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A GENERALIZATION OF THE PROBLEM
OF TRANSMISSION (*)

MARTIN SOHEOHTER (New York)

1. Introduction.

In the past few years there has been increasing interest in so called
« transmission &#x3E;&#x3E; problems for elliptic equations and systems (cf., eg., Picone

[12], Lions [9, 10, 11], Stampacchia [17], Campanato [18, 19]). These problems
may be described as follows. There are given two domains in Euclidean n
- space which have a portion ~o of their boundaries in common. A boun-
dary value problem is than posed for each domain with the boundary con-
ditions on Io being double the usual number and involving the solutions
of both problems.

To give a simple example, let and G~2~ be the domains in question
with boundaries aGel) and a G~2~, respectively. One might ask to find func-
tions U(l) and harmonic in and G(2) , respectively, y for which I

- - J -,

and are prescribed on while and

are given on and respectively (here

a W ,a 2 b2 are given functions and a an denotes a normal derivative).an

Problems of this type for general second order elliptic equations have
been treated as well as problems for some systems (cf. the references men-
tioned above).

(*) The work presented in this paper was supported by the Institute of Mathematical
Sciences, New York University, under Contract AT (30-1)-1480 with the U.S. Atomic Energy
Commission.

An announcement of this work was presented to the American Mathematical Society,
April, 1960, Abstract No. 568-6.
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In this paper we consider a transmission problem for general m - th
order elliptic equations and general boundary conditions. More precisely, let
A, and A2 be two elliptic operators of order m = 1, with smooth
complex coefficients. On ~~ we consider a set Bl, , ~12 ? partial
differential operators with smooth coefficients which neod only be defined
on A similar set B21’ B22 , ..., B2r is to be defined On Io
we prescribe 4r operators C11 , C,2 , ... , y C1,2r , °21 , °22 , ..., 02,2r of the same
type. The problem we consider is the following ; Given two functions 1(1) ,
f ~2~ defined in G~l~ and G~2~ respectively, to find functions U(l) and u~2~ sucli
that .. ’ - - ’ ’ --’

in in

on on

on

Our assumptions on the Bij and Cz~ are mild, being no more than those
usually imposed in regular elliptic problems (cf. [2, 7]) plus a compatibility
condition at points where 10 and 1, (or meet (cf. Section 2). We define

an « adjoint » problem and show, among other things, that existence of so-
lution of the original problem is guaranteed by the uniqueness of solution
of the adjoint problem (cf. Section 2 for a more general sta~tement). Moreover
we show the existence of solutions which are smooth up to the boundary
except possibly at points where ~o and Ii join and which do not behave

badly at such points. Our theorem, when specialized to second order equa-
tions gives more general results than those previously obtained.

For simplicity we consider the case when both and G(2) are bounded

and smooth. Under such circumstances we can map the closure of (~~2~ onto

the closure of and then consider both boundary problems appertaining
only to C~1&#x3E;. Our transmission problem then becomes a « mixed &#x3E;&#x3E; boundary
value problem for a system of equations (c£. [16]). This is essentially the

way we treated the problem, although we retained the original notation and

terminology. 
’

Our method employs a coerciveness inequality specially adapted to the

problem. Near points of It and no new inequalities were needed, the

proper estimated being already available in the literature (cf. [1, 2, 14]).
For 10 we derive new inequalities which are essentially those for systems
(cf. Section 7). More general estimates of this nature will be given in the
second part of [2]. Finally, for points where ~o and It intersect we obtain

special inequalities peculiar to this particular problem (cf. Section 8).
In Section 2 we state our hypotheses and main theorem (Theorem 2.1).

The coerciveness inequality is described in Section 3, and its proof is given
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in Sections 5, 7, and 8. Our existence and regularity proof is given in Sec.
tion 4. In Section 6 some algebraic theorems which are needed for our e-

stimates are discussed.

2. Assumptions and Results.

We consider two bounded domains, y G(l) and G~2~ in Euclidean n space
with boundaries and a G~2~ which are each of class C°°. We assume

that = 0, but also that naG(2) - the closure of a non-

empty set Io open in the topology of a G or a G2. We set ·

° 

For any appropriate subset cS of En,’ 
° 

we let C°° (d) denote the set of

complex valued functions which are infinitely differentiable in cS. We shall
deal with vector functions v = (v~l~, where v(i) g C°° (G(i)) and the following
norms and inner products :

where is a multi-index with non negative components,
, and

By a boundary triple (xo 7 T, v) we shall mean a point XO 8 aO(I) fl a G(2) , a
real vector 1 # 0 tangent to (or a G~2~) at x° and a real vector v ~ 0
normal to (or G(2) ) at x°. We shall make the following assumptions (re-
ferred to as Hypotheses 1- 9). 

_ 

_

1. In each there is defined a partial differential operator

with complex coefficients in

2. Each Ai is elliptic in i.e., the characteristic polynomial

of Ai does not vanish at any point when ~= (~1~ ~2~ ..,~ ~~) is real 
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3. Each Ai is _properly elliptic in 6~). By this we meam that Ai is el-

liptic in aCi) and that for every boundary triple (aP, 1:, v) with x° 8 the

polynomial in z

has exactly r roots with positive i-

maginary parts. When it &#x3E; 2, every elliptic operator is properly elliptic.
I

’ 

4. On each there are defined r partial differential

where each mij  2r and the complex coefficients are in

5. The set covers Ai. This means that if

is the characteristic polynomial of Bij , then for every boundary triple
(x°, 1:, v) with x° E I:i the polynomials in z ,

are linearly independent modulo

where the I§I) (x°, 7:, v) are the roots of (2.3) with positive imaginary parts
(cf. Hypothesis 3).

6. The set is normal, i.e., mij =)= mik for j ~ k and no Qij v)
vanishes for any XO s Ii and v =f: 0 normal to a G~i&#x3E; at xO.

7. There are 4r boundary operators defined on -YO

Each set is assumed normal.
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8. Let

be the characteristic polynomial of Oij . Then for any boiindary triple
with x° E .2o , the relations

imply that U1 (z), U2 (z) and the Aj all vanish, where the Ai are complex

constants, the U1 (z) are polynomials, the Pi+ (z) are defined by (2.7), _and

Before stating the last stipulation, we mention several consequences of -
Hypotheses 1 - 8. ’

REMARK 2.1. It follows from Hypotheses 6 that to there core-

sponds a normal set called adjoint to it relative to A, such that

hold whenever and vanish near fo, and

(Here Ar denotes the formal adjoint of Ai). In addition, if satisfies (2.13)
for all which vanish near ~o and satisfy (2.15), then (2.14) holds. Con-
versely, if satisfies (2.13) for all U(i) which vanish near 20 and satisfy

, (2.14), then (2.15) holds (See [3, 15 J).
REMARK 2.2. Similarly, Hypothesis 7 implies that there are normal

sets such that 
’

’ 

for all and which vanish near Ii, where ds denotes the element of

surface on 
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REMARK 2.3. From Hypothesis 8 it follows that for avery boundary
triple (xo , z, v) with xo c ~ 0’ the relations

imply that Ut (z), U2 (z), and the Àj all vanish, where
This follows from the fact that and

are equal, respectively, y to Pij (z) and for Hence relations

(2.17) and (2.18). at a boundary triple imply relations similar to (2.10)
and (2.11) for the boundary triple - v). Thus the Aj must vanish.

The following notation will be useful in fomulating our last assump-

tion. If is any polynomial of degree S m and

is any (m + 1) dimensional complex vectors we write

We also write where the bar denotes complex conjugation.
n~2013u

For every boundary triple (:»°, T, v) we can define

(cf. (2.7)). Hypothesis 9 can now be stated as follows.

9. For every point and every v ~ 0 normal to

at X0, there are polynomials in the components of i

such that

is positive for all complex vectors and W(2) satisfyng

unless = W(2) = 0. Here Rij and Qij denote the characteristic polyno-
mials of the C~~ and Bij, y respectively, which are assumed of orders m3 and

y respectively.
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By a solution of problem 17 (A, f, y Cj) we shall mean a vector fun-
ction such that for every compact
subset of which is bounded away from S, and such that

in 1

on

on

THEOREM 2.1. Assume that Hypotheses 1-9 hold. Then a sufficient condi-
tion for problem II (A, f, OJ) to have a solution is that ( f, v) = 0 for every
solution v of IT (A*, 0, Bj , Cj’).

As an illustration we consider the following generalization of the problem
mentioned in the introduction.

where v = ... , is a unit normal vector to the surface in question
and the and are complex functions. We assume that ajk = akj and
that the Ai are properly elliptic (cf. below). We shall show that Theorem
2.1 applies when a certain expression Z defined below is real and negative

First let us consider an arbitrary boundary triple (XO, 7:, ’V).. Then

where

We assume so that Hypothesis 3 is satisfied. Mo-

reover, If the boundary triple is on
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where Hence

can never vanish for z = and Hypothesis 5 is satisfied.

Next, assume that the boundary triple is on Io. We must show that
the identities

imply that 71 = 72 = 0. Here the are complex constants and we have

made use of the fact that

Now (2.24) implies that

where

Hence the 7i must equal zero if the de-

terminant

does not vanish on Io.
Finally, y we assume that the boundary triple is on S. We first note that

where the b~z~~ depend on the and the b(~). Thus

Now let be two complex vectors. Thus
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Hence, when

In order to satisfy Hypothesis 9 we must therefore show that there are

polynomials es in t such that the real part of 
-

is positive definite in the Moreover the polynomials Ci’.’" e4 must be

homogeneous in the components of z of orders 3, 2, 2, 1, respectively. It
is therefore clear that C1 and e4 cannot help in making the expression
positive definite. We take them to be zero. We are then left with

Now by definition, From this we can easily show
that the expression can be made positive in the 
is real and negative on S. For then we may take

For then

both of which have positive real parts, and
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Mareover, if Z ~ 0 on the whole of fa, then (2.25) cannot vanish there.

For otherwise we vould have

which is impossible. For the imaginary part of the right hand side is

positive, while of the left hand side is negative. Thus Theorem 2.1 applies
when Z  0 on To. Notice, that when on 9 this criterion

reduces to  0. ’

A proof of Theorem 2.1 will be given in Section 5 after we discuss a
basic inequality in the next section.

3. The Inequality. , 

’ 

’

An important tool in establishing our existence theorem will be a

coerciveness inequality adapted to this particular problem. In it we employ
a boundary norm which, while not needed in obtaining a weak solution,
enables us to prove smoothness up to the boundary. We shall follow

the methods of [15, 16 J very closely. 
- -

Let x° be any point of (x° may be either in Io or Since

aG(l) is of class C °°, there is a neighborhood of x° such that

n cm (XO) can be mapped in a one-to-one C °° way onto the hyperplane
tangent to a G~l~ at x°. Let 99 be a smooth complex valued function

defined on and having compact support in aG(l) (xO). By the mapping
we may consider g defined on part of C (x°). Defining it to be zero on the
rest we set

where irs a coordinate system on
and is the image of,

under the mapping. We then set
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for any two functions cp, y, where Fi denotes the complex conjugate of

F, [y]. Similarly we set

Analogous definitions are to be made for points x° on a G(2).-
Next assume in addition that § and y vanish near S = ~o (this

is automatically the case when cm (x°) n S = 0). If .E (~’) is any polynomial
in the components of ~’, we claim that

In fact, if we apply Parseval’s identity to (3.5), we obtain

where .E (D’) is a tangential differential operator, 990 is the function which

equals 99 on 10 and equals zero on -Y, , while 1Jlt has the opposite relationship
to y. Thus vanishes throughout IC (xO) making (3.6) equal zero.

Now it follows from (3.5) that

and hence, if E (e’) is homogeneous in e’ of degree s, we have by the Sch-
warz inequality 

’

, - ,

It should be borne in mind that when corresponding definitions are made
for points of âG(2B all of the above relationships hold with the subscript 1
replaced by 2.
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For any subset d let be the collection of all 

which vanish near the boundary of d. It follows from considerations in

[ly 14] that there is a constant K depending only on 9L (~O) and s such that

for all v g Co~ (£1°)). From this it follows that

wbenever and is bounded away from S.

Let C°°((7) be the set of all vector functions such that

each and vanishes near S. Assume that all of the hypotheses
of Theorem 2.1 are satisfied. We are going to show for every point

there is a neighborhood such that for every and

every there is a constant K such that

for all u ~ C °° (G). As before mij is the order of Bij and mj is the order of

both Oij and By the compactness of the we know that there is a

finite set of points such that Let

be a partition of unity subordinate to this covering. We may assume that

the ek are infinitely differentiable. Taking s1- in (3.10) we have" 

2p

where
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Thus

This is the appropriate coerciveness inequality which will be used in the

next section in our existence and regularity proof. As we have just seen,
it can be proved by establishing inequality (3.10) at each point x° of 
U G~2~. This program will be carried out in Sections 5, 7, and 8.

4. Existence and Regul arity of the Solution.

In this section we give a proof of Theorem 2.1. The main tool in our
approach in the coerciveness inequality (3.12).

Let H* be the completion of C°° (G) with respect to the norm

Clearly, H~ is a Hilbert space which may be identified with a subset of

the completion of with respect tot he norm

We also set

It is easily seen from (3.12) that [u, v]* is defined for u, v 8 H* and that
there is a constant c &#x3E; 0 such that

for all Let N* be the set of all such that [v, v]* = 0. It fol-.

lows from (4.3) and Rellich’s lemma that N* is finite dimensional. Hence

N* is closed in both H* and .L2 (G(l») X L2 (G(2)). Now let M~ be the set of
all v ~ H* such that (v, N*) = 0 (i.e., (v, w) = 0 for all w 8 N*). It follows
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again from (4.3) and Rellich’s lemma that there is a constant c1 &#x3E; 0 such that

for all v E M* (cfr. [15]).
Now assume for the moment that f is given and that

In view of (4.4) we may substitute [u, v]* for the inner product of the Hil-
bert, space M*. Since (v, f ) is a bounded linear functional in M*, there is

such that

for all Moreover, we claim that (4.5) implies that (4.6) holds for all
To see this, we first note that by (4.3) the norm ([v, v]* + II v 

is equivalent to H v 11* in H*. Furthermore, since N* is closed in H*, every
element v s H * can be decomposed into the form v = v’ + v", where v" 8N* and

But = 07 the first term vanishes showing M*. Now

(4.5) and (4.6) imply that

for all v 8 H*, as was asserted.
Taking the special cases when or with

we see that

for all such v. It now follows from the interior regularity theory for strongly
elliptic equations (cf. [4, 5, 6. 7, 11]) that the g~i’ are in 000 (G(i)) after cor-
rection on a set of measure zero. Integration by parts then shows that

u(i) - satisfies Aiu(i) = f (i) in 
’ We next consider the special cases when v = 0), v = (0, v~2~) where

the are in 000 (G(i)) and vanish near Io. Then 
°
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for all such v. It now follows from the regularity theory of [15] that is

in C°° (G(i) U Ii). Moreover, (4.9) implies that

for all v(i) 8 (G(~)) satisfying B! - v(i) = 0 on ~2 and vanishing near ~o . By
Remark 2.1 this implies that Bij = 0 on -Yi . 

__

Finally, we consider the case when v =-== (~~1~, V(2)) with v(1) 8 C°° (G(i)) va-
nishing near This time we have

By working with the pair of functions g~l~ , g~2~ simultaneously, We can foll-
ow the reasoning of [15] step by step and show that each is in

Since no new ideas are involved, we do not provide the de-
tails. Once the regularity is known, (4.10) implies that

whenever E C°° (G(i)) vanishes near li and satisfies

where Hence, by (2.16),

for all such v. Thus by (4.11)

Since is otherwise arbitrary, this means that

on

Hence u is a solution of problem 1I (A, f, y C~~.
Since our argument was based on assumption (4.5), our proof will be

complete if we can show that N* is contained in the set of solutions of

77(A~’(~ ~ ~ CJ). This latter fact, however, has essentially been proved. For
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we have shown that if g satisfies (4.7) for all then each U
U ~2 U provided f 8 C°° (G). This is the case, in particular, if we take

f = 0. Moreover, [g, g]* = 0 implies

But when the have the above mentioned regularity properties, these condi-
tions imply that g is a solution of problem (A~, 0, 0/). Hence every
element of N* is a solution of a (A*7 0, 0/), and the proof is complete.

REMARK 4.1. In general, not every solution (A*, 0, B~ , Cj’) is in

N*. For every element of N* is in (G), while no such requirement is

made on solutions of yr (A*, 0, 0/)- This suggests one way in which

our theorem can be strengthened.

5. Poi nts of G(i) U Zi -

From the consideration of Section 3, we see that it remains only to

prove (3.10) for each point XO 8 U G(2). In this section we shall show

that for points of G(i) U Ii, (3.10) follows from known results (cf. [1, 2, 14]).
The. main difficulty lies in considering points of ~° and 8, and these cases
will be treated seperately in Section 7 and 8.

First suppose x° E G11. We can take the neighborhood 9l (x°) so small
that its closure does not intersect For such points the ellipticity of
A ~ implies

for all and (cf. [13]). By standard procedures
this can be transformed into

where .g’ depends also on ~ and 8. Inequality (5.2) immediately implies
(3.10) for x°. A similar argument holds for points of G(2).
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Next assume that x° We take 9l(z°) so small that its closure

does not intersect To U ¿2. We then have

for all I s Co (x°)) and u(l) s 000 (G(l)). This follows from .[14] once we

know the fact, proved in [15], that the set conyers A1 whenever

JB~)~ 1 covers A1 . That covers A~ , was assumed (Hypothesis 5).
Hence (5.3) holds. Again we may transform the inequality into

which implies (3.10) for x°. A similar inequality holds for points of ’¿2.
In Section 7 we shall show that for points x° E ~o there is a neighbor-

hood (x°) such that

when and

In addition we shall prove in Section 8 that

at points where the are the polynomials mentioned in Hypo-
thesis 9. By (3. 7) and (3.9) it follows by standard methods that each of
the inequalities (5.5) and (5.6) implies (3.10) on their respective portions of
the boundary (cf. [15, 16]). Moreover, by the usual trick of transforming

into a semisphere and approximating the AT, Oil by homo.
geneous operators with constant coefficients which equal their principle

2. Artnali della Scuola Norm. Sup.. Pisa.
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parts at x°, it is easily shown that either (5.5) or (5.6) holds in 9L (x°) 
if and only if it holds for homogeneous constant coefficient operators in a

semisphere. It therefore remains to prove (5.5) and (5.6) in such « canonical »
situations. This will be carried out in Sections 7 and 8 after we degress
in the next section to the study of certain algebraic theorems which will
be needed. , .

6. Preliminaries.

We now consider a few unrelated topics which present themselves in

the proofs of the next few sections. We state, them here for future

reference.

LEMMA 6.1. Let P (z) be a polynomial of degree m with leading coeffi-
cient ao and having no real roots. Let H (z) be a polynomial of degree m - I
which has all the roots of P (z) which lie above the i-eal axis. If bo is the

leading coefficient of H (z), then ,

where the -integ1’al i~s taken in the C’auck y principle va,lue sense.

Next consider the polynomials .

where the are such that

If 0,)(,) ~ m2) are two, complex vectors,

and we employ the notation
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LEMMA 6.2. If

implies that each Aj = 0, then

imply ro(1) = ro(2) = 0, and vice versa.
The proof of Lemma 6.2 follows from the fact that the following three

statements are equivalent.

implies

implies

implies
Next consider the polynomial
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and set

where

Now assume that where and are

polynomials of degree r  m and m - r, respectively. Set

For each polynomial Hj (z) we can define T~ (~~ ~) corresponding to T (z, I)
by means of a formula similar to (6.I). Moreover, it is easily checked that
for any complex vector w = c~~, ..., the polynomial Hj (z)
T (z, w) - P (z) w) is of degree m -1. Furthermore, the coefficient of
Zm-1 is Hence, by Lemma 6.1 we have

LEMMA 6.3. If P (z) has no real and P+ (z) has all the roots of
P (z) (with multiplicities) which lie above the reacl axis, then

where the integral is taken in the Cauchy principle value sense.
LEMMA 6.4- The relation 

I

is equivalent to

Proof : It is easily shown by induction that

when zo is a root of P (z) of multiplicity greater than t. Moreover, if

k =1, 2, ..., p, are the distinct roots of P- (z) With multiplicities y/c?
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then (6.3) implies

Set

It is easily checked that the Tkt (z) are linearly independent and since there
are r of them, there are numbers such that

Now set

by (6.5). Thus (6.6) implies

But from (6.2) and (6.7), we have

Hence (6.8) implies

Conversely, (6.4) implies (6.8), which gives in turn (6.6) and (6.3). This
completes the proof.

Now consider the polynomials

where =~= 0, j =1, 2, ..., m. One easily finds coefficients Psj such that
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Thus

where bj~ is the Kronecker delta. 
’

LEMMA 6.5. For any given set y 221 "’ .9 of complex numbers, there is
a complex vector co = (wo’ ..., such that

Proof : We set

Then

which was to be proved.
LEMMA 6.6. If we set

where Q (z) denotes the polynomial with coefficients which are the complex
coefficients of those of Q (z), then -

Proof : by (6.1) and (6.9)

Finally, y we consider two polynomials
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For each of then we can define (z, ~) and the Y~ (z) by means of for-
mula (6.1). Also, if we are given two sets of polynomials

we can find coefficients flij such that

Note that in these and future formulas we shall not employ the summation
convention. Assume that Pi (z) = pt (z) P i (z), where the degree of P± (z) is r.
Then defined

and

We now have

THEOREM 6.1. Assume In = 2r. If

implies that all they Aj vanish, then

implies that all the Âj vanish, and vice versa,.

Proof : Assume that (6.11) implies that all of the Àj vanish and that
(6.12) holds. We shall prove that all of the Âj vanish. By Lemma 6.5

Moreover, Lemma 6.5 shows that there are complex vectors W(l) and W(2)
such that
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Thus

by (6.12) and (6.13). But this is equivalent, by Lemma 6.4, to

But it follows from Lemma 6.2 that (6.14) and (6.15) imply W(I) = W(2) = 0.
Hence the 2j’ vanish and the first stratement is proved. The converse is pro-
ved in similar fashion.

7. Points of ~o .

In this section we shall prove (5.5) when is the semisphere xn &#x3E; 0,
C 1, G(2) is the semisphere  0, 1 x I  1, and the coefficients of the

Ai and the C~~ are constants. In such a case (5.5) readily follows form

holding for all E C°° (G(i~) which vanish near x ~ =1. Here the boundary
norm is taken over ~o, which in this case is the set I x I  1, xn = 0. To
convert (7.1) into (5.5), we substitute -v = u, where U(i) 8 C°° (G(i)) and C is

a C°° function which vanishes near =1. The error terms are the han-
dley by standard techniques (cf. [14, 16]).

We next note that Theorem 6.1 shows that the C~~ satisfy Hypothesis
8 with respect to the At. Hence (7.1) will be proved if we can show, em-
ploying only Hypothesis 8, that a similar inequality holds for the Ai and

C~~ . Thus the asterisks may be dropped in (7.1).
Define 1J(i) to be identically zero outside and consider v = v2»

as a vector function defined on En . Let 
’

be the Fourier transform of v, where $’ = (~1, ~2 , ... , ~n-1) corresponds to

;x’ = (xl 1 X2 ... , and q corresponds to xn . Set
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(cf. (2.7)), and

In addition, we put

where

and

- (of. [14]). It was proved in [14] that for any function vanishing
near I x ( =1 and outside G~~~

If is a polynomial in q, we employ the notation

wit similar definitions for g (~’, W(~)) and g (~’, y2~). If
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is a matrix in which each gil (~’~ ~) is a polynomial in V, we set

with similar notation for i From (7.7) we have

By (7.3) we have

where and

(cf. [14~). Similarly,

where the T~ are similar to 2’. We therefore have

where the asterisk denotes the conjugate transpose of a matrix, 
(~’, 1), and the Aj are vector functions of ~’ to be chosen later. We have

also set

and made use of the fact that i
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Anticipating our next step, we note that

Hence, by Lemma 6.3,

Integrating (7.12) with respect to q, we have by (7.8) and (7.13)

We now pick

where 8 &#x3E; 0 is a constant to be chosen later. We then have

Now the last term on the right hand side of (7.14) is a quadratic form in

the Åj. Moreover, each coefficient is a homogeneous function of degree
- 1 (cf. [14]). Hence there is a constant 8 &#x3E; 0 such that

for all possible values of the Åj. Inserting this value of s in (7.14) gives
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The stage is now set for applying Lemma 6.4 of [14]. We need only to
recall that

We then have

All of the homogeneity requirements are satisfied. It only remains to show
that the sum of the last two terms on the right hand side of (7.16) cannot
vanish for $’ ~ 0 unless JY1&#x3E; = W ~2~ = 0. This is indeed so. For the va-
nishing of the Âj implies ,

The vanishing of the last term implies

But by Lemma 6. 2, Hypotesis 8 then implies = W ~2~ = 0. This com-
pletes proof.

8. Points on .S.

In this section we shall prove (5.6) for points xo 8 S. By hypothesis, for
every such point x° there is a neighborhood 9~ (x°) such that fl 9l (x°)
can be mapped in a one-to-one C°° way onto the semisphere 0, ] x  1.

Similarly, G(2) n fl (x°) can be mapped in such a way 0,x 1.

We may assume that points of Zo have the same images under both map-
pings. By the usual procedure we reduce the problem to proving
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for vector functions V = (v~1 ~, V(2)) which vanish near the image of Ck (xo)
and near x I =1, where A* and the C~~ and B’k have constant coefficients.
The ($’) are the homogeneous functions mentioned in Hypothesis 9.

We employ the analague of (7.15) for A*, namely

where M’ and the I§ have the same relationship to A* as M and the 
have to A. We now obtain our result by showing that 

’

never vanishes for ~’ # 0 unless = W(2) = 0, where J represents the
second term on the right hand side of (8.1) and a &#x3E; 0 is to be chosen.

Let E be the compact set in 8 r + n - 1 Euclidean space for which

(The $k are real while the are complex.) Let 12’ be the sdbset of 12 ofs

those points for which -Y I Ail 12 = 0, i. e. those points for which

For such points J is positive by Hypothesis 9. By continuity, y J &#x3E; 0 on
some open set m containing L’. Moreover, since L - M is compact, there
is a positive constant a &#x3E; 0 such that

on E - 9rl. Hence (8.3) is greater than on

while it is greater than ~J &#x3E; 0 on 9N. Hence (8.3) is positive on the whole

compact set ~6. By homogeneity (which is easily checked) it is positive for
all ~’ # 0, # 0 and (ù(2) # 0. We now apply Lemma 6.4 of [14] and the
proof is complete.
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Note added in proof. In the case of second order equations several authors have

proved that u(i) satisfies a Holder condition in (Stampaaohia, Campanato, Nikolsky)
even when the bG(9 are not smooth. ,

Peetre (mimeogra,phed notes) has also extended the problem to higher order equations
(indeed be oonsiders N equations in N domains). His method works for strongly elliptic
equations and boundary conditions satisfying somewhat stronger hypotheses than those
of the present paper. 
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