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TRIANGULATION OF SEMI-ANALYTIC SETS

by S. LOJASIEWICZ (Krak6w)

The triangulability question for algebraic sets was first considered by
van de Waerden [15] in 1929, and for analytic sets by Lefschetz [5], Koop-
man and Brown [4], and Lefschetz and Whitehead [6], in 1930-1933. In fact,
j5] and [6] deal with triangulation of « analytical complex » (which is a fi-

nite disjoint collection with compact union of subsets of 1R~ each being an
open and relatively compact subset of an analytic subset of an open set in

A lack of a convenient technique at that time was probably the reason
for the proofs being rather sketched. Therefore, according to an opinion of
many mathematiciens, it is of some interest to give a new detailed proof.
This is just the purpose of the present paper, and actually we give a so-
mewhat more general result: simultaneous triangulation of any locally finite
collection of semi analytic subsets of 1Rn or, owing to the Grauert imbedding
theorem [3], of any countable real analytic manifold. Moreover, our formula-
tion of the result is somewhat more precise; it follows e.g. that in any

exemple of Milnor’s type [9] the homeomorphism between the polyhedra has to
have a singularity of non-algebraic type (it can not have the property (A)
(see § 3)). However the frame of idea of the construction we give is that of
Lefschetz ([5] and [6]).

The semi-analytic (resp. semi-algebraic) sets are those which can be lo-
cally given by analytic (resp. algebraic) inequalities (see [13], [14] and [8]).
We may observe that the body of an « analytic complex » is exactly the
same as a compact semi-analytic set. We will need certain basic properties
of semi-aualytic sets ; 3 these are only stated in § 1, and will be contained

with proofs in papers to appear separately.
The method we use is that of normal decompositions of semi-analytic

sets ; it follows an old idea of Osgood [10] (see also [11]), and was applied

Pervenuto alla Redazione il 18 Maggio 1964.
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by the author in [7] (1). The normal decompositions are certain special local
stratifications in the sens of Thom [14]. For the semi algebraic case an ele-
gant Whitney’s stratification [17] can be also used.

The result was communicated on the Congress in Stockholm, 1962, and
the construction was presented in details on a seminar at the Istituto Ma-
tematico Leonida Tonelli of the University in Pisa, spring, 1963.

Afther having written the manuscript the autor observed that had just
appeared a thesis of B. Giesecke [2] concerning also the triangulation of
semi-analytic sets; because of the differences which seem to exist in results
and methods used, our article may be however of independent interest.

One should also mention a paper of K. Sato [19] on local triangulation
of real analytic varieties.

§ 1. Preliminaries on semi-analytic sets.

In this § the results are only stated; the proofs will be contained in

articles to be published soon.
I. Definition of seini analytic set. Let ll~ be a real analytic manifold.
Let A, G c M and let ... , fr be real functions (each one defined on

a subset of ill); we say that A is described in Q’ by 11 , ... , fr iff fi , ... , fr
are defined in Q~ is a finite union of finite intersections of sets

of the form x E G : f) (:x) &#x3E; 0 ) or ( x E G : Ii (x) = 0 ) ; we say that A is des-
cribed at c E M by It , ... , fr iff it is described by these functions in a neig-
hborhood of c.

,A subset A of M is said to be semi analytic iff it can be described at

any c E ill by a set (depending on c) of real analytic functions (at c). Equi-
valently, A is semi analytic iff for each x E M the germ of A at x belongs to
the smallest class S of germs at x (of subsets of satisfying u, v E S &#x3E;
u U vi u BB v E ~’, and containing the germ at x of each set of the form ( f &#x3E; 0 )
with f real analytic in a neighborhood of x.

The union of any locally finite family and the intersection of any finite
family of semi-analytic sets is semi-analytic. The complement of any semi-

analytic set is semi-analytic. A subset of any closed submanifold (2) Mi of M
is semi-analytic in Mi if and only if it is semi analytic in The image of
any semi-analytic set by an analytic isomorphisme is semi analytic. A finite
product of semi-analytic sets is semi-analytic.

(’I See also [8], where another application of this method is given.
(~) A submanifold of M is a subset of M which is locally the inverse image by a

chart of a linear subvariety (of the same dimension for any point of this set), with the

induced manifold structure.
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If. decompositions. A function B (Zt , ... , holomorphic at
(0, .., , 0 ; 0) is called a distinguished polynomial in x iff it is a polynomial
in z with coefficients vanishing at (o, ,.. , 0) except the leading one which

=1; it is said to be real iff its values for real arguments are real.

Let M be a real analytic manifold of dimension n. Let c E M. A normal
system at c is a couple of an analytic chart g : at c (3) such
that g (c) = 0, and a system where 9 xl) is a real

distinguished polynomial in Zz with discriminant ~..., xk)~0, 
such that in some neighborhood of (0, ... , 0)

A neighborhood Q = g-1 (Qo) of c, where 90 = x : ~ I Xi I C C 9 (C~)~
is said to be normal (with respect to the above normal system) iff Hlk are
holomorphic on satisfy (a) and (fl) in

for with 0 ~ ~  n. Thus ~1o is a normal neighborhood of 0
following the normal system (e, e : Rn -+ JR" being the identity map.

Every neighborhood of c contains a normal one.
The normal decomposition of Q (following the above normal system) is

the decomposition 
--

where rk are the connected components of

(we put for convenience .go 1=1). The sets rxk are called members of the
decomposition. Thus 1’x = g-l where 7~ are the members of the nor-
mal decomposition of Qo following the normal system (e, at 0.

A normal decomposition at c is the normal decomposition of a normal
neighborhood following a normal system at c.

(3) i. e. local analytic coordinates system at c.
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1. Any normal decomposition is finite.

be a normal decomposition. 
union of some

be a normal decomposition at () E following a nor-

mal system

with S~ open (in and analytic in Q such that 0 E Q, = 0

in D and lim ,
u-0

4. Any member Tx of any normal decomposition at c is a k-dimensional
analytic submanifold (F," are open and ro _ (0)) such that c E rx .

6. Let Q = k, U be a normal decomposition as in 3. Let 0  m  n.
Jk, ?

Denote by a the projection Rn 3 xn) 2013(i?-..? x»,) E 1Rm and bye. the
identity map 1Rm -+ 1Rm. The couple (e., [Hlk a normal system
at 0 E 1Rm and Q* = n (Q) is a normal neighborhood ; let Q* = U " 

be its

normal decomposition. Then for any 7~ with k S m we have a = rk
(for some x’).

III. Existence theorems. A normal decomposition Q = k, U is said to
A:, x 

be compatible with a function f defined in Q iff f = 0 or f # 0 on any mem-
ber r:; it is said to be compatible with a subset A of ~VI iff any member

is contained in A or in M’" A. If A is described at c by f1, ... , fr , 7 then

any normal decomposition of a sufnciently small neighborhood at c which

is compatible with ... , fr is also compatible with A.

1. Let c E M. There is a normal decomposition at c which is compatible
with given functions fi 7 ....f, analytic at c, resp. with given semi-analytic
sets At , ... , AS C 1JI; the normal neighborhood can be chosen arbitrarily small.

Let M be an afiline space, let f be an analytic function at c E M. A line
A though c is said to be singular for f’ at c, iff f vanish identically in a

neighborhood of c in A. Let A be a semi-analytic subset of M. A line A

through c is said to be non singular for A at c, iff A can be described at

c by a set of functions for which A is non-singular at c.

2. Let ... be analytic functions at c E M, such that fj = 0 =&#x3E;
F = 0 in a neighborhood of c ( j =1, ... , r), let A be a non-singular line for
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... , fr, and let x be a hyperplane such that 1 n X = (c). There is a
normal decomposition Q = following a normal system (g, ( H/ )) at e

which is compatible with fi , ... , fr and such that g is affine, g (1) is the

(i.e. gj = 0 on I for j = 1, ... , rc -1), g (X) is the ... , 

plane (i.e. gn = 0 on X), and F (r) = 0) (i.e. H,l’=0 =&#x3E; lJ’=O
in Q). The normal neighborhood Q can be chosen arbitrarily small.

3. Let A , ... , be semi-analytic subsets of M, let Â be a non-singular
line for A~ , ... ~ A$ at c E M and let X be a hyperplane such that ~, ~ x = ~c).
There is a normal decomposition following a normal system (g, at c

which is compatible with Ai ~ ... , and such that g is affine, 9 (1) is the

xn-axis and g (X) is the (Xi’.’" xn-l)-hyperplane. The normal neighborhood
can be chosen arbitrarily small.

Vf. Some properties. Let M be a real analytic manifold.
1. A subset A of M is semi-analytic if and only if for any c E M there

is a normal decomposition at c which is compatible with A.

2. Any connected component of a semi analytic set is semi-analytic.

3. Any member of a normal decomposition is semi-analytic.

4. The closure, the interior and the boundary of any semi-analytic set
are semi -analytic.

V. Projection theore~n. Let M be a real analytic manifold, ~1 an affine

space. A subset A of M &#x3E; A is said to be partially semi-algebraic (with
respect to iff any c E M has a neighborhood U such that A can be des-
cribed in U X A by a set of analytic functions which are polyno -
mials in x ; thus any partially semi-algebraic set is semi-analytic. The inter-
section of any finite family of partially semi-algebraic sets is partially semi-
algebraic. A union of a family of partially semi-algebraic sets is partially
semi-algebraic, provided that each point of M has a neighborhood U such
that U x A meet only finitely many sets of this family.

1. Any connected. component of a partially semy-algebraic set is par-

tially semi-algebraic.

2. SEiDENBERG THEOREM (4). Let Ao be another affine space and denote
by 11: the projection M X A X Ao 3 (u, x, y) -+ (u, x) E M X A. If a subset A

(4) Formulated in [13] for semi-algebraic sets.

5. Annali della Scuola Norm. Sup- - 
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of x !lo is partially semi-algebraic with respect to d X Ao, then n (A)
is partially semi-algebraic with respect to A.

VI. Semi-algebraic sets. A subset A of an affine space M is said to be

semi.algebraic iff it can be described in IVI by a set of polynomials ; it is

said to be locally semi-algebraic iff it can be described at any c E M by a
set (depending on c) of polynomials; each bounded locally semi-algebraic
set is semi-algebraic. Let S~ be an open subset of M ; an analytic function

f : Q - 1R is said to be analytic algebraic iff there is a polynomial P(t, x)fl0
such that P (;x, f (x)) = 0 in ~. A subset A of .M is locally semi-algebraic
if and only if it can be described at any c E M by a set (depending on c) of
analytic algebraic functions (at c).

All the facts stated in this § remain valid for M affine (and for affine
charts g) if we replace the notions of semi analytic set and analytic function
by those of locally semi-algebraic set and analytic-algebraic function.

Let P be the projective space derived from a finite dimensional vector

space V (identified with the set of all lines through 0 in V) ; the canonical

map (of P) is the For any projective hyper-
plane P’ C P (derived from a hyperplane V’ of V) the set P BB P’ with its
natural affine structure (such that for any v E V B V’ the restriction

nv+ v: v -E- is an affine isomorphism) is called an affine chart

of P. Any affine space can be considered as an affine chart of a projected
space.

Consider a multiprojective space i.e. a finite product of finite dimen-

sional projective vector spaces R = P, &#x3E; ... X Pk. The canonical map

(of R) ( ViB 101) X ... X ( Veg JOJ) --~ R, where
:f, are the canonical maps of Pi, y and Vi are the vector spaces from which

P; are derived ; an affine chart of R is a product ~li x ... X Ak where Ai
is an affine chart of Pi, i =1 ~ ... , lc. A subset A of R is said to be semi-

algebraic iff a-’ (A) is semi algebraic. A subset of an affine chart A of R
is semi algebraic in R iff it is semi-algebraic in A. A subset of R is semi-
algebraic iff it can be described at any c E R by a set (depending on c) of
polynomials in an affine chart of R. The union and the intersection of any
finite family of semi-algebraic sets and the complement of any semi-algebraic
set are semi-algebraic ; a finite product of semi-algebraic sets is semi-algebraic.

Let R1, R. be multiprojective spaces : a map of a subset of R1 into R~
is said to be semi-algebraic iff’ its graph is semi-algebraic. The composition
of semi-algebraic maps is semi-algebraic. The image and the inverse image
of any semi-algebraic set by any semi-algebraic map is semi-algebraic.
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§ 2. Some lemmas.

For any C1.maiaifold d denote by Au its tangent space at u E A ; for
any A’, where d’ is another Ci.manifold, let dgu : 
be its differential at u ; put ranku g = dim dgu (Au) and rang g = sup (ranku g :

If ranku g = dim A’, then g (u) is an interior point of g (.if). Hence
if g (A) has no interior points, then rank g  dim A’.

LEMMA 1 (Sard (5)). Let A, A’ be real analytic countable (6) manifolds
and let g : ~1-~ ~.’ be analytic. If rank g  dim A ’, then g (d) is meager (7).

PROOF. The lemma being trivial when dim ~1= 0, assume it true if
dim ~1  n and let dim ~1= n &#x3E; 0. Let u E A ; for some neighborhood U of
u the set Z = ~u E U; ranku g  rank gu) is semi-analytic and nowhere dense
in t7; let Q = k, U be a normal decomposition at u which is compatible
with Z. It is sufficient to prove that each g (Tx ) is meager. If k  n, it is

true by the induction hypothesis. Consider any Since 

ranku g = p in Ty where p = rank gu  dim A’. Therefore any point of ry
has a neighborhood whose image by g is contained in a p-dimenf3ional sub-
manifold of ~1’ and hence g (I"’) is meager.

LEMMA 2 (Lefschetz- Whitehead) (8). Let A be a 01. manifold. Let M be
an m-dimensional affine space, 1T its vector space, and S an 

sional Ci.submanifold of V such that u E 8 &#x3E; u f Su (9). Let g : A -+ M and

h : ~1--~ S be Ci-maps. If the map T: A x 1R 3 (u, l) - g (u) + lh (u) E M is
of rank  m - 1, then rank h  m - 2.

PROOF. Let u E A. By assumptions

When A =1= 0, it follows the same for the

and hence (letting A -+ oo) for the

(5) This is a special case of Sard theorem [12].
(6) i. e. with countable basis.

(7) i. e. a counable union of nowhere dense sets.

(8) See [6], pp. 513-514.
(9) Any tangent space of a submanifold of M or V is identified with a vector sub-

space of V.
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map
whence dim i

REMARK. It is sufficient to assume that (p is of rank  n~ -1 in an

open set containing .~ X 10). For, u being fixed, the condition : rank dggu, 1 
~ ~n -1 can be expressed by vanishing of some determinants which are

polynomials in A.

Let M be an affine space, V its vector space ; denote by P the projec-
tive space derived from V (the set of directions in M).

Let D be an open subset of M and let f : be analytic. A di-
rection a E P is said to be non-singular for f iff for each c E S the line c + a

is non-singular for f at c.

LEMMA 3 (Koopinan and Brown (1°)). Let f be analytic and fl 0 in an
open connected Then the set of all singular directions (for f) is

meager in P.

PROOF. Put m = dim M. The ellipsoid S = ju E (u) I = 1), where
y : V -+ 1Rm is a (linear) isomorphism, satisfies the assumption of the lem-
ma 2. Let

in a neighborhood of ~

and let n : Q X V 3 (u, v) --+ v E V. Since the set in question is the image of
n (0) by the local homeomorphism it is sufficient to prove
that n (0) is meager in S. We have

which implies that 0 is an analytic subset of !J X V (for the ring of germs
of real analytic functions at a point is noetherian). Let c E I) X V and let

Q = be a normal decomposition at c which is compatible with 9 ;
thus Q n 0 is a union of some Af and it is sufficient to prove 
is meager in 8 for any Consider two analytic maps g : A 3
3 (u, ro) - u E M and h = A 3 (u, v) - v E V, and then the A X

x1R3(~)~~)+~M~. Since For any
x E A, (g (x), h (x)) = x E 0 and hence f (g (x~) (x)) - 0 in a neighborhood

(to) See [4], p. 242.
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of 1 = 0. Therefore 1)) = 0 in the set

which is open in tl X 1R and contains A x (0). This implies that rr (1’)
has no interior points (in M), whence the rank of 97 in A* is S m -1.
By the lemma 2 and the remark, rank h  m - 2 and hence, by the lemma
1, 3t (A) = h (A) is meager in S, Q. E. D.

Let A be a semi analytic subset of M. A direction a E P is said to be
non-singular for A iff for each c E 1~ the line c + a is non-singular for A at c.

LEMMA 4. Set (Bv) be a coutable collection of semi-analytic sets. The
set of all directions which are simultaneously non-singular for each B, is
dense in P.

In fact, consider any Bv ; there is a countable covering of M by open
connected Wi such that By can be described in Wi by a finite set of func-
tions analytic and @ 0 in Wz; since every direction which is simulta-
neously non singular for all lij is also non-singular for By , it follows from

the lemma 3 that the set of all singular directions for By is meager.

Consider now the affine space M X 1R and put n = dim (M X 1R), (i. e.
dimM=n-1).

Using the Weierstrass preparation theorem we derive easily the follo-
wing lemma.

LEMMA 5. Any semi-analytic bounded subset of for which the
direction (0) x 1R (where 0 is the zero of V) is non-singular is partially
semi algebraic (with respect to 1R).

Denote by n the map M X 1R 3 (u, t) -+ u E M. An analytic submanifold
1P C 111 X 1R is said to be topographic (11) iff 3t (y) is an analytic submanifold
of M and n1p: y --+ 3t (y) is an analytic isomorphism : then tp is the graph
of an analytic function a (y) --~ 1R which we identify with y. The following
lemma is trivial.

LEMMA 6. Let V - be an analytic submanifold of Introduce a

euclidean norm in M and let A &#x3E; 0. If

then y is topographic (and in n(y)). If

(ii) This convenient terminology was proposed by A. ANDREOTTI.
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then the image of y by the map

is also topographic.
We say that a subset Z of has property (P ) iff the map

is open. Any topographic submanifold (of M &#x3E; 1R) of dimension
n -1 has property (P).

LEMMA 7. For any function f analytic at (c, 0) E M &#x3E; 1R and such that
there exist a neigborhood D’ and a function g such that f, g

are analytic in U, g (c, t) =1= 0 and the set (x E U : f (x) g (x) = 0) has pro-
perty (P).

PROOF. Let H (u, t) be a distinguished polynomial in t at (c, 0) (12) such
that  &#x3E; f = 0 in a neighborhood of (e,O), its discriminant D (u) Q 0 (13).
Let A be a non singular line for D at c ; we can identify l~ with M i &#x3E; 1R
(where M1 is an affine space of dimension m - 2) in such a way that

c = (c~ 0) and I = (cj X 1R for some c, E M1; thus D (e1 , s) ~ 0. Let Hi (v, s)
be a distinguished polynomial in s at c such that 0 -&#x3E; D = 0 in

a neighborhood of c. Consider the analytic function F (v, t) defined in a

neighborhood of (e, ) 0) by the formula

where ~j are the roots of H1 at v (14) ; we have then F (C1 , 0 and

D (v, s) = H (v, s, t) = 0 =&#x3E; F (v, t) = 0 in a neighborhood of (Vi’ 0, 0). As-
sume n = 2, or n &#x3E; 2 and the lemma true for n - 1. There exist an open
neighborhood U, of (c, , 0) and a function g such that F, g are analytic in
Ul, g (ci , t) ~ 0, F = 0 =&#x3E; g = 0 in U1, and the set t) E Ut : 9 (v, t) = Oj
has property (P ), (in Mi &#x3E; 1R). In fact, if n = 2 we put g = F; in the second
case we take Ui and G for F according to the lemma (assumed true for
n -1) and we put g = FG. Now we choose an open neighborhood U of
(c! , 0, 0) so that all the above relations hold and (v, t) E UI, if (v, s, t) E U.

(12) i. e. analytic at (ol 0), polynomial in t with coefficients vanishing at c except
the leading one which -1.

(13) For the existence see e. g. [7], nO 11.
(14) See e. g. [7], nO 13; we put F =1 when Hi is of degree 0.
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Then we have

Since both sets on the right side has property (P) (the first one is locally
a topographic submanifold of dimension n - 1), so has the set on the left.
Therefore the lemma is proved by induction.

By lemma 7 and § 11 Ill, 2 we obtain

LEMMA 8. Let Bi ; ... , Br be semi-analytic subsets of M x 1a for which
the line X ’I~ is non-singular at (e, y) E M X JR. There exists a normal

decomposition Q = k, U x rk following a normal system (g, at (0, y) which
is compatible with B~ , ... , Br and such that g is affine, g ((c~ &#x3E; 1R) is the

xn-axis, g (M X (y) is the xn-l)-byperplane and Vn-I U ... U Y° _
= k U has property (P ). The normal neighborhood can be chosen arbi-

k  n

trarily small.

From § 1, II, 3, 5 and V, I we get :

LEMMA 9. Let Q = U T# be a normal decomposition following a normal
k, x

system (g, at (e, y) with g affine and such that g X lR) is the xn-
axis and g (M a (y)) is the (Xt,..., xn-1)-hyperplane. Then all rk are par-
tially semi-algebraic and-those with k  n are- topographic. There is a normal

decomposition Q* = n (Q) = U ,1~’,~~ such that for any F., k with k  n we

k k 
&#x26;

have a (ruk) =1’~x- for some MI.
We call Qn = U the projected decomposition (of the previous one).

J, t

LEMMA 10. Let ~y be defined and analytic in (open) neighborhoods
of c E M, v = + 1, -~- 2, ... ; assume that the sequence g2+ (e) is strictly in-
creasing, lim 99, (0) = 00, lim 99, (0) = - 00, and that is locally finite

v -- 00 V - - 00

(as a family of graphs). Let (~ be a subset of M whose interior contains

(c~ X 1R. There exist restrictions of ~y to open connected neighborhoods
of c and an analytic isomorphism g : M X It --~ M X 1R such that :

2°, tp" = 9 (q;:) are disjoint, bounded, semi.analytic, topographic.
3°. Any bounded subset of M is contained in some n ~~y : ~ I " [ h N~,

where Qv = n 
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uniformly in any bounded

subset of LU.

with an A inde-

pendent of v, for a euclidean norm in V.

PROOF. Introduce a euclidean norm in V and identify M with V so
that c = 0. We may assume (without loss in generality) that (0)  - 1
and ~1 (0) &#x3E; 1. Choose a, &#x3E; 0 in such a way that g2v is defined in Cy where

Uv = (u I  ay~, and g~y (!7y) c where 4v are disjoint compact in-

tervals, contained in I &#x3E; 1). Put 0/: = Take a function y on 1R
which is positive and constant on each A, as well on each component interval
of A,, y and such that y (t)  acy on Av and l(u, t) :  y (t)) c
c G B ~ By the Whitney approximation theorem (15) we can find
a function h positive and analytic on 1R and such that:

where ky is a constant satisfying ) I for u,
u’ E U, . The inverse fl : 1R -~ 1R of t -+ (et - - e-t) is an increasing
analytic isomorphism satisfying P (ip 1) = ip 1 and I I  min (2, llt)
in 1R. We will prove that 9 = g2 o g1 ~ 1 where

is 8.n analytic isomorphism which satisfies, together with the conditions
10.6~.

First observe that ((u, t) : ~ t ~ ~ I ) = 9 (Z), where

which yields I
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we get 60. Now, we have

where b, = inf ( :  6 Jy), since, because (

have This gives 30 (for b." -~ o0

as I - oo), and, after showing that yy are topographic, the property
40 will be a conseqnence of lim y (0) = ip oo and the fact that the col-
lection (~~) and hence the collection (yv) is locally finite in Since

are analytic submanifolds which are disjoint, bounded and semi-analytic,
so are Thus, in view of the lemma 6, it remains to verify that

with an A independent of v, Now, putting Xv = g, (Qv‘), we have (v, t),
- - ....... - . - . - . - . , -

Q. E. D.
For any . :. E - ’R such that q; (u)  q’ (u) in E put

thus in particular [ffJ, 99] = 99 ; if moreover in E, we put

The following lemma is trivial.
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LEMMA 11. If q; (u)  q;’ (u) in L and the closures ¡¡;, (pl are bounded

functions I

Let F be a subset of another affine space. N and 

satisfy 1jJ (v) ~ y’ (v) in 1~: Assume that a map g : ~ -~ F satisfies the

following condition

By the map associated with g we will mean the map

defined by the following formulas

if g  gJ’ in E and y  y’ in F, by the map ho : (99, g’) --&#x3E; 1p’) associa-
ted with g we will mean the map defined by the first formula. The following
two lemmas are obvious.

LEMMA 12. We have hl , h’ C h for the maps -~ 1p, hi : g~’ --~ 1p’
associated with g, and, if 99  m’ in E, y  y’ in F, then ho C la for the
map ho : (gJ, cp’) -~ jy, y’) associated with g. If A c: E and g (A) c B C F,
then we have for the map h* : [99A , --~ [y~B , 1J’B] associated with
gg: A--~B.

LEMMA 13. If ,E, F are analytic submanifolds, (p, V analytic, and

g : E - F is an analytic isomorphism, then the associated 99 --+ 1p
is also an analytic isomorphism. If moreover 99’, 1p’ are analytic, 99  g~’

1jJ  y’ on F, then 99~), (W, y) are analytic submanifolds and the
associated map ((p,.p’) -+ VI) is also an analytic isomorphism.

We say that a map f (of a subset of an affine space M ’) into an affine
space N’ has property (A-1), iff its graph is partially semi algebraic with
respect to N’.

LEMMA 14. Assume the condition (s) satisfied. If E is compact, q, 99’, y, y’
continuous, and g continuous, then the associated map h : [g~, -~ [y, y’]
is also continuous. If g has property (A-1), g, 99’ are partially semi-algebraic
with respect to 1R, and 11’. y’ semi-algebraic, then h has also property (A-i).

PROOF. In view of the condition (8), the graph of h is the set
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Under the assumptions of the first part of the lemma this set is compact
and hence the conclusion follows. Under the assumptions of the second,
this set is the projection by the map (u, t, V7 8.,27y r~’, ~, ~’) --~ (u, t, v, 8) of the
intersection of the following eight subsets of the (u, t, v, 8, q, r~’, ~9 C’)-space :

each partially semi-algebraic with respect to the (v, s, ~, r~’, ~, I’).space ; the-
refore, by § 1, V, h is partially semi-algebraic with respect to the (v, s)-space.

A locally finite simplicial complex (in M) is a locally finite collection
7f of disjoint open simplexes (1g) such that each face of any simplex of K
belongs to K. We put locally finite cellular complex
(in M) is a locally finite collection L of disjoint open cells (17) such that for

is a finite union of cells of L. Using the regular (barycentric)
subdivision (18) we get

LEMMA 15. For any locally finite cellular complex .L (in M) there is a
locally finite simplicial complex g (in M ) such that every cell of L is a
(finite) union of simplexes of K.

§ 3. Triangulation theorem.

Let M be a real analytic manifold, B a subset of an affine space A.
We say that a map ~: j~ 2013~ M has property (A) iff its graph (in A x M)
is partially semi-algebraic with respect to A (19), then, by § l, V, 2, the
image of any semi-algebraic set is semi-analytic.

The following theorem will be proved in § 4.

THEOREM 1. Let (B~) be a locally finite collection of semi-analytic sub-
sets of a finite dimensional affine space M. There exist a locally finite sim-
plicial complex K with I I( I = M and a homeomorphism z : M -~. M (onto M)
such that:

(16) An open simplex in M is a subset of the form

, V V

with c0 ,... , ct independent; its faces are the simplexes cYO ... eY8 with yo  ...  7, -
(t7) An open cell is a convex open bounded subset of an affine subspace of M. 

’

(18) See [181, p. 358, or [1], p. 131-132.
(19) Thus a bijection g : E -~ F : where E, F are subsets of affine ‘spaces, has property

(~) iff g-1 has property (.A- ).
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(a) r has property ( A ),
(b) for any 0 E K, z (o) is an analytic submanifold (of M) and

is an analytic isomorphism, I
(c) for any 0 E If and a,ny Bv we have T (Q) C By or T (a) c M’~ By .

By Grauert imbedding theorem [3] which ensures that every countable
real analytic manifold is isomorphic with a closed analytic submanifold of
a (real) affine space, it follows easily

THEOREM 2. Let be a locally finite collection of semi-analytic
subsets of a conntable real analytic manifold M. There exist a locally finite
simplicial complex .g (in an affine space A) and a homeomorphism 7:: IK ( -~M
(onto M) such that the properties (a), (b), (c) hold.

In the case of a finite collection of bounded semi-algebraic sets
the proof of the theorem does not require the use of lemma 10. Therefore
we deal with only semi-algebraic sets (see § 1, VI), and we obtain.

THEOREM 3. Let B~ , ... , Bk be bounded semi algebraic subsets of an

affine space M. There exist a finite simplicial complex 8 in M and a se-
’I-

mi-algebraic homeomorphism ~ 1 such that the properties (b), (c)

hold. 
’

From this we deduce (see § 1, VI) :

THEOREM 4. Let ... , Bk be semi-algebraic subsets of a multiprojec-
tive space M. There exist a finite simplicial complex K (in an affine space)
and a semi-algebraic homeomorphism « : I K I (onto M) such that the
properties (b), (c) hold.

In fact, it is sufficient to observe that the semi-algebraic map

and , is an analytic imbedding of P in 1Rn2
v

(i. e. yields an analytic isomorphism of P with an analytic submanifold of 1RIl’).

§ 4. Proof.

In this § we will prove the theorem 1. The affine space (of the theorem)
will be denoted by ,,11 t, 7 its dimension by n. The proof will proceed by in-
duction with respect to n, the theorem being trivial for n == 1. Thus we
consider the case n &#x3E; 1 and we assume that the theorem is true for the

affine spaces of dimension n - 1.
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We will say that a set E is compatible with a collection of sets 

iff, for each or 0. (Thus the condition (a) will mean

that all T (0) should be compatible with (B~(.
I. A system of topographic manifolds. There exists an analytic isomor-

phism f : Nl, -+ Mx 1R where M is an affine space of dimension n-1, and
a collection e of analytic submanifolds of .~ x 1R such that the following
properties hold :

(1) each 1"’Ee is topographic, bounded and partially semi algebraic (with

respect to 1R) ;
(2) e is locally finite ;

(3) the sets r n I &#x3E; 2), where are compact and mutually
disjoint ; they are empty when 

(4) the set is closed and has property (P);

(5) for each a E M the sets and S are

unbounded ;

(6) any connected subset of M x 1R which is compatible with e is also

compatible with ~B~~~, where B~ = f (B~).

PROOF. By lemma 4, there is a direction in M, which is simultaneo-
usly non singular for all Bu . Therefore we can identify Mi with M X 1R,
where M is an affine space of dimension n - 1, in such a way that every
line ~a~ x 1R is non-singular at each of its points for all B,. Using lemma
8 we can find a countable family 9 of normal decompositions Q x A =
V n u ... ~ VO which are compatible with all B~ , sach that the Q X d ’s form

a locally finite covering of M &#x3E; 1R; consider the projected decompositions
Q = ... w V*O (lemma 9); since the union of all Q B V*"-’ is meager,
its complement (with respect to M) contains a point c. Now, we can choose,
from the family 9, a sequence of normal decompositions V7 ~~ w ...
...~V~y=0~±:~±2~...~ such that and

such that the sequence of left ends of A, and that of right ones are stric-
tly increasing. Then we can find a strictly increasing sequence = 0,
+ 1, + 2,... such that Yy+1 (whence lim yy = ± oo) and (0, yy),

(c, E Vt ; since, by the choice of c, we have (lemma 9) u." v 

where n is the map 11~ X 1R 3 (u, t) - u E M, there is a neighborhood !7y of c
such that (see § 1, Ih 2, 3):
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where are analytic and

00

U Uv x [yy , and gJvo = yy in it follows that any connec-
201300

ted subset of C~ which is compatible with is also compatible with 

In, fact, let E be such a subset ; if E C with g &#x3E; 0, then E c= if

E C then jE7 C finally if J57 C ~ya , then F, c U x (y~ Yy+1))~
whence E c U" X ~Yy , Y~+1) for some v, which implies jE7 c (Q, X 4v) ~ 
~( V:) = Vn ; therefore .E is always contained in a component
of some or V:.

By lemma 10, applied and gJva which can be ordered in a sequence

~~y==±:l?±2,... so that ~y (e) is strictly increasing, there exist restric-
tions ~y of ~y and an analytic isomorphism g : M X 1R ~ M x 1R such that
the properties 1° - 6° (of the lemma 10) hold ; furthermore (by property 1°)
any connected subset of ((u? 1 ¿ 1} which is compatible with iyv) is

also compatibie with ~B~’~, where By’ since, by property 6°, it must
be compatible with 19 

Introduce a euclidean norm in the vector space V of M so that the

property 5° holds. By lemma 4 we can find a z E V such that z ~ I  A

and the direction 1R (- z, 1) is non-singular for all B~ and 1/,,,. Consider

the map l : (u, t) -~ (u +tz,t) and put f = log. Then the direction ( 0 ) X 1R
is non singular for all B~ = t (B~’) = f (B~) and y§ = I (1Jl,,); hence y’ are
(by lemma 5) partially semi-algebraic and (by lemma 6) topographic. Further-
more is locally finite (by property 4°), 1p~ are bounded, disjoint (pro-
perty 20), the sets n l(u, ): ] t 1 h I) are closed (by property 6°), and any
connected subset of ((u, t): I t [ h I) which is compatible with {1/1~} is also

compatible with (B’). Finally, for any a E M the sets ([a) 
and ((a) x (- oo, 0)) n u are unbounded ; in fact, it follows from the pro-

perty 6° that, if 1/1" (a - z) &#x3E; 1, yv meets the half-line ((ac - tz, t) : t &#x3E; 0) ;
hence, by properties 3° and 4°, infinitely many of ~,, meet this half-line ;
similarly for any half line ((a - tz, t) : t  0 ) ; thus the sets in question are
infinite and the conclusion follows from the fact that is locally finite.

Thus we see that the collection 6~ t consisting of all submanifolds

1p~ n t) : ~ I t I &#x3E; 1 ~ and the hyperplanes ~2 x 11) and M X (-1 ~, satisfies
the conditions (1) - (5) and the condition (6) for any connected subset of
{(~): j I t I ~ 1). Therefore it is sufficient to find a collection eo of analytic
submanifolds of M X (- 2, 2) satisfying the conditions (1)~ (2)~ (4) and the
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condition (6) for any connected subset of M x (-1,1), since then 
will satisfy (1) - (6).

Using lemmas 8 and 9 we can find a collection of truncated cones

Ty == ((u, ): ) 2013 cv I (1 2013 t/2) , I t I C 1} and normal decompositions
QyQ = U rx (w, o) each compatible with all Bu, such that (1’, o) with k  n

k, x

are partially semi-algebraic and topographic, Cyc = U rx (v, o) have property
k~n

and are locally finite,

In fact, it is sufficient to take, for any c E M, a finite set of normal decom-
positions Qi = u ~ (i) according to lemma 8, such that (e) X (-1,1~ C

t C .2}, and to choose (u, t) : | u - c I S r (1-
- t/2), I t I  1) C U Qi with r &#x3E; 0. Now, let eo consists of all Tx (w, 0) n T,
with k and J1

n- = M x [- 1). Then the conditions (1) and (2) are obviously satisfied. To
prove (4) observe that = 8 w Ty) where 8 = 31:+ u
v ~- u U E, ; since n+ , n- , Zv and n T, have property (P), so has the

set So ; since 0 and Tv n (U C,,) are closed and 1.1." B Ty c 0, the set 80 is
a

closed. Finally, let .E be a connected subset of Mx (- 1, 1), compatible
with eo ; then 0 for some v, which follows jE7 C Tv (since other-

wise .E c Zv) ; 3 if E C 7 (v, a) for some a, x and k  n, then .E is compati-
ble with (B’) ; in the oposite case we have E C U F.,n (v, 0), which follows
that .E c int B, w int ((M X JR) B B,,) (since (v, u) are open), and this
implies that E is compatible with (8~~. Q. E. D.

REMARK. In the case of the theorem 3 we do not need to use the
lemma 10 (we can assume B~ C 1Vl X (-1,1) and take for et the set of
hyperplanes M X (k~, k = ± 1, ± 2, ..., f being the identity ; besides, we
do not need then to triangulate the whole M).

To prove the theorem 1 it is now sufficient to satisfy its conditions for
(B;,) (in ,M X instead of ~B~~ (in M,).

II. Triangulation of the projected system. Let n be the map M X 1R 3 (u,
t) - u E M. There exist a locally finite simplicial complex K. with I Kt I = 11l
and a homeomorphism r : M 2013~ M such that

(1 ) i has property (A),

(2) any member of exi = 1: (Xt) is compatible with in r’) r, r’ Ee),
and for any Lo E r (~o) is an analytic submanifold and 1’q: g -~ T (e) is an

analytic isomorphism.
In fact, by I (1), (2) and § 1, V, the sets :n (r n r’ n (MiX (- 2, 2))) with

1’, r’ E e are semi-analytic and form a locally finite family. For this family
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take a simplicial complex Ki and a homeomorphism according
to our induction hypothesis; then we need only verify the property (2). Let
fl E and 1’,1’’ E e ; we will show that 8 C n (r n r’) or .I’’);
if or dim then, by I (3), hence the

alternative follows; in the opposite case we have and dim T = n;
since fJ is contained in the set n X (- 2, 2))) or in its complement
which is the union of two disjoint sets I I ~ 2),
each compact because of 1 (1), (3)~ it implies that p (r) or fl (r).

Now, let .~ be a locally finite simplicial complex with I K = M such that

(3) each simplex of g is contained, together with one of its vertices, in a
simplex of .Ki .
One can take for I~ e. g. the regular (barycentric) subdivision of Kt (20).
Then we have :

(4) any member of 9C = i (g) is compatible with (n (rt n r2) : r2 E e) ;

(5) for any e E 9C, r (g) is an analytic submanifold, and 1’e: e 2013~- T (Lo) is an

analytic isomorphism.
III. A prismatic stratification. Let Z denotes the collection of all non-

empty sets of the form ( x with fJ E CJC and FEe. Then clearly
U (7: y E = u ( 1’ : For any fl E CJC, denote by s the image by
T of the set of vertices of (fl); clearly, s c fl. The following properties
hold :

(1) each y E E is a topographic analytic submanifold of M X 1R E 9C,
bounded and partially semi-algebraic ;

(2) E is a locally finite collection of disjoint sets ;

i closed and has property (P) ;

(5) any connected subset of which is compatible with £ is also

compatible with ~B~~ ;

(6) for any y E E, y is a continuous function on a (y) and a union of mem-
bers of .6: we have for any f3 E 9( contained 
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PROOF. For by II (4), we have 

which, together with I (1) and II (1), (5), implies all the properties of (1).
As to (2), the local finiteness of e is a consequence of that of 9C ande

hence, by II (4), Pi = f32 G 11: n T2), which gives 1’i = 72. The property (3)
follows from I (5), since the members of J3 are continuous functions on

connected sets; (4) coincide with I (4), and (5) is a consequence of I (6) in
view of the fact that any F Ee is a union of some members of E.

To prove (6), consider any y E -0 and Since y is bounded,
we have n (y) _ ~, and, by (4), reS. For any u the set (ju) X 1R) n 7
consists of one point, as a connected ~2~) subset of the set (ju) x 1R) n ~S
which is isolated (by I (1), (2)). Therefore y is a continuous function on fl.
Let Pi E c fl ; then a continuous function on and is contained
in the set X S; this set is a locally finite union of (disjoint) mem-
bers of J2 each being a continuous function on Pj (and fli is connected),
hence 1’PI must be one of them. This establish the second part of (6).

To prove (7), assume E Z and n (yi) = n (y2) = p. Let 7,  y2

on then clearly 7, on s (3) ; we have 1’iC Ii with E e and P =
N N N N N

=’Z (g) c P = T (ê), e c if with e E K and e E K1 (see II (3)) ; now =

and, using II (2), by the same argument as for (1) and (2),
N N N N

we conclude that r2 are continuous functions and /§i since, by
II (3), ~ contains a vertex of Lo, we have ; on

#n #, which implies 71  72 on 8 (fl) Q. E. D. 
’

Let y1, Y2 E Z ; we call yi , 1 y2 a consecutive couple of J2 iff a ("1) =
_ ~ (Yz)~ 71  Y2 (on n (yl)) and "2) does not contain any member of E.
Then the following property holds:

is consecutive, then for each fl E cK contained in n (y) we have

is consecutive.

Assume that

. Take a point x E yt .

(2~) This can be seen from where ~=r(~) and
I.

ie a decreasing sequence of compact
connected sets (they are connected, a

6. Annali dellct Scuola Norm. Sup.. Pisa.
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Since is locally finite, we have (by (4))

for some neighborhood TI of x. Since 1(; (x) E a (y), it follows, in view of (4),
that n (7) (y") # o for some y" E Z such that x E y". Therefore (y") =
= n (y) and (in view of (6) and (2)) y1 C y". But this implies y" C (y, y’j
(since otherwise whence which is

a contradiction. Thus our alternative holds.

Denote by ~# the collection of all sets r2) where r., "2 is a con-

secutive couple of 12, and put E- = Then we have:

(9) E- is a locally finite collection of disjoint analytic submanifolds of

and U 12, : 
In fact, the first part of (9) follows from (1) and (2); to see the second,

observe that M = U c)C), and that for each p E 9C the set

U r’]: y, Y’ cons. couple of f with a (y) = PI =

and cons. couples of f with n (y) = #I,

the equality following from (3), is a non.void (by (3)) closed-open (22) subset
of fl X 1R, and therefore coincides with the latter.

It follows, by (5):

(10) all the members of B* are compatible with (82).
Finally we have:

(11) for any y E B*, y is a union of members of E*; if y = (yi ~ .~#,
any member of E- contained in y is of the form (y~ )~ or (y2)~ or

((Y~)~ ~ (Y2~d) 
In fact, for any consecutive couple ’11’ ’12 of J2 we bave, by lemma 11,

and 1 is equal to ( hence (11)
follows in view of (6), (8) and (2).

(2!) This follows from the fact that [y, y’] or (y, y’’) are closed resp. open in fl x 1R,
and that the first union is locally finite.
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IV. Corresponding rectilinear stratification and stratified map. For any
r~ : r - r being the set of vertices of any open simplex e (in M), denote
by (r¡) the open simplex (in .M x 1R) whose set of vertices is q ; thus

(q) : ~O --~’IR. We have obviously :  1J2 and =1= ’YJ2 on r =&#x3E;  
on (1, and ’qi &#x3E; C 

Let g = r-1 . For any y E E put

Therefore, since g (s (~8)) is the set of vertices of g (~8), a (y) is a function on

Clearly,

Finally we have

L* is a locally finite collection of disjoint open cells.

Furthermore,

to see this, we observe (as before for III (9)) that for any ~o E .g the set

cons. couple of B (y) =,r (e)) =

’ and y’, y" cons. couples of B with n (y) == T (tao))

coincide with the set e x 1R (as a non-void closed-open subset of the latter).
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Consider any 
. In the first case the map

and in the second the map

associated with (~8), is an analytic isomorphism, by the lemma  3,
in view of II (5) and III (1).

Since, by II (1), the map has property (A), its inverse gp has pro-
perty (A-1) ; by (1), (4) and III (6) we obtain

i. e. the condition (s) of § 2, hence, by lemma 14, in view of III (6) and

III (I), the map

associated with g~ :
We have

is continuous and has property (A -1).

In fact, let , I being as before, we have by (4),
whence (see it follows, by lemma 12,

that the map

associated with go, is contained in hr; therefore, in view of III (11), by the
lemma 12, the conclusion follows.

We put now h - U ( hY : Then, by the definition of L*, (5), (6)
and III (9), is bijective and h (E*) _ L*. In viev

of (7) and III (11) we have (23) which follows easily that
h is a homeomorphism, since, by (5) and III (9), (hY: ~6~j # is a locally
finite family of compact sets. By III (11), this yields : .

(8) for any 0 E L., o is a union of some members of .L’~.

11

(23) since any I is the union of hÝ with
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Finally, since (by local finiteness of f*) for any bounded U c M X 1R the
set U X (M x 1R) meets only finitely many hY , 2 it follows (see § 1, V) that h
has property (A-’).

Thus z’~ = h-1: is a homeomorphism satisfying the
following conditions :

has property (A)

) is an analytic isomorphism.

V. Triangulation. By (5) and (8), L* is a locally finite cellular complex,
hence, by lemma 15, there exists a locally finite simplicial complex K* such
that every cell of L* is a finite union of simplexes of K*; furthermore, by
(6), 1 K* I = M X 1R. Therefore, in view of (9), III (9) and III (10), 7:- with

satisfy the conditions of the theorem for (B’).
This completes the proof of the theorem.
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