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p-RINGS AND RING-LOGICS

by ALFRED L. FosTER (Berkeley)

1. Introduction. Through the medium of the K-ality theory it was
shown, in a series of recent communications, that the eclassical Boolean
.realm (e. g., Boolean-algebras, -rings, - logic, - duality principle, ete.) is an
instance of a muech broader ond more general theory, that of ring-logics
(mod. K) -see [1], [3](1). We recall that this concept of ring logic (inod. K)
— in which K is a preassigned (« admissible ») group of « coordinate trans-
formations » in the domain — characterizes, on the K-level, those rings
and those logics (— K-algebras, — K-logical-algebras) in which the ring and
the associated « K-logic» uniquely determine or «fix» each other in an
equationally interdefinable way, [1]. Such a bond is familiar between Boo-
Jean rings and their corresponding Boolean algebras (logics) on the «lowest»
or mod C level (where K — ( = (simple) complementation group, of order 2,
generated by «* =1 ——4'0); in particular it was shown in [1] that Boolean
rings are ring-logics (mod. C).

The existence of higher level ring-logics was first established in [1],
where it was shown that 3-rings are ring-logics mod. N, but not mod. C.
Here N is the natural group, generated by the « natural negation » (or
«-complement »), ™~ —1 -+ «. In [3] this result for 3-rings, — after utili-
zing various fundamental structure-theorems for p-rings proved in [2] —
was extended to the whole latter class; that is, it was established in [3]
that all p-rings are ring-logics mod. N. The classical Boolean case (= 2 rings)
is imbedded in this result since, for 2-rings, N = (.

The present communication elevates this theory to a still more gene-
ral level, that of p¥-rings ([4], [5]. We shall establish that all such rings
are ring-logics (mod. D). Here D is a certain group («normal» group)

(*) Numbers in square brackets refer to the appended bjbliography.
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which, like the earlier groups C and N, is cyclic, that is, possesses a sin-
gle generator 7 (« normal complementation »). Unlike € and N, however, it
develops that the group D does not (in general) possess a linear generator,
-that is, one linear in #. We here depend on results established in [4].
where the methods and structure theorems of [2] are extended to p*rings.

One may regard the class of 2rings (= 2-ring-logics — Boolean realm)
as a generalization of the simplest member of this class, the field of resi-
dues mod 2. More generally, the class of p-ring-logics constitutes a natural
generalization of its simplest member, the field of residues mod p. In this
domain of p-ring-logics the p-ality theory replaces the duality theory of the
special p — 2 — Boolean case; that is, all theorems and concepts fall into
p-al sets, -see [1]. The results of the present communication, establishing
the class of p*rings — whose simplest member is the Galois field of p*-ele-
ments — as ring-logics, in which, via the concept of normal negation, one has
the same type of choice between « purely » D-logical or else « mixed » ring-
theoretical representations as in the simplest Boolean case, and over which
a pk-ality theory parallel to the p-ality theory on the N-level reigns (see [1]),
brings this cycle of developments to a natural stage of completion.

‘When the present theory is specialized to the simplest case of Fpk::
Galois field of p* elements, we obtain a rather unexpected strictly multi
plicative equational definition for the - of Fpk. This is considered in § 12.

‘We shall freely borrow concepts, results and notation (the latter with
some slight simplifications) from various papers listed in the appended bi-
bliography. Readers unfamiliar wit this background may refer to [1], where
an introduction to the K-ality theory will be found.

2. pk-rings (2). Let p be a fixed prime and k a fixed positive integer,
k=1. In agreement with [4] we define a p¥ring as a
(i) commutative ring, (P, ><, 4), with unit element 1, in which

k

PP—a  (a€D)

(4t) a

(¢3¢) P possesses a sub-ring (= field), (¥, ><, -}), which is isomorphi¢ with
F j = Galois field of p* elements, and such that

(tv) : 1¢F
Since such a sub-field F is of characteristic p,

(2.1) p.1=1+14+...41=0

(3) Under a somewhat broader definition, pk-rings were first introduced by McCoy, [5].
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it follows on multiplication by @ that a p¥ring, P, is of characteristic p,
(v) pa—20 (e D).

Furthermore the integers p and k are unique, that is,

Theorem 1. If (P, ><, +) is a p¥-ring and also a p'-ring, then p—=p,
and k= 1Fk,.

Proof: That p — p, follows from (2.1). However, independently of (2.1),
suppose P both a p* and a p* ring, and let (F, ><, 4) and (F,, ><. ) be
sub fields of I’ respectively isomorphic with the Galois fields F ; and F g,
and each satisfying (iv) Let & and &, be (multiplicative) generatos of F
and of F, respectively. Then

K LW
(2.2) #F =1, &=

For the element &£, of P we have, using (i)

E &P = e =g,
2.3)

&)= e =g g

Hence, from (2.2), we have

k Ky
(2.4) g =¢&. & =¢.
from which one has
(2.5) pE=ph,  ph=pk.

Since we are dealing with prime powers, (2.5) implies the desired conclu-
sion of Theorem 1.

The class of pF-rings embraces (a) all finite (= Galois) fields and (b)
all prings (k = 1; see [3], [1]), and in particular, (¢) all Boolean rings
(k =1, p=2). Further (d) a (finite or transfinite) direct power of p* rings
is again a p* ring, and in connection with more general results it was shown
in [6] and again in [4] that (¢) all p* rings are (isomorphic with) sub-direct
powers of Fpk (= Galois field of p”* elements) and, in particular, that (f)
each finite p¥ ring is isomorphic with a direct power Fpk > Fpk >< 1ae DX Fpk,
whence, for a given finite positive integer ¢ there is (up to isomorphisms)
one and only one p* ring af p* elements.
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For the special case of p-rings the conditions (i), (ii), (v) (With k—=1)
are definitive, -see [3]; then (iii) and (iv) are automatically satisfied with F
as the prime field = of P,

(2.6) a=1{0,1,2,...,p —1} 2 F,.

Furthermore for the still more special Boolean case, (i) and (if) (with p—2,
k=1) are definitive, as is well known; here even the commutative restric-
tion of (i) is redundant, (see [7]).

In a p* ring a sub-field F satisfying both (iii) and (iv) we shall call
normal. A p* ring will generally possess more than one normal subfield as
is shown by the direct product F,.>< F,., which is readily shown to be a
2%.ring with two distinet normal sub-fields F, F'.

The independence and significance of the condition (iv) is shown by
the ring

(2.6) R =F;>< Fy (direet product),

which is not a 3%-ring (and of course also not a 3-ring). Here the condi-
tions (i), (i), (iti) (and even (r)) are satisfied (with p —3, k = 2); in parti-
cular R contains a sub-field isomorphic with Fy:, - but it contains no nor-
mal such subfield, e. g., none which also satisfies (iv).

3. Notation. Let I’ =(P,><, ) be a p*-ring, F a normal subfield of
P, and J the class of all idempotent elements of P

(3.1) a€d it a*(=ax<a=a.

Here J, unlike F, is not in gener:m] a sub-ring of P; however, by [8], J
is a sub-(mod C)-logic of the C-logic (I,><,(x),*) of the ring (P,><, ),
where ><,(X) are the C-dual ring products, * the (self dual) C-complement
and -+, the C-dual ring sums, -with inverses — , =

aXihb—=a+4b—abd
(3.2) a><b==(aFb)= («Xb)

a* =1—a=0a.

From [8] it further follows that the sub (mod O)logic (J,><,(X),¥) is a
Boolean algebra with ><,(x),* as Boolean-intersection, -union, and -com-
plement respectively.

Throughout we shall adhere to the following notations: exeept for the
letters k,m,n,p,r, which are reserved for integers, small Roman letters

-
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a,b,x, ect witheut subscripts (but possibly with superseripts, e. g., a’, a'V,
etc.) denote elements of I’; small Greek letters u,v,a,f,&, etc denote
elements of a fixed normal sub-field F of P; small Roman letters with sub-
scripts, a,,b,,»,, etc., denote idempotent elements of P, i. e,

P={...,z ,...}

J :{...’-’p‘u,.o-}
(3.3)
F={..,pn,...

JEP, FCSP

4. Normal (vector) representation. In the nototion of § 3 it was shown
in [4] that a p*-ring P is characterized by a normal subsystem (¥, J) thereof,
in the sense of the

Theorem A, Normal Representation Theorem. In a p* ring, P, each
element a may be expressed in one and only one way in the form

+
4.1) a= 2 ua,
uelF

where the multipliers u run through the elements of a fixzed normal subfield
F of P, and where the a, are pairwise disjoint idempotent elements which
cover J , i.e., where

0, =a,
(4.2) W a,=0  (u,v€F.,ukr.

b
2a,=1
ueF

The a, given by (4.1) and (4.2) uniquely determine the element a, and
are called the normal (idempotent) components of a, -relative, of course, to
a fixed normal sub field, F. We use square brackets, [ ], to refer to these
normal components, e. g.,

a=1[..;au,...]
ol = au.
Not only is each «vector » a uniquely determined by its normal com-
ponents, but conversely, as shown in [4], we have

Theorem B. If
a=[..,0,,...]
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is an element of a p¥-ring, its normal idempotent components, a, , are deter-
mined from a by the formulas :

r—=pf—1 [ a \" )

g=—"3 (—) (for p = 0)
r=1 “

k_y ok

—_ (aﬂ '—'1)# .

(4.3)
ag—=1—a’

The representation of the elements of a p¥-ring in terms of their normal
components is not (in general) hypercomplex, -in particular, the components
of a sum are not (generally) given by the sum of the corresponding com-
ponents. From [4] we have

Theorem C (Addition, ete., Theorem). In the notation of Theorems A and
B, in a p* ring P if

(4.4) a=[..,a,,...], b=1] .. bu,...]

are elements with normal components a, and b, respectively, then the normal
components of a + b and of ab are given by the formulas

+
(4.5) [a+bl,= 3 a,b,
otr=p
+
(4.6) [abl,= 2 a,b,.
or=p

with similar formulas obtaining for other operations in P.
Here X' stretches over all 0,7 of F such that ¢ 4+ v=— u, respectively
such that st —=pu.

5. From the theory of Ring-logics. For orientational purposes, we
briefly present salient fragments of the general theory, -see [1].

If (R,><,-) is a ring and K ={...,20,...} ={20,,20,,...] is a
group of cordinate transformations in (— permutations, or 1 — 1 selftran-
sformations of) E,

(5.1) x — 20 (v) (@, W@eR; WeK),
with inverses written 20,
(5.2) z—22 (x),

then the K-logic (or K-logical-algebra) of the ring (R,><,-}) is the (opera-
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tionally closed) system
(5.3) (Ry><,K)=(R,><,92,,2,,...),

whose class R is identical with the class of ring elements, and whose ope-
rations are the ring product, ><, of the ring together with the (unary ope-
rations) 20 € K. These operations, as well as any obtainable therefrom by
composition, are the K-logical operations of the ring. Whereas any K-logical
operation may thus eventually be exspressed as some composition of ><
and the operations 20 ¢ K, such «ultimate » expressions are frequently less
illuminating than expressions making use of other I{-logical operations,
such as ><,, , ><y, ;... which are the K als of ><, i. e.; the ring products
expressed in the 20, , respectively in the 20, etc., coordinate systems. Here

(5.4) T >0y =2 (20 (x) W (y)) -
In this sense we have, for the K-logic,

(5.5) (By><, K)=(E,20,, K)=(R,%0,, K)=...=(k,><,><p, , < K),

Qpe """

where the —'s refer to the compositional equivalence (= compositional
interdefinability) of the systems. If 97,... are a set of generators of the
group K, we may further simplify (5.5) by writing

(5.6) (R,><,K):...:(R,x,‘y,...).

For a ring R with unit, 1, the simple group, ¢, has * (= 0 — eom-
plementation) as generator,

6.7) *r=1—v

and the C-logic of the ring (K, ><, ) is then

(5.8) (B, ><, )= (B, %,") = (E,>,%,",
where (x) is >< expressed in the * coordinate system :
(5.9) rXy=@*<y**=ety—1.

(As in carlier papers, the circle notation, O, is used to denote operations
in the * coordiante system, e. g. for 4,

(5.10) rPHy=@* 4y =r4+y—1.
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If further R is taken as a Boolean ring, the C-duals ><,(x) reduce to lo
gical product and logical union, respectively, - in fact the (-logic then redu-
ces to the ordinary Boolean logical algebra corresponding to the (Boolean)
ring R.

" The natural group, N, — in a ring with unit — has 7 as a generator,

(5.11) =1+

with inverse, ~

(5.12) x~—=w—1.
Following the notation of previous papers, operations expressed in the ™

respectively in the "1 (=" "), etc. coordinate systems are primed, respe-
ctively double primed, etc., e. g.

o< y=@@" Xy )N =z+ytay
2>y = (@ >y

(5.13)
4 y=@" 4y )N =r+y+1

For a given ring (R,><,+) and a given group K the ring sum, 4,
is generally not K logically-equationally definable, i. e., the ring -} is not
epressible as some composition of >< and the operations 20€ K. On the
other hand it may happen that |, while K-logically equationally definable,
is not uniquely fired by the K-logic; that is, it may happen that two dif-
ferent (even non-isomorphic!) rings (R, >, +) and (R, >, +,) exist, — on
the same class B and with the same ring product, ><, but with -+, &= ) —
each of which has identically the same K logic. A ring-logic (mod K) is a
ring whose 4 (and with it, of course, the complete ring) is K-logically
equationally definable and moreover fixed by its K-logic. As already recalled,
it has been shown that p-rings are ring logics mod N. (See [3]).

6. Normal complementation in p*-rings, (explicit form). Let P be
a pk.ring and F a normal snb-field of P. Then, as is well known for all
Galois fields, ¥ contains a (multiplicative) generator, £, an element whose
p* — 1 powers yield all elements == 0 of F,

(8.1) F={0,&,8,8,... 8 (=1).
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Of course F will generally have more than one such generator, &, in which
case any one is selected and kept fixed.

‘We shall establish the basic

Theorem 2. Let P be « p¥-ring, let F be a normal sub-field of P and
let £ be a generator of F. Then the mapping v ~x defined by

~ ) k_g ph_s
(6.2) o =trxt+(LtéxtE2 48B4, £ a0
is & permutation (=1 — 1 self-mapping) of P, with inverse given by

(6.3) f:i+%

i (l+w+w2+...—|—w”k'2).

The permutation — is furthermore of period p*,

(6.4) z P=_G..) ... (p®-iterations) =z .

The proof of Theorem 2 will require some preparation, and will be
given presently. We shall refer to &~ as the normal complement, (also nor-
mal negation) of x. Strictly, since the operation ~ depends on the choice
of generator & in F, we have

(6.5) 7 ="® —=normal negation (with «base » &)

However, since this base £ is kept fixed, we shall only rarely need to use
the amplified notation ~¢),

Our eventual purpose is to show that the (cyclic) group, D, generated
by the permutation ~, is fully adapted to P, i.e., that (P,><,-) is a
ring logic, mod D, - see [1].

Before turning to the proof of Theorem 2 we first note the special
cases given by the

Corollary. In 2-rings (— Boolean rings) and also in 3 rings, normal and
natural (i. e., mod N) complementation are identical,

(6.6) 2 =1+x=a".
Proof. In a Boolean ring, ¥ and & are unique
F=a={0,1}; &=1,

and (6.2) reduces to 1 -+ «. Similarly in 3-rings: F and £ are unique,

F=a={0,1,2}; §=2,
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and (6.2) reduces to
¥ =20+(1+22)=1+x,

which proves the Corollary. In is moreover seen that 2 and 3.rings are the
only classes of p*rings in which the normal complement, (6.2) is a linear
function of x; for 22 rings «~ is quadratic, namely

=14 &a®
(6.7) (for 2% — rings);
T =& (1 4 a?)
for 5 rings
T =1+ 2&x 4 L a? 4 £ ad
(6.8) (for 5-ring);
v =81+ 22+ 2+ 2?)
ete.

7. Normal complementation (component form). The proof of Theorem 2
will be given indirectly. We shall first study a more tractable transforma-
tion, ~, whieh ir given in terms of the (normal idempotent) components of
an element x, and shall then identify = with .

Apart from Theorem 2 it will develop that -, in the component rather
than the explicit-form of normal negation; will be important for later con.
siderations.

Let P, F,& be as in § 6, and let # be an element of I”. Recalling
(6.1) and Theorem A, let

(7.1) w::[...,a',‘...].:[wo,w,,w;,.v§2,...,wgpk_z]

be the normal idemponent components of ~. (Since

(7.2) 1=

%

we shall, as above, continue to write #, instead of x ;).
Each 2 is uniquely determined by and uniquely determines its normal
components. In P we now define a mapping

(7.2) x—-x"

where the normal components of #- are obtained fromn those of # by sub-
jecting the Jatter to the cyclic permutation

(7.3) (g 24 Xy By .. wspk_z).



AvLrrep L. FosTER : pk-ring and ring-logics 289
That is, with « given by (7.1), we have

(7.4) """=[”Epk_2"”07“’i’”’5"”52""]

or, otherwise expressed,

(7.5) 7], = “’;pk—-z y [y =®, [T =2,,...

These may also be writtfen :

[~ ]y = '”Epk_z y 2] =2,
(7.6)

[a:ﬁ']'u:w[i (MEF; p=F0, 1)
&

From this definition we immediately have
Theorem 3. In a p¥-ring P the mapping x~ , defined by (7.4) or (7.6) is
a permutation of P, and moreover of period p*,

~

e =(. . @) ... =w (weP).
The elements of the normal sub-field F are seen to be vectorially given by

0 =[1,0,0,0, ...,0]
1=[0,1,0,0, ...,0]
£ =1[0,0,1,0, ...,0]
*=1[0,0,0,1,0,...,0]

From this and the definition of* we have
Theorem 4. Under the permutation ~ of P, the subfield F suffers the cy-
clic permutation

—2

(1.8) 0 1 & & 8 .., g%

8. Identification of ~ wit ~. We shall next establish
Theorem 5. In a p*ring, P, the permutation =, of § T, and the normal
negation — of § 6 are identical mappings.

(8.1) T =" (e P).
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Proof: Let F be a normal sub field of P, and ¢ a generator of F.
Let € P, and let its normal idempotent representation (Theorem A) be

“'z[wo’wt"’5’“'52’“"'”5,,10_2]’
(8.2)
. ) k_,
w_Z/Aw#_OxO—{—lwi—|-¢w5-|-§4x§=+...+§” z'”spk—z'

uel

From (7.4) we then have
— Koy
(8.3) e =0w§pk_2+ 1oy +Ea, 8w 4...+ & 2.105”,0_3.

Now by Theorem B, each of the mnormal components x, of ¥ may be ex-
pressed as a polynomial in x, by (4.3). Therefore by substitution in (8.3),
we may obtain an expression for - as a polynomial in . We shall obtain
such an expression by a more elegant and shorter procedure.

By comparison of (8.2) and (8.3) we have the identity,

k_, —~
(8.4) E@— T a g =07 — g,

which, on use of (7.2) may be written

(8.5) ¥ =¢trta,—=x

_y
2
P

On substituting for x, and for L from (4.3), we have

3
(8.6) a7 =—Fud1—a” L («S:’f—‘l + (9‘::)2 + St g;r%)
Since épi_z =¢, ete., we finally have
(8.7) v =tet il 0P ... 2

which is precisely the expression (6.2) for #~ . This proves Theorem 16.
The proof of Theorem 2 is now at hand. That the normal negation, ~
is a permutation of P, ond moreover of period p*,

(8.8) 2=
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follows trom Theorems 5 and 3. The expression (6.3) for #~, the inverse of
x, is obtained by considering 2=, the inverse of x- (see (7.4)),

(8.9) A LAY Y T wepk_2 s ®oly

writing 2~ in normal form

2

k__
(8.10) pr =0, 12+ Erpt ...+ a,

and theh espressing x> in terms of x in a manner parallel to that used in
obtaining (8.7). We sghall omit the details. This completes Theorem 2.

9. Normal (= mod D) logie. Let now D (= D (§) be the group of
permutations (or coordinate transformations) in a p*ring, P, whieh is ge-
nerated by the normal negation =~ (=~ ),

D = {identity, ~, 7, Ts,..., PF1}.
We call D the normal group in I’, and the operational algebra

9.1) (Py><, 7 )=(P,><;, )=(L,><, )=...

=Py >y Xy ey 2y )
the D-logic, or normal logic of the ring (P,><, ). Here as elsewhere the
notation ><y, ><g 000y > i denotes the ring produet, ><, expressed in
the ~, respectively in the ~:, respectively in the "3, etc. coordinate sy-
stems, i.e., by (5.4)

>, y=(@@ >y )

(9.2) >y = (@ >y Y

-

We again emphasize that all D-logical operations may, via equations (9.2)
or others like them, ultimately be expressed entirely in terms of the two ope-
rations >< and ~ (or, if ome pleases, entirvely in terms of ><, and ~, or in
terms of >< and "¢, etc.). We shall, however, find it convenient to deal lar-
gely with D-logical expressions, which are given in terms of ~ together
with >< and ><, , — without presenting such expressions in «ultimate »
“,>< form by the elimination of ><, .

Theorem 6. Let P be a p*-ring, F a normal sub-field and & a generator
of F. Then each element of F is D-logically equationally definable as follows :
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Jor any z € P,

0—=><a > '>® °><... >< o PF—1
1 :OA:(waﬁxmﬁsx. . .Xmﬂpk_l),\
1 = &
£ =&
(9.3) -
&) =&
F_ _
@ =
@ =0

Proof: We need merely prove the first of the identiies (9.3), since the rest
follow from the first by Theorems 4 and 5. To prove the first of the set
(9.3) directly from the explicit form (6.2) for 2~ seems extremely involved.
However, if we use the normal component form z~, given by (7.4 we have

m:[woawnwéywi”'°'7w5pk_2]

=]

4_.,,Ic_gywoﬂ"'uwfy“'Efa"-a"”' ,

Epk_3|
(9.4) r = ["”fpk_;,; ’wepk_g 1 Toy @y y®sgeeny wspk_,i]

~pk—1 — 7,
x" P _[.v“wé,wez,...,wspk_z,wO].

Corresponding to these we have the normal representation, (4.1)
v=a +Eve + Lt + &= T oph—s
o= b Eat . 8
®-9) S =, tEn o Ee b 8
o =g | E @ Ban .. 2,

Since each of the expressions (9.5) omits exactly one of the normal com-
ponents of #, and since these normal components are pairwise disjoint, the
first of the identities (9.3) follows, and with it the complete Theorem 6.
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Theorem 7. Let x be an element of a p*ring, P, and let x, be the
normal components of x,

(9.6) w:[...,mﬂ,...]:[wo,mi,wg,wgz,...,a:épk_2].

Then each component x, may be D-logically expressed in terms of x. With
n defined by

pk(nk—l)
1 2
9.7) =¢
( K pk@F—1) /
2
&
the components x, are given by :
dy = i s, . P
Xog—1n o e

g, =nax a5, .. a PV
. ~ o~ ~pk—1
e=—=naxx xs...x
(9.8) e
Ler—=naxx 2 22 t...0 P

X 5 zrlmmﬁmf\?....’v/\”k'z
£

The coefficient n(— € F) may be replaced by Theorem 5,

~ - ~  pFpk—1
(9.9) p=(xa x :xs...x k1) p(—pz—l

whereupon (9.8) yields « strict D-logical expression for the .

Proof: Since the x, are pairwise disjoint, on computing the product
of all except the first of the expressions (9.5), -respectively of all except
the second, etc., we get ’

gt +pk—2 —~pk_1

o=« @ 2 5...0
(9.10)

k_ —~ o~ —~pF—

§l+2+3+ L 2avi::ac.'lv PN

On summing the arithmetic progression in the exponent of &, and on
simplification by use of
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together with the verification that

pF(pF—1)
1 — 2
phpk—)

& 2

we readily got the desired expressions (9.8).
From (9.7) one has the
Corollary. For the coefficient 1, given by (9.7), we have

¢/ p = odd prime)
=1 (fp=2).

10. D-logieal definition of . We shall first prove the essential
Theorem 8. Let (P,><, ) be a p¥ring and D — D (&) its normal group.
If x,y are disjoint elements of P,

(10.1) ry—20
then
(10.2) xt+y=ax>x,9.

In particular, if ab=0,a 4 b is thus D-logically equationally defina-
ble. Here ><,, as before, is the ring product, ><, expressed in the = coordi-
nate system, i. e.,

(10.3) x>, y=( y ) .
Proof. We have

(10.4) w’\yﬁ:(éw+1+£w+§2w2+§3w3+,,,+§ﬂk—2ka—2)
<Ey+F1+Ey+8yr 4.l STy

If xy =0 (10.4) reduces to

(10.6) 2y =é@4y+1 4@+ + @4 +E@+1) ...
4 & @

But if 2y =0 we also have

(10-5) an + yﬂ = (.fl‘ + y)n
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Hence, from (10.5), (10.6) and (6.2):

if ry=~0,

Y =@ty 1@t Ryt @y
(10.7) :(r—{-y)ﬁ

The desired result (10.2) then follows at once from (10.3) and (10.7). This
completes Theorem 8.

We are now able to remove the restriction #y — 0, and to consider
the case of any sum z 4 y.

Theovem 9. Let. (P,><,+) be a p¥-ring, D= D (&) its normal group,
and (I’,><, ) ist D-logic. Then the ring sum, -, is D-logically equationally
definable. ’

Proof. Let #,y be € P. Then, by Theorems C and 4,

+ + o+
(10.8) ety=2pulv+yl.=2Jpn 2 2. y;.

weF weF at-p=pn
Now since the normal componenfs of an element of P are pairwise digjoint,
for y' == u” the elements

+
(10.9) w2 xays , n 2wy
atp=tt artp”

are disjoint (i. e., their product — 0). Moreover the separate terms in
2 wx,yp are also pairwise digjoint. Hence, by applying Theorem 8 twice,
at+-f=p

+ X
in (10.8) we may replace 2 by the D-logical « ><, product », 5. By then
further replacing the u€ F by the powers of the generator &, we get the
formula

X1 X1 X1
(10.10) a'+y:( > wayﬂ)xi( > Swayﬁ)xi( > §2wa?/ﬂ)
atp=1 atf=t atp—gr

X1 pk—2
><‘--.><‘2§ Zo Yp -
pk—2
ath=&
Each of the components &y, ,®;,%s,... Yy, Y;,Y:,..., and also each of
the coefficients £, &%, ... may be D-logically expressed by Theorems 6 and

7. If these D logical expressions are substituted into (10.10) we have a
strictly D logical formula for « |y, which completes Theorem 9.

10 Annali della Scuola Norm. Sup. - Pisa.
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Illustration: Applied to a 2%ring, we have:
XA Y = B Yy <y By Yo <y B Yor ><y L2 Y
& MY > & X Y >< & YD § XY,y

><, 82 @) Yue >, 2wy Y <, B wp yy <, B way,
where

—~ —~g g — ~g g

z Yo=Y ¥

¢ =@a ot =@y ¥y
B =@s e =0y ¥y .

11. Ring-logic. We now prove

Theorem 10. A p* ring is a ring-logic, mod. D. Since we have already
established that the ring sum, 4, of a p*ring (P,><,-) is D logically
equationally definable there remains only to prove that (I’,><, ) is D-lo-
gically fixed. That is, if (I, ><,+,) is a ring, on the same class P and ha-
ving the same ><, and furthermore having the same D logic, i. e.,

- ~ o ok—2 ks
(11.1) 2 = v+ 14+ Ex B4, & x =
—2 pk_o

k.
=¢at 1+ éot,...+ & o

then we must show that 4, = -, i. e., the rings are identical.

Since the unit and zero elements are multiplicationally definable,
(Py><,-4, has the same unit element, 1, and the same zero, 0, as
(P,><,+). We prove the

Lemma 1. (P,><, +,) i8 of characteristic p ,

(11.2) atata4, ...+ a(pterms)=0, (a € P).

Proof: Let (F,><, ) be a normal sub-field of (P,><,-}), and let &

be a generator of F. Putting # = &2 in the hypothesis (11.1) we get
y

(11.3) 0=1+,1-+,14,...4, 1(p*terms),
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or, otherwise written,

(11.4) =144 14,1 4,...4, L(p terms))¥ -

Because of (ii) of § 2, (P,><, ) and hence also (P, ><, +,) has no non-
_zero nilpotent elements, Hence (11.4) implies

14,14, 14,...4;1(pterms)=0,

which, on multiplication by a, proves (11.2) and Lemma 1.
Lemma 2. (P,><,-,) is8 a pFring. If (F,><,-) is a normal subfield
of (P,><,+), then (F,><,,) is a normal subfield of (P,><,+,),

(11.5) (F7><9+)¥(F’><7+1)2Fpk'
Proof. Let

(11.6) 14,1=2,, 14,2, =3, ete..
By virtue of Lemma 1, if
(11.7) my={0,1,2,,3;,...,(p— 1)},

then (7, ,><,-,) is a subfield of (P,><, 4-,), isomorphic with F, — field
of residues, mod p. Let £ be generator of a normal sub-field (¥, ><, +}),

(11.8) F=1{0,1,8,8,..., &2,

If £€xn, so are the powers of e?', and hence, since £ is a generator of F,
evidently : k=1, the classes =, and F are identical and

(11.9) - (Fy><, F)2(F, <, + ) X2 Fy.
If £€xa,, then, since épk—lzl, or

k_ k_
(11.10) ol =" —1=0,

& is algebraic over the field (7, ,><,+},). Let z, (§) be the over field resul-
ting from the adjunction & to z, . Now =, (§), being a field of characteristic

p, is isomorphic with a Galois field Fon for some & . Since 2" = z for all
x€ P, it follows that

(11.11) A=k
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However £€an, (&) and & has period p*¥, whence

(11.12) k<h.

From (11.11) and (11.12) we have

(11.13) h=kFk

e S .
Then, since 0,1,&,&,...,& ° are distinct €, (&), it follows that the
sets F and =, (&) ave identical subsets of P, and

(11.14) (Fy><, H) 2 (F,><, +) 2 F .

Referring now to (¢} — (¢v) of § 2, we see that (I, ><,,) is a pFring,
and Lemma 2 is proved.

The proof of Theoreh 10 is now immediate. Let (P, ><,-}) be a p*ring
and let (P,><,+,) be a ring (on the same set P, and with the same ><)
having the same D-logic as (P,><,+), — see (11.1). Then by Lemma 2
(P,y><,-+,) is a p*ring. Hence, by Theorem 9 its ring sum, -4, , is D-lo-
gically equationally definable, i. e., satisfies an identity of the form

v, y=CaQ @,y ; >, 1),

where @ is a strictly D-logical expression, — composed from x and y solely
by use of the D-logical operations ><, “1. Furthermore since (I’,><, )
is a pFring, ¥ 4 y satisfies precisely the same D-logical identity, with ™
instead of 1,

ety=C&@x.y; >, ).

Since &~ =1, by hypothesis, it follows that -~ = -, . This com-
x
pletes Theorem 10.

12. Complete set of operations in a finite field. Consider the foregoing
theory specialized to Fpk = Galois field of p* elements.

Theorvem 11. In F"k, >< and ~ form a complete set of operations. That
is, any operation 0 (x,y,...,2) in the class Fpk may be expressed in terms
of ,¥Y,...,2 by means of the operations >< and ~.

Proof. In a finite field, ¥, any operation 6 (x,y,...,2) may be «ana-
Iytically » expressed, i. e., as some polynomial in #,y,...,z with coeffi-
cients in F. Each of the coefficients may be expressed in terms of x by
means of > and ~ (see § 9), and since, via Theorem 9, 4 is also D-logi-
cally expressible, Theorem 11 is proved.
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While all p*rings — and hence in particulare p-rings — are ring-logics
mod D, it was shown in [3] that p-rings are also ring logics mod N . Mo-
reover, as previously remarked, 1) and N only coincide for 2-rings and for
3-rings. In particular for ¥, = field of residues mod p, corresponding to
Theorem 11 we have

Theorem 12. In F,, >< and ~ form a complete set of operations ; also
><, 7 form a complete set of operations.

Of the twe rival complete systems in F, it is noteworthy that the
first, namely (Fp,,><," ), requires only a knowledge of the multiplication
table in Fp; for, in Fp, = (= ") is the cyclic permutation

(01EE283, .. 07,

In this semnse the ~, >< equational formula for the ring sum, 4, (and
similarly the formula for any other opertion in Fj) is a strictly multipli-
cative formula! Addition is thus equationally definable in terms of multipli-
cation. The situation is different in the complete system (F,,><, ), since
7 =x -+ 1 involves a (limited) use of the addition table. It is intuitively
suggestive to think of x> as the «additive-successor» of x, and «~ as
the multiplicative successor (relative to the base &) of x.

Remark. We have shown that a p¥ring, P, is a ring-logic mod D (&)
for any choice of generator, £. The D (£)logical equation for x 4 y given
by Theorem 9 is a certain formula

t+y=>0@,y;>, ).

A careful examination of the proof of Theorem 9 shows that, for a gene-
rator n = & the D (y)-logical expression for # | y is given (in general) by
a different formula,

e ty=¥@,y;><, ")

That is ¥ and @ are in general ditferent functions. A similar remark is
of course also true for any fixed operation in P.

University of California, Berkeley



300

4. A, L.
5. N. H.

ArLFrRED L. FosTER : pF-rings and ring-logics

BIBLIOGRAPHY

N\

. FOSTER, « On n-ality theories in rings and their logical algebras, including iri-ality

principle in three valued logics », Amer. Jour. of Math., V. LXXII, pp. 101-123.

. FOSTER, « p-Rings and their Boolean vector representalion » Acta Mathematica, Vol.

84 (1950), pp. 231-261.

FOSTER, «p Rings and ring-logics », University of Calif. publications in mathema-
ties, Vol. 1:10 (1951), pp. 385-396.
FOSTER, « Boolean extensions and sub-direct ring powers », In process of publication-

Mc Coy, « Subrings of direct sums», Amer, Jour. of Math,, Veol. LX (1938),
pp 374-382.

. Mc Coy and DEaNE MONTGOMERY, « 4 representation of generalized Boolean rings »,

Duke Math. Jour,, Vol. 3, (1937) pp. 455-459.

. STONE, « The theory of representations of Boolean algebra », Trans. of the Amer

Math. Soc., V. 40 (1936), pp. 37-111.

. FOSTER, « The idempotent elements of a commutative ring form a Boolean algebra ;

ring duality and transformation theory», Duke Math, Jour., Vol. 12 (1945),
pp. 143-152.

[ Pervenuta in redazione il 10-8-1951]



