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p-RINGS AND RING-LOGICS

by ALFRED L. FOSTER (Berkeley)

1. Introduction. Through the medium of the K-ality theory it was

shown, in a series of recent coinmunications, that the classical Boolean

,iealm (e. g., Boolean algebras, -rings, logic, - duality principle, etc.) is an

instance of a much broader ond more general theory, that of ring-logics
K) - see [ i ], [3] (1). We recall that tlris concept of ring logic (mod. X)

- in which K is a preassigned (« admissihle ») group of « coordinate trans-
formations » in the domain - characterizes, on the K-level, those rings
and those logics ( _ K-algebras, == K-logical-algebras) in which the ring and
the associated uniquely determine or « fix » each other in an

eqnationally ill terdefinable way, [1]. Such a bond is familiar between Boo-
lean rings and their corresponding Boolean algebras (logics) on the  lowest»

or mod C level (where K = C cOlltplementation group, of order 2,
generated by .1]* == 1 - ~); in particular it was shown in [1] J that Boolean
rings are ring-logics (mod. C).

The existence of higher level ring-logics was first established in [1],
where it was shown that 3-rings are ring-logics mod. N, but not mod. C.

Here N is the natural group, generated by the « natural negation &#x3E;&#x3E; (or
« - complecnent »), x~ ~.1-[- x. In [3] this result for 3-rings, - after utili-

zing various fundamental structure theorems for p-rings proved in [2] -
was extended to the whole latter class; that is, it was established in [3]
that all p-rings are ring-logics mod. -N. The classical Boolean case (= 2 rings)
is imbedded in this result since, for 2-rings, N= C.

The present communication elevates this theory to a still more gene-
ral level, that of pk.rings ([4], [5]). We shall establish that all such rings
are ring-logics (mod. D). Here D is a certain group (« normal &#x3E;&#x3E; group)

(1) Numbers in square brackets refer to the appended bibliography.
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which, like the earlier groups C and N, is cyclic, that is, possesses a sin-
gle generator x’~ (« normal complementation »). Unlike C and N, however, it
develops that the group D does not (in general) possess a linear generator,
-that is, one linear in, x. We here depend on results established in [4].
where the methods and structure theorems of [2] are extended to iak-rings.

One may regard the class of 2-rings (- 2 ring logics =Boolean realm)
as a generalization of the simplest member of this class, the field of resi-

dues mod 2. More generally, the class of p-ring-logics constitutes a natural
generalization of its simplest member, the field of residues mod p. In this

domain of p-ring-Iogics the p-ality theory replaces the duality theory of the
special p = 2 = Boolean case; that is, all theorems and concepts fall into

p-al sets, -see [1]. The results of the present communication, establishing
the class of pk-rings - whose simplest member is the Galois field of pk.ele.
ments - as ring-logics, in which, via the concept of normal negation, one hus
the same type of choice between « purely &#x3E;&#x3E; D-logical or else  mixed » ring-
theoretical representations as in the simplest Boolean case, and over which
a pk-ality theory parallel to the p-ality theory on the N-level reigns (see t 11),
brings this cycle of developments to a natural stage of completion.

When the present theory is specialized to the simplest case of F p k
Galois field of ~~ elements, we obtain a ruther unexpected strictly multi
plicative equational definition for the + of F p k - This is considered in § 12.

We shall freely borrow concepts, results and notation (the latter with
some slight simplifications) from various papers listed in the appended bi-
bliography. Readers unfamiliar wit this background may refer to ~~ I J, where
an introduction to the K-a1ity theory will be found.

2. pk-rings (2). Let p be a fixed prime and k a fixed positive integer,
k &#x3E; 1. In agreement with [4] we define a pk-ring as a
(i) commutative ring, (P, x, -~-), with unit element 1, in which

(iii) P possesses a sub-ring (--field), X, +), which is isomorphic; with
Galois field of pk elements, and such that

Since such a sub·field F is of characteristic p ,

(2) Under a somewhat broader definition, pk·rings were first introduced by McCoy, [5].



281

it follows on multiplication by a that a pk-ring, P, is of characteristic p,

..

Furthermore the integers p and k are unique, that is) 

’

1. If (P, x, +) is a pk-ring and also a then p = p~
and k == k1 .

Proof: That p = p, follows from (2.1). However, independently of (2.1),
suppose P both a pk and a pl l ring, and let (F, &#x3E;, +) and X, +) be
sub fields of 1’ respectively isomorphic with the Galois fields F P k and F PI k, ,
and each satisfying (i v) Let $ and $, be (multiplicative) generatos of F
and of Fl respectively. Then

For the element of P we have, using (ii)

Hence, from (2.2), we have

from which one has

Since we are dealing with priine powers, (2.5) implies the desired conclu-
sion of Theorem 1.

The class of pk.rings embraces (n) all finite ( 1 Galois) fields and (b)
all prings (k = 1; see [3], [1~),~ and in particular, (c) all Boolean rings
(k == 1, p = 2). Further (d) a (finite or transfinite) direct power of rings
is again a pk ring, and in connection with more general results it was shown
in [5] and again in [4] that (e) all px rings are (isomorphic with) sub-direct
powers of F pk (~ Galois field of pk elements) and, in particular, that ( f )
each finite pk ring is isomorphic with a direct power F k ... x 

whence, for a given finite positive integer t there is (up to isomorphisms)
one and only one pk ring af pkt elements.
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For the special case of p-rings the conditions (i), (ii), (w) (with k -1)
are definitive, -see [3]; then (ici) and (iu) are automatically satisfied with F
as the prime field 1l of P,

Furthermore for the still more special Boolean case, (i) and (ii) (withp = 2,
1~ =1) are definitive, as is well known; here even the commutative restric-
tion of (i) is redundant, (see [7]).

In a pk ring a sub-field F satisfying both (iii) and (iv) we shall call
normal. A jo~ ring will generally possess more than one normal subfield as
is shown by the direct product F:¿2 x F22 , which is readily shown to be a

22-ring with two distinct normal sub-fields F, F’.
The independence and significance of the condition (iv) is by

the ring

(direct product),

which is not a 32-ring (and of course also not a 3-rivg). Here the condi-

tions (i), (ii), (iii) (and even (r)) are satixfied (witli p = 3 , 7c == 2); in parti-
cular R contains a sub-field isomorphic with F32 , - but it contains no nor-

mal such subfield, e. g., none which also satisfies (iv).

3. Notation. Let ~’ ~ (P, x , -~-) be a pk-ring, ~’ a noriiial subfield of
P, and J the class of all idenrpotent elements of P

Here J, unlike F, I is not in general a sub-ring of 1&#x3E;; howevei, by [8], J
is a sub-(mod C)-logic of the C-logic (1’, &#x3E;, cX~,~) of the ring (~’, X ~ -~-)~
where X?(X) are the C-dual ring products, * the (self dual) C complement
and -~- , (T) the C-dual ring sums, -with inverses -, c=~

From [8] it further follows that the sub (mod C)-logic (J , X , (X) *) is a

Boolean algebra with X , (X) - 9 as Boolean-intersection, , -union, and -coin-

plement respectively.
Throughout we shall adhere to the following notations: except for the

letters le , o , n p , r , which are reserved for integers, small Roman letters
,
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c~ ~ b , x , ect witheut subscripts (but possibly with superscripts, e. g., a’, 
etc.) denote eleiiients of 1’ ; SIlHtl1 Greek letters p, v , a , 8 , , etc denote

elements of a fixed normal subfield F of P; small Roman letters with sub-
scripts, ao , etc., denote idempotent elements of P, i. e.,

4. Normal (vector) representation. In the nototion of § 3 it was shown
in [4] that a pk-rillg P is characterized by a subsystent (F, J) thereof,
in the sense of the

Theorem A, Repredentation Theorem. In a pk ring, P, each

elelnent a be expressed itt one and only one way in the form

where the multipliers ,~ run through the elements of a fixed normal 8subfield ’
F of P, and where the tire pairwise diRjoint idempotent ele1uents which

cover J, i. e., whe’re

The au given by (4.1 ) and (4.2) uniquely determine the element a, and
are called the normal (idetnpotellt) components of a, -relative, of course, to .

a fixed normal sub fielcl, .F’ . We use square brackets, [ ], to refer to these
normal components, e. g.,

Not only is each « vector &#x3E;&#x3E; a uniquely determined by its normal corn

ponents, but conversely, as shown in [4], we have
Theorem B. I,~’
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is an element of a pk-ring, itq nor1nal ideinpotent components, a,, , are deter-

mined from a by the 
’

The representation of the elements of a pk-ring in terms of their normal
components is not (in general) hypercomplex, -in particular, the components
of a sum are not (generally) given by the sum of the corresponding com-
ponents. From [4] we have .

Theorem C (Addition, etc., Theorern), In the notation of Theorems A and
B, in a pk ring P if ,

are elements c01nponents and b, respectively, then the normal

components of a + b and of a b are given by the formulas

with similar formulas obtaining for other operations in P.
Here E stretches over all u 7 T of F such that = p , respectively

such that 

5. From the theory of Ring-logics. For orientational purposes, we

briefly present salient fragments of the general theory, ,see [1].
If (R 7 X +) is a ring and 8 = ~ ... , L?O,...1 ~ ~ ~ y , ~~~ , ... ~ is a

group of cordinate transformations in (-= permutations, or 1-1 selftran-
sformations of)  ,

with inverses written

then the K-logic (or K-logical-algebra) of the ring (R, x , +) is the (opera-
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tionally closed) system 
’

whose class R is identical with the class of ring elements, and whose ope-
rations are the ring product, x y of the ring together with the (unary ope-
ratious) C)f) E K. These operations, as well as any obtainable therefrom by
composition, are the K-logical operations of the ring. Whereas any K-logical
operation may thus eventually be exspressed as some composition of x
and the operations I such « ultimate &#x3E;&#x3E; expressions are frequently less

illuminating than expressions making use of other If-logical operations,
such as y Xq02’... ° which are the K-als of X , i. e.y the, ring products
expressed in the ~.)Oi , respectively in the C)f)2 etc., coordinate systems. Here

In this sense we have, for the g-logic,

where the =’ s refer to the compositional equivalence (= compositional
interdefinability) of the systems. If ~f , ... are a set of generators of the

group K, y we may further simplify (5.5) by writing

For a ring .R with unit, 1, the simple group, C, y has * "(== C - com-
plementation) as generator,

and the C-logic of the ring X , -~-) is then

where (8) is, X expressed in the * coordinate system :

(As in earlier papers, the circle notation, ~ , is used to denote operations
in the * coordiante system, e. g. for- + ,
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If further R is taken as a Boolean ring, the C-duals X , (’8) reduce to lo

gical product and logical union, respectively, - in fact the C-logic then redu-
ces to the ordinary Boolean logical algebra corresponding to the (Boolean)
ring R . ..

. 

The natural group, N, - in a ring with unit - has - as a generator,

with inverses

Following the notation of previous papers, operations expressed in the

respectively in the ""2 (== "" ""), etc. coordinate systems are primed, respe-
ctively double primed, etc., e. g.

For a given ring (R, X , --) and a given group K the ring sum, +,
is generally not K.logically-equationally definable, i. e., the ring + is not
epressible as some composition of X and the operations On the

other hand it may happen that +, while K-logically equationally definable,
is not uniquely fixed by the K.logic ; that is, it may happen that two dif-
ferent (even non-isomorphic !) rings (R, X , -~-) and (R , X , +1) exist, - on
the same class R and with the same ring product, X , y but with +1 +) -
each of which has identically the same K logic. A ’ring-logic (mod K) is a
ring whose + (and with it, of course, the complete ring) is K-logically
equationally definable and moreover fixed by its K-logic. As already recalled,
it has been shown that p-rings are ring logics mod N. (See [3]).

6. Normal complementation in pk-rings, (explicit form). Let P be

a pk-ring and F a normal snb-field of P. Then, as is well known for all

Galois fields, F contains a (multiplicative) generator, , an element whose

pk -1 powers yield all elements t 0 of F,
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Of conrse F will generally have more than one. such generator, $ , in which
case any one is selected and kept fixed.

~’e shall establish the basic

Theorem 2. let P be à, pk. let F be a normal sub-field of P and
let ~ be a geiaerator of F. Then tlce mapping x -. x~ defined by

is a permutation (= I -1 of P, with inverse given by

The permutation is furthermore of period 

The proof of Theorem 2 will require some preparation, and will be

given presently. We shall refer to x- as the complement, (also nor-
mal negation) of x. Strictly, since the operation ~ depends on the choice
of generator $ in F , we have

: normal negation (with ’« base » ~)

However, since this base ~ is kept fixed, we shall only rarely need to use
the amplified notation ----(~)..

Our eventual purpose is to show that the (cyclic) group, D, generated
by the permutation - 7 is fully ltdapted to P I i. e., that (P, X , +) is a

ring logic, mod D, - see [ 1].
Before- turning to the proof of Theorem 2 we first note the special

cases given by the
Corollary. In 2-rings (- Boolea,n rings) and also in 3 rings, normal and

natural (i. e., comtplementatio are identical,

Proof. In a Boolean ring, F and ~ are unique

and (6.2) reduces to 1-~- x. Similarly in 3 rings : F and ~ are unique,
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and (6.2) reduces to

which proves the Corollary. In is moreover seen that 2 and 3 rings are the
only classes of pk-rings in which the normal complement, (6.2) is a linear

function of x ; for 22 rings x- is quadratic, namely

for 5 rings

etc.

7. Normal complementation (component form). The proof of Theorem 2
will be given indirectly. We shall first study a more tractable transforma-

tion, -, which ir given in terms of the (normal idempotent) components of
an element x, and shall then identify with’-.

Apart from Tlieorein 2 it will develop that in the component rather
than the explicit-form of normal negation; will be important for later con.

siderations.

Let P , F, ~ be as in § 6, and let x be an element of P. Recalling
(6.J) and Theorem A, I let 

be the normal idemponent components of ~. (Since

we as above, continue to write x1 instead of 

Each is uniquely determined by and uniquely determines its normal

components. In P we now define a mapping

where the iiorinal components of x? are obtained froin those of x by sub-

jecting the latter to the cyclic permutation
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That is, with x given by (7.1), we have

or, otherwise expressed,

These may also be written :

From this definition we immediately have
Theorem 3. In a pk-ring P the mapping x’-, defined by (7.4) or (7.6) i8

a permutation of P, and moreover of period pk ,

The elements of the normal sub-field F are seen to be vectorially given by

From this and the definition of? we have

4. Under the of ~’, the su.tfer8 the cy-
clic yermutation

8. Identification of "’ wit ’~ . We shall next establish
1TheoJ’em 5. In a pk-ring, P, the of § 7 , 7 and the nortita 1

negation - of § 6 are identical mappings. 
’
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Proof: Let F be a normal sub field of P , and a generator of F.
Let x E p and let its normal idelnpotent representation (Theorem A) be

From (7.4) we then have

Now by Theorem B, each of the normal components xI-’ of x may be ex-
pressed as a polynomial in ,x~ , by (4.3). Therefore by substitution in (8.3),
we may obtain an expression for x? as a polynomial in x. We shall obtain
such an expression by a more elegant and shorter procedure.

By comparison of (8.2) and (8.3) we have the identity,

which, on use of (7.2) may be written

On substituting for xo and for from (4.3), we have

Since etc., we finally Lave

which is precisely the expression (6.2) for x~ . . This proves Theorem 16.

The proof of Theorem 2 is now at hand. That the normal negation, ’
is a permutation of P, ond moreover of period pk,
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follows from Theorems 5 and 3. The expression (6.3) for x", the inverse of
X-7 is obtained by considering the inverse of x-- (see (7.4)),

writing in normal form

and theh espressing 0153 in terns of x in a manner parallel to that used in

obtaining (8.7). We shall omit the details. This completes Theorem 2.

9. Normat (= mod D) logic. Let now D (= I) ()) be the group of

permutations (or coordinate transformations) in a pk ring, P, is ge-
nerated by the normal negation ~ ( = ~ (~1) ,

call D the group in 11 7 and the operational algebra

the D-logic, or logic of the ring (P, X, +). Here as elsewhere the
notation / , X2 , ... , denotes the ring product, x ~ expressed in

the - , respectively in the -2 , y respectively in the -3, etc. coordinate sy-

stems, i.e., by (5.4)

We again emphasize that all D-logical operations via equations (9.2)
or like thefn, ult;1nately be expressed ~in termts of the two ope-
rations X and - (or, if one pleases, entirely in terms of &#x3E;t and - , or in
terms of X and ~a , 7 etc.). We shall, however, find it convenient to deal lar.

gely with D.logical expressions, wlriclr are given in -terms of - together
with X and Xi’ - without presenting such expressions in 4(ultimate &#x3E;&#x3E;

^ ~ X form by the elimination of Xi .
Theorem 6. Let P be a pk-ring, F a normal s1tb-field a generator

of F. Thelll each element of F is D-logically equationally definable as,follows:
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for any x E P , s

Proof : We need merely prove the first of the identiies (9.3), since’ the rest

follow from the first by Theorems 4 and 5. To prove the first of the set

(9.3) directly from the explicit form (6.2) for seems extremely involved.
However, if we use the normal component form x 1 7 given by (7.4 we have

Corresponding to these we have the normal representation, (4.1)

Since each of the expressions (9.5) omits exactly one of the normal com-
ponents of .x , y and since these normal components are pairwise disjoint, the
first of the identities (9.3) follows, and with it the complete Theorem 6.
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Theorem 7. Let x be c~n of it P, ana let x,,, be tlze

components of x,

1’hen ecrch x~ may be D.logically exp)-essed in terms oj* x . 

’YJ defined by .

the components ,x~ n,re giveit by :

1"ht coefficient q (= E F) be replaced by 5,

whereupon (9.8) strict .v-logical the x",.
Proof: Since the x~ are pairwise disjoint, on computing the product

of all except the first of the expressions (9.5), -respectively of all except
the second, etc., we get

On sumning the arithmetic progression in the exponent of $, y and on

simplification by use of
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together with the verification that

we readily got the desired expressions (9.8).
From (9.7) one has the °

Corollary. For the given by (9.7), we 

10. D-logical definition of +. We shall first prove the essential
Z’lueore7n 8. Let (P, X ~ +) be a and D - D (~) its 

If x ~ y disjoint elements of P,

then

In particular, if a b = 0 , a -f- b is thus D.logically equationally defiua-
ble. Here X., as before, is the riiig produce X , expressed in the - coordi-

nate system, i. e.,

Proof. We have

If x y = 0 (10.4) reduces to

But if x y = 0 we also have
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Hence, from ( 10.b) , (10.6) and (6.2):

if

The desired result ( 10.2) then follows at once from (10.3) and (10.7). This

completes Theorem 8.

We are now able to remove the restriction x y = 0, and to consider

the case of any sum ~~ + y . 
’

9. Let. (P , X , +) be a pk-ring, .D = D () its normal group,p
(1’, X, ~ ) ist D-logic. the ring sum, +, is D-logically equationally

definable. 
~

Proof. Let x, y be E 1). Then, by Theorems C and A,

Now since the normal components of an element of P are pairwise disjoint,
for It’ the elements

are disjoint (i. e., their product = 0) . Moreover the separate terms in

are also pairwise disjoint. Hence, by applying Theorem 8 twice,
-. , , ,- 

+ X,
in (10.8) we may replace X by the D-logical «Xt product », ~ . By then

further replacing the ~u E I~’ by the powers of the generator $, we get the
formula

Each of the components xo , I xi x~ , 0153;t , ... , yo , 7 y, 7 y~ , - ..., and also each of

the coefficients $ , ~2 , , ... may be D-logically expressed by Theorems 6 and
7. If these D logical expressions are substituted into (10.10) we have a

strictly D logical formula for x -~- y, which completes Theorem 9.

10 Annali della Scuola Norm. Sup. - Pisa.
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Illustration: Applied to a 22-ring, we have:

where

11. Ring-logic. We now prove
Theorem 10. A _pk.ring is a ring-logic, inod. D. Since we liave already

established that the ring sum, +, of a pk-ring (P ~ &#x3E;,-(-) is D logically
equationally definable there remains only to prove that (1), X ? +) is D.lo-

gically fixed. That is, if (P , x, +1) is a ring, on the same class 1) and ba-
ving the same x , and furthermore having the same D logic, i. e.,

then we must show that -~-1 _-__ +, i. e., the rings are identical.
Since the unit and zero elements are multiplicationally definable,

(P, &#x3E; , +i) has the same unit element, 1 , and the same zero, 0, as

(P, X , +). We prove the 
,

.Lemma 1. (P, X , -~-1) is 

Proof: Let (F 7 X 7 +) be a normal stib-field of (P, ~ , -~-) , and let ~
be a generator of F. Putting x .- ~~~-2 in the hypothesis ( 11,1 ) we get
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or, otherwise written,

Because of (ii) of § 2, (P, &#x3E; , +) and hence also (P, X , 1 +1) has no non-
zero nilpotent elements, Hence ( 11.4) implies

which, on multiplication by a, proves ( 11.2) and Lemma 1.
2. (P, X , -~-1) is a pk-1’ing. If (F, X , +) is a nor’lnal 81+bfield

of (P, X , +), then (F, X , +1) is a subfield of (P, X , +1) ,

Proof. Let

By virtue of Lemma 1, if

then (~c2 , ~ , -~-!) is a subfield of (P, x . -~-1) , isomorphic with Fp - field
of residues, mod p . Let be generator of a normal sub-field (F, X , ---),

so are the powers of ~ , and hence, since ~ is a generator of F,
evidently : k ~ 1, y the classes n1 and F are identical and

If $ E n1’ then, since

~ is algebraic over the field (al I X -E-1) . Let ~c~ (~) be the over field resul-
ting from the adjunction 5 to 1. Now c1 (), being a field of characteristic

. p, I is isomorphic with a Galois field F p h for some h. Since for all

x E P , 9 it follows that
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However $ (~) and $ has period pk, whence

From (11.11) and (11.12) we have

Then, since 0 ~ J ~ ~ ... , ~~k-2 are distinct E n, ($) , it follows that the

sets F and .7lj (~) are identical subsets of P, y and

Referring now to (i) - (i v) of § 2, we see that (P, X , +1) is a pk-l’iHg,
and Lemma 2 is proved.

The proof of Theoreh 10 is now imniediate. Let (P, +) be a pk-ring
and let (I’ ~ X , +1) be a ring (on the same set P, and witli the sanle X)
having the same D-logic as (11.1). Then by Lemma 2

is a pk-ring. Hence, by Theorems 9 its ring sum, +1 , is D-lo-

gically eqnationally definable, i. e., satisfies an identity of the form

where a is a strictly D-logical expression, - composefi from x and y solely
by use of the D-logical operations X , l . Furthermore since (1’ X -f-
is a pk-ring, x + y satisfies precisely the same n-logical identity, 
instead of-, 7

Since r’ = xl , by hypothesis, it follows that + - +1’ This com-
x

pletes Theorem 10.

12. Conlplete set of operations in a finite field. Consider the foregoing
theory specialized to F~k - Galois fields of pk elements.

11. In F_ ~k ~ X c01nplete set 

is, any operation 9 (x , y , ... , z) in the class Fpk 1uay be in terms

of x , y ~ ... , x by naeans of the operations X arrd ~.
Proof. In a finite field, F, any operation o.(x , y , ... , z) mny be « ana-

lytically » expressed, i. e., as some polynomial in x, y , ... , z with coeffi-

cients in F. Each of the coefficients may be expressed in terms of x by
means of &#x3E; and ’~ (see § 9), and since, via Theorem 9, -~- is also 

cally expressible Theorem 11 is proved.
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While all pk-rings - and hence in particulare p-rings - are ring-logics
mod D ~ 7 it was shown in [31 that p-rings are also ring-logics mod N. Mo-
reover, as previously remarked, 1) and N only coincide for 2-rings and for
3-rings. In particular for Fp = field of residues mod p, corresponding to
Theorem 11 we have

Theorem 12. In Fp, X and - form a complete set of operations ; also
complete set of operations. ,

Of the twe rival complete systems in Fp it is noteworthy that the

first, namely (Fp, X , ~) , requires only a knowledge of the multiplication
table in Fp ; for, in Fp ~ ~ (_ ’il) is the cyclic permutation

Iu this seuse the ^, X equational formula for the ring sum, +, (and
similarly the formula for any other opertion in Fr) is a strictly multipli-
cative formula ! Addition is thus equationally definable in tel’M8 of multipli-
c(i.tion. The situatiou is different in the conplete system X /"0.), since
xv’ ~ x -~-1 involves a (limited) use of the addition table. It is intuitively
suggestive to think of x’ as the  additive-successor » of x, and x- as

the Inultiplicative successor (relative to the base ~) of x .
Remltrk. We have shown that a pk.ring, P , is a ring-logic mod D ()

for any choice of generator, $. The D ($).logical equation for x + y given
by Theorem 9 is a certain formula

A careful examination of the proof of Theorem 9 shows that, for a gene-
rator q =F the D expression for x + y is given (in general) by
a different formula,

That is ~ are in general different functions. A similar remark is

of course also true for any fixed operation in P.

University of California, Be1’keley



300

BIBLIOGRAPHY

1. A. L. FOSTER, « On n-ality theories in rings and their logical algebras, including tri-ality
principle in three valued logics », Amer. Jour. of Math., V. LXXII, pp. 101-123.

2. A. L. FOSTER, « p-Rings and their Boolean vector representation » Acta Mathematica, Vol.
84 (1950), pp. 231-261.

3. A. L FOSTER, « p Rings and ring-logics », University of Calif. publications in mathema-

tics, Vol. 1: 10 (1951), pp. 385-396.
4. A. L. FOSTER, « Boolean-extensions and sub-direct ring powers », In process of publication.

5. N. H. Mc COY, « Subrings of direct sums », Amer. Jour. of Math., Vol. LX (1938),
pp. 374-382.

6. N. H. Mc COY and DEANE MONTGOMERY, « A representation of generalized Boolean rings »,
Duke Math. Jour., Vol. 3, (1937) pp. 455-459.

7. M. H. STONE, « The theory of representations of Boolean algebra », Trans. of the Amer

Math. Soc., V. 40 (1936), pp. 37-111.

8. A. L. FOSTER, « The idempotent elements of a commutative ring form a Boolean algebra;
ring duality and transformation theory », Duke Math. Jour., Vol. 12 (1945),
pp. 143.152.

[Ptwvenuta in redazione it 10-8-1951]


