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ON THE DEFINITENESS OF QUADRATIC FORMS
WHICH OBEY CONDITIONS OF SYMMETRY

by HANS LEWY

According to classical Algebra a real quadratic form is positive defi-
nite whenever certain determinants of its coefficient matrix are positive.
This test is in general non-linear in the coefficients and its application is

made cumbersome by the difficulty of evaluating determinants. Any hope
of simplification must depend therefore on special properties of the coeffi-

cient matrix. In the course of work on differential equations the A. was
led to consider quadratic forms of the following type.

Denote by Trk or V ~ the set of arbitrary combinations of k distinct

elements of the set ( 1, 2, ... , n), counting as identical two combinations which
differ only by the arrangement of their elements. Let u(co), Vk be a
real function of co. We consider a real quadratic form Q [u] subject to the
only condition that it remain invariant when the numbers of ji, 2, ... , nj
undergo an arbitrary permutation n, i. e. if u (co) is replaced by u (nco).
Then the form Q [&#x3E;i] is positive definite if and only if certain (explicit)
inequalities hold which are linear in the coefficients; in fact it suffices to

establish that ~.~ [u] &#x3E; 0 for certain finitely many choices of u (co) which do
not depend on the coefficients of Q.

NOTATION : In the sequel k, n are fixed positive integers and n ~ k ;
0), coo are elements of E Vr’B B E v8 if the set q contains the set

is that combination which consists of the elements of

~1~ ... , n~ in common to q and e.

In writing E or Z we always understand summation over the first
E 

combination mentioned in the subscript, in this case 1, the second, c, being
fixed we also make this explicit by iirriting Z etc... Z is an abbreviation

co
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for an abbreviation for where q is fixed ; means

and means

1. LEMMA 1.1. Suppose
the equations

have a real solution u (co), co E Vk.

PROOF. If the Lemma were false there would exist real non-trivial

1 (,q), ’YJ E Vk-l such that identically in u (w)

Choosing an arbitrary coo E Vk put u (roo) = 1, u (to) = 0 fior cu # roo and
find

We shall prove that (1.1) implies that all À (q) vanish; whence the
Lemma.

Take for coo all elements of Vk contained in

and add the equations (1.1) corresponding:
with

with p &#x3E; 0. The second snm on the right is

by (1.1). I1 en ce

or generally for
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Suppose we have proved for

which coincides with (1.2) for r = 1. We shall prove the same relation

with ro instead of r. Take

and obtain from the last rela.tion

Here left hand can be split thus :

with p a positive integer, while the factor of p’

by (1.3). Hence

or, more generally, relation (1.3) with r replaced by r + 1 = ro. Note that
we made use of the inequality ro + k ~ n in granting the existence of
8’ E Vr,,+k . Writinig (1.3) for ro = k -1 we obtain with e E 

which proves Lemma 1.1.

Note that there is an obvious interpretation of the statement of

Lemma 1.1 which makes it correct even for k = 1

LEMMA 1.2. Suppose
’ki E yTr the equations

For any given real v (r~)~

have ab real solution it ((1»), wE Vk.
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PROOF. By Lemma 1.1 the assertion holds for r = k - 1. Suppose it

proved for k - 1 ~ r ~ ro &#x3E; 1 we prove it for r = ro - 1. The previous
Lemma with k replaced by ro shows that for given real v (r~), r~ E 1Tro-l there
are real v’ (q’), q’ E Vro such that

We now solve by induction

Then for these 1t (00)

But left hand amounts to where p &#x3E; p. The Lemma follows.

J-JEMMA 1.3. Let 2k n. There are real S1lCh tliat

fixed r i7z but for at least one K in V1"+1

PROOF. Solve non-trivially and

= v (K ) according to Lemma 1.2.

The first is possible since is the number of unknowns and the

number of equations is ( Then

at least one v (1~) # 0, but

is a positive integer.
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2. IJet Q[u] be a quadratic form in real u (co), co E Vk, y such that Q
remains invariant if the u (,co), co E Yk are replaced by u (n where i is an

arbitrary permutation of (1, 2,..., n). Then we can write, with cvi fl _
= number of digits in common to coi and uy ,

Applying to Q [u] all permutations n we obtain

where we intend, interpreting the Z u (w) u (Wj) for Wi =j= Wj, that the sum
should contain both terms u (Wi) u (Wj) and 2~ ((OJ) 

It is possible to write, for 

In fact we find that (2.2) is of form (2.1) with

whose resolution with respect to dj evidently exists; it is precisely

It suffices to note that relations (2.3) yield if dy = the v - th po-
wer of an indeterminate a, that in this case 

which then coincides with (2.4); but the powers are linearly indepen-
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dent, hence the solution in this special case must have the same coefficients
as in the general case.

THEOREM 2.1. If n h 2k, the quadratic form

in real u (co), co E TTk is positive definite if and only if the linear inequalities
hold

PROOF. If all dr are positive, the statement is trivial. We may there-

fore assume that for some r, dr  0. Note, however, that d k &#x3E; 0 is necessary
for positive definiteness of Q. For (by Lemma 1.3) we can choose real u(co),
not all zero, such that

Then
(J

Follows;

whence dk &#x3E; 0, which is the inequality (2.5) for a = k. Set

The proof of the Theorem involves maximizing the quotient

The existence of a maximum is certain in view of 0 ; for it suf
flees to restrict the competition to the couipact set of those it which
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make the denominator equal to 1. Now if 1 _ Amax &#x3E; 1 then Q [u] ===
? / B2

._ (1 - max) I (cv) 2  0 and Q u is not positive definite.
r=0 /

On the other hand if Q |u| can assume non-positive values, the quotient 1
can become 1 or ~ 1, whence certainly ~ 1. Hence lmax  1 implies,
and is implied by, the positive definiteness of Q [u] (notation Q » 0).

We shall now indicate k -~- 1 ways of choosing non-trivial u; 
i = 0, 1, ... ~ lc such that the corresponding inequalities Q [ui (a))} &#x3E; 0 are our

necessary conditions for Q » 0. These choices will afterwards be shown to

certainly contain one for which A = Amax and for which then Imax C 1.

First choice is all - Then
0)

or

and

The next choice, it, (cu), is made as follows : we single out the numbers
1 and 2 and set

W’e put

Then we easily verify
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Accordingly

or

and

choose for

1, ... , 2i and define

as follows. W’e separate the ntimbers

Furthermore, Ui (a)) = 0 even though cu ft ( 1, 2, ... , 2i) = i unless w

contains exactly one element, of the pair [11 21, one, say «2 , of the

pair (3, 4), ... , and one, say of the pair 12i - 1, 2i). In this case we put

Now let ~ Then eitller trivially

because q contains more than one element of any pair above, whence

it (co) = 0 for q; or if 1] does not contain any element of one such pair
[a, a’) then each w with ui (w) =F 0 must contain either a or a’ and then

the pairing of an containing with one containing a~’ will give zero
sum. There remains the possibility h i contains of’ each pair
exactly one element, c~2 , ... , Then

and
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with i = 0, 1,..., lc - 1. These inequalities, together with dk &#x3E; 0, are there-
fore consequences 0.

We now turn the proof of sufficiency. For it we need the derivative

of 1 in (2.6) with respect to u (wo) where co, is a fixed element of Vk. We
have

hence A is stationary if and only if

Summing over all coo E Yk we obtain

The factor is the special case a = 0 of

,,-here 0 is an integer 0 c a ~ k, (oo 7 ware in Vk, y is an element

of J’« .

Let I w n ~a ~ = t t so that 0 c « a. In ware contained (
distinct 17 E Y,. n $~ ) I = 1: for 0 c z ~ t. For each the number

of cvo containing n and also containing 6,, is

Hence

now formulate the following hypothesis H« for o ~ 1 :



586

but there is a 6 E Va, called 6., y such that

Note that (2.10) implies by summation

We have the

PROPOSITION: Under H,,

LEMMA 2.1. As fr (w) depends by (2.9) on n ~a ~ = t rather than on ro,
we put IT = At t and have

PROOF. Consider left hand, expressed with the aid of (2.9); for fixed

T~ the coefficient of I

in view of the binomial relation

Consequently
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Now we have the binomial relation

LEMMA 2.2. Under Ho,

PROOF. By (2.9)4 f8 (cc~) is a polynomial in t of degree s ; the highest
coefficients, (i.e. that of is

in wiew of (2.12).

For s 03C3k n , this coefficient is =j= 0. Moreover, (2.13) holds for2

e == 0, since 03C3&#x3E; 0. Suppose it to hold for 0, 1,..., g0  o - 1, then it holds

for e~ + 1. In fact from (w) = 0 and (w)
is a polynomial in t of degree po + 1 whose highest coefficient does not

vanish. Thus subtracting a suitable linear combination =

- (~ 1~... eo, we obtain (2.13) q.e.d.

LEMMA. 2.3. Under Ha , y

PROOF. From the previous Lemma we conclude
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whence

PROOF OF PROPOSITION : Let A (t) be a polynomial in t of degree a,
such that A (v) = f,, (cu) for n ba 1 = v, v = 0, 1, ... , a.

Put where the degree of the polynomial p (t) is

~ a - 1. It follow from Lemma 2.3. that under Hu

But the a-th difference

since this difference ot’ a polynomial of degree c a - 1 vanishes.

Hence the Proposition follows from Lemma 2.1. Returning to the

proof of suiliciency in Theorem 2.1, let us consider A _ 1max and (2.a)
with maximizing e(w). =)= 0 or there is for with

(JJ

hypothesis H,, applies; for certainly not all u (d» = 0, o&#x3E; E Vk. In case

I it (cv) 4= 0 we sum (2.8) over all E Vk and obtain

and = 10  1 by hypothesis (2.3) for a = 0. But if ~ Zc (~o) = 0, Ila

applies for some a &#x3E; 0. Summing (2.8) over all Wo containing 03B403C3 we obtain

by the Proposition

and Z u (cc~) ~ 0 yields that
w 03B403C3

theorem is proved.

by (2.,5). Hence Q &#x3E;&#x3E; 0. The
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3. If the inequality n ~ 2k of Theorem 2.1 does not apply we can
nevertheless obtain a corresponding theorem by the following simple device.

Let w~2/t;~2~. Denote by the complement of 00 in ill 2, ... , n)
so that 00’ E Vn-k . If we put

then a quadratic form in it becomes a quadratic form in u’ (co’) ; inva-
riance under permutation of ( 1, 27 ....1 it) of one form implies that of the

other. If we put k’ = 21 - k, we have 2k’ so that we can apply to Q’ 
defined by Q’ [it’] === Q [u], the theorem 2.1. This requires, of course, eva-
luation of the coefficients dr , 0 C r c k’, of Q’. We can also obtain a more
direct version of Theorem if we recall the definition of Observe that

the definition of 1ti (co) is such that

We have therefore the

THEOREM 3.1. A quadratic form Q [u]
is positive (definite if and only ’if

for if and only if (3.2) holds for

when 2k it.
The conditions of positive definiteness of Q [u], if 2k may be made

explicit in an analogous manner as for 2k C ~z. With

we have necessarily With the aid of (3.1) we find

Between c, and c, we have the relation

For this relation holds certainly if r = lc, r’ = n - k; and a reduction
of’ l’ by one unit entails a lihe reduction of r’. By (2.4) we can construct
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the quantities d’r, of ~’ (u’], replacing k by
and

, , "

THEOREM 3.2. For of (3.3) is positive (definite if and

only if

where d2 and c,. are related by (3.4).

4. If n is allowed to be infinite, i.e. if w E V: is a k-combination of

arbitrary k distinct positive integers, the quadratic form Q of (2.1) will
certainly converge if (u (w)) is an element of the Banach space of real 1£ (OJ)
with norm

For 0  r C k we have

whence

the last inequality being a consequence of (4.2). It is thus possible to reduce

Q [u] to the form (2.2) with dk and ck related through (2.3). Clearly the
conditions (2.5) are necessary conditions of Q &#x3E;&#x3E; 0 for every n ~&#x3E; 21; since

Yn C Vk- and an obvious specialization of’ u (o)) reduces to the finite case.

Now the o.th inequality in (2.5) is a polynomial in n of’ degree Ie - a alld

highest coefficient da . Dividing by 1+k-° and letting ii --~ oo we obtain

from (2.5)

as necessary conditions for the positive definiteness of () [u].
Taking n finite and h 2k we find as before that dk &#x3E; 0 is necessary

for Q &#x3E; &#x3E; 0.
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THEOREM 4.1. The quadratic form of (2.1) on the Banach space
of norm (4.1) is positive definite if and only if

with dr as in (2.4).

PROOF. Necessity having been proved, we must only prove sufficiency.

By (2.2), l~ then ~
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