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« A GENERALIZATION OF LEMMAS
OF MARCINKIEWICZ AND FINE WITH

APPLICATIONS TO SINGULAR INTEGRALS &#x3E;&#x3E;

E. H. OSTROW (Chicago) and E. M. STEIN (Cambridge, 

1. Introduction. 

Let P be a closed subset of the interval [0,2 03C0] and let Q be ,its com-
plement. Q is then the union of open intervals (ai , bi) which we shall call
the intervals contiguous to P. We define a distance function D relative to
the set P as follows : D (x) = O (x , P) is the distance of the point x e [0,2 ~]
from the set P . Thus D vanishes on P and is triangular on each contiguous
interval.

J. Marcinkiewicz ([2], [3], [5]) has used, as a central argument for pro-
ving certain difficult results of the theory of Fourier Series, variants of the
following lemma concerning the function D .

LEMMA (Marcinkiewicz)

Suppose

Then finite for almost every x B P. (2)
In a recent paper on the summability of Walsh-Fourier series, N. J.

Fine [1] has used another lemma concerning the distance function.

(1) Part of the work reported in this paper was done while the first-named anthor

was at the Massachusetts Institute of Teohnology under contract Nonr-1841 (38) nnder
the Office of Naval Research.

(2) Marcinkiewicz actnally used instead of the distance function, the function whose
value on each contiguous interval (ai I bi) is and which is otherwise zero. The present
modification is dne to A. Zygmund.
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LEMMA (Fine)
Let lhj) be a sequence of positive numbers satisfying the two conditions

where M is an absolute constant.

then I* (x) is finite for almost every x 
It is our,purpose to show that each of these two lemmas is a conse-

quence of a more general one (3) (See Theorem 1 below). With the aid of

this theorem, we prove, in the succeding sections, analogues of a theorem
of Marcinkiewicz on integrals of « Dini type &#x3E;&#x3E; and of a theorem of Plessner
on the Hilbert transform.

, 

2. The generalized Mareinkiewiez.Fine lemma.

In the following A , 7 AA... will denote constants (which need not al-
ways be the same) depending solely on the indicated parameters.

LEMMA 1. Let It be a positive measure on the interval [0 J 2 n] satisfying
the following condition

Then for aaay ~, &#x3E; 0 and for all -c , 0  z  2 ~c ~ ,u satisfies tlae condition s

anal c)

(3) That this might be the case was suggested to us by Professor A. Zygmund.
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Conversely, if p satisfies either condition b) or c) for some A &#x3E; 0, then

fl satisfies corcdition a) (4).
Proof : For the sake of simplicity, we suppose that p has zero mass

outside [0, 2 n]. ,

Then

Thus a) implies c).
To prove that a) implies b), we decompose the interval (0 r) as the

00

union U (,r 2-n-1 z 2-") and proceed as before. In a similar fashion, we can
M==0

show that b) implies a) and that c) implies a).
We can now state the main theorem, the generalization of the lemmas

of Marcinkiewicz and Fine, as follows : ,

THEOREM 1. Let /t be a positive measure on [0, 2 n] satisfying the oon-

dition , Let P be a closed subset of [0, 2 n] a,nd

D its distance function. If I, is defined by

then I, finite for almost every x E P .

(4) This lemma stems from the observation of Professor R. Salem that in the case

for condition (c) is equivalent to condition (a). He also pointed out to us
how our original proof of Theorem 1 below could be simplified.
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Before proving this theorem, we wish to make some remarks. Theorem
1 reduces to the lemma of Marcinkiewicz if p is Lebeague measure (condi-
tion a) is trivially true of Lebesgue measure). Similarly, the lemma of Fine
is obtained by taking for a the discrete measure which assigns to the point
hj , 7 the mass ( j = 1 , 2 , 3 , ...) and is zero otherwise. In this case, the

condition on p is precisely condition (i) on the sequence (hj) . Condition (ii)

on the sequence (hj~ ~ viz. is just the condition

i. e. condition c) on the fl of Lemma 1 (Â = 1). Thus the two conditions

on the lhj] are equivalent (5). Finally, it should be noted that the behaviour
of a is critical only in a neighborhood of the origin.

Proof of Theorem 1 (6). To prove that I, (x) is finite for almost every

x E P, 7 it suffices to show that

Let 4n = (an, bn) (n = 1 , 2 , 3 , ...) be the contiguous intervals and

I An I their Lebesgue measure. Since D vanishes on P,

where is the complement of P.

Thus

So

Now

(5) This has already been remarked by Fine in [1].
(6) See footnote (4).
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using Fubini~s theorem (*). Since x E P and

for each fixed t and all x E P .

and this last integral, by Lemma 1, is

which concludes the proof. 
’

In the same way, we can prove the following theorem which is due

to Marcinkiewicz in the case of Lebesgue measure.

THEOREM 2. With the notation of Theorem 1, let

then ~x) is finite for almost every x E P. The following is an interesting
special case of Theorem 2.

COROLLARY 1 : If 1 &#x3E; 0 , 7

for almost every x E P .

Proof : We take for p the discrete measure which assigns to the point

1 the mass 1 y (n =1 2 3,...) and is otherwise zero. It is simple?i 7 (n=1 7 7 ! ) 
, p

to check that this measure satisfies the condition of Lemma 1.

In particular if A = 1 , we see that for almost every

(*) The above interchange of order of integration does not follow immediately from
the standard version of Fubini’s theorem. However,’ since the integrals are positive, the
interchange can be justified by an appropriate limiting argument. Since the argument is

standard and the details somewhat lengthy, we omit the justification.
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3. Integrals of Marcinkiewicz and Hilbert Transforms.

In this section it is our aim to apply the results of the previous sec-
tion to some generalizations of an integral of Marcinkiewicz of Dini type
and of the Hilbert transform.

We shall assume as before that It is a positive measure on [0, 2n]
satisfying the condition 

- ’

Our results are contained in the following two theorems.

THEOREM 3. Suppose that F E .L2 ([0 , 2~~) and is extended periodically.
Let ft be a measure satisfying (3.1). If F’ exists in (t set E of positive 1neasurè,
ttae integral

is finite almost everywhere in E. 
,

THEOREM 4. Suppose that L (~0 , and is again extended periodi-
cally and that the measure u satisfies (3.1). If F’ exists in a set .E of posi-
tive measure, then

exists for almost every a? E E .

Before preceding to the proofs of these theorems, we wish to discuss

their backgroulid. When # (t) = t, Theorem 3 reduces to a result of Mar-

cinkiewicz [4.1. (7 ) The assumption that F’(x) exists for xsE implies that
Jj’ (z + t) + F (x - t) - 2F (a?) = o (t) for but this estimate is not

sufficient to ensure the convergence of (3.2). Theorem 3, however, does
show that this estimate can be improved for almost every z E E .

(7) See also A. ZYGMUND, «A Theorem on Generalized Derivative8 &#x3E;&#x3E; Bull. of A. M. S.

49 (1943) pp. 917-923, esp. p. 919.
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Theorem 4 originates in a theorem of Plessner [7] for which

In this case, if F is the integral of a function then

(3.3) reduces, after integration by parts, to the conjugate function of f.
Plessner proved his result by complex variable methods which are of course
unavailable in our context. In [3] Marcinkiewicz gave a real-variable proof of
Plessner’s theorem. One last remark be,fore’we pass to the proofs. The existence
of the integral (3.3) is more subtle than that of (3.2); for in general (3.3) con-
verges only non-absolutely. In fact, Marcinkiewicz [4] has shown (in the case
p (t) = t) that there exists an F (x) with integrable derivative, for which

d t = 00 for almost every x . The non-ab-

solute convergence of (:3.3) is likely to be the general situation, but we
shall not pursue the matter here.

The proofs of the theorems will be split into a number of lemmas.

Basic to both proofs is the following decomposition due essentially to

Marcinkiewicz [2]. 

LEMMA 2. Let F be integrable on [0, 2a] and extended 

Suppose that F’ (x) exists at each point of a set .E C [0 , 2n] of positive mea-
sure. Then given anyq &#x3E; 0, there exists a closed set P, PCE, with I E-R rl,
and a decomposition of F ’

with the following properties :
1) G (x) has a continuous derivative on [0, 2~c~ .

. 2) G (x) = P (x) for x E P .
3) There is a 6&#x3E;0, such that for every x E P and all t, 

D being the distance function relative to P.

Proof. Since h" is measurable, given q &#x3E; 0, there is a closed subset

P1 of E with Pi ]  q/2 and on which F’ is continuous (by Lusin’s
theorem). By Egoroff’s theorem, there is another closed set P C P, C E,

I such that lim
t-o

uniformly for

On P, and since the approach to F’ is uniform, there is a

6 &#x3E; 0 such that for all xEP as soou as I



124

Let g1 be a function, continuous on [0, and periodic which coinci-

des with .~’ on P and let Of be the integral of g1. The function Bi =
= F - G t satisfies uniformly in P the condition

This implies that I for all x E P as soon as

 6 . Thus for all those segments Ai of the set Q complementary to P,
for which  ~ (so for all but a finite number)

We now define a function .R in the following manner. Choose a poly-
nomial co satisfying cu (0) = 0 , m (1) =1, y and co’(0) === o/ (1) = 0 . Both co
and 6t/ are bounded on [0, 1]. If a  b, are the extremities of P

in [0 , 2~cj , y R is defined by the following conditions :

(2) if is a segment contiguous to P, 7

Clearly R (r) is continuous. On ~’ , R’ (x) = 0 , and since for those intervals
Aj contiguous to P, I

by (3.4)), R’ is seen to be continuous.
The function B = B1- R vanishes on P; moreover, for x y

With a similar estimate with respect to the other endpoint of Ai, y we con-
clude



125

 A D (x + t) for every z E P and all t that such that I t ]  6 . ·
Since F = 6~ -p R -~- B, in setting G = G1 + R we obtain

the desired decomposition..

LtMA 3: Suppose

defined by

I’hen M (x)  oo for almost every point of [0 , 2 n] .

Proof : It is enough to show that

be the Fourier expansion of f with (We suppose that

plying Fubini’s theorem and Parseval’s relation~ we obtain

We conclude the proof by showing that

(independent of r~) .

We split the integral as indicated : 
’
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Similarly which establishes (3.5).

Thus

of Theorem 3: Given any q &#x3E; 0, it is enough to show that there
is a closed set for which the integral (3.2) is finite

for almost every x E P . Fixing q, we choose P to be that set given by
Lemma 2. Thus and F decomposes as the sum F(x) = G(x)+B(x),
where G has a continuous derivative on [0 , 2 ~c~ and B (x + t)  A D (x + t)
whenever x E P  6. Since F = 6’ -~- B ,

Ii is finite for almost every x E [0 , 2 ~c~ by Lemma 3.

Since
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Now More-

over,

which is finite for almost every x by Theorem 2.

Finally (t) is finite for almost every x since BE L2

(being the difference of two functions, each of which is in .L~) and

is of total bounded variation in [6 , ~c~ .

Similarly for almost every Thus ~2 is

finite for almost every point of P , which concludes the proof.

4. Proof of Theorem 4:

LEMMA 4: 1 Suppose that . We define

He (I) by

Then

A independent of e and f,, , , , _ , , , , .- . ,

(ii) HE f converges in the G2 norm, as 03B5--&#x3E;0 to a limit which we

denote by H f, ,

Proof: Let be its Fourier development.
Thus (assuming as always that

the series converging absolutely.
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Therefore HE

To establish (i) it suffices to show that

, A independent of n and e .

8

The integral (4.2) is, however, dominated by

and this last integral is dominated by
1

Each of these two integrals is  A by Lemma 1 and this proves (i).
Ad (ii). If f is smooth enough, say 0 (1) , it is easy to eheck that HE ( f )

converges uniformly and thus in L 2 as 8 - 0 . In splitting 
and lilt 112 arbitrarily small, and using (i), we conclude that HE ( f ) , f E .L2 , I
is Cauchy ; y hence converges in L 2 to a limit.

Ad (iii). This is an immediate consequence of (i) and (ii).
The following Lemma is a very well known theorem of Hardy and Littlewood (8)

LEMMA 5: Let, Define f * by

f* E Lp and

LEMMA, 6 : Suppose f is bounded on [0, 2~c~ and let M = essae sup if (X) I,
by

(8) Cfr. ZYGMUND [9], page 244.
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where He ( f ) is defined by (4. 1) ; F being the integral of f. Then H ( f ) E Z2
and II

Proof: We first regularize f by convoluting it with an approxirriation
to the identity : more precisely, choose 99 (t) h 0 to have the following pro-
perties : (1) ~ (t) is indefinitely differentiable, (~) ~ (t) = 0 outside [- 1 , 1] , 1

Define

We define then f, by

+ ’

Assuming, without loss of generality, that so that F is perio-

x 

dic, we define F. by F. (~’) = ff. (t) d t. We note that f~ and thus F~ are

o

infinitely differentiable.
We observe first that J1’£ = F*E; next that for each q &#x3E; 0

for the operator Hr¡ is essentially a convolution type operator. Now let

r~ -. 0 (s fixed). Since fe is smooth, uniformly ; i but by Lem-
ma 4, Hr¡ ( f ) converges in L2 to H ( f ) . Thus (/) ~ cpe converges unifor-

mly to 
We have obtained

for every x.

We next estimate the difference j!?s(/)2013~OQ’ Let us introduce the
notation At F for + t) + F (x - t) - 2F (x) . Then

(9) This « maximal» theorem is true if f E L2, in which case M is replaced by [[ f ~~2.
Actually we need it here only for f continnous.
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finally obtain

for I t I  s .
To estimate At F - At Fe, we estimate terms of the form F (x) - Fe (x)

and 

Similarly I I Our final estimate is thus

Using the estimates (4.11) and (4.12), we obtain



132

Thus since

we finally obtain Thus

By lemmas 4 and 5, and I
which concludes the proof of the lemma.

LEMMA 7: If f is continuous on [0 , 2~c] , then H£ ( f ) -~ bC ( f ) ~xt almost

every point.
Proof: It is enough to show that He (f) converges pointwise almost

everywhere for we know from Lemma 4 that it converges to H ( f ) in the

L2 sense. To do this, we prove : Given q &#x3E; 0, y 6 &#x3E; 0 , there is an 8 &#x3E; 0 and
a fixed set F of measure less than q , so that if E1, E2  s , then I HE1 ( f ) -
- He2 ( f ) ]  6 , except possibly in F. 

’

Let K be a figed constant guaranteed by lemma 6 so that f 
 K2 (sup If/)2 for all bounded f. Decompose f as f = f1 +f2 where fi is

smooth and sup f2 I C 8 t = ~ ( ~1, ~ By linearity + He(f2);

consequently
, f1 being smooth, BE ( f1) -. ~ ( f1) uniformly ; choose E so that if 81 , 82  8 , I
then everywhere.

/’

In addition, ; since (sup I
./

can be J !/3 only on a set F of 

Thus can be &#x3E; 
2 

6 only on F.can be ) "3 ð only on F .3

(10) For any g, I 
:na

(11) Here we need the fact that f is continuous so that we can approximate uni-

formly, i. e. in the sup uorm, by sniooth functions.
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Therefore except possibly on F as long 82  8 .
This concludes the proof of the lemma since 27 and 6 are arbitrary.

Corcclusion of the proof of 4. It suffices to show that given an

~ &#x3E; 0, there is a closed set P ~  r~ ~ so that the limit (3.3) ’ ~ &#x3E;
exists (and is finite) for almost every Fixing q , we choose P to be
that set given by Lemma 2. Thus IE - P ~ ]  q and P decomposes into the
sum I~’ = G -~- .B’ where a has a continuous derivative on [0,2 nJ and

I for each x 8 P and Thus

By Lemma 7, lim exists (and is finite) for almost every point of [0 , 2 n].
E---&#x3E;0

We conclude the proof in showing that lim exists (and is finite) for
s-o

almost every x s P .

It is thus sufficient to prove that the integrals

are finite almost everywhere in P. Since I B (x + t) ~ D (x + t) for each
x g P and I t I C ~ ~ y these integrals are dominated near the origin  d) by

which, by Theorem 1~ is finite for almost every x 8 P .

Siiice B 8 Li (being the difference of two functions in £1) ,

certainly exists for each x. Thus (3.3) exists almost everywhere in P and

hence, almost everywhere in E.

2. Annali della Scuola Norm. Sup. - Pisa.
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5. Concluding Remarks.
’ 

As a result of Theorem 4, we can make the following observation : we
have already remarked that Marcinkiewicz has given an example of an ab-

solutely continuons function F for which the integral

for almost every x . None-the-less, ,

for every partition of the interval [0 y’] into disjoint intervals 4; and for
every random choice of ± 17s, we can assert that

for almost every ~~(0~2~).

For if we define Pi to be the measure equal to Lebesgue measure on the
intervals with -~-1 attached to them and 0 otherwise and if P2 is similarly
defined with respect to the intervals with - 1 attached to them, then

Both ,u1 and P2 satisfy (i=1,2),so by The

orem 4, each of these two last integrals is finite almost everywhere and
thus their difference is finite almost everywhere.

In Lemma 4, we considered the as a family of (linear) operators on
" We can also consider them as operators on Lp, 1  p  oo . In the

classical case of the Hilbert transform, M. Riesz has shown that if f 8 .Lr, 7
is again in Lp and

~-&#x3E;o

There is a substitute result for .L1 for even though H (f) exists almost e-

verywhere in this case, it may not be integrable. Moreover, A. Zygmund
has shown that in this case the maximal operator H of Lemma 6 is a boun-
ded operator from Lp to Zp for 1  p  oo . The analagous theorems and
related questions concerning the more general transforms of this paper will
be considered in a future paper.
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