio
z} (U)— 7}, (

! !

T (U) 38 7,

V)

where f; is the homomorphism obtained by direct images.

E) if U, V and f are as in D), then for 2i 4 1 << min (m, n) we have,
an induced homomorphism, dual to f, in D),

J*IHV) = JHU)

which makes the following diagram commutative

fi
7 n—1—i ( V) — 7 m—1—i ( U)

alg alg

\J \J
J(vy L gy

where f* is the homomorphism obtained by inverse images.

F) if V, is a generic hyperplane section of V, defined over k (u), and
if j: V,—> V is the inclusion map then (Ji(V),j,)and (Ji(V),j* ) are respe-
ctively the k(w)/k-Images and the k (u)/k-Traces of J; (V) and Ji(V,), for
2i+1l<n—1.

Let V be as before, let k¥ = F, be the finite field of q elements and let

2n i—1
Z(t, V)=II Pt V)~

=0

be the Zeta function of V, where P;(¢, V) is the characteristic polynomial
of the Frobenius endomorphism on H*(V, Q).
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Then our conjecture can be expressed by saying that

«P (gt J: (V)= P, (¢°t, J (V) is a factor of Paiyy(t, V)>».

Our Theorem 1 can be expressed in the following form.

« If V is a non-singular cubic threefold defined over ¥y, and char (Fy) == 2

then
Py (t, V)= P, (g, A (X)). »

We conclude with the remark that our result does not seem to be an
isolated one, and that one of the authors has worked out other cases, for
example the complete intersection of two quadrics, with almost the same
result. In this latter case something more can be said and the results obtained
confirm our conjectures about higher jacobians.
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