
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

S. SMALE
Stable manifolds for differential equations and diffeomorphisms
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e série, tome 17,
no 1-2 (1963), p. 97-116
<http://www.numdam.org/item?id=ASNSP_1963_3_17_1-2_97_0>

© Scuola Normale Superiore, Pisa, 1963, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1963_3_17_1-2_97_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


STABLE MANIFOLDS FOR DIFFERENTIAL

EQUATIONS AND DIFFEOMORPHISMS (1)

S. SMALE (2) (New York)

1. Preliminaries.

A (first order) differential equation (« autonomous ») may be considered
as a C°° vector field X on a C°° manifold M (for simplicity, for the moment
we take the C°° point of view ; manifolds are assumed not to have a boun.
dary, unless so stated). From the fundamental theorem of differential equa-

tions, there exist unique C°° solutions of X through each point of That

is, if x E M, there is a curve

(in a suitable domain).
Moreover if M is compact is defined for all t E .R (R the

real numbers) and X defines a 1-parameter group of transformations of M.

More precisely, a group of of a manifold M

is a C°° map F : R a M - M such that if g~t (x) = F (t, x), then

(t) Lectures given at Urbino, Italy, July 1962, CIAIE. This work has been partially
supported by the National Science Foundation under Grant GP-24.

(2) The author was a Sloan fellow during part of this work.

7. della Scuola Norm. Sup. - Pi8a.
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Then for each t, gi : 31 - M is a diffeomorphism (a differentiable ho-
meomorphism with differentiable inverse). A differential equation on a com-

pact manifold defines or generates a 1-parameter group of transformations

of We shall say more generally that a dy7inna2cal systent on a manifold

ill is a 1-parameter group of transformations of M.

If (pt is a dynamical system on M, defines a C°°

vector field on M which in turn generates pt. We also speak of X as the

dynamical system.
Let X, Y be dynamical systems on manifolds M , y respectively ge-

nerating 1-parameter groups ggt, 1pt. Then X and Y (or 1pt) are said to
be (topologically) equivalent if there is a homeomorphism h : M1 -+ M~ with
the property that h maps orbits of X into orbits of Y preserving orientation.

The homeomorphism h : M1 -+ M2 will be called an equivalence. Often
M1 = M2 -

The qualitative study of (1st order) differential equations is the study
of properties invariant under this notion of equivalence, and ultimately
finding the equivalence classes of dynamical systems on a given manifold (3).

In this paper we are concerned with the problem of topological equi-
valence. An especially fruitfull concept in this direction is that of structural

stability due to Andronov and Pontrjagin, see [5]. The definition in our

context is as follows.

Assume a fixed manifold M, say compact for simplicity, y has some fixed
metric on it. An equivalence h : M -+ lkI (between two dynamical systems
on M) will be called an -E-equivalence if it is pointwise within 8 of the

identity. One may speak of two vector fields X and Y on M as being C’
close (or dG- (X, Y )  ~) if they are pointwise close and in addition, y in

some fixed finite covering of coordinate systems of M, the maximum of the
difference of their 1st derivatives over all these coordinate systems is small.

(Similarly one can define a 01’ topology, see [7]). Then X is
structurally stable if given 8 &#x3E; 0, there exists 6 &#x3E; 0 such that if a vector

field Y on ifli satisfies dc, (X, Y)  6, then X and Y are 8-equivalent.
The problem of structural stability is : given M compact, are the struc-

turally stable vector fields on M, in the above C’ topology, dense in all

vector fields. If the dimension of 1 is less than 3, the answer is yes by
a theorem of Peixoto [9] ; in higher dimensions it remains a fundamental

and difficult problem.

(3) For a survey of this problem see talk in the Proceedings of the International

Congress of Mathematicians, Stockholm 1962.
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Although in this paper we are not concerned explicitly with structural

stability, this concept lies behind the scenes. Attempts at solving the pro-
blem of structural stability, y guide one toward the study of the generic or

general dynamical systems in contrast to the exceptional ones.
There seems to be no general reduction of the qualitative problems of

differential equations. However, there is a problem which has some aspects
of a reduction. This is the topological conjugacy problem for diifeomorphisms
which we proceed to describe.

Two diffeomorphisms T : M1-~ M~ , T’ : lVl2 are topologically (dif-
ferentiably) conjugate if there exists a homeomorphism (diffeomorphism)
h : Mg such that T’h= hT. Often lVl2 . This topological conjugacy
problem is to obtain information on the topological equivalence classes of
diffeomorphisms of a single given manifold (4).

When dim M = 1, the problem is solved according to results of Poincaré,
Denjoy and others, see [2]. For dim M &#x3E; 1, there are very few general theo-
rems. We now explain the relevance of this problem to differential equations.

2. Cross-sections.

Suppose X, or ggt, is a dynamical system on a manifold M. A crosssection
for X is a submanifold I of codimension 1 of M, closed in M, such that

(a) Z is transversal to X,
(b) if x there is a t &#x3E; 0 with ggt (x) E Z,
(c) if x E Z, there is a t  0 with get (x) E 2, and
(d) Every solution curve passes through Z.

If X admits a cross section Z, one can define a map T : ,~ --~. ~ by
T (x) = ggt, (x) where to is the first t greater than zero with gt (x) E Z. It is

not difficult to prove that T : ~ --~ ~ is a diffeomorphism, called the asso-
ciated diffeomorphism of I.

One can also easily prove that, if M is compact and connected, then
conditions (c) and in the definition of cross-section are consequences of

and (b).
Suppose on the other hand To : Zo ~ ~o is a diffeomorphism of a ma-

nifold. Then on R X 20 let (t, x) be considered equivalent to the point
(t + 1, T (x)). The quotient space under this equivalence relation is a new

differentiable manifold say Let ~o be the dynamical system on lVlo in-

duced by the constant vector field (1, 0) on R &#x3E; 20, and - Mo

(4) See footnote (3).
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the quotient map. We say that Xo on is the dynamical system determined

by the diffeomorphism To : ~o - ~o . ·

2.1. LEMMA.

Let gt be dynamical system generated by X on M, which admits a

cross-section Z. Then by a C °° reparameterization Sx (t) of t, x E M, one can
obtain a 1-parameter group (p, of transformations of M such that if x E Z,
CPt (x) E ~ and 99, (x) q ~ for 0  s  1.

We leave straightforward proof of 2.1 to the reader.

2.2. THEOREM.

Suppose the dynamical system qt generated by X on M admits a cross-
section f with associated diffeomorphism T. Let Xo on Mo be the dynamical
system determined by the diffeomorphism T. Let X o on Mo le the dyna-
mical system determined by the diffeomorphism T : ~ --~ ~. Then Xo on Mo
is equivalent to X on M (by a diffeomorphism in fact).

PROOF. First apply 2.1. Then the desired equivalence of 2.2 can be
taken as induced by f : (x)) = (s, x) for x E Z.

2.3. THEOREM.

If To : Zo ~ 10 is a diffeoniorphism, the dynamical system it determines
has a cross-section f with the property that the associated diffeomorphism
is differentiably equivalent to To.

For the proof. of 2.3, one just takes (0 x Zo) and the equiva-
lence is induced by the map of 10 - R a ~o given by x - (0, x).
2.4 THEOREM.

Let To : ~o 2013~ ~o ? T1: ~1 -~ 11 be diffeomorphisms which determine

respectively dynamical systems Xo on Mo and X~ on If To and T1 are
topologically (differentiably) equivalent then ..(B0 and Xi are topologically
equivalent, (equivalent by a diffeomorphism).

The proof is easy and will be left to the reader.
The preceeding theorems show that if a dynamical system admits a

cross section, then the problems we are concerned with admit a reduction
to a diffeomorphism problem of one lower dimension. Furthermore every

diffeomorphism is the associated diffeomorphism of a cross-section of some

dynamical system.

REMARK.

The existence of cross-sections in problems of classical mechanics first
motivated Poincare and Birkhoff [1] to study surface diffeomorphisms from
the topological point of view.
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A local version of the preceeding ideas on cross-sections is especially
useful. A closed or periodic orbit y of a dynamical system gt on M is a so-

lution (pt (x) with the property gt (x) = x for some t ~ 0. A periodic point
of a diffeomorphism T : ~ -~ ~ is a point p such that there is an inte-

ger m =J= 0 with denotes the mth power of T as atransfor-

mation). The following is clear.

2.5 LEMMA.

Let gt be a dynamical system on ~1 with cross-section Z and associated
diffeomorphism T. Then ~p E Z is a periodic point of T if and only if the

orbit of the dynamical system through p is closed.

A local diffeomorphism about p E 1’VI is a diffeomorpbism T : U - M, U
a neighbourhood of p and T (p) = p. Two local diffeomorphisms about

Pi E 11fi p2 E T1: Mi , T2 : U2 - lVl2 are topologically (differentiably)
equivalent if there exists a neighbourhood U of p, in Ui and a homeomor.
phism (diffeomorphism) h : U -+ U2 such that and T2 h (x) =
= h T1 (x) for x E Ti 1 The following is easily proved.

2.6 LEMMA.

If X is a vector field on a manifold M, X (p) # 0, for some p E M, there
exists a submanifold Z of codimension I of M containing p and transversal
to X.

Let y be a closed orbit of a dynamical system gi generated by X on
Let Z be given by 2.6 containing p, with z) fl y = p. One de-

fines a local diffeomorpbism T of ~ about p by T (x) = gt (x) E ~ where x is
in some neighbourhood U of p in Z and t is the first t &#x3E; 0 with gt (x) E Z.
Call T : 7 2013~ ~~ the local diffeomorphism associated to the closed 
a local cross-section.

2.7. LEMMA.

The differentiable equivalence class of T depends only on 7 and the
vector field X. It is independent of ~p and ~.

PROOF. Let Fi ? p2 E y with local cross-sections I ~2 respectively.
Assume first p2 . Then we can assume :£1 n Z2 = ~ . Define h : U- ~2’ y
for U a sufficiently small neighbourhood of p in ~1, by h (x) = CPt (x) for
x E U by taking t &#x3E; 0 the first t such that (pt (x) E -y2. Then h acts as a dif-
ferentiable equivalence. If p2 , I take P3 E 7, distinct from Pt, y and with

local cross-section ~3. Then apply the preceeding to show that the local
diffeomorphism of Z, is differentiably equivalent to that of ~3 and that of

~2 is differentiably equivalent to that of J~g . Transitivity finishes the proof.
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Now given a local diffeomorphism about p T : I7 2013~ ~~ one can
construct a manifold Mo, with a vector field Xo ~ containing a closed orbit
y with Z as a local cross-section. The construction is the same as in the

global case. Moreover, and this is a useful fact, the local analogues of 2.2-2.4
are valid.

3. Local Diffeomorphisms.

3.1. THEOREM.

Let A : .En be a linear transformation with eigenvalues satisfying
Then there exists a Banach space structure on Ell such that

The proof follows from the fact that every real linear transformation

is equivalent to a direct product of the following real canonical forms :

. _ ,

Here y can be taken arbitrarily small, and a + ifl, oc - ifl, 6 are the
eigenvalues. These canonical forms may be deduced from the usual Jordan
canonical form, and the following two easy lemmas.

3.1a LEMMA.

The linear transformations given by the following two matrices are

equivalent, where are real.
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3.1b LEMMA

The linear transformations given by the following two matrices are

equivalent where y is non-zero, but otherwise arbitrary.

The equivalence js given by

A linear transformation satisfying the conditions of 3.1 will be called a

linear contraction.

3.2 THEOREM.

Let T be a local diffeomorphism about the origin 0 of 7~ whose deri-
vative L at 0 is a linear contraction. Then there is an equivalence I~
between T and .L which is C °° except at 0. In fact there is a global dif-

feomorphism T’ : ~ which agrees with T in some neighbourhood of
0 and a (global) equivalence R between T’ and L, C °° except at 0.

PROOF.

By 3.1 we can assume // .L //  0  1, and that T (x) = Lx -f- f (x) where

for I I x //  r. The following is well known.
3.2a LEMMA.

Given r &#x3E; 0, there exists a real C °° function 99 on .E ~ which is one on

a neighbourhood of 0, 11 q (x) 1 for all x E .E n, and cp (x) = 0 for all

-

where cp (x) is given by 3.2a. Then it is sufficient to

prove 3.2 for To and L where To (x) _ .Lx -~- f (x)~ and To is defined on all

of E’~. Observe that for // x // &#x3E; r, To (x) = .Lx. Define R : - E ’i by
.R (0) = 0 and Rx = To where N is large enough so that // // &#x3E;r.
It is easy to check that R is well-defined, y has the equivalence property,
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and is a C °° diffeomorphism except at 0. It remains to check that R is

continuous at the origin, or that as First note

that there exists k  1, so that for all x E E fa, ll To x 1/  kx. Also R (x) _
= T"l L X = T"N g/ where y = and we can assume 11 y II  M. Then

continuity follows from the fact that as // y 11 -~ 0, the N of defintion of
R (x) must go to infinity.

A local diffeomorphism satisfying the condition of 3.2 is called a local

contraction. A contraction of E q is a diffeomorphism T of .E q onto itself

such that there is a differentiably imbedded disk D c Eq with T Dc inte-

rior D, T ~ .D = origin of .E q, Thus using 3.1, the T

constructed in 3.2 is a contraction. If all the eigenvalues of a linear

transformation .L have absolute value greater than one, then L is called a

linear expansion. If the derivative at p of a local diffeomorphism T about

p is a linear expansion then T is called a local expansion. The inverse of

a linear (local) expansion is a linear (local) contraction. In this way 3.1

and 3.2 give information about linear and local expansions.
The following theorem was known to Poincaré for dim jE7 = 2. One can

find n dimensional versions in Petrovsky [10], D. C. Lewis [6], Coddington
and Levinson [2], Sternberg [14] and Hartman [4]. Some of these authors
were concerned mainly with the similar theorem for differential equations.

3.3 THEOREM.

Let T : U - .E be a local diffeomorphism about 0 of Euclidean space
whose derivative L : .E -~ .E at 0 is a product of Li , E1 - E2 -~ .E2 ~ 7
E=EtXE2 where Then there is a submanifold V

of ~T with the following properties:
(a) 0 E V, the tangent space of V at 0 is 7

(b) and

(c) there exists a differentiable equivalence R between a local diffeo-

morphism T’ about 0 of .E whose derivative at 0 is Zi and T restricted to V.
(d) V= where Bo = and Bj is defined inductively

by Bj = T _1 (B9 _1 
Due to the previous discussion in this section, the hypothesis of 3.3

is mild, merely that no eigenvalue of L has absolute value 1. One may

apply 3.2 to the restriction of T to V. Note by applying 3.3 to T -1 one

can obtain a submanifold V2 of U containing 0 whose tangent space at 0
is E2 and T restricted to V2 is a local expansion. We call V the local sta-
ble manifolds, V2 the local unstable manifold of T at 0.

Use (x, y) for coordinates of .E = E1 X .E2 , so that one can write, using
Taylor’s expansion,
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The proof of 3.3 is based on the following lemma.

3.4 LEMMA.

There exists a unique Coo map

neighbourhood of 0 in E1, I
satisfying

Furthermore (x, 0 (x)) as in (d) of 3.3.
To see how 3.3 follows from 3.4, let V be the graph of ø, i. e. V =

_ (x, ~ (~)) E E1 X E2 for all x in U1, y where by 3.2 we assume C U1.
Then letting R : U1 ~ V be defined by R (x) = (x~, ~ (x)), T’ : U~ by
T’ (x) = L1 x + g, (x, 4Y (x)) and using the equation of 3.4, it is easily veri-
fied that V, R, T’ satisfy 3.3. Thus it remains to prove 3.4.

This we do not do here, but remark that one solves the functional e-

quation 3.5 by the method of successive approximations.

4. Stable manifolds of a periodic orbit.

The global stable and unstable manifolds we construct in this section

were considered by Poinear6 and Birkhoff [1] in dimension 1 for a surface

diffeomorphism. The analagous stable manifolds for a dynamical system (see
section 9) have been considered by Elsgoltz [3~~ Thom [15]. Reeb [11] and
in [12].

Suppose T : M - M is a diffeomorphism and p E M is a periodic point
of T so that = p. The derivative L of Tnt at p will be a linear au-

tomorphism of the tangent space of ill at p. The point p will be called
an elementary periodic point of Z’ if .L has no eigenvalue of absolute value

1, and transversal if no eigenvalue of L is equal to 1.

4.1 THEOREM.

Let p be an elementary fixed point of a diffeomorphism T : M --~ ,M,
and E1 the subspace of corresponding to the eigenvalues of the deriva-
tive of T at p of absolute value less than 1. Then there is a 000 map R :

which is an immersion (i. e. of rank = dim E1 everywhere), 1-l,
and has the property TR = RT’ where T’ : is a contraction of E1 .
Also R (p) _ ~ and the derivative of R at p is the inclusion of E1 into filp .
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PROOF. One applies 3.3. The map R of 3.3, say Ro, is defined in a

neighboiirhood U of 0 in E1 into J/1. We now extend it to all of El to ob-
tain the map .~ of 4.1. By 3.2 we can assume T’ of 3.3 is a (global) con.
traction of If x E let R.1J = where N is large enough
so that U. It may be verified with little effort that R is well-defined

and satisfies the conditions of 4.1.

The map R : E1--~ M, or sometimes the image of R, is called the stable

manifold of p or l’ at p. The unstable manifold of p or I’ at p is the stable

manifold of T -1 at p. These objects seem to be fundamental in the study
of the topological conjugacy problem for diffeomorphisms. An (elementary)
periodic orbit is the finite set UiE z Ti P where p is an (elementary) periodic
point. The definition of the stable manifold for an elementary periodic orbit
(or sometimes elementary periodic point) is as follows. Let (p : .E1--~ if be
the stable manifold of T"’ at p where m is the least period of in our

periodic orbit. Then R : Ei’ - M is defined by R = where 0  1  &#x3E;1

and .E1 is a copy of Et. Thus the stable manifold of a periodic orbit is

the 1-1 immersion R of the disjoint union of vi copies of a Euclidean
space. The stable manifold of a periodic point B is defined to be the com-

ponent of the stable manifold of the associated periodic orbit in which B

lies. The unstable manifold of a periodic orbit (periodic point) is the stable

manifold of the periodic orbit (periodic point) relative to T-1.

5. Elementary periodic points.

Let ~D be the set of all diffeomorphisms of classe C r of a fixed compact
or manifold M onto itself, c&#x3E;o ~!i r &#x3E; 0. Endow If) with the 0 r topology (see
[7]). It may be proved that If) is a complete metric space. We recall that

in a complete metric space the countable union of open dense sets must

be dense.

5.1 THEOREM.

Let M be a compact Cr manifold, r &#x3E; 0, and If) the space of er diffeo-

morphisms of M endowed with the Cr topology. be the set of T

with the property that every periodic point of T is elementary. Then --- is a
countable union of open dense sets.

We prove the following stronger theorem which implies 5.1 (since
denotes the positive integers).

5.2 THEOREM.

Let 7 be as in 5.1 and F,, be the set of diffeomorphisms T with the

property that every periodic point of T of period  p is elementary. Then

Ep is open and dense in CD.
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PROOF.

We flrst show that Sp is open CD. Let Ti -+ To in 1), Ti E D. It

must be shown that T, E 3p for large enough i. Suppose not. Then there exist
such that (xi) = xi and xi is not an elementary

periodic point of Ti of period p~ . By choosing subsequences, we can assume

xi --+ and the JP~ are constant say Po. Then TPo = xo . Thus is
a periodic point of Z’ of period po  p and elementary since T E 3p. So the
derivative of TPo at xo has no eigenvalue of absolute value 1. On the other
hand the derivative of Tl’° at xi for all i has an eigenvalue of absolute value 1.

This is a contradiction since T~ -~ T in the (~r topology, r &#x3E; 0 and

Xi-+ xo .
We next show that Ep is dense in Ep-1, p &#x3E; 1, Fo = This will finish

the proof of 5.2. Let Ep be the analogue of 3p with elementary replaced by
transversal. Then it is sufficient to prove: (1) (Ep Ft is dense in 8p-J, and

(2),Fp is dense in We first do the main step, (1).
For p =1, we use the following easily proved lemma.

5.3 LEMMA.

Let T: M -+ M be a diffeomorphism. Then x E M is a transversal perio-
dic point of T of period p if and only if the graph r of TP and the dia-

gonal D in M x M intersect transversally at (p,p) (i. e. the tangent space
of p and r at ( p, p) span the tangent space of at (_p, _p).

Then a general position theorem of differential topology applies to yield

that -:i is dense in 93 (see Thom [16]).
Let T E 8p-1 ~~ be all the periodic points of T of period

_ -1. Then one can find neighbourhoods Ni of f3i so that any periodic
point of T in Ni of period _ p is one of the ,~1 and elementary.

Now let 6 = minx E cL (M-N) d (x, T ~ x) where I i i. Then 6 &#x3E; 0. By
possibly choosing 6 smaller we can assume that any set U of diameter ~ 26
is contained in a coordinate neighbourhood of 111 and hence that T(U), has
the same property. Next for let U (x), V (x), W (x) be neighbourhoods
of radius 6, 1~2~, 1/36 respectively. Let Wa) for a = l, ... , q be a
finite set of these such that U Wa = M, for each a choose a coordinate

neighbourhood ~ 13 
Then using the linear structure of .E« , T - S-1: Da -+ Ea is a well

defined map where S = and D,, = ~x E ~’-1 x E -Eel. By Sard’s theo-
rem, see e. g. [16], choose a map ga : Da -~ Ea, small with its first r deri-

vatives so that T - S-1 ~ --~ E, has 0 has a regular value. Starting
with oc == 1, let T, = T outside Ui, T, = T + g, on V, using 3.2a. Then T~
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restricted to 17"1 has transversel periodic points of period p as can be seen
as follows :

If x E Vi and TIP (x) = x, then TIP (x) = T (p-l) Tl x and Tl x = 8-1 .r.
So (T1- S-1) x = 0 and since TI - ~’-1 has a regular value at 0, the de-
rivative of TIP - I at x is non-singular and x is a transversal singular
point of T~ of period ~.

One makes the same construction for a = 2, ... , q; making sure that
ga is so small with respect to the « bump function » that the diffeomorphism
retains its desirable qualities on N and W~ , ... , Wo.-1. This proves that
~~ is dense in 

We finally show that 2p is dense in Let To E Then by 5.3 the
periodic points of To of period j) are isolated, hence finite in number, say

.., , Let N , ... , Nk be disjoint Euclidean neighbourhoods of the Pi.
Then it is sufficient to show that given i, 1:S i k, there exists a diffeo-

morphism T : M ---+ 111 such that T = To outside of T approximates To , 7
and T has Pi as an elementary periodic point. This can be easily done
using 3.2a and the fact that linear transformations with no eigenvalue of
absolute value 1 are dense in all linear transformations. This finishes the

proof of 5.2.

REMARK.

If then given an integer there exists only a finite number of
points of period of T. This follows from 5.3. Ilence T has only a coun-
table number of periodic points.

6. Normat intersection.

Two submanifolds W2 of a manifold 1’~ have normal intersection
if for each x E W1 n W2 , the tangent space of W1 and W2 at x span the
tangent space of lll at x. A diffeomorphism T : M- M has the normale in-
tersection property if when (32 are generic periodic points of T, the stable
manifold of (31 and the unstable manifold of {J2 have normal intersection

(this definition is clear even though the stable manifold is not strictly a
submanifold).

Let CD and 3 be as in the previous section and let (f be the subspace
of E of diffeomorphisn1s with the normal intersection property.

6.1. THEOREM.

~ is the countable intersection of open dense subsets of CD. (The first
theorem of this kind seems to be in [13]).
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Let our basic manifold M have some fixed metric and let NE (x), for

E &#x3E; 0, denote the open E neighbourhood of x in M. Let R + be the

set of positive real numbers.

6.1a LEMMA.

For each E Z+, there exists a continuous function E : Ep -~ R+ with
the following property. If T E -7p , x E is a periodic point of T of period

then CL ~NE ~T) (x) fl W (x)] c W (x)~ where W (x) is either the stable or

unstable manifold, or W 12 (x) respectively, of x with respect to T.

PROOF.

It is clear that on an open neighbourhood Na of each Ta E Fp that one
can find a constant function Ea with the property of E of 6.1a. Let Ea , Na
be a countable covering of ~~ of this type, a =1, 2,.... Then let E’ = E~ on

E’ = min (6~ E2) on N2 - Nt, I min (E1 ~ 6g on etc..

Then E1 is lower semi continuous on Finally, for example by Kelly,
General Topology, New York 1955 p. 172 one can obtain the E of 6.1a.

Now if x is a periodic point of of period :Sp, let L1: (x) =

_ .Lz (x? .T ) = CL ~NE (T) (x) fl ~’z (x)J . a = s or z = u. Define E~ , k E Z+, to
be the subspace of Zp of diffeomorphisms with the following property. If

are periodic points of period 9_p of y then at each point of
T k (Lu (x)) f 1 T -1£ (L8 (y)), and W s (y) have normal intersection.

6.2. THEOREM.

Ek is open and dense in D.
p

Note that (6.1) follows from (6.2) because 
For 6.2 we first remark that E k is clearly open in CD. Hence in view

p

of 5.2 it is sufficient to show that E is dense in ZIP
Let Denote by ... , (31’ the periodic points of T of period S p

with stable and unstable manifolds = Wc z = s, u.
We will consider only approximations T’ of T which agree with T on

some neighbourhood Vo of the and so that = 1,... , ko are precisely
the periodic points of I" of period ~. Let the corresponding stable mani-
folds of such aT’ be denoted by Wi , i =1, ... , ko , 7 etc.

With T’ as above, there is a canonical map $ ; Wi1: -+ 
i =1 ... ko defined as follows. wt ; m period fli , t there is a positive

integer No such that Tmu (x) E Vo for all N ? No . Let f x = 

For x E one takes n ~ no  0. Then $ is a well defined 1-1 immersion.
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Ii is sufficient for 6.2 to approximate T by
T’ as above such that on the intersection of

and Wl’ have normal intersection where

The first stage of this argument is to replace
submanifolds of M, Y, and Y2 respectively with the following properties :

(6.3) The Yi are diffeomorphic to disks,

Here M1 is the least period &#x3E;nz that of and )) is interpreted as

to mean « contains an open set containing &#x3E;&#x3E;. Such Yi clearly exist from

3.1 ~ 3.2 and 4.1.

If T’ is an approximation of T agreeing with T on a neighbourhood

Vo of the f; let $ Yi = Yi’, i = 1, 2. Then without loss of generality we
can assume

Hence it is sufficient to find such a T’ with Yi’ and Y2 having normal
intersection.

The compact subset CL (Toml Y1-Y1) is so to speak a fundamental domain
of restricted to Thus one may find without difficulty connected

open sets Zt , Z2 in Wizc with compact closures which are each disjoint
from their images under Tn’l and in addition Z1 U Z2 =) Yl).

The following is easily checked.

6.4 LEMMA.
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Let y V be open sets such that

and T~= ~, Uq fl 
By the Thom transversality theorem [16] and a suitable patching by a

C°° function (similar) to 3.2a) one can find an approximation T ’ of T with

the following properties :
a) T’ = T on a neighbourhood T~o of the (Ji and the complement of

V in M.

(b) T’ ~T -1 (Z1)] and Y2 have normal intersection (i. e. Ws and
T’ [T-l(Z1)] have normal intersection on T’ [T-1 ~Z1)~ fl Y2).

Suppose now that x E Y1 n Y, 2 and T’m x E for some integer m where
We will show that at x, Yi and Y2 have normal intersection.

This is a consequence of the following statements.

(a) m&#x3E;O and 

(c) there exists a neighbourhood of in Y2 which is in Y2.
It can be shown without difficulty that (a), (b), and (c) are consequences

of the choice of V.

Now one carries out exactly the same procedure with Z 2 = q (Z2) re-

placing Z, in the argument. This gives us an approximation T" of 7" with
the desired properties of 6.2.

7. Elementary singularities of vector field.

We now pass from the diffeomorphism problem to the case of a dyna-
mical system.

Let lVl be a compact or manifold 1  r  oo and fl the space of all er

vector fields on M with the C’’ topology. One may put a Banach space stru-
cture on fl if 1.  oo. In any case fl is a complete metric space.

A of X on Jl- is a point at which X vanishes. Let p be

a singularity of X on M. Then using some local product structure of the
tangent bundle, in a neighbourbood U of p, X is a differentiable map, X :
U - M , y whose derivative A at p is a linear transformation of 

We will say that p is an elementary singularity of X on M if the de-
rivative A of X at p has no eigenvalue of real part one, and transversal

if A is an automorphism.
Let e be the subset of # such that if has only elementary

singularities.

7.2 THEOREM.

e is an open dense set of fl.
To see thas, one first checks the following lemma.
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7.3 LEMMA.

Let .g be a vector field on M. Then x E M is a transversal singular
point of if and only if X, as a cross section in the tangent bundle meets
the zero cross-section over if transversally.

From this and the transversality theorem of Thom [16] one concludes

7.4 LEMMA.

Let e be the subset of fl of vector fields on M which have only tran-
sversal singular points. Then 6’ is an open dense subset of fl.

Now 7.2 follows from 7.4 as in the proof of 5.2 where 3p was shown
to be dense in Sp.

Note that if or even e’, by 7.3, the singular points of X are
isolated and hence finite in number.

8. Elenleu tary closed orbits.

Let y be a closed orbit of a vector field X on a manifold with asso-

ciated local diffeomorphism T : ~ -~ ~ about Then y will be

called an elementary (transversal) closed orbit of X if T has p as an ele-

mentary (transversal) fixed point.

8.1 THEOREM.

Let C~o be the subspace of C (of section 7) of vector fields X on M

such that every closed orbit of X is elementary. Then eo is the countable

intersection of open dense sets of fl. L. Marcus [18] has a theorem in this
direction. Also R. Abraham has an independent proof of 8.1 [17].

If y is a closed orbit of X on M, then one can assign a positive real
number, the period of y as follows. Let x E y, CfJto (x) = x where to &#x3E; 0, vt (x) 5. x,
0  t  to. Then to is an e invariant of y, the period of y.

For a positive real number L, let eL C C~ consist of X on ~l such

that, if y is a closed orbit of length ~ L, then y is elementary.
Since eo = with 7.2, 8.1 is a consequence of the following.

LEZ

8.2 THEOREM.

For every positive L, C’L is open and dense in e.
The proof is somewhat similar to the proof of 5.2.
First that ~L is open in e follows from a similar argument to that

of 5.2 used in showing that 3p is open in E. We leave this for the reader.

It remains to show : C~L is dense in e. Let X E e. The first step is to
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construct a finite number of open cells Ua of M of codimension 1, transversal
to X such that Wa where Wa is a closed sub-disk of Ua such that

every trajectory of X passes through some Wa . It is a straightforward
matter to show that such a set of ( Ua , Wa) exists.

Fixing a now, the next step is to approximate X by X’, a vector field
on M equal to X outside a neighbonrhood of Wa so that if y is a closed

orbit of .~’ of length  L, intersecting some fixed neighbourhood of Wa in
Ua , then y is elementary. The existence of such an approximation is sum-

cient for the proof of 8.2.
The construction of the approximation X’ of the preceeding paragraph

is based on the methods of Section 2 and 5. We outline how this is done.

Let Ya be a compact neighbourhood of Wa in Ua . Then let JD~ C Ua be
the set of points x of Ua such that gt (x) E T~a for some t, 0 G t  2L, and

T : the associated diffeomorphism, say really defined on some neigh-
bourhood of Da in Ua . Now apply the methods of 5.2 to approximate T
by T’ such that T’ is defined in a neighbourhood of D, and that T’ has

only geueric periodic points. Now using the construction of Section 2 and

3.2a one defines the above X’ using T~.

9. Stable manifolds for a differential equation.

The following is the global stable manifold theorem for singularities of
a vector field.

9.1. THEOREM

Let X be a C°° vector field on a, C°° manifold generating a 1-parameter
group gt, with an elementary singularity at xo E M. Let E1 Clllxo be the

subspace of the tangent space of M at xo corresponding to the eigenvalues
with real part negative. Then there is a 1-1 C°° immersion y : E1- J1
with the following properties :

(a) ~ is everywhere tangent to 1jJ (E1) and as t - oo, gt (x) - Xo for
all x E 1jJ (E1).

(b) y (0) = xo and the derivative of y at xo is the inclusion of E1
into Mz .

PROOF

It can be checked that the map R of 4.1 satisfies 9.1 using ~1 for T
of 4.1.

Of course there is a local version of this theorem which can be found

for example in [2]. One may also derive 9.1 directly from this. The map y
of 9.1 or its image is called the stuble of xo .

8. della Scuola NOrfn. Sup. - Pisa.
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One has a stable manifold associated to an elementary closed orbit of

a differential equation by the following theorem.

9.2. THEOREM

Let y be an elementary closed orbit of a differential equation X on M
generating a 1-parameter group 9--)t. Let x E y, 11: ¿ -)-- ¿ be an associated

local diffeomorphisnl of y at x with derivative L at X, and E1 the linear
subspace of lVlx tangent to Z corresponding to the eigenvalues of L with

absolute value  1. Then there exists a contraction Z’~ : E1 -)-- Ej with the

following true. The construction preceeding 2.1 applied to T1 defines a ma-
nifold with a vector field Xo on 1110. Then there is a 1- 1 immersion

1p : ;llo --~ M mapping Xo into X up to a scalar factor Hnd 1jJ (p) = x where
p is the point of Alo corresponding to (0, 0) of .E1 &#x3E; .R (in the definition
of 

For the proof we only need to note that 1jJ is defined first in a neigh-
bourhood of 0 X R and then extended to ~lo by the device used in the

proof of 4.1.

Then y or its image is called the stable 1nanifold of y. The unstable

1nallífold of a singularity or closed orbit of X on .lJl is the respective stable
manifold with respect to - X.

In general is either S’ &#x3E; .E, or the twisted product.
If X is a dynamical system on a manifold we say that X has the

normal interseotion if the stable and unstable manifolds of X have

normal intersection with each other. Fixing compact M, let eo , fl be as in
the previous section and 80 be the set of x in eo with the normal inter-

section property.

9.3. THEOREM

silo is the countable intersection of open and dense sets of fl.
This theorem and its proof are somewhat analagous to (6.1).
For the proof of 9.3, let E : C~L --~ ~ be defined in a completely analo-

gous fashion to the s of (6.1a) where eL is defined in section 8. Let X E 61,
and x be a singular point of X or a closed orbit of period  L of X. Let
W t (x), 7: = u, s be the unstable manifold, stable manifold respectively of x
and LT (x) = (x) f 1 W Z (x)) similar to the proof of 6.1. Next let sIlLt.
be the subspace ofx of eL with the following property: If x, y are singu-
lar points or periodic orbits of X of period  L, then at each point of

cpr (a;)) n g-r (L8 (y)), WU (x) and Ws have normal intersection. Here 99t
is generated by X and r &#x3E; 0. Then 9.3 is implied by the following.
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9.4 THEOREM.

is open and dense in (D.
As in section 6, for the proof of 9.4, it is sufficient to approximate a

given X E eL by a vector field in sIlLt..

Also just as in section 6, one defines maps ~, and submanifolds Y1 of
M. The only difference in the proof from that of 6.1 is in the details of

the construction of the approximation itself. One uses here exactly the ap-
proximation in [13] page 202. We will not repeat it here, but only remark
that one can do it a little simpler than in [13] by changing X on a finite

sequence of Euclidean cells one at a time.

This completes the proof of 9.3.
We conclude by remarking that if one takes for M, the 2-sphere, then

silo is open as well as dense in E that each X E silo has only a finite num-

ber of closed orbits, and by a theorem first stated essentially by Andronov
and Pontrjagin, X is structurally stable. In this case, i. e., M = 82, density
of silo in fl was first proved by M. Peixoto [8].
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