
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

ADIL YAQUB
Ring-logics and certain classes of rings
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e série, tome 19,
no 1 (1965), p. 101-105
<http://www.numdam.org/item?id=ASNSP_1965_3_19_1_101_0>

© Scuola Normale Superiore, Pisa, 1965, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1965_3_19_1_101_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


RING-LOGICS AND CERTAIN CLASSES OF RINGS

ADIL YAQUB

Introduction. Boolean rings (B, x, +) and Boolean logics ( Boolean
algebras) (B, n, *) though historically and conceptionally different, are equa-
tionally interdefinable in a familiar way [7]. With this equational interde-
finability as motivation, Foster [1 ; 2] introduced and studied the theory of
ring-logics. Indeed, let (R, X, -f-) be a commutative ring with unit 1, and let
K w2 , . ·.3 be a transformation group in R. The K-logic of the ring (R, x, 
is the (operationally closed) system (R, p2 ...) whose class B is identical
with the class of ring elements, and whose operations are the ring produCt
 X » together with the unary operations el , e2 , ... of K. The ring X, +)
is called a ring-logic, mod .~ if (1) the « + » of ring is equationally definable
in terms of its K-logic (R, x, Lol 7 L02 7 -..), and (2) the «+. of the ring is
fixed by its K-logic. The Boolean theory results from the special choict,
for K, of the  Boolean group », C, generated by x’~ 1 - x (order 2,
x** - x). Furthermore, by choosing li to be the  natural group », N, ge-
nerated by xn 1 -E- x, Foster showed [11 I that a p-ring with unit is a

ring-logic, mod N. Again, by choosing K to be the « normal group », ~,
where the generator x~ of D is now no longer linear, Foster [2) was able
to show that a pk-ring with unit is a ring-logic, mod D. These results na-
turally suggest the following question: are the groups C, N, 1), in any way
related, and are they the only possible transformation groups with respect
to which the corresponding rings are ring-logics I It turns out that for the
class of all pk-rings (and hence, in particular, for p-rings and Boolean rings)
any transitive 0 -+ I permutation of G.F ( pk) induces a transformation grodp
in the corresponding pk-ring R with respect to which .R is a ring-logic.

Indeed, x*, above are merely examples of some transitive 02013~1

permutations of CF (2), GF(p), GF(pk), respectively, and these in turn

induce the above transformation groups C, N~ D, with respect to which
the corresponding rings are ring-logics.
--- - -

Pervenuto alla Redazione il 31 Agosto 1964.
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1. The Finite Field Case. Let x, +) be a (finite) Galois field

with exactly pk elements ( p prime). Then, as is well 

for some in F k . We now have the following
THEOREM 1. Let F x be a Galois field, and let ~ be a generator of P p k.

x - xn be any permutation of F k - Then n is expressible as a poly-
nomial in x over .I’px .

PRooF. Denote the elements of px by xl , ... , x~ (n - pk), and denote
x,n by x s (i = 1, ..., n). We shall show that x~ can be written as

for some al , ... , in pk . Since x~ (i =-~ 1,..., n), therefore, (1.1)
gives n linear equations in the n unknowns al , ... , Now, the de-
terminant of the coefficients of the a; is the familiar VanderMonde determi-

n

nant which, except possibly for sign, is equal to 77 (Xi - Xj), and
, y=i, ;

hence does not vanish since the Xi are distinct elements of Fpi. Hence the
above equations are solvable, and the theorem is proved.

We shall from now on be primarily concerned only with transitive

0-+1 permutations of This simply means a permutation, n, of Fx
such that (i) on 1, and (ii) for any given elements 0153, fl in there

exists an integer r such that a.nr == fJ, where 0153°" (... ...)n (r-iterations).
We now have the following

THEOREM 2. Let, n, be any transitive 0 -~ 1 permutation of the Galois
field and let K be the transformation group in px generated 
Then the elements of F x are equationally definable in terms of the K-logic

(7~,,&#x3E;,~).

PROOF. Since, n, is a transitive permutation of Fk , therefore, £k _
(0, 0~, O"2, ... , 0~-~j. A similar argument shows that, for in 

Xxn x02 ... U. Hence 0 (and with it On, 0°2, ..., is expressible
in terms of the K-logic, and the theorem is proved.

We recall from [4~ the characteristic (x), defined as follows :
for any given /4 E 1 ~k , ~~ {x) 1 if x === p, and 0 if z =1= p.

We now have th e following

THEOREM 3. Let as in Theorem 2. the charaeteristic

(x), are equationally definable in terms of the X-logic
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PROOF. Since, n, is a transitive 0 -+ 1 permutation of px , therefore,
for some integer r. Now, one readily verifies that, since 7

11 E F pi, a~ (x) and the theorem is proved.
Now, let, e , I denote the inverse of the 0 --~ 1 transitive permutation,

n, and as in [2], define a {a~ x Then, a Xn 0 a 0 Xn a.
Hence, we have the following « normal expansion formula » [4]

In (1.2), a, ~, ... range independently over all the elements of F,l’ while

x, y,... are indeterminates over

r

denotes ai x~ 01532 x~ ..., y where

act? (X2 ... are all the elements of F.

THEOREM 4. Let, n, 7 be any tracnsitive 0 - 1 permutation of the Galois
field and let K be the transformation group in pk generated by, n. Then
( pk , X, +) is a ring. logic, mod K.

PROOF. By (1.2),

Now, by Theorem 2 and Theorem 3, the right-side of the above equation
equationally definable in terms of the K-logic (Epk, x, ). Hence the « -
of j! is equationally definable in terms of the K-logic. Next, we show the
( pk X, +) is fxed by ist K-ogic. Suppose that ( pk , X; +’) is another
ring with the same class of elements pk and the same «X» as X, + J
and which has the same logic as x, -~-). To prove that +’ = +. But
this follows since, up to isomorphism, there is only one Galois field with

exactly px elements.

2. The General Case. In this section we shall extend the results of

Theorem 4 to p-rings and px-rings by nse of the familiar subdirect structure
of these rings (Ii ; 5J. Thus, suppose R is a commutative ring with unit 1,
and suppose that p is a pt-iUle integer. R is called a poring [6] if ap = a,

lJa = 0 for all a in R. Furthermore, R is called a pk-ring [2] if 

pc~ = 0 for in It, and (ii) R has a subring (= field) .F’ which is iso.

morphic to the Galois and where 1 E F. (Under a somewhat broa-
der definition, pk-rings were first introduced by McCoy [5]). Clearly, every
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p-ring 2~ with unit is a pk-ring (k = 1 } (in this case (i) implies (ii) in the
above definition, since F can be chosen as the prime field of 2~). From [5],
we now recall the following fundamental subdirect structure

THEOREM 5. A pk-ring is i8omorphio to a subdirect power of the Galois

We are now in a position to prove the following

THEOREM 6. Any pk-ring R with unit is a ring-logic, whe1.e K

is the transformation group in R induced by any transitive 0 --&#x3E; 1 permuta-

..

PROOF. By Theorem 5, R is isomorphic to a (not necessarily finite)
subdirect power Fp"f: of Now, suppose x = (xi ~ ... ) is any element

in R (= Define ... )0 = (.rp , ...), and let IT be the transfor-

mation group generated by, n . We shall now show that pk is a ring-logic,
mod JS". Indeed, by Theorem 4, there exists a «logical expression » 
such that a -[- b = g~ (a, b ; X, ~) for all a, b Since the operations are

component-wise in ..P’p , therefore, for all a*y y in Fp (= R), we have x + y =
_ ~ (x, y ; ~, ~). Hence the  -~- » is equationally definable in terms

of the Next, we show that Fk is fixed by its g-logic. Suppose
that (F:;, x, -+-’) is another ring with the same class of elements and the
same ) and which has the same logic as X, -+-).pk , &#x3E;, +).
To prove + = +’. Now, a new «+’» in pk defines and is defined by a

new « +) » in pk (= i - th component in pk) such that x, -+-i) is a
ring, for each i. Furthermore, the assumption that (2~, X, +’) has the sa-
me logic as X, +) is equivalent to the assumption that each X,-~-~)
has the same logic as (Fpk, a, -+-). Since, by Theorem 4, x, +) is a
ring-logic, and hence with its «+» fixed, therefore, +i = + for each i.

Hence +’ = -p, and the theorem is proved.

COROLLARY 7. Any p-ring R with ring-logie, mod K, wehere K is
transformation group in R induced by any transitive 0 - 1 permutation of Fp .
This is the case k =1 of Theorem 6.

It is noteworthy to observe that, since there is only one 02013~1 (tran-
sitive) permutation of F2, the level of generality given in Theorem 6 and
Corollary 7 is ’not apparent in the Boolean case.

Now, by choosing ao’ cl , ... , ak_I , in (1.1), in all of the ( pk - 2) ! ava-
ilable ways the get 02013~1 permutations of we obtain the
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corresponding transformation groups with respect to which a pk-ring is a

ring-logic. Thus, if in ( 1.1 ) we choose, xn = 1 - x ( pk = 21 )~ we recover the
generator x* of’ the Boolean group C (see introduction). Similarly, if we set

xn = 1 -f- x (pk = p) in (1.1), we obtain the generator xn of the natural

group N. Finally, by selecting the ai in (1.1) so that on = 1, 1n = C,
= ~~ , ... , (~’k--3)n = cPk-2 , (cPk-2)O = 0, where ~ is a generator of px , we
obtain the generator xn of the normal group D (see [2]). Hence, we have
proved, as a further corollary of Theorem 6, the following theorem which

. contains Foster’s results II ; 21 (see also [8]):

COROLLARY 8. (i) Any Boolean ring zaith unit is a ring-logic, 1)lod 0;
(ii) any p-ring with unit is a ring-logic, N ; (iii) any pk-1.ing zcith unit is

a ring-logic, 1nod D ; where 0, N, D, are the Boolean group, natural grotip,
and normal group, respectively.
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