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CALCULUS OF VARIATIONS FOR INTEGRALS
DEPENDING ON A CONVOLUTION PRODUCT

by DAVID A. SÁNCHEZ (Chicago) (*)

1. 1 ntroduction.

This paper considers existence theorems in problems of the calculus

of variations for integrals in an infinite interval, whose integrands depend
on an unknown function of one real variable, its derivative, and a convo-
lution integral. The direct methods of the calculus of variations are applied
in connection with properties of lower semicontinuity of regular integrals.

Specifically consider F (x, y, d, p) a real valued continuous function de-
fined on .E4.

ÐEFINI1.’ION: The class ~ is the collection of all functions y = y (x),
- 00  x  00 , satisfying

1. y (x) is absolutely continuous in every finite interval,
2. y’(x) is L. integrable on (- oo, oo), or briefly y’ (x) E Li (- oo ~ 00),
3. F y (x), y’(z), p (x)] is L-integrable on (- oo ~ 00), where p (x) is

one of the following convolution integrals :

Pervenuto alla Redazione il 21 Gennaio 1964

(*) This paper is based on material in the author’s Ph. D. dissertation, written at the
University of Michigan nuder the direction of professor Lamberto Cesari, to whom the

author expresses sincerest gratitude. The work was supported under Department of the

Army Contract DA-36-039SC-78801, administered by the U.S. Army Signal Corps.
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dt, where

given and in Li (- oo, oo), or
0:

a~t with g (x) given a8 above
-v

It will be assumed K is non-empty.
Known properties of seminormal functions are used to prove sufficient

conditions for

to be lower semicontinuous in g with respect to uniform convergence, on

(- 00, oo). An example is given showing that, under the hypotheses given,
need not be lower semicontinuous in .~ with respect to uniform con-

vergence on every compact set in (- oo, 00).

Let P be a given compact set contained in .~2.

DEFINITION : The class g is any non-empty subclass of l~ satisfying
1. The graph of every y (x) E g contains a point (x, y (x)) E P, and

2. 2T is closed with respect to uniform convergence on every compact
set in (- oo, 00).

A theorem on existence of a minimum of I [y] in ~ is given. The usual
condition of strong growth of F (x, y, d, p) with respect to the variable d

guarantees that a minimizing sequence of functions possesses a convergent
subsequence. However, the convergence is uniform on every compact set in
(- 00, oo), and additional hypotheses are needed to guarantee uniform con-
vergence on (- oo, oo). An example is given of a class ~ and a function
F (x, y, d, p) which satisfy the hypotheses of the theorem.

This problem will be discussed in the framework of the direct methods
of the calculus of variations. In particular our approach will be in the spirit
of Tonelli’s book and paper [8, 9] on the extrema of the ordinary form of
the integrals of the calculus of variations, and the subsequenct extensions
to infinite intervals by Cinquini [3] and Faedo [4, 5]. The recent extensions
of Tonelli’s work by Turner [10] will also be employed. However, since

these authors only required uniform convergence on compact sets, and the
functionals considered in this paper are not lower semicontinuous with

respect to this mode of convergence, a different analysis is needed.
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2. Preliminary Definitions and Lemmas.

The following lemma states some important properties of the convolu-

tion integral. The proofs may be found in [6] and [7].

LEMMà 2.1. If f (x) and g (x) are in L1 (- oo, oo) then the convolution

integral, exists for almost all x, is in L1 (-- 00, 00),
--

and satisfies the following properties

where h (x) is in .L1

b

Given a real valued function a S b, we denote by V ( f ) the
a

total variation of f (x) on [a, b].

DEFINITION : The function f (x), - oo [ x  oo, is said to be of boun-
/ m B

ded variation denoted by V ( f )  oo if there exists a number M &#x3E; 0

b 

B 2013oo /
b

such thal V ( f )  M for every finite interval [a, b]. 
’

a

If a function f (x), - oo  x  oo , is absolutely continuous on every
finite interval, and satisfies f’ (x) E L1 (- oo, oo), then we have the relation-

ship

A sufficient condition to pass from uniform convergence on every com-

pact set in (- oo, oo) to uniform convergence on (- oo, oo) in the class of
functions of bounded variation is given in the next lemma. Examples may
be constructed to show it is not a necessary condition.

. LEMME 2.2 Let In (x), n =1, 2, ... be of bounded variation in - oo 

 x  oo and suppose lim uniformly on every compact set
n - co

00

in (- oo~ oo), where V ( f )  oo. If given arbitrary e &#x3E; 0 there exists a
- 00

positive integer N and a constant k &#x3E; 0 such that
la a

then lim fn (x) = f (x) uniformly on (- oo, oo).
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PROOF : By hypothesis and since 0 we may

choose k &#x3E; 0 such that and for n greater than
1-1-." I-I." v

some positive integer Since the convergence is uniform on

there exists a positive integer N2 such that i

implies I Thus for n ) N = max (Ni ~ N2) and
we have 3t and a similar result holds for -

hence the convergence is uniform on (- oo, 00).

We shall now give several definitions concerning semiregular functions,
then state without proof a result due to Turner [10] which characterizes

semiregular positive seminormal functions. This result extends an analogous
statement proved by Tonelli for functions of class C1.

Let f (x, y, d, p) be a real valued function on where x is real,
y, d and p are in 

DEFINITION : The function f (x, y, d, p) is said to be semiregular posi-
tive is convex in d and p for every (x, y).

DEFINITION : The function f (x, y, d, p) is said to be semiregular posi-
tive seminormal if it is semiregular positive and for no points xo , 9 Yo I do , I

1

di , po , with (d1, pi) # (0, 0) is it true that

for all real A and y.

LEMMA 2.3. The function f (x, y, d, p) is semiregular positive seminormal
if and only if for every (xo , yo , do , po) E E 3n+1 and e &#x3E; 0, there a.re constants
6 &#x3E; 0, v &#x3E; 0 and a linear function x (d, p) = a -~- b . d -f - c - p such that for
all (x~ y) with

3. Theorems on Lower Semicontinuity.

This section considers sufficient conditions for the functional I [y] =

dx to be lower semicontinuous at an element of

K, the class of functions defined in § 1, where is a real valued
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continuous function defined on .E4 and p ~x) is one of the convolution inte-

grals previously mentioned. We first consider the case p (x) = y’ * y’.

THEOREM 3.1. Let y0 (x), - be in K and suppose that:

for every - oo  x  oo, and every

b) For almost every at which do (xo) = and po (xo) =

= (yu *y() (xo) exist the following holds : for every 8 &#x3E; 0 there 0

and a linear function z (d, p) = r + b · d~ -~- c · p such that for every (x, y) 
with x - xo 16 t  ~ we have

for all d and p, and

for all d, p such that

If yn (x), n =1, 2, ... , - oo  x  oo, is any sequence of elements of K

possessing uniformly bounded total variation and satisfying
uniformly on (- oo, oo), then

PROOF : Let yn (x), ~c = 1, 2,..., - oo  x  oo, be such a sequence,
then under the hypotheses given, the sequence is equicontinuous. This
follows from the fact that the convergence is uniform on (- oo, oo), all

the functions are of bounded variation, and that a sequence of continuous

functions, uniformly convergent on a closed interval, is equicontinuous.
Choose any k such that 0  k  oo and define for y (x) E K

Let e &#x3E; 0 be chosen; then there exists z &#x3E; 0 such that

for every measurable set jE7 contained in [- k, k] such that m (.E )  -r,
where m denotes Lebesgue measure. Further, yo (x) E Li (- oo, oo) gives
po (x) E Li (- oo, oo) and by Lusin’s theorem there exists a non-empty closed
set B contained in such that do (x) and po (x) exists and are conti.
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nuous on B, and in addition, w ([- k, kJ - B) C z and for each a? E B hypo-
thesis b) is satisfied. Thus for every x E B there exists a B and a linear

function z (d, p) = r + b d + c. p satisfying properties b.i) and b.ii).

We assert that a 6nite set of non-overlapping closed intervals ~BJ~
s =1, ... , N, whose union is contained in [- k, lcJ, can be constructed such
that

a) Their union forms a covering of B

b) With each interval ~B8], s = l, ... , N, is associated a constant 6,
and a linear function rs -f - b, d + o, - p such that hypotheses b.i) and b.ii)

1

are satisfied for all x E [0153, , with and 8 = da , and

where R=max
,,- - ,

and a satisfies the following : for every measurable set H c [- k, k] with
w w 

mi we have and

The construction ie an extension of a construction of Tonelli [9], where
he proves a similar theorem for the ordinary form of the integral of the
calculus of variations. See also Cesari [11 and Turner [10].

Letting .Es = [0153, , - B, s = 1, ... , N, we have

By hypothesis hence let and by the

assumptions on the sequence bIn (x)~ we know there exists a positive cons-

tant S such that
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and M h 0 be such that

where

Then

and therefore,

By commutativity of the convolution operation, the expression
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may be inserted in the bracketed expression above. In addition, the convo-
lution operation is distributive, and certain interchanges of limits of inte-
gration are justified since y’ 0 (x) and 1/:1, (x) are in L1 (- oo 00), n = 1, 2, ... , I
hence we can write

for ,1, ~ M.

Since yo E K, we have I [yol  oo. By hypothesis, F (x, yo , do, po) 0,
hence for arbitrary e &#x3E; 0 we may choose k large enough so that

Now let and then for 3f sufficiently large

for n &#x3E; M which is the desired conclusion.

COROLLARY : If all the hypotheses of Theorem 3.1 are satisfied with

the exception that for a) and b) are substituted
and

is semiregular positive seminormal, then

PROOF: This assertion follows from the fact that by Lemma 2.3, the

condition of semiregular positive seminormality is a condition stronger than

b) of Theorem 3.1.
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EXAMPLE : The following example shows that one cannot substitute the
condition

yn (x) converse uniformly to yo (x) on every compact
set in

for the condition

. y. (x) converge uniformly to yo (x) in

in the hypotheses of Theorem 3.1.
Consider

and for - oo  x  oo let yo (x) = 0, and for n = 1, 2, ... , t

otherwise.

Clearly, = 11 2,..., y converge in the first sense given above, but not
the second, and f (x, y, d, p) and all the functions concerned satisfy the

remaining hypotheses of Theorem 3.1.

Computation of pn (x) = y~ ~ yn , n = 0, 1, 2, ... gives the following:

and the graph of pn (x) for n h 2 is as follows :
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The following estimate can be made :

Therefore,

where

arctan 2a

[arctan (2n + 2) a - arctan (2n - 2) a].

Evidently we have AI -+ 0 as for every ex, while lim i 
=- 00.

Hence for a sufficiently large value of oc we have At  0.
Corresponding to such a value of oc, choose n sufficiently large so that

and this gives

But this proves that I [y] is not lower semicontinuous with respect to the

weaker mode of convergence.
An important extension of the concept of lower semicontinuity occurs

when all the hypotheses of Theorem 3.1 are satisfied with the exception
that yo (x), - oo  x  oo~ is not in ~ in the sense that

does not exist. The following theorem considers this important case.

THEOREM 3.2. Suppose all the hypotheses of Theorem 3.1 are satisfied
with the exception that yo (x), - oo  x  oo satisfies

1) yo (x) is absolutely continuous in every finite interval,
2) yo (x) is in Li (- oo~ oo)~ and
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Then given any sequence yn (x), n =1 ~ 2, ..., I -- oo C x  oo, of elements

of :g possessing uniformly bounded total variation and converging uniformly
on (- oo, oo) to yo (x), and given any H &#x3E; 0 there exists an M ) 0 such
that &#x3E; H for n h M .

PROOF: Given H &#x3E; 0, we can find a ’&#x26;’ &#x3E; 0 small enough and k ] 0
large enough so that

a) there exists a closed set B -c 2013 ~ k I with m ([- k, k] - B)  z

and and exist and are continuous on B. Furthermore, every
x E B satisfies the ’hypothesis b) of Theorem 3.1 with x = xo , I and

b) a covering of B consisting of non-overlapping closed intervals

[oc8 , ~~ ~ = 1,... N, can be constructed as in Theorem 3.1 for which we have

Therefore,

But for any a &#x3E; 0 by the previous theorem there exists an M &#x3E; 0 such
that for rc &#x3E; M
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But

and since ~’

for n &#x3E; M and arbitrary e &#x3E; 0.

REMARK : The conclusion of the above theorem holds when the con-

dition of semiregular positive seminormality is satisfied and F (x~ y~ d~ p) ~ 0,
; ~ ~ d, P  °°.

The extension of the results of the previous two theorems to the case

p (x) = y’ * g, where 9 (x), - 00  x  00, is given and satisfies ’g (x)

and follows easily. No essential changes in

the proof are required.
The previous two results also apply in the case p (x) = y’ ~ ~ I y’ 1. Pro-

ceeding as in Theorem 3.1 one arrives at the following inequality for n large
enough oo ] k ) 0 arbitrary :

Since the total variation is lower semicontinuous in the class of fun-

ctions of bounded variation on (- oo, and (x) converge uniformly
to yo (x) on (- oo, it can be shown that given any 8 &#x3E; 0, there exists
an M &#x3E; 0 such that

for n &#x3E; M and any value of p, and t. The proof of the theorem now

proceeds as before and leads to the desired lower semicontinuity. The case
where does not exist may be treated in a similar fashion and analo-

gous results hold for the case p (x) = |y’|*g ( where g (x), - 00  x  00,

is given and satisfies and
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The case of vector valued functions may be considered as follows : let
F (~ ~ d, p) be a real valued continuous function defined in E8n+l, where x
is real and y, d, p are in .En. Let K be the class of functions y = y (x) =

(x), ... , 1In (x)], - oo  x  oo, satisfying
1) yi (x) is absolutely continuous in every finite interval, i =1, ... , n,
2) y, (x) is in .L1 (- oo, oo), z =1, ... , n, and
3) F [x, y (x), y’ (x), ~ (x)] is L-integrable on (- oo, oo), where p (x) is

one of the following convolution integrals :

is given with g; (x) E Li (- oo, oo), z =1.... , n, or
d) -y 1 with g (x) given as above.

Assuming .l~ is non-empty, theorems of lower semicontinuity in K with
respect to uniform convergence on (- oo, oo) may be stated and proved.
The statements and the proofs are similar to those of Theorems 3.1 and
3.2 and will not be given.

4. Theorems on Existence of a Minimum.

In this section is given a theorem on existence of a minimum of

in the class 8 defined in § 1, where p (x)

is one of the convolution integrals mentioned in § 1. We will consider the

case p (x) = y’ * y’, then mention extensions to the other values of p (x) as
well as for vector valued functions.

THEOREM 4.1. Consider j 1 where

= y’ ~ y’~ and suppose that for all (x, y) E .E2 :

a) F(x, y, (x) where 1p (x) is continuous and in L1 (- oo oo).
The inequality is assumed to hold for all values of d and p.

b) F (x, y, d~ p) is semiregular positive (see § 2).
c) There exists a function Q (8), defined in 0  s  oo~ such that for

all 8, Q (8) &#x3E; k2, k = 0 and constant, lim Q (s) = oo, and furthermore,’

The inequality is assumed to hold for

any value of p.

6. Annali delta Souok Norm. PUG.
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d) For any value of d, there exists a constant L &#x3E; 0 such that

Furthermore, suppose that given a class of curves g the following is
satisfied : ’

e) Given any y = y (x), - oo C x C oo, in If, there exist constants

~ ~ 0 and a &#x3E; 0, with M not depending on y, and a function (x),
which is .G-integrable ~ a, such that

holds for and any other

f ~ There exists at least one curve i , in k

and a constant N such that where N satisfies

Then I[y] possesses an absolute minimum in K.

PROOF : If we define and

then by hypotheses a), b) and c) we have

I for - and

iii) F, (x, y, d, p) is semiregular positive seminormal.
Let = 1, 2,..., - oo  oo, be a minimizing sequence of

elements of g satisfying it 1 . By the assumptions giveni ~y ~ ~ n Y P g

for the class K, there exists a positive constant Q such that for each

n =1 ~ Z, ... , there exists an rn such that

and

Siace yn (x) E Ll (- oo, oo) we may write for all x and n = 1, 2,...

Hence the [y,, (r)], n =1~ 2, ... ~ y - oo  x  oo, are equibounded.
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In view of hypothesis c), the usual argument of the direct methods

(see for instance, Tonelli [9]) enables us to assert that the yn (x), n = 1, 2, ... ,
are equiabsolutely continuous in (- oo, oo). Therefore, the hypotheses of

the ,Ascoli.Arzela theorem are satisfied, and there exists a subsequence
which converges uniformly on every compact set in (- oo, oo) to an abso-
lutely continuous function yo (x), - oo  x  oo. To a-void added indices,
denote the subsequence by yn (x), n = 1, 2, ... , - oo  s  oo.

Since the set P is compact and the convergence is uniform on P, there
exists a point [xa , yo (xo)J E P. By lower semicontinuity of the total variation
we have for any t &#x3E; 0

The last expression is independent of the choice of t, and hence we may
assert that y’0 (x) is in L1 (- oo, 00). The following analysis shows that 
exists. 

_

Given 8 &#x3E; 0 there exists A ) 0 such that V (Yo)  a. Define

hence

Furthermore =1, 2, ..., - 00  x  oo, are absolutely con-

tinuous in every finite interval, and lim 

uniformly in (- coy cxJ). Suppose Il does not exist, then by Theorem
3.2 given any H ~ 0 there exists a positive integer 1J1 such that n h 1V~

implies I1 [yn] &#x3E; H.

For I t ~ ~L/2 and I x [  A /2 we bave I x - t C A, and
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Therefore

By hypothesis d) we have

But the right hand expression is independent of rc and the choice of A,
therefore the It [y.,,], n = 11 2, ..., are uniformly bounded which is a con-

tradiction. 
°

Since K was assumed to be closed with respect to uniform convergence
on every compact set in (- oo, oo), we may assert that yo (x) E and hence

I, [Yo] &#x3E; il . We may now employ hypothesis e), and choose A sufficienthy

large so that in addition A/2 ~ a, and

Neglecting the term of order e 2, a modification of the above estimate

leads to the following inequality
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By hypothesis d) it follows that

By hypothesis e) we have

Since the y,, (x), n = 0,1, 2,..., are absolutely continuous in -
, and lim yn (x) = yo (x) uniformly on

by the proof of Theorem 3.1 we can assert that for n large enough,

Therefore, we arrive at the following estimate :
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By hypothesis f ) there exists a y = y (x) in K such that

and it follows that

Hence we have

and since 8&#x3E; 0 was arbitrary, for n large enough the right-hand expression
can be made as small as desired. Since the choice of ~1 did not depend on
the yn (x), n = 1, 2,... we can assert by Lemma 2.2 that the [Yn (x)] converge
uniformly on (- oo, oo) to yo (x).

Since is semiregular positive seminormal the hypotheses
of the corollary of Theorem 3.1 are satisfied, and
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But yo (x) E g implies and therefore If [yo) == ~ . Thus yo (x),- 

, gives I1 [y], and hence gives I [y], an absolute minimum in g.

REMARK : It should be noted that conditions of the type NL  k2N in

hypothesis f ) are found in a different setting in [1, 2]. The following is an
example of a class it. and an integral satisfying the hypotheses of
Theorem 4.1.

EXAMPLE : We wish to minimize

In the class g of all curves y = y (x), - oo  x  oo, satisfying the
hypotheses given in § 1 and satisfying

i) ~ I y’(x) S D, where .D is a given constant With 1  D  oo, and

the inequality holds for all x where derivatives (one sided or two sided)
are defined,

Ii) y (0) = 0, and
iii) y (2) =1.

We will show hypotheses a) through f ) of Theorem 4.1 are satisfied,
hence I [y] possesses an absolute minimum in K, as follows :

hence let y (x) = 0.

semiregular positive seminormal.
hence let and let

hence let

e) Every y (x) in g passes through

Furthermore since

y (x) E .K. Thus let M = 1 and let with a ) 0 and

arbitrary.
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g) Consider

1 otherwise,

and y (x) E K. Furthermore

Hence we may let N = 3, and NL = 3/4  k2 M =1.

COROLLARY. Suppose all the hypotheses of Theorem 4.1 are satisfied

with the exception that for e) is substituted

e’) There exist constants M &#x3E; 0 and a &#x3E; 0 such that for 
all y, I y2 di , d2 , and P2 the following holds :

where 0 (x) is L-integrable ~ a. 
-

Then I [y] possesses an absolute minimum in 2L
The extension of Theorem 4.1 and the corollary to the case p (x) ==

~ ( y’ ~ ~ ~ I follows immediately. The statements and proofs are the same
and will not be given. For the case p (x) = y’ * g a modification is required.

THEOREM 4.2. Consider

where is given, and

I Suppose that hypotheses a) through e) of Theorem 4.1 are

satisfied and

f ) The constants M and .L satisfy Then I [y]

possesses an absolute minimum in K.

PROOF: No changes are made in the construction of a minimizing sub-
sequence yn (x) E 1~, n = 11 2, ..., - oo  x  oo, which converges uniformly
on every compact set in - oo  x  oo to yu (x), - oo  x  oo. Similarly,
it can be shown that yo ~x) E .g.
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Given 8 &#x3E; 0, we choose the constant A, and define the functions

yn (x)~ n = 0, 1, 2, ... , - oo  x  ov, as in the proof of Theorem 4.1. Then
for ~~2~ a similar computation gives

The proof now follows that of Theorem 4.1, and leads to the following
inequality :

By hypothesis f ) the expression in the first bracket is positive, and
the proof proceeds as in Theorem 4.1. Hence we may assert that yo (x) gives
I [yJ an absolute minimum in g.

The extension to the case p (x) = I y’ I- I g I follows from the above, and
the statement and the proof of the corresponding theorem is the same.

The statements of the above existence theorems and their proofs for the
cases of vector valued functions (as defined in § 3) are analogous and will
not be given.
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