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POTENTIAL THEORY AND SEVERAL
COMPLEX VARIABLES (1)

by J. J. KOHN (2)

A. Introduction.

The purpose of this paper is to present an outline of the potential
theoretic method on open complex manifolds and to describe some of its

applications. A detailed account of these results will be found in [7]. The
type of problem discussed here was first formulated by Garabedian and

Spencer in [2]. Spencer and the author in [5J investigated the problem by
means of singular integral equations. Morrey in [9] established the a priori
estimate (I) of section G in a special case; y which was the author’s starting
point to the solution of the problem (see 16J, [7] and [8]). Ash in his thesis
and in [1~ developed a method for deriving (I) with respect to moving frames
which enabled him to establish (I) in greater generality. The introduction
of moving frames also simplifies the statement and derivation of (III). Esti-

mates of the same type as (III) have been established by A. Andreotti and
E. Vesentini.

We wish to point out that, with the exception of complex dimension
one (see section I), the boundary value problems discussed here are not

« coercive ». Thus the methods for solving the Dirichlet problem cannot be

generalized, instead we have adapted the techniques developed in H6rman-
der’s book [4].

Pervenuto alla Redazione il 28 Settembre 1963.

(1) This material was presented in a lecture at the Conference on Analytic functions
held in Krakow, Poland from August 30 to September 4, 1962.

(2) This research has beeu partially supported by the National Science Foundation

through ooutraots held at the Institute for Advanced Study, Princeton and at Brandeis
University.
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B. Notation.

Let M be a hermitian complex analytic manifold of complex dimension
n. We denote by A the space of C °° complex-valued forms, then we have
the following direct sum decomposition :

if q) E sllY’ q we write, in terms of holomorphic local coordinates :

The complex gradient . is defined by :

where

and

Observe that 82 = 0 and that if u is a function then it is holomorphic if

and only if 8u = 0.
The hermitian metric on M induces an inner product on the forms at

each point of M, thus if 99 and V are in their inner product,
is a C °° function on M. If the integrals oaf and

over M are finite we define (cp, ip) and 11 rp II by :

and

we denote by -0 the hilbert space which is obtained by completion under
this inner product. 

-

Now we the formal adjoint of a, by requiring that
lsg be that form which satisfies the equation
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for all compactly supported forms y. Observe that C q-l (thus
_ (0)) and that 1)2 = 0.

Finally we define the complex Laplace-Beltrami operator
by 0 = 81) -f - 1)a and note that 0 preserves type, that is D C (4p, q .

C. Summary of potential theory when M is compact.

If M is compact we say that a form Q E A is harrnonic if it satisfies
the equation Jg = 0 and we denote by 9f the space of harmonic forms.
Now observe that:

hence 99 is harmonic if and only if agg = 0 and Oq) = 0. In particular if

99 E ° then g is harmonic if and only if agg = 0.
The following is the basic theorem of potential theory on compact ma-

nifolds. It asserts that there exists a « Green’s operator » N for the La-
place-Beltrami operator, which commutes with a and which has certain

regularity properties. More precisely we have :

THEOREM. There exists a unique bounded operator N : whose

null space is 9~ and whose range is orthogonal to g{ such that :
a) If 99 E A then 99 = -~- Hg, where g is the orthogonal projec-

tion on W.
Furthermore N has the following properties :

b) N preserves difierentiability, i. e. N sIl c A.

c) If 99 E A then Nagg = angg.
d) N is completely continuous.

The following are immediate consequences of properties a), b) and c),
I) 9~ represents the a-cohomology, that is

II) Given a E A there exists 99 E A such that R g = a if and only
if a is orthogonal to 9~ ~ and then 99 = Na satisfies the equation.

III) Given there exists such that ag~ = a
if and only if (i) a is orthogonal to ck and (ii) 8(1,. = 0 ; and then 99 = 
satisfies the equation.

IV) If f is a function then we have
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D. Some applications of potential theory on open manifolds.

The expression for the holomorphic projection of a function given by
IV) is useful in establishing existence theorems on non-compact manifolds.
The formula is not so interesting on compact manifolds since in that case

all holomorphic functions are constant.
As the first example we outline the solution of the Levi problem on

manifolds - the problem was first solved by entirely different methods
by H. Grauert (see [3]). We restrict our attention to a manifold M which

is an open submanifold of a hermitian manifold lVl’ such that M (the clos-
ure of M) is compact and blVl (the boundary of M) is a C °° submanifold

of of real dimension 2~ 2013 1. Under these assumptions we say that M
is a ,finite manifold.

DEFINITION. A finite manifold M is called strongly pseudo-convex if

every P E blVl has a neighborhood U (in IVl’) on which there is a real C °°

function f such that:
if and f ( Q)  o if u.

b) 
c) There is a holomorphic coordinate system (z1~ ... , z") on U such

that the n by n matrix is positive definite. ,

The Levi problem can be stated as follows. If M is strongly pseudo-
convex and if P E bM to show that there exists a holomorphic function h
on M such that lim aniformly. It is not hard to construct a

Q2013&#x3E;
holomorphic function u in a small neighborhood U of P, whose zeros inter-
sect M only at P (in fact we may choose for u a polynomial of degree two).
Now let V and W be neighborhoods of P such that U :) 17 :) V n W and

let o be a C °° function on U which is one on IF and zero outside of V.

Further let f be the function defined on 111 by :

if

if

Then we define the required function h by:

Now observe that a f is C °° on M and hence (by the regularity theorem

discussed in the last section) N7f is also C °° on M, therefore Iz has the
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same singularity at P as f and hence h is the required solution, since by
IV) it is also holomorphic.

As another application of IV) we sketch a proof of the existence of

holomorphic coordinates on an integrable almost-complex manifold ; this

theorem was first proved by Newlander and Nirenberg in [10] and the
proof given here is along the lines suggested by Spencer in [11]. If W is

an integrable almost-coinplex manifold and if P E W we want to construct

a holomorphic coordinate system with origin at P. Observe that the tangent
space at P has a complex structure and denote by u1, ... , u1t the coordi-
nates on this space. Let M be the unit ball in the tangent space. Let

4S : M - W, be a diffeomorphism which sends the origin into P and which
induces the identity map on the tangent space at P. For each t, 0 c t  1
we define ~ : ~ 2013~ W by :

Thus for each t we obtain an integrable almost-complex manifold Mt, whose
underlying differentiable manifold is l~ and whose almost-complex structure
is induced by It. Note that the structure on Mo is the same as the

complex structure on the tangent space at P.
The manifolds lVl t (for small t) are strongly pseudo-convex integrable

almost-complex manifolds on which there exists an operator Nt which has

property IV). Furthermore if qa E sIl, then Nt cp and all its derivatives are

continuous in t in the sense of the sup norm on compact sets. Now let ut be
the functions on Mt defined by:

Then the ut are holomorphic functions on y and for small t there exists

a neighborhood V of the origin on which the ut are a coordinate system.
Now for fixed t, small enough, we define the functions zk on by:

and the zk are holomorphic coordinates in a neighborhood of P.

E. Formulation of the problem.

In this section we formulate the problem of finding an operator N on
an arbitrary complex hermitian manifold M satisfying the properties which
are the appropriate generalizations of those listed in section C.

6. Annali della Scuola Norm. Sup. - Pisa.
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First note that in general the null space of Q is in general much

bigger than the intersection of the null spaces of 3 and 0. Hence the

definition of qe must be changed. Furthermore observe that every holo-

morphic function on M is an element of the a-cohomology ; thus, in gene-

ral, the a-cohomology of M is infinite dimensional so if we want I) of sec-
tion C to hold we cannot expect that N will be completely continuous.

We will define a closed operator .I with domain QLCZ, which for
smooth forms in will coincide with J and qe will be the null space of
L. Let T be the closure of a and let QT denote the domain of T. Let T ~
be the hilbert space adjoint of T and CDT’ the domain of T*. Now we
define .L by :

and we observe that

Then we have :

PROPOSITION. L is self-adjoint.
This proposition depends on the fact that T2 = 0 and (T*)2 = 0~ 1 we

then obtain :

is a bounded symmetric operator and hence .L is self-adjoint. The following
is an immediate consequence.

COROLLARY.

The operator .L restricted to 9DL (=) (the orthogonal complement of ge
in CDL) is one to one, we wish to prove the existence of a bounded operator N
on E whose restriction to ~ (v) cff is the inverse of L. The operator N
exists if and only if is closed. If L(DL is closed then for 99 E we have

where $ E OL and g is the orthogonal projection on ~. Then we define N
by ~ == ~ 2013 H$. So that if is closed then N exists and if N exists

then, by the closed graph theorem, L(DL is closed.

Whenever is closed then the operator N exists and satisfies the

following:
a) If g E Z then cp = LY99 + Hcp.
b) N preserves differentiability.
c) If 99 E CDT then TNQ = 1VTq?.
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These properties are the generalizations of properties a), b) and c) of section C.
Thus the properties I) II), III) and IV) are also suitably generalized.

F. Statement of the main results.

We restrict our attention to the case where M is a strongly pseudo-
convex manifold, as defined in section D. The convexity assumption is
needed since if M is a bounded domain in en and if the matrix is

negative definite at some point of the boundary then the range of T is

not closed and hence is not closed.

We denote by -(7f the subspaces of nl consisting of forms which are

000 on M (that is up to and including the boundary). The main result is

then given by the following theorem.

THEOREM. If M is a strongly pseudo-convex manifold then there exists
a bounded operator N on -0 which has the following properties :

a) If 9) E E then = EN99 + Hg.
b) N preserves differentiability and differentiability up to the boun-

dary, i.e c s7l and c sIl.
c) If 99 E then NTq, = TN99.
d) The restriction of A to Ep, q for q ) 0 is completely continuous

and thus &#x3E; 0 is finite dimensional.
In order to establish this theorem we first give another description of

the operator L. Let ~D = we define an inner product D on T) by :

then (D is a hilbert space under D. Now it is easy to verify that .L is the

unique self-adjoint operator whose domain is contained in 9 and such that

if 99 E (DL then 
-

for all V E CD.
The existence of the operator N follows from the following proposition

which is established by means of the a priori estimates discussed in the

next section.

PROPOSITION. If J11 is strongly pseudo-convex and if q ] 0 then D re-
stricted to QP, q is completely continuous, i.e. if (g~~,~ is a sequence in q

such that D qm) ~ 1 then it has a subsequence which converges in .6.
Note that this proposition implies that is finite dimensional when

q &#x3E; 0 and since is in general infinite dimensional the restriction

q &#x3E; 0 is essential.
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The above proposition implies that if q ~. 0 then there exists C ) 0
such that for all r E Q we have

Furthermore if cp E then the left side of this inequality equals (Lg, (p)
and by applying Schwarz’s inequality we obtain which

proves that if q &#x3E; 0 then is closed. Now to show that o is closed
we want to prove that there exists C ~ 0 such that if we

have Since T* restricted to CDP, 0 is zero, .L restricted to

equals If then and thus, applying
the above inequality we obtain I Recall that

, thus if it can be approximated by Loc;
that is we can choose so that is as small as we wish.
Then we have :

Therefore for all which proves that

is closed.

G. The basic a priori estimates.

Let then we have,

THEOREM. If Jl is strongly pseudo-convex and if q &#x3E; 0 then there

exists G’ &#x3E; 0 such that for all 99 E we have

where

II depends on the choice of a finite covering of M by coordinate
neighborhoods and is given by :
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and d~S is the volume element on the boundary.
The estimate (I) is used to prove that D restricted to ) 0, is

completely continuous. Given a sequence such that D 1 then,
by Rellich’s lemma, for any compact set If c lkl there exists a subsequence
of which converges in the 11 II - norm restricted to K. To be able to

choose a subsequence which converges on all of M we must show that the
11 II - norm of 99k over a boundary strip can be made small, independently
of k, if the width of the strip is small. This is accomplished by using the
following estimate in conjunction with (I).

PROPOSITION. There exists C &#x3E; 0 and E &#x3E; 0 such that for all 99 E nl
and all 0  a m 8 we have :

where

M,, = I distance of P to bM is greater than a).
It is not enough to prove that D is completely continuous on Cbp’’7 we

must show that D is completely continuous on This is done by
showing that is dense in Cl) p, q in the D-norm. The denseness follows

from the regularity theorem and this theorem uses the estimate described

below.

Let R (P) be the distance of P to blVl and let r be a real C°° function

such that in some neighborhood of bill we have:

For let . Then if E E we define :

and

The norms II 111" are all equivalent in the sense that they induce the
same topology on f. Now if E O we define D1" 1p) by:

and again for all z, D, defines the same topology on CD.
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PROPOSITION. If if is a strongly pseudo-convex manifold and if q ] 0
then there exists C &#x3E; 0 such that for all 1: ~ 0 and all 99 E have :

where A (q) is a combination of components of 99 which vanishes on bM.

H. Remarks about the proofs of the estimates.

Before describing how the estimate (III) is used to establish the regu-

larity properties and how these are used to prove that 95 is dense in ~D
we will outline the ideas behind the proofs of the estimates.

First we remark that, by using a partition of unity, it suffices to prove
the estimates for forms whose supports lie in a coordinate neighborhood in

which intersects bM. So let Po E blVl and U a coordinate neighborhood
with origin at Po. Let ~1, ... , ~n be an orthonormal basis for the forms of

type (1, 0) at each point of U, such that

where the a§ are C °° functions on U and so that In = ar.
I i Z

If 99 E then in 1I fl M we have: CfJ = (p ii CI.f where I and J are
ordered sets of p-tuples and q-tuples respectively and

Then we have :

LEMMA. If 99 E E if and only if 99 - = 0 on bM whe-
never n E J.

If u is a differentiable function on u we define ui and up by :

and

where the ’~ are conjugates of the ~~ . Consider the following commutator:

The strong pseudo-convexity is equivalent to the positive definiteness

of the (n -1 ) by (n -1 ) matrix ti evaluated on bM. The inequality
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(1) is obtained as follows :

where the remaining terms are combinations of components which do not
involve derivatives ; then

where,

H is some (q is the order q-tuple consisting of Hand k,
sgn (H k) is zero if k E H and is the sign of the permutation which maps
(Hk) if The first term of the above expression is bounded

from below by and the terms indicated by dots contain products
in which only one factor is differentiated with respect to the thus they
can be estimated by (small + (large 2. Integration
by parts on the second term gives :

where the remaining terms can be estimated by (small const.)
(large 112. It remains to observe that

where the remaining terms contain no derivatives. Thus we obtain the de-
sired estimate by combining the above statements.

The a priori estimate (III) is obtained by a similar argument. The
precise form of (III) is given in the following.
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THEOREM. If if is strongly pseudo convex there exists a constant C

such that for all q ~ 0? g~ supported in and we

have :

I. ltegularity on the bouudary.

In this section we briefly indicate the method used in obtaining the

regularity theorems N sil c ,~, c s8l and the denseness in CD under

the D-norm. The detailed proofs are given in part II of [7].
The technique which has been developed for establishing regularity of

standard elliptic systems is based on an a priori bound of the .L2-norms of
the first derivatives, here we only have the weaker bound of the E-norm.

Now for functions (or forms) which vanish on the boundary the E-norm is

equivalent to the L2-norm of the first derivatives, hence in the case q == n
we can apply the usual techniques (in particular when n == 1 this is the

only case). When 0  q ~ n it is easy to construct a sequence of forms

in cbp, q whose D-norms and E-norms converge but the .L2-norms of the first

derivatives diverges.
Let the closure, under D, of then if q &#x3E; 0 the estimates

(I), (II) and (III) hold for forms in Note that the components appea-
ring in the last term of (III) vanish on the boundary hence we can bound
their first derivatives. Then by an adaptation of Aormander’s techniques,
which is too lengthy to describe here, we obtain the following.

PROPOSITION. If M is strongly pseudo-convex then there exists z &#x3E; 0

such that if 9.9 E &#x3E; 0 and satisfies the equation Di 1p) 1p)-,;I
for some a E sil p, q and all y E E 

The following theorem implies the existence of N.

THEOREM. If M is strongly pseudo-convex then CD, = CD, i. e. 95 is

dense in CD under the D-norm.

PROOF. Choose T so that the above proposition holds. Let y E CDp, q be
orthogonal to the Di inner product, that is Dz ( y, y) = 0 for all

Let ak E q be a sequence such that 7 = lim ak in the II 11-norm.
Let 99k E lJ)f’ q be such that:
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for Then 99k E and hence it follows (see [7]) that the above
equation holds for all ; so that in particular
and since we conclude that y = 0 and hence

THEUREM. If M is strongly pseudo-convex then
for and

PROOF. First observe that for any we have :

The equation is equivalent to requiring that
for all Since and since ~ I

we have that and the of the first derivatives of

is finite - in fact bounded by Thus

choosing z large enough we can apply the same arguments as in the pre-
vious proposition using the above inequality in conjunction with (III). The
statements and are obtained by similar ar-
guments. Finally to show that and we note

that if then so that and

Brandeis University

Waltham, Massachusetts
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