Annali della Scuola Normale Superiore di Pisa Classe di Scienze

Lamberto Cesari

Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2^e série, tome 11, n^o 1-2 (1942), p. 1-42

http://www.numdam.org/item?id=ASNSP_1942_2_11_1-2_1_0

© Scuola Normale Superiore, Pisa, 1942, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CARATTERIZZAZIONE ANALITICA DELLE SUPERFICIE CONTINUE DI AREA FINITA SECONDO LEBESGUE (*)

di LAMBERTO CESARI (Pisa).

§ 4. - Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue.

1. - Sia

(1) S:
$$x=x(u, v)$$
, $y=y(u, v)$, $z=z(u, v)$, $(u, v) \varepsilon \overline{A} \equiv (0, 1, 0, 1)$, una superficie continua e supponiamo che le tre trasformazioni piane

$$egin{array}{lll} arPhi_1: & x\!=\!x(u,\,v), & y\!=\!y(u,\,v), \ arPhi_2: & x\!=\!x(u,\,v), & z\!=\!z(u,\,v), \ arPhi_3: & y\!=\!y(u,\,v), & z\!=\!z(u,\,v), \end{array}$$

siano a variazione limitata.

Sia K un cubo nell'interno del quale è contenuta l'intera superficie S. Per semplicità supporremo che K sia il cubo (0, 0, 0, k, k). Siano K_1, K_2, K_3 i quadrati (0, 0, k, k) nei quali il cubo K si proietta ortogonalmente sui piani coordinati. Siano $\Psi_1(x, y)$, $\Psi_2(x, z)$, $\Psi_3(y, z)$ le funzioni caratteristiche delle trasformazioni Φ_1 , Φ_2 , Φ_3 (§ 1, n. 3). Tali funzioni sono definite rispettivamente in K_1 , K_2 , K_3 e integrabili secondo LEBESGUE (§ 1, n. 5).

Sia $\omega(\delta)$, $0 < \delta \le \sqrt{2}$, il modulo di continuità della superficie S (§ 3, n. 3) e, per ogni insieme I di \overline{A} , sia $\eta(I)$ l'oscillazione della superficie S su I (§ 3, n. 3). Sia G la collezione semicontinua superiormente dei continui massimali mutualmente esclusivi di \overline{A} sui quali le funzioni x(u, v), y(u, v), z(u, v) sono (tutte e tre) costanti (§ 3, n. 3). Sia G_1 la collezione (eventualmente vuota) di tutti i continui di G che separano il piano (§ 3, n. 4). Per ogni continuo g di G_1 diciamo g il continuo che si ottiene aggiungendo a g tutti i punti di \overline{A} che sono separati da g dai punti esterni ad A nel piano $\pi \equiv (u, v)$ (§ 3, n. 6).

2. - Enumeriamo i vari insiemi di cui avremo bisogno.

Sia anzitutto E_i l'insieme dei punti di K_i nei quali $\Psi_i(x, y)$ non è finita. Poichè $\Psi_i(x, y)$ è integrabile L (§ 1, n. 5) si ha $|E_i|=0$. Diciamo F_i l'insieme

^(*) Per la prima parte (paragrafi 1-3) vedasi Vol. X (1941), pp. 253-295.

dei punti di K_1 per i quali l'insieme chiuso $\Phi_1^{-1}(Q)$ di punti di \overline{A} ha componenti continui che non appartengono a G. Come sappiamo dal teorema 8 del \S 3, n. 10, si ha $|F_1|=0$.

Diciamo poi H_1 l'insieme di tutti i punti del contorno di K_1 , nonchè di tutti quei punti (x, y) interni a K_1 nei quali non è verificata l'uguaglianza

(2)
$$\Psi_{\mathbf{i}}(x,y) = \lim_{\varrho \to 0} \frac{1}{\pi \varrho^2} \iint_{\xi' + \eta' \leq \varrho'} \Psi_{\mathbf{i}}(x+\xi,y+\eta) \, d\xi d\eta.$$

Dal teorema di LEBESGUE segue che $|H_1|=0$.

Ricordiamo infine l'insieme numerabile L di punti di K (§ 3, n. 7). Diciamo L_1 la proiezione di L sul piano (x, y). L_1 è un insieme numerabile di punti di K_1 . Analoghe definizioni abbiano gli insiemi, tutti di misura nulla, E_2 , F_2 , H_2 , L_2 , E_3 , F_3 , H_3 , L_3 rispettivamente di punti di K_2 e K_3 .

3. - Come abbiamo già fatto nel § 1, se r è una regione aperta di JORDAN di \overline{A} , diremo r^* la curva continua semplice e chiusa costituente il suo contorno, $\overline{r}=r+r^*$ la regione chiusa di JORDAN definita da r, c la curva continua e chiusa immagine di r^* sulla superficie S, c_1 , c_2 , c_3 le curve piane continue e chiuse proiezioni ortogonali di c sui piani coordinati (x, y), (x, z), (y, z).

LEMMA 1. - Se sono verificate le ipotesi del n. 1, se $Q \equiv (x, y)$ è un punto di K_1-E_1 , esistono in \overline{A} , N poligonali semplici e chiuse Π_i^* , i=1, 2,..., N, $0 \le N \le m$, esterne l'una all'altra e senza punti in comune con $\Phi_1^{-1}(Q)$, tali che

$$m = \Psi_{\scriptscriptstyle 1}(x, y) = \sum_{i=1}^{N} \left| \ O(x, y \ ; \ C_{\scriptscriptstyle 1i}) \ \right|, \quad O(x, y \ ; \ C_{\scriptscriptstyle 1i}) \neq 0, \quad i = 1, 2, ..., N,$$

ove C_{i} è la proiezione sul piano (x, y) della curva continua e chiusa C_i immagine di Π_i^* sulla superficie S_i i=1, 2,..., N.

Poichè Q è un punto di $K_i - E_i$ si ha $m = \Psi_i(Q) < +\infty$. Esiste allora (§ 1, n. 3) una suddivisione di \overline{A} in regioni di JORDAN $\{r_i, i=1, 2,..., n\}$ tale che

$$m = \sum_{i=1}^{n} |O(x, y; c_{1i})|,$$

ove c_{ii} è la proiezione sul piano (x, y) della curva continua e chiusa c_i immagine di r_i^* sulla superficie S, i=1, 2,..., n.

Siano r_i , i=1, 2,..., N, quelle sole regioni r_i , $0 \le N \le n$, per le quali $O(x, y; c_{1i}) \neq 0$, i=1, 2,..., N, così che

$$m = \sum_{i=1}^{N} |O(x, y; c_{1i})|, N \leq n, N \leq m.$$

Infatti $O(x,\,y;\,c_{ii})=0$ per ogni $i=N+1,\,N+2,....,\,n$, e, d'altra parte, i numeri $|O(x,\,y;\,c_{ii})|,\,i=1,\,2,....,\,N$, sono tutti non minori di 1. Si osservi che le curve $c_{ii},\,i=1,\,2,....,\,N$, non incontrano il punto Q. Sia $\eta>0$ la distanza tra il punto Q e l'insieme chiuso $\sum_{i=1}^N c_{ii}$. Sia $\delta>0$ il massimo numero reale tale che $\omega(\delta) \leqslant \eta/2$. Sia infine Π_i^* una poligonale semplice e chiusa completamente interna ad r_i , la cui distanza nel senso di Fréchet da r_i^* è minore di $\delta,\,i=1,\,2,...,\,N$. Sia C_{1i} la proiezione sul piano $(x,\,y)$ della curva continua e chiusa C_i immagine di Π_i^* sulla superficie $S,\,i=1,\,2,...,\,N$.

Le curve C_{ii} e c_{ii} , i=1, 2,..., N, hanno tra loro una distanza nel senso di FRÉCHET non maggiore di $\eta/2$ e quindi, per il Lemma 1 del § 1, n. 6, si ha $O(x, y; C_{ii}) = O(x, y; c_{ii}) \pm 0, i=1, 2,..., N$. Ne segue

$$m = \sum_{i=1}^{n} |O(x, y; c_{1i})| = \sum_{i=1}^{N} |O(x, y; c_{1i})| = \sum_{i=1}^{N} |O(x, y; c_{1i})|$$

e, d'altra parte, poichè le curve C_{ii} non passano per Q, le poligonali Π_i^* non hanno punti in comune con l'insieme chiuso $\Phi_1^{-1}(Q)$.

4. - Diremo nel seguito campo poligonale o regione R, di ordine di connessione m, l'insieme aperto dei punti che sono interni ad un poligono semplice π_0 e che sono esterni ad m poligoni semplici π_1 , π_2 ,..., π_m completamente interni a π_0 ed esterni l'uno all'altro. La frontiera R^* di R è perciò costituita di m+1 continui che sono i contorni dei poligoni semplici π_0 , π_1 ,..., π_m .

Poniamo $\overline{R} = R + R^*$. Vale il seguente

Lemma 2. - Siano verificate le ipotesi del n. 1, sia R un campo poligonale contenuto in \overline{A} e σ un insieme chiuso tutto costituito di punti interni ad R i cui componenti 'sono continui g di G. Se per ogni componente g di σ che separa il piano si ha $\eta(\overline{g}) < \varepsilon/4$ e g non separa le poligonali π_i^* , i=1,2,...,m, dulla poligonale π_0^* , allora esiste una suddivisione di \overline{R} in poligoni semplici π_i' , i=1,2,...,n, sul contorno dei quali non cadono punti di σ e tali che $\eta(\pi_i') < \varepsilon/2$.

Sia $\delta_0 > 0$ la distanza tra l'insieme σ e la frontiera R^* di R.

Diciamo \bar{g} l'insieme chiuso che si ottiene dall'insieme g sostituendo a tutti gli (eventuali) componenti g di questo insieme che separano il piano il corrispondente insieme g, cioè il continuo che si ottiene da g aggiungendovi tutti i punti che sono separati da g da g.

L'insieme $\bar{\sigma}$ ha distanza $\delta = \delta_0$ da R^* . Ragioniamo per assurdo e supponiamo $\{R^*, \bar{\sigma}\} = \delta' < \delta$. Esistono allora due punti $P \varepsilon \bar{\sigma}$, $Q \varepsilon R^*$ tali che $\bar{PQ} = \delta' < \delta$. Ne segue che il punto P non appartiene a σ e quindi è separato da ∞ da qualche componente g di σ . Per ogni componente g di σ avente tale proprietà osserviamo che il segmento PQ nonchè la poligonale π_i^* , i=1, 2,..., n, di R^* a

cui appartiene Q sono privi di punti di g e quindi π_i^* è separata da ∞ da g (Q non può appartenere a π_0^* perchè nessun continuo g di σ può separare π_0^* da ∞). Ma anche π_0^* separa π_i^* da ∞ e quindi (Lemma 7, § 3, n. 1) deve π_0^* separare g da ∞ . Ne segue (Lemma 5, § 3, n. 1) che π_i^* è separato da g da π_0^* , ciò che è escluso. È così dimostrato che $\{R^*, \overline{\sigma}\} \geqslant \delta_0$ e quindi che $\{R^*, \overline{\sigma}\} = \delta_0$.

L'insieme $\bar{\sigma}$ non separa il piano. Ragioniamo per assurdo e supponiamo che $\bar{\sigma}$ separi il piano. Esiste allora un punto P_0 che è separato da ∞ da $\bar{\sigma}$. Il punto P_0 non appartiene a $\bar{\sigma}$ e perciò neppure a σ . D'altra parte P_0 non è separato da ∞ dall'insieme σ perchè altrimenti esisterebbe qualche componente g di σ che separa P_0 da ∞ (19) e quindi P_0 apparterrebbe a $\bar{\sigma}$, ciò che non è. Ne segue che esiste una poligonale semplice l congiungente P_0 con ∞ priva di punti di σ . Dunque su l deve cadere almeno un punto Q di $\bar{\sigma}$, perchè, in caso contrario, $\bar{\sigma}$ non separerebbe P_0 da ∞ . Il punto Q non appartiene a σ e quindi, appartenendo a $\bar{\sigma}$, deve essere separato da ∞ da qualche componente g di σ . D'altra parte la poligonale l, considerata a partire da Q, congiunge Q con ∞ ed è priva di punti di σ e perciò dei componenti g considerati. È assurdo dunque che detti componenti g separino Q da ∞ . È così dimostrato che $\bar{\sigma}$ non separa il piano.

Sia p un intero qualsiasi tale che $\sqrt{2}/2^p < \delta_0/2$. Dividiamo il quadrato $\bar{A} \equiv (0, 1, 0, 1)$ in 2^{2p} quadrati uguali q di lato $1/2^p$ mediante rette equidistanti parallele agli assi u e v. I quadrati q che contengono anche solo sul contorno punti di $\bar{\sigma}$ sono in numero finito e li possiamo distribuire in un certo numero di classi $\Sigma_1^{(p)}$, $\Sigma_2^{(p)}$,..., $\Sigma_{m_p}^{(p)}$ stabilendo che due quadrati q e q' (che contengono punti di $\bar{\sigma}$) appartengono alla stessa classe Σ se esiste in Σ un numero finito di quadrati $q_1, q_2,..., q_n$ tali che due qualunque quadrati consecutivi del gruppo ordinato $q_1, q_2,..., q_n$, q' abbiano un lato in comune.

Ciascuna delle classi $\Sigma_i^{(p)}$, $i=1, 2,..., m_p$, riempie un insieme aperto e connesso, che indicheremo ancora con $\Sigma_i^{(p)}$, limitato da una poligonale semplice esterna e da un certo numero di poligonali semplici interne che possono avere punti in

⁽¹⁹⁾ Facciamo uso qui e nel seguito della seguente proposizione: Se A è un insieme chiuso e limitato del piano π , se P e Q sono due punti di π non appartenenti ad A, allora, condizione necessaria e sufficiente perchè A separi P e Q nel piano π è che ciò accada per un componente C di A.

Per la dimostrazione osserviamo che basta dimostrare la seguente più semplice proposizione; Se A è un insieme chiuso e limitato del piano π , se P è un punto di π non appartenente ad A, allora, condizione necessaria e sufficiente perchè A separi P da ∞ nel piano π è che ciò accada per un componente C di A.

Dimostriamo quest'ultima proposizione. Sia α il componente dell'insieme aperto $\pi-A$ che contiene P. L'insieme α è aperto, connesso e limitato e quindi esiste uno ed un solo componente f della frontiera α^* di α che separa α da ∞ (cfr. nota (22) a piè di pagina). Ma f è tutto costituito di punti di A e quindi f è contenuto in un componente C di A che, a maggior ragione, separa α , e perciò P, da ∞ .

comune tra loro e con la poligonale esterna. Sui lati di ciascuna di queste poligonali non cadono punti di $\bar{\sigma}$, ma ogni punto dei lati di queste poligonali dista da $\bar{\sigma}$ per non più di $\sqrt{2}/2^p$. Per abbreviare diremo che $\Sigma_i^{(p)}$ è un campo poligonale.

Diciamo ω_p la massima delle oscillazioni della superficie S nei campi poligonali $\Sigma_1^{(p)}$, $\Sigma_2^{(p)}$,...., $\Sigma_{m_p}^{(p)}$. Osserviamo che, per ogni p, ciascuno dei campi $\Sigma_i^{(p+1)}$, $i=1,2,...,m_{p+1}$, è completamente contenuto in uno dei campi $\Sigma_i^{(p)}$, $i=1,2,...,m_p$.

Ne segue che $\omega_{p+1} \leqslant \omega_p$ per ogni p. Esiste perciò il limite $\lim_{n \to \infty} \omega_p$.

Dimostriamo che $\lim_{p\to\infty}\omega_p<\varepsilon/4$. Supponiamo infatti che sia $\lim_{p\to\infty}\omega_p\geqslant\varepsilon/4$. Osserviamo anzitutto che per ogni p esiste almeno un campo poligonale $\Sigma^{(p)}$ e su di questo o sulla sua frontiera due punti $P_p(u,v)$ e $P_p'\equiv(u',v')$ per i quali l'espressione

(3)
$$\{[x(u,v)-x(u',v')]^2+[y(u,v)-y(u',v')]^2+[z(u,v)-z(u',v')]^2\}^{1/2}$$

ha il valore ω_p . Esiste poi una sottosuccessione $\Sigma_{i_{\scriptscriptstyle v}}^{(p_s)}$, $s\!=\!1,\,2,\!...$, di campi poligonali per la quale esistono i limiti $\lim_{s\to\infty}P_{p_s}\!=\!P,\,\lim_{s\to\infty}P_{p_{\scriptscriptstyle v}}'\!=\!P'.$

Per il teorema di Zoretti (§ 3, n. 2, Teor. 1) l'insieme di accumulazione dei continui costituiti dai campi poligonali $\Sigma_{i_s}^{(p_s)}$ e dalla loro frontiera è un continuo C che contiene i punti P e P'. Per esso si deve avere $\eta(C) \geqslant \varepsilon/4$. Ogni punto di C appartiene poi a $\bar{\sigma}$. Infatti ogni punto di C è punto di accumulazione di punti appartenenti a quadrati q di lato piccolo quanto si voglia appartenenti a $\Sigma_{i_s}^{(p_s)}$ e ciascuno di tali quadrati contiene almeno un punto di $\bar{\sigma}$. Dunque C è completamente contenuto in un componente di $\bar{\sigma}$. Ma i componenti di $\bar{\sigma}$, o sono continui G di σ e quindi $\eta(g) = 0$, oppure sono continui \bar{g} relativi a componenti g di g che separano il piano e quindi g con continui g dunque possibile che sia g che separano il piano e quindi g con continui g con continui g che separano il piano e quindi g con continui g con continui g con continui g che separano il piano e quindi g con continui g con contin

Poichè lim $\omega_p < \varepsilon/4$ esiste un $\overline{p}, \sqrt{2}/2^{\overline{p}} < \delta_0/3$, tale che $\omega_{\overline{p}} < \varepsilon/2$. Consideriamo gli insiemi aperti $\Sigma_1^{(\overline{p})}, \Sigma_2^{(\overline{p})}, \ldots, \Sigma_{m_{\overline{p}}}^{(\overline{p})}$. Ciascuno di essi può essere spezzato in un numero finito di poligoni semplici mediante opportuni tagli eseguiti lungo poligonali semplici che non incontrano l'insieme $\overline{\sigma}$, ciò che è certo possibile perchè altrimenti $\overline{\sigma}$ separerebbe il piano ciò che non è. Siano $\pi_1', \pi_2', \ldots, \pi'_{m'}, m' \geqslant m_{\overline{p}},$ i poligoni semplici a due a due senza punti interni in comune così ottenuti.

Completiamo arbitrariamente la suddivisione di R mediante nuovi poligoni $\pi'_{m'+1},...., \pi_n'$, tutti di diametro abbastanza piccolo perchè, per ciascuno di essi, si abbia $\eta(\pi_i) \leq \varepsilon/2, \ i=m'+1, \ m'+2,...., \ n.$

I poligoni π_1' , π_2' ,..., $\pi'_{m'}$, $\pi'_{m'+1}$,..., π_n' costituiscono una suddivisione di π

in poligoni semplici e il contorno di tutti questi poligoni non incontra l'insieme $\bar{\sigma}$ e perciò neppure l'insieme σ .

Il Lemma 2 è con ciò dimostrato.

5. - Lemma 3. - Se sono verificate le ipotesi del n. 1, se $Q \equiv (x, y)$ è un punto di $K_1-F_1-L_1$, se π è un poligono semplice di \overline{A} , se $\varepsilon > 0$ è un numero arbitrario, esiste una suddivisione di π in poligoni semplici $\{\pi_i, i=1, 2,..., n\}$ tale che

(5)
$$\eta(\pi_i) < \varepsilon/2, \ i=1, 2,..., n, \qquad |O(x, y; c_1)| \leqslant \sum_{i=1}^n |O(x, y; c_{1i})|,$$

ove c_1 e c_{1i} sono le proiezioni sul piano (x, y) delle curve continue c e c_i , immagini delle poligonali semplici e chiuse π^* e π_i^* che costituiscono la frontiera dei poligoni π e π_i , i=1, 2,..., n.

Se inoltre la curva c_1 non passa per Q allora esiste una suddivisione di π in poligoni semplici $\{\pi_i', i=1, 2,..., n'\}$ sul contorno dei quali non cadono punti di $\Phi_1^{-1}(Q)$ e tali che

a)
$$O(x, y; c_i) = \sum_{i=1}^{n'} O(x, y; c_{ii});$$

b)
$$\eta(\pi_i'^*) < \varepsilon/2, \quad i=1, 2,..., n';$$

c) gli eventuali componenti di $\Phi_1^{-1}(Q)$ interni a π che separano il piano e per i quali $\eta(\overline{g}) > \varepsilon/4$ sono completamente interni a poligoni π_i' , i=1, 2,..., n', per i quali $O(x, y; c_{ii}')=0$.

Se la curva c_1 passa per Q, allora $|O(x,y;c_1)|=0$ e il Lemma è evidente. Supponiamo che c_1 non passi per Q e sia $\sigma>0$ la distanza $\{Q,c_1\}$. Ne segue che anche l'insieme intersezione $\pi\cdot \Phi_1^{-1}(Q)$ è chiuso.

Poichè Q è fuori di F_1 i componenti dell'insieme chiuso $\Phi_1^{-1}(Q)$ e perciò anche i componenti dell'insieme chiuso $\pi\Phi_1^{-1}(Q)$ appartengono alla collezione G, cioè essi sono continui massimali sui quali le funzioni x(u,v), y(u,v), z(u,v) sono (tutte e tre) costanti. Osserviamo più precisamente che la collezione $\{g\}$ dei componenti dell'insieme chiuso $\pi\Phi_1^{-1}(Q)$ è semicontinua superiormente (Teor. 3, § 3, n. 2). Sia $\{g\}^*$ la collezione (eventualmente vuota) dei continui g di $\{g\}$ che separano il piano.

Se g_0 è un continuo di $\{g\}^*$ diciamo $[g]_0$ la collezione di continui costituita da g_0 e da tutti i continui di $\{g\}^*$ che separano g_0 da ∞ (se ve ne sono). Se due continui g_1 e g_2 appartengono a $[g]_0$ allora o g_1 separa g_2 da ∞ oppure g_2 separa g_1 da ∞ . Ne segue che i continui di $[g]_0$ si possono ordinare stabilendo che g_1 preceda g_2 se g_2 separa g_1 da ∞ . Allora la collezione $[g]_0$ ha un primo elemento che è g_0 e un ultimo elemento g_1 che è un continuo di $\{g\}^*$

che separa tutti gli altri da ∞ . (Infatti, ammesso che la collezione $[g]_0$ non avesse ultimo elemento, il continuo g_1 del Lemma 9a, § 3, n. 5, per la rilevata semicontinuità superiore di $\{g\}$, dovrebbe appartenere a $\{g\}^*$ e quindi sarebbe l'ultimo elemento di $[g]_0$ contro il supposto).

Di più i possibili continui g_1 che così si ottengono e che appartengono tutti a $\{g\}^*$ hanno la seguente proprietà: Il numero dei continui g_1 effettivamente distinti e per i quali $\eta(\overline{g}_1) \geqslant \varepsilon/4$ è finito.

Siano questi $g_1, g_2, ..., g_m$.

Ricordiamo che abbiamo già indicato con G la collezione di tutti i continui massimali di \overline{A} sui quali le funzioni x(u,v), y(u,v), z(u,v) sono (tutte e tre) costanti e con G_1 la collezione di tutti i continui di G che separano il piano. Dal teorema 6 del \S 3, n. 6, sappiamo che i continui G_1 si possono distribuire in un numero finito o in una infinità numerabile di collezioni \mathfrak{L}_1 , \mathfrak{L}_2 ,...., \mathfrak{L}_m ,...., che godono delle proprietà ivi enunciate.

Sia \mathcal{L}_{m_1} la collezione a cui appartiene g_1 . Se \mathcal{L}_{m_1} ha un ultimo elemento sia questo g^* , altrimenti sia g^* il continuo di G_1 che contiene l'insieme di accumulazione dei continui di \mathcal{L}_{m_1} . Ricordiamo che i continui di \mathcal{L}_{m_1} sono ordinati in modo che g' precede g'' se g'' separa g' da ∞ . Diciamo poi k il primo elemento di \mathcal{L}_{m_1} , se esiste, altrimenti diciamo k l'insieme di accumulazione della collezione \mathcal{L}_{m_1} , ordinata in senso inverso a quello ora detto. g_1 non può coincidere con g^* perchè in tal caso g^* e quindi g_1 dovrebbe essere l'ultimo elemento di \mathcal{L}_{m_1} e quindi la sua immagine dovrebbe essere un punto di L (§ 3, n. 7) mentre come sappiamo l'immagine di g_1 sulla superficie S è un punto della retta parallela all'asse z e passante per Q e non può appartenere ad L perchè Q è fuori della proiezione L_1 di L sul piano (x,y).

Diciamo \mathcal{L}'_{m_1} la sottocollezione certo non vuota di tutti i continui di \mathcal{L}_{m_1} che separano g_4 da ∞ .

Dimostriamo che \mathfrak{L}'_{m_1} non può avere primo elemento. Infatti se \mathfrak{L}'_{m_1} avesse un primo elemento g_0 questo dovrebbe essere distinto da g_1 e quindi separare g_4 da ∞ . Dunque g_4 dovrebbe essere interamente contenuto in uno dei componenti limitati (Lemma 5, § 3, n. 1) di $\pi-g_0$. Diciamo a tale componente. D'altra parte l'insieme aperto e connesso $a-\overline{g}_1$ non potrebbe essere attraversato da altri continui g di \mathfrak{L}_{m_1} perchè questi dovrebbero essere compresi tra g_4 e g_0 in \mathfrak{L}_{m_1} ciò che è impossibile. Dunque $a-\overline{g}_1$ è uno dei componenti dell'insieme aperto complementare dell'insieme F_{m_1} , occupato da k, g^* e dai continui di \mathfrak{L}_{m_1} (§ 3, n. 7). Di più g_4 contiene punti della frontiera dell'insieme $a-\overline{g}_4$, ciò che è possibile solo se il punto immagine di g_4 su S appartiene ad L. Da qui segue che \mathfrak{L}'_{m_1} non ha primo elemento. Invertito l'ordine della collezione \mathfrak{L}'_{m_1} sia k' l'insieme di accumulazione di \mathfrak{L}'_{m_1} . k' è un continuo che deve appartenere ad un continuo g di g. Se g non coincidesse con g_4 allora (Lemma 9 g, § 3, n. 5) g dovrebbe separare g_4 da ∞ e quindi apparterrebbe

a \mathcal{L}'_{m_1} e anzi ne sarebbe il primo elemento, ciò che si è visto essere impossibile. Occorre dunque che l'insieme g coincida con g_1 e infine che l'insieme k' sia completamente contenuto in g_1 .

Sia P un punto di k'. Sia $\delta>0$ la distanza di P dalla frontiera π^* di π . Sia $\delta'>0$ la distanza di P da g^* . Sia δ_1 il massimo numero reale tale che $\delta_1\leqslant\delta/2,\ \delta_1\leqslant\delta'/2,\ \omega(\delta_1)\leqslant\sigma/2,\ \omega(\delta_1)\leqslant\varepsilon/4$. Nell'intorno $U(P,\delta_1)$ di P cadono punti di infiniti insiemi della collezione \mathfrak{L}_{m_1} e quindi anche infiniti punti dell'insieme chiuso F' occupato da k', g^* e dai continui di \mathfrak{L}'_{m_1} . Esiste perciò in $U(P,\delta_1)$ un punto P' di F'-k', ossia di uno dei continui di \mathfrak{L}'_{m_1} (20).

Il punto P' appartiene ad un continuo g_1' di \mathcal{L}'_{m_1} che separa g_1 da ∞ . Il continuo g_1' non può appartenere a $\Phi_1^{-1}(Q)$ perchè non esiste in $\Phi_1^{-1}(Q)$ nessun continuo che separa g_1 da ∞ . Dimostriamo che g_1' è completamente interno a π . Infatti ai punti di g_1' corrisponde per la Φ_1 un punto Q_1' che dista da Q non più di $\omega(\delta_1)$ ossia non più di $\sigma/2$ mentre tutti i punti della curva e_1 distano da Q non meno di σ . Dunque σ 0 non può avere punti sulla poligonale σ 1. D'altra parte σ 1 contiene il punto σ 2 completamente interno a σ 3. Ne segue che σ 3 è completamente interno a σ 4.

Il ragionamento fatto avanti per g_1 può essere ripetuto per g_2 , g_3 ,...., g_m Siano g_1' , g_2' ,...., $g_{m'}$ i continui di G_1 che così si ottengono. Può accadere che due o più di questi coincidano. Se però due di essi sono distinti, essi non hanno punti in comune perchè i continui di G_1 come quelli di G_2 sono mutualmente esclusivi. Trascuriamo poi tra i continui g_1' , g_2' ,...., $g_{m'}$ quelli che sono separati dai rimanenti da ∞ .

Siano $g_1', g_2', \dots, g_{m'}$, i continui rimasti, a due a due senza punti comuni e a due a due non separantisi da ∞ .

Siano $Q_1', Q_2',..., Q_{m'}$ i punti ad essi corrispondenti su K_1 per la trasformazione Φ_1 , tutti distinti da Q. Sia $0 < \sigma_0 < \varepsilon/4$ la minima distanza di tali punti da Q e sia δ_0 la minima mutua distanza tra i continui $g_1', g_2',..., g_{m'}$ e $\Phi_1^{-1}(Q)$. Sia infine δ_2 il massimo numero reale che $\delta_2 \le \delta_0/3$, $\omega(\delta_2) \le \sigma_0/2$. Possiamo ora racchiu-

⁽²⁰⁾ Facciamo qui uso della seguente proposizione già ricordata nella nota (16) a piè di pagina: $Se\ A+B\ e\ B$ sono insiemi chiusi, se $AB=0\ e\ A$ è non vuoto, esiste una legge per scegliere un punto P di A. Se A è chiuso la cosa è nota. In caso contrario per ogni intero n, sia B_n l'insieme chiuso costituito di tutti i punti di B e di tutti i punti che hanno una distanza da $B\leqslant 1/n$. Per qualche n l'insieme $A-AB_n$ non è vuoto. Infatti in caso contrario tutti i punti di A avrebbero distanza nulla dai punti di B e quindi apparterrebbero a B ciò che contrasta l'ipotesi AB=0. Sia \overline{n} il più piccolo intero tale che $A-AB_n$ non è vuoto. Se questo insieme è finito sia P un punto di esso. Altrimenti esiste una legge per scegliere un punto P di accumulazione dell'insieme $A-AB_n$. Il punto P ha distanza $>1/\overline{n}$ da B e quindi non appartiene a B. Il punto P è punto di accumulazione dell'insieme A+B e quindi appartiene ad A+B perchè questo insieme è chiuso. Dunque il punto P appartiene ad A.

dere (Lemma 3, § 3, n. 1) ciascun continuo g_i in un poligono semplice π_i , i=1, 2,..., m', in modo che tutti i punti del contorno π_i^* di π_i distino da g_i per meno di δ_2 . Possiamo inoltre supporre che i poligoni semplici π_i , i=1, 2,..., m', siano a due a due esterni l'uno all'altro e completamente interni al poligono π . Le curve c_{ii} , i=1, 2,..., m', proiezioni sul piano (x, y) delle curve c_i , immagini di π_i^* sulla superficie S sono completamente interne ad un cerchio di centro Q_i e raggio $\varepsilon/4$ che lascia perciò all'esterno il punto Q. Ne segue

(6)
$$O(x, y; c_{1i}) = 0, \quad i = 1, 2, ..., m'.$$

Consideriamo ora la regione R (di ordine di connessione m') racchiusa tra il poligono π e i poligoni π_i , $i=1,\,2,\ldots,\,m'$. Questa regione può contenere, come punti interni, punti di $\Phi_1^{-1}(Q)$ e anche, eventualmente, componenti di questo insieme che separano il piano ma, se g è uno di questi componenti, si ha $\eta(\overline{g}) < \varepsilon/4$ e g non separa le poligonali π_i^* , $i=1,\,2,\ldots,\,m'$, dalla poligonale π^* . Si ha poi $\{R\Phi_1^{-1}(Q),\,\pi^*+\sum_{i=1}^{m'}\pi_i^*\}\geqslant \frac{2\delta_0}{3}$. Diciamo σ l'insieme chiuso $R\Phi_1^{-1}(Q)$.

Come sappiamo dal Lemma 2 esiste una suddivisione di R in poligoni $semplici \ \pi_i', i=1, 2,...., n'$, sul contorno dei quali non cadono punti di σ e quindi di $\Phi_1^{-1}(Q)$ e tali che $\eta(\pi_i') < \varepsilon/2, i=1, 2,...., n'$. La suddivisione del poligono π costituita dagli m'+n' poligoni $tutti \ semplici \ \pi_1, \pi_2,...., \pi_{m'}, \pi_1', \pi_2',...., \pi_{n'}'$, risolve la seconda parte del Lemma 3. Si ha inoltre

$$O(x, y; c_1) = \sum_{i=1}^{n'} O(x, y; c_{1i}') + \sum_{i=1}^{m'} O(x, y; c_{1i})$$

e, per la (6), $O(x, y, c_{1i}) = 0$, i = 1, 2, ..., m', e quindi, maggiorando,

(7)
$$|O(x, y; c_1)| \leq \sum_{i=1}^{n'} |O(x, y; c_{1i'})|.$$

Per dimostrare la prima parte del Lemma 3 basta dividere i poligoni π_i , i=1, 2,..., m', in nuovi poligoni semplici π_i " qualsiasi su ciascuno dei quali si abbia $\eta(\pi_i)$ $< \varepsilon/2$, i=1, 2,..., m. Dalla (7) segue a fortiori la (5).

Il Lemma 3 è così completamente dimostrato.

6. - Sia $Q \equiv (x, y)$ un punto di $K_1 - E_1$. Diremo che una suddivisione di $A \equiv (0, 1, 0, 1)$ in regioni di Jordan $\{r_i, i=1, 2,..., n\}$ (o in poligoni semplici) è una suddivisione massimale rispetto al punto Q se accade che

(8)
$$m = \Psi_1(x, y) = \sum_{i=1}^n |O(x, y; c_{1i})|.$$

Vale ora il seguente

LEMMA 4. - Se sono verificate le ipotesi del n. 1, se $Q \equiv (x, y)$ è un punto di $K_1 - E_1 - F_4 - L_4$ ed $\varepsilon > 0$ un numero arbitrario, esiste una suddivisione di A in poligoni semplici $\{\pi_i, i=1, 2,..., n\}$ che è massimale rispetto al punto Q e tale che $\eta(\pi_i) < \varepsilon$, i=1, 2,..., n.

Dal Lemma 1 sappiamo già che esiste un gruppo di poligoni Π_i , i=1, 2,..., N, esterni l'uno all'altro e tali che

$$m = \sum_{i=1}^{N} |O(x, y; C_{1i})| = \Psi_{1}(x, y), \quad O(x, y; C_{1i}) \neq 0, \quad i = 1, 2, ..., N.$$

Dal Lemma 3 sappiamo che ciascuno di questi poligoni può essere scomposto in un numero finito di nuovi poligoni π_{ij} tali che

$$\eta(\pi_{ij}) < \varepsilon, \quad |O(x, y; C_{1i})| \leq \sum_{j} |O(x, y; C_{1ij})|, \quad i=1, 2,..., N.$$

Se ora dividiamo tutto il quadrato \overline{A} in poligoni semplici $[\pi_i, i=1, 2,..., n]$ tali che $\eta(\pi_i) < \varepsilon$, i=1, 2,..., n, e in maniera che tutti i poligoni π_{ij} facciano parte della nuova suddivisione si ha

$$m = \sum_{i=1}^{N} |O(x, y; C_{1i})| \leq \sum_{i,j} |O(x, y; C_{1ij})| \leq \sum_{i=1}^{n} |O(x, y; C_{1i})| \leq \Psi_{1}(x, y) = m$$

e quindi

$$m = \sum_{i=1}^{n} |O(x, y; c_{i,i})| = \Psi_{i}(x, y).$$

La suddivisione $[\pi_i, i=1, 2,..., n]$ è dunque massimale e inoltre

$$\eta(\pi_i) < \varepsilon$$
, $i=1, 2,..., n$.

7. - Lemma 5. - Siano verificate le ipotesi del n. 1. Sia $Q \equiv (x, y)$ un punto di $K_1 - E_1$ e sia $\{r_i, i = 1, 2, ..., n\}$ una suddivisione di \overline{A} in regioni di Jordan massimale rispetto a Q. Siano $r_i, i = 1, 2, ..., \overline{n}, 0 \leqslant \overline{n} \leqslant n$, le sole regioni r_i per le quali $O(x, y; c_{1i}) \pm 0$ e sia $\eta > 0$ la distanza di Q dall' insieme

chiuso $\sum_{i=1}^{\overline{n}} c_{1i}$. Se $\{r_i', i=1, 2,..., n'\}$ è una nuova suddivisione di \overline{A} in regioni

- di Jordan, massimale rispetto a Q e tale che $\eta(r_i) < \eta$, i=1, 2, ..., n', allora
- a) le regioni r_i' , $i=1, 2,..., \bar{n}'$, $0 \le \bar{n}' \le n'$, per le quali $O(x, y; c_{ii}') \neq 0$ sono completamente interne alle regioni r_i , $i=1, 2,..., \bar{n}$;
- b) in ogni regione r_i , $i=1, 2,..., \bar{n}$, vi è almeno una regione r_i , $i=1, 2,..., \bar{n}'$;

c) per ogni $i=1, 2,..., \overline{n}$, si ha $|O(x, y; c_{ij})| = \sum_{j} |O(x, y; c_{ij})|$, la sommatoria essendo estesa a tutte le regioni r_j , $j=1, 2,..., \overline{n}$, che sono completamente interne alla regione r_i .

d)
$$0 \leqslant \bar{n} \leqslant \bar{n}' \leqslant m = \Psi_1(x, y)$$
.

Cominciamo col rilevare che se una regione r_j contiene punti del contorno di una regione r_i , $i=1, 2,..., \bar{n}$, allora tutti i punti di c_{ij} distano da almeno un punto P di c_{ii} per meno di η e quindi la curva c_{ij} è completamente contenuta in un cerchio di centro P e raggio minore di η . Ma P dista da Q non meno di η e quindi $Q \equiv (x, y)$ è completamente esterno al cerchio considerato. Ne segue $O(x, y; c_{ij}) = 0$.

Sia ora r_j una regione completamente esterna alle regioni di Jordan r_i , $i=1, 2,..., \overline{n}$. Dimostriamo che $O(x, y; c_{ij})=0$. Infatti, in caso contrario, combinando insieme le \overline{n} regioni di Jordan r_i , $i=1, 2,..., \overline{n}$, e la regione di Jordan r_j , tutte esterne l'una all'altra, si avrebbe

$$\sum_{i=1}^{n} |O(x, y; c_{ii})| + |O(x, y; c_{ij}')| > m = \Psi_{i}(x, y).$$

Dette regioni di Jordan potrebbero essere sostituite con poligoni π_i , $i=1,2,...,\bar{n}$ e π_j completamente interni alle rispettive regioni di Jordan r_i , $i=1,2,...,\bar{n}$, r_j e in modo che, con ovvie notazioni,

$$O(x, y; c_{1i}) = O(x, y; \gamma_{1i}), i = 1, 2, ..., \bar{n}, O(x, y; c_{1i}) = O(x, y; \gamma_{1i}).$$

Dividiamo ora il quadrato A in poligoni $\{\pi_i'', i=1, 2..., n''\}$ in modo che tutti i poligoni $\pi_i, i=1, 2,..., \bar{n}, \pi_j'$ facciano parte della suddivisione $\{\pi_i''\}$. Si ha

$$egin{aligned} arPsi_{1}(x,\,y) &= m \geqslant \sum_{i=1}^{n''} |O(x,\,y\,;\,|\, \gamma_{1\,i}'')\,| \geqslant \sum_{i=1}^{\overline{n}} |O(x,\,y\,;\,|\, c_{1\,i})\,| + \\ &+ |O(x,\,y\,;\,|\, c_{1\,j}')\,| > m = arPsi_{1}(x,\,y), \end{aligned}$$

ciò che è assurdo. È con ciò dimostrato che le regioni r_i' , $i=1, 2,..., \overline{n}'$, per le quali $O(x, y; c_{ii}') \neq 0$ sono completamente interne alle regioni r_i , $i=1, 2,..., \overline{n}$. Diciamo ora r_{ij}' le sole regioni r_i' , $i=1, 2,..., \overline{n}'$, che sono completamente interne alle regioni r_i . Dimostriamo che

(9)
$$0 = |O(x, y; c_{1i})| = \sum_{i} |O(x, y; c_{1ij})|, \quad i = 1, 2, ..., \bar{n}.$$

Supponiamo infatti che per una certa regione $r_{\overline{i}}$ si abbia $\mid O(x,\,y\,;\,c_{\overline{i}})\mid < \sum_i \mid O(x,\,y\,;\,c'_{4\overline{i}\,\overline{i}\,\overline{j}})\mid$. Allora combiniamo le regioni di Jordan $r_i,\,i\pm \overline{i},\,i=1,2,...,\,\overline{n},$

e le regioni $r'_{\bar{i}j}$ relative a $r_{\bar{i}}$, tutte esterne l'una alle altre. Sostituiamo ad esse dei poligoni π' completamente interni così da non alterare il valore del relativo indice di Kronecker. Dividiamo \bar{A} in un numero finito di poligoni π_i'' in modo tale che i poligoni π' facciano tutti parte della nuova suddivisione. Si avrà, come sopra,

$$egin{aligned} arPsi_1(x,\,y) = & m \geqslant \sum_i \mid O(x,\,y\,;\,\,\, \gamma_{1\,i''}) \mid \ \geqslant \sum_{i=1}^n \mid O(x,\,y\,;\,\,\, c_{1\,i}) \mid \ + \sum_j \mid O(x,\,y\,;\,\,\, c_{'\,1ar{i}j}) \mid \ > \ & \sum_{i=1}^n \mid O(x,\,y\,;\,\,\, c_{1\,i}) \mid \ = m = arPsi_1(x,\,y), \end{aligned}$$

ciò che è assurdo. È così dimostrato che per ogni i deve aversi

$$0 = |O(x, y; c_{1i})| \gg \sum_{i} |O(x, y; c'_{1ij})|, \quad i = 1, 2, ..., \bar{n}.$$

Supponiamo ora che per un $i=\bar{i}$ valga nella precedente il segno >. Si ha allora successivamente

$$egin{aligned} arPsi_1(x,y) = m = & \sum_{i=1}^n \mid O(x,y\,;\;c_{1i}) \mid = \sum_{i=1}^n \mid O(x,y\,;\;c_{1i}) \mid > \sum_{i,j} \mid O(x,y\,;\;c_{1ij}) \mid = \\ & = & \sum_{i=1}^{n'} \mid O(x,y\,;\;c_{1i'}) \mid = m = arPsi_1(x,y), \end{aligned}$$

ciò che di nuovo è impossibile. La (9) è così dimostrata.

Abbiamo dunque dimostrato a) e c). La b) segue immediatamente dalla c) osservando che nella (9) il primo membro è diverso da zero e quindi almeno uno degli addendi a secondo membro deve essere pure diverso da zero. La d) segue immediatamente da b). Il Lemma b0 è così completamente dimostrato.

- 8. Lemma 6. Siano verificate le ipotesi del n. 1. Sia $Q \equiv (x, y)$ un punto di $K_1 E_1 F_1 L_1$ e sia $m = \Psi_1(x, y)$. Esistono m' = m'(Q), $0 \le m' \le m$, punti distinti P_1 , P_2 ,...., $P_{m'}$ di \overline{A} appartenenti a componenti distinti di $\Phi_1^{-1}(Q)$ che non separano il piano e che non hanno punti in comune con il contorno A^* di A e altrettanti punti M_1 , M_2 ,...., $M_{m'}$, non necessariamente distinti, appartenenti alla superficie S e alla retta parallela all'asse z e passante per Q, tali che, se $\eta > 0$ è un numero reale opportuno, qualsiasi suddivisione di \overline{A} in regioni di Jordan $\{r_i, i=1, 2,...., n\}$ massimale rispetto a Q e tale che $\varepsilon \equiv \max \eta(r_i) < \eta$ ha le seguenti proprietà:
- a) m' e sole m' regioni r_i (siano esse r_i , i=1, 2,..., m') verificano la disuguaglianza $r_i \equiv O(x, y; c_{ii}) \neq 0, i=1, 2,..., m'$;
- b) le m' curve c_i , i=1, 2,..., m', sono completamente contenute nelle corrispondenti sfere di centro M_i e raggio ε ;

c) P_i è interno a r_i , i=1, 2,..., m', e $M_i=S(P_i)$.

Inoltre, se r è una qualunque regione di Jordan contenente un punto P_i , i=1, 2,..., m', se il contorno r^* di r non incontra $\Phi_1^{-1}(Q)$, se $\eta(r) \le \sigma < \eta$, allora $O(x,y; c_1) = r_i \neq 0$ e la curva c è completamente contenuta nella sfera di centro M_i e raggio σ . Regioni di Jordan r e r', aventi le proprietà indicate e contenenti punti P_i distinti, non hanno punti in comune.

Sia $\Sigma_1\equiv\{\pi_i^{(1)},\ i=1,\ 2,....,\ n_1\}$ una suddivisione di \overline{A} in poligoni semplici massimale rispetto a Q, siano $\pi_i^{(1)},\ i=1,\ 2,....,\ \overline{n}_1,\ 0\leqslant\overline{n}_1\leqslant n_1,\ i$ soli poligoni $\pi_i^{(1)}$ per i quali $O(x,\ y\ ;\ c_{1i}^{(1)}) \neq 0,\ i=1,\ 2,....,\ \overline{n}_1,\ e$ sia $\eta_1>0$ la distanza di Q dall'insieme $\sum_{i=1}^{\overline{n}_1} c_{1i}^{(1)}$.

Per il Lemma 4 esiste allora una nuova suddivisione di \overline{A} in poligoni semplici $\Sigma_2 \equiv \{\pi_i^{(2)}, i=1,2,...,n_2\}$ massimale rispetto a Q e tale che $\eta(r_i^{(2)}) \leqslant \min [1/2, \eta_1/2],$ $i=1,2,...,n_2$. Siano $r_i^{(2)}, i=1,2,...,\overline{n}_2, \ 0 \leqslant \overline{n}_2 \leqslant n_2, \ i$ soli poligoni $\pi_i^{(2)}$ per i quali $O(x,y;c_{1i}^{(2)}) \neq 0, \ i=1,2,...,\overline{n}_2, \ e$ sia $\eta_2 > 0$ la distanza di Q dall' insieme \overline{n}_2 $c_{1i}^{(2)}$. E così di seguito. Sia $\Sigma_1, \Sigma_2,...,\Sigma_p,...,$

$$\Sigma_p \equiv \{\pi_i^{(p)}, i=1, 2,..., n_p\}, p=1, 2,..., n_p\}$$

la successione di suddivisioni di A in poligoni semplici che così si ottiene, tutte massimali rispetto a Q. Se indichiamo con η_p la distanza di Q dall'insieme chiuso $\sum_{i=1}^{\overline{n}_p} c_{1i}^{(p)}$ ove $c_{1i}^{(p)}$, $i=1, 2,..., \overline{n}_p$, sono le sole curve $c_{1i}^{(p)}$, $i=1, 2,..., n_p$, per le quali $O(x, y; c_{1i}^{(p)}) \neq 0$, si ha $\eta_{p+1} \leq [1/p+1, \eta_p/2]$.

Dal Lemma 5, n. 7, sappiamo che

- a) i poligoni $\pi_i^{(p+1)}$, $i=1,2,...,\bar{n}_{p+1}$, cioè quelli per i quali $O(x,y;\,c_{1i}^{(p+1)}) \neq 0$, sono completamente interni ai poligoni $\pi_i^{(p)}$, $i=1,2,...,\bar{n}_p$;
- b) in ogni poligono $\pi_i^{(p)}$, $i=1, 2,..., \overline{n}_p$, vi è almeno un poligono $\pi_i^{(p+1)}$, $i=1, 2,..., \overline{n}_{p+1}$;
- c) per ogni i, $(i=1,2;...,\bar{n}_p)$, $|O(x,y;c_{1i}^{(p)})| = \sum_{j} |O(x,y;c_{1j}^{(p+1)})|$, la sommatoria essendo estesa ai soli poligoni $\pi_j^{(p+1)}$, $j=1,2,...,\bar{n}_{p+1}$, interni a $\pi_j^{(p)}$;
 - $d) \ \overline{n}_1 \leqslant \overline{n}_2 \leqslant \overline{n}_3 \leqslant \dots \leqslant \overline{n}_p \leqslant \dots \leqslant m < +\infty.$

Esiste pertanto un $p=\bar{p}$ tale che

$$\bar{n}_{p}^{-} = \bar{n}_{p+1}^{-} = \bar{n}_{p+2}^{-} = \dots = m' \leqslant m, \qquad m' = \lim_{p \to \infty} \bar{n}_{p}.$$

Ne segue che per ogni $p \geqslant \overline{p}$ ciascuno dei poligoni $\pi_i^{(p)}$, i=1, 2,..., m', contiene uno ed uno solo dei poligoni $\pi_i^{(p+1)}$ e, con ovvia numerazione dei poligoni,

$$v_i = |O(x, y; c_{1i}^{(p)})| = |O(x, y; c_{1i}^{(p+1)})| = ..., i = 1, 2, ..., m', m = \sum_{i=1}^{m'} v_i.$$

Per ogni i=1, 2,..., m', i poligoni chiusi $\pi_i^{(p)}$, $p=\overline{p}$, $\overline{p}+1,...$, sono l'uno interno al precedente e quindi esiste un punto P_i comune a tutti. Di più, per il teorema di ZORETTI (§ 3, n. 2), esiste un continuo C_i , contenente P_i , insieme di accumulazione della successione $\overline{\pi}_i^{(p)}$, $p=\overline{p}$, $\overline{p}+1,...$.

Manifestamente $\eta(C_i) \leqslant \eta(\pi_i^{(p)})$ per ogni $p \geqslant \overline{p}$ e poichè $\lim_{p \to \infty} \eta(\pi_i^{(p)}) = 0$ si ha $\eta(C_i) = 0$. Ne segue che C_i è completamente contenuto in un componente g_i di G. Ma ogni poligono $\pi_i^{(p)}$ contiene un punto di $\Phi_1^{-1}(Q)$ e quindi P_i appartiene a $\Phi_1^{-1}(Q)$. Ne consegue che g_i è un componente di $\Phi_1^{-1}(Q)$. g_i è poi completamente interno a ciascuno dei poligoni $\pi_i^{(p)}$, $p \geqslant \overline{p}$, perchè il contorno dei poligoni $\pi_i^{(p)}$ non ha punti in comune con $\Phi_1^{-1}(Q)$.

Ne segue che g_i non separa il piano perchè altrimenti insieme a g_i anche \overline{g}_i sarebbe tutto contenuto in $\pi_i^{(p)}$ per ogni $p \geqslant \overline{p}$ e poichè $\eta(\overline{g}_i) > 0$ si avrebbe per ogni $p \geqslant \overline{p}$, $\eta(\pi_i^{(p)}) \geqslant \pi(\overline{g}_i) > 0$ ciò che è impossibile. Il continuo g_i è poi completamente interno ad ogni poligono $\pi_i^{(p)}$ e quindi è pure completamente interno al quadrato A. Il continuo g_i non ha dunque punti in comune con la periferia di A.

Poniamo $M_i = S(P_i)$, i = 1, 2,..., m'. I punti M_i appartengono alla superficie S e poichè i continui g_i appartengono a $\Phi_1^{-1}(Q)$, la proiezione dei punti M_i su K_1 è il punto Q.

Poniamo ora $\eta=\eta_{\overline{p}}/2$ e sia $\{r_i,\ i=1,\,2,...,\,n\}$ una qualsiasi suddivisione di \overline{A} in regioni di JORDAN massimale rispetto a Q e tale che $\varepsilon\equiv\max\eta(r_i)<\eta$.

Siano $r_i, i=1, 2,..., m''$, le sole regioni r_i per le quali $O(x,y; c_{ii}) \pm 0$. Sia η' la distanza di Q dall'insieme $\sum_{i=1}^{m''} c_{ii}$ e sia $p' > \overline{p}$ il più piccolo intero tale che $\eta_{p'-1} < \eta'/2$.

Dal Lemma 5 si ha $m'=m_{\overline{p}}\leqslant m''\leqslant m_{p'}=m'$ e quindi m''=m'. Dunque sempre in virtù del Lemma 5 in ogni poligono $\pi_i^{(\overline{p})},\ i=1,\ 2,....,\ m'$, si trova una e soltanto una delle regioni $r_i,\ i=1,\ 2,....,\ m''=m'$, e in ogni regione $r_i,\ i=1,\ 2,....,\ m'$, si trova uno e soltanto uno dei poligoni $\pi_i^{(\overline{p})},\ i=1,\ 2,....,\ m'$. Infine

$$v_i = |O(x, y; c_i^{(\bar{p})})| = |O(x, y; c_{i})|, \quad i = 1, 2, ..., m'.$$

Si osservi infine che il punto P_i e il continuo g_i essendo interni al poligono $\pi_i^{(p')}$ sono pure interni alla regione di Jordan r_i , i=1, 2,..., m'. Poichè $\eta(r_i) \leqslant \varepsilon$,

i=1, 2,..., m', e in virtù del fatto che r_i contiene il punto P_i e $M_i=S(P_i)$, le curve c_i immagini di r_i^* sulla superficie S sono completamente interne alla sfera di centro M_i e raggio ε . Le a), b), c) del Lemma 6 sono così dimostrate. Dimostriamo l'ultima parte del Lemma.

Consideriamo uno qualunque dei poligoni $\pi_i^{(p)}$, i=1, 2,..., m'. Sul suo contorno non cadono punti dell'insieme chiuso $\Phi_1^{-1}(Q)$ e quindi i componenti di questo insieme o sono completamente interni oppure esterni a $\pi_i^{(p)}$.

Dimostriamo che non possono esistere componenti di $\Phi_1^{-1}(Q)$ interni a $\pi_i^{\overline{p}}$ che separano g_i da ∞ .

Supponiamo infatti che ve ne siano e sia $[g]_i$ la collezione certo non vuota di tali componenti. Allora esiste un numero reale $\eta > 0$ che è superato da qualcuno dei numeri $\eta(\overline{g})$ ove \overline{g} è uno qualunque dei continui g di $[g]_i$ che separano g_i da ∞ e interni a $\pi_i^{(\overline{p})}$. Dalla seconda parte del Lemma 3 (questo paragrafo, n. 5) segue che esiste una suddivisione di $\pi_i^{(\overline{p})}$ in poligoni semplici $\{\pi_j, j=0, 1, 2,..., n\}$ tale che

- a) sul contorno dei poligoni π_j non cadono punti di $\Phi_1^{-1}(Q)$;
- b) i componenti g dell'insieme $\Phi_1^{-1}(Q)$ che separano il piano e per i quali $\eta(\overline{g}) \geqslant \eta/4$ sono tutti contenuti in un certo numero di poligoni π_j per i quali $O(x, y; c_{ij}) = 0$;

c)
$$0 \neq O(x, y; c_{1i}^{(p)}) = \sum_{j=0}^{n} O(x, y; c_{1j}).$$

È evidente che i continui g di $[g]_i$ dovranno essere tutti contenuti in un solo poligono π_j . Possiamo supporre che tale poligono sia π_0 così che $O(x, y; c_{10}) = 0$. Osserviamo che π_0 contiene oltre ai continui g di $[g]_i$ anche il continuo g_i e il punto P_i .

Da c) segue che esistono certi poligoni π_{j_1} , π_{j_2} ,...., π_{j_m} , j_1 , j_2 ,...., $j_m=1,2,....n$, tali che $O(x,y;\ c_{ij}) \neq 0,\ s=1,2,....,m$, e quindi

$$0 \neq v_i = \mid O(x, y; c_{1i}^{(\overline{p})}) \mid = \mid \sum_{i=0}^n O(x, y; c_{1j}) \mid \leq \sum_{s=1}^m \mid O(x, y; c_{1j_s}) \mid.$$

Diciamo $\sigma_0 > 0$ la minima distanza della curva c_{10} dal punto Q e sia p' i più piccolo intero tale che $\eta(\pi_i^{(p')}) < \sigma_0/2$.

Il poligono $\pi_i^{(p')}$ contiene il continuo g_i . Ne segue che la curva $c_{ii}^{(p')}$ è tutta costituita di punti che distano da Q per meno di $\sigma_0/2$. Con il solito ragionamento segue che $\pi_i^{(p')}$ non può avere punti del contorno in comune con π_0 e neppure può contenere questo poligono. Dunque $\pi_i^{(p')}$ è completamente contenuto in π_0 . Allora i poligoni $\pi_i^{(p')}$, π_{j_1} , π_{j_2} ,...., π_{j_m} , $\pi_i^{(p)}$, $t \neq i$, t = 1, 2,...., m', sono tutti esterni l'uno all'altro. Esiste perciò una suddivisione di \overline{A} in poligoni semplici

 $\{\pi_i'', i=1, 2,..., n''\}$ tale che i poligoni sopra menzionati facciano parte di questa suddivisione. Ne segue

$$m \geqslant \sum_{i=1}^{n''} |O(x, y; c_{ii''})| \geqslant \sum_{\substack{t=1 \ t \neq i}}^{m'} |O(x, y; c_{it}^{(\overline{p})})| + \sum_{s=1}^{m} |O(x, y; c_{ij_s})| + |O(x, y; c_{ii}^{(p')})| \geqslant \\ \geqslant (m - \nu_i) + \nu_i + \nu_i > m,$$

ciò che è impossibile. Abbiamo così dimostrato che in $\pi_i^{(p)}$ non cadono componenti di $\Phi_1^{-1}(Q)$ che separano g_i da ∞ .

Sia ora r una qualunque regione di Jordan contenente P_i , il cui contorno non incontra punti di $\Phi_1^{-1}(Q)$ e tale che $\eta(r) \leq \sigma < \eta$.

Allora r deve contenere nel suo interno l'intero insieme g_i . Inoltre i punti della curva c_1 distano da Q per meno di $\eta = \eta_{\overline{p}}/2$ mentre i punti della curva $c_{ii}^{(\overline{p})}$ distano da Q non meno di $\eta_{\overline{p}}$. Ne segue, con il solito ragionamento, che r è completamente interna a $\pi_i^{(\overline{p})}$.

Sia π un poligono semplice tutto interno ad r epperò contenente g_i e P_i e così prossimo ad r affinchè $O(x, y; \bar{c}_1) = O(x, y; c_1)$, ove \bar{c}_1 e c_1 sono rispettivamente le proiezioni sul piano (x, y) delle curve \bar{c} e c immagini dei contorni π^* ed r^* di π ed r.

L'insieme $\Phi_1^{-1}(Q)$ non può separare π da $\pi_i^{(p)}$, perchè in tal caso $\Phi_1^{-1}(Q)$ separerebbe g_i da ∞ ciò che è stato escluso. Ne segue che la regione R di ordine di connessione 1, compresa tra i poligoni $\pi_i^{(p)}$ e π può essere scomposta in un numero finito di poligoni semplici π_1' , π_2' ,...., π_n' mediante poligonali che non incontrano l'insieme $\Phi_1^{-1}(Q)$ (Lemma 2, n. 4). Si ha allora

(10)
$$O(x, y; c_{4i}^{(\overline{p})}) = \sum_{i=1}^{n} O(x, y; c_{4i}') + O(x, y; \overline{c}_{4}).$$

Dobbiamo dimostrare che per ogni i=1, 2,..., n, si ha $O(x, y; c_{ii}')=0$. La dimostrazione è del tutto analoga a quella fatta nelle righe precedenti e non la ripetiamo. Si ha allora dalla (10)

$$v_i = |O(x, y; c_{ii}^{(\bar{p})})| = |O(x, y; \bar{c}_i)| = |O(x, y; c_i)|.$$

Finalmente poichè $\eta(r) \leq \sigma$ e in virtù del fatto che r contiene il punto P_i e $M_i = S(P_i)$, la curva c, immagine di r^* sulla superficie S, è completamente interna ad una sfera di centro M_i e raggio σ .

Il Lemma 6 è con ciò dimostrato.

9. - L'insieme M di una superficie continua.

Sempre nelle ipotesi enunciate nel n. 1 di questo paragrafo, abbiamo dimostrato, nel Lemma 6, che, per ogni punto $Q \equiv (x, y)$ di $K_1 - E_1 - F_4 - L_4$, esistono

certi punti M_1 , M_2 ,...., $M_{m'}$, in numero di $m'=m'(Q)\leqslant \Psi_1(x,y)$ finito, che appartengono alla superficie S e alla retta parallela all'asse z passante per Q. Diciamo $M_1(Q)$ l'insieme di questi m' punti e diciamo M_1 l'insieme di tutti i punti di S che appartengono a qualche insieme $M_1(Q)$ ove Q è un punto qualunque di $K_1-E_1-F_1-L_1$. Scambiando l'ufficio degli assi x,y,z potremo definire in modo analogo gli insiemi M_2 e M_3 di punti di S.

Osserviamo che M_1 è segato da quasi tutte le rette parallele all'asse z in un numero finito di punti e che analoghe proprietà hanno M_2 e M_3 . Diciamo nucleo della superficie S l'insieme di punti di S

$$(11) M = M_1 + M_2 + M_3.$$

Dimostriamo il seguente

LEMMA 7. - Se sono verificate le ipotesi del n. 1, il nucleo M di una superficie continua S qualsiasi ha misura (tridimensionale) nulla.

Basta evidentemente dimostrare che gli insiemi M_1 , M_2 , M_3 sono misurabili. Occupiamoci ad esempio di M_1 .

Sia K' l'insieme dei punti di K la cui proiezione su K_1 non cade in $E_1 + F_1 + L_2$. Sia J_{nh} l'insieme dei punti $M \equiv (x, y, z)$ di S tali che:

- a) il punto $Q \equiv (x, y)$ appartiene a $K_1 E_1 F_1 L_1$;
- b) nell'insieme $S^{-i}(M)$ dei modelli di M possono scegliersi certi punti $P_i, i=1, 2,..., \mu, (\mu \geqslant 1)$ appartenenti a certe regioni di Jordan γ_i a due a due senza punti comuni e tali che, detta γ_i^* la frontiera di γ_i , c_i la curva immagine di γ_i^* su S, c_{i} la proiezione di c_i sul piano (x, y), si ha

$$\eta(\gamma_i) \leqslant 1/n$$
, $O(x, y; c_{1i}) = 0$, $i = 1, 2, ..., \mu;$

c) la regione di Jordan γ_i contiene un cerchio di centro P_i e raggio 1/n+h; i punti della curva c_i distano dalla retta r(Q) passante per Q e per M di almeno 1/n+h; la curva γ_i^* ammette una rappresentazione parametrica sulla periferia Γ del cerchio unità tale che se P e P' sono due punti di Γ e Q e Q' le loro immagini su γ_i^* si ha $\overline{PP'}/n+h \leqslant \overline{QQ'} \leqslant n\overline{PP'}$.

Poniamo $I_n = \sum_{h=1}^{\infty} J_{nh}$, n=1, 2,.... È subito visto che: a) gli insiemi J_{nh} , n=1, 2,..., h=1, 2,..., sono tutti chiusi relativamente all'insieme K'; β) ogni punto M di M_1 appartiene a qualche I_n da uno di essi in poi; γ) soltanto i punti M godono questa proprietà. Ne segue che $M_1 = \lim_{m \to \infty} \sum_{n=m}^{\infty} I_n$ e quindi M_1 è un insieme misurabile.

OSSERVAZIONE. - Il Lemma 7, che è una immediata conseguenza del Lemma 6 e della definizione di nucleo M di una superficie continua S, è notevole perchè assicura, in particolare, che, per ogni superficie S di area finita secondo Lebesgue,

è possibile scegliere su di essa un insieme di punti M, aventi le proprietà espresse nel Lemma 6, che è sempre di misura nulla, sebbene la superficie S possa occupare un insieme di punti di misura positiva.

10. - Sia $\{Q\}$ una collezione finita di punti di K. Siano $\{Q_1\}, \{Q_2\}, \{Q_3\}$ le collezioni dei punti effettivamente distinti proiezioni dei punti Q sui quadrati K_1, K_2, K_3 rispettivamente. Siano $\{r_1\}, \{r_2\}, \{r_3\}$ le rette, rispettivamente parallele agli assi z, y, x, passanti per i punti Q di $\{Q\}$. Diciamo $\{Q^*\}$ l'insieme finito di tutti i punti di K in cui due rette r_t si incontrano. L'insieme $\{Q^*\}$ contiene $\{Q\}$. Supponiamo che le collezioni $\{Q_t\}$ siano costituite di punti di $K_t-E_t-F_t-L_t$, t=1, 2, 3, e che tutti i punti Q^* in cui due rette r_t , t=1, 2, 3, si incontrano siano fuori dell'insieme M considerato nel numero precedente. Ad ogni punto Q_t di $\{Q_t\}$, t=1,2,3, corrisponde in K (Lemma 6, questo paragrafo, n. 8) un gruppo di punti M non necessariamente distinti appartenenti ad S ed alla retta r_t passante per Q_t . Tali punti M sono in numero di $m'=m'(Q_t)$ ove m' è \leqslant al valore m della funzione $\Psi_t(Q)$ per $Q=Q_t$. Considereremo nel seguito come un unico punto quei punti Mrelativi ad uno stesso punto Q_t che coincidono. Allo stesso punto Q_t corrisponde inoltre su A (Lemma 6, questo paragrafo, n. 8) un gruppo finito costituito di $m'=m'(Q_t)$ punti P a due a due distinti, le cui immagini su S sono i considerati punti M. Ogni punto P appartiene poi ad un continuo g di G e punti P distinti appartengono a continui g distinti di G.

Diremo nel seguito $\{M\}$ la collezione finita di tutti i punti M relativi a qualche punto Q_t , t=1, 2, 3, diremo $\{P\}$ la collezione di tutti i punti P visti sopra e $\{g\}$ la collezione di tutti i continui g di G a cui appartengono i punti P.

Dimostriamo che i punti M sono tutti distinti. Intanto, con la convenzione fatta sopra, tutti i punti M relativi al medesimo punto Q_t e quindi appartenenti alla stessa retta r_t sono tutti distinti. Se due punti M appartengono a rette r_t parallele o sghembe essi sono a fortiori distinti. Se infine due punti M appartengono a rette distinte che si incontrano in un punto, questo punto è certamente un punto fuori di M e quindi i due punti M non possono cadere in tale punto e sono perciò certamente distinti.

Dimostriamo che i punti della collezione $\{P\}$ sono tutti distinti. Infatti se due punti P sono relativi allo stesso punto Q_t allora sappiamo già che essi sono distinti in virtù di quanto abbiamo ricordato dal Lemma 6. Se poi due punti P sono relativi a punti Q_t distinti, allora le loro immagini su S, che sono due punti di M non appartenenti alla stessa retta, sono certo distinti in virtù di quanto si è detto avanti e quindi anche i due punti P sono distinti.

In modo analogo si dimostra che i continui g della collezione $\{g\}$ sono mutualmente esclusivi.

Vogliamo ancora rilevare che i punti Q essendo tutti punti di intersezione di rette r_t sono fuori dell'insieme M e quindi le collezioni $\{M\}$ e $\{Q\}$ entrambe finite, non hanno punti in comune e neppure hanno punti in comune le collezioni $\{M\}$ e $\{Q^*\}$. Diciamo infine σ l'insieme chiuso costituito di tutti i punti di \overline{A} la cui immagine rispetto alle trasformazioni Φ_t cade in un punto Q_t , t=1,2,3, ossia

$$\sigma = \sum \Phi_1^{-1}(Q_4) + \sum \Phi_2^{-1}(Q_2) + \sum \Phi_3^{-1}(Q_3),$$

le sommatorie essendo estese rispettivamente ai punti delle collezioni *finite* $\{Q_1\}, \{Q_2\}, \{Q_3\}.$

Poichè i punti Q_t sono fuori di F_t i componenti di ogni insieme chiuso $\Phi_t^{-1}(Q_t)$ sono continui g di G e quindi, su ciascuno di essi, le tre funzioni x(u, v), y(u, v) z(u, v) sono costanti. Ne segue che due componenti appartenenti a insiemi $\Phi_t^{-1}(Q_t)$ relativi a punti Q_t distinti o coincidono oppure sono mutualmente esclusivi. Ne segue che i componenti dell'insieme chiuso σ sono anche continui g di G (21).

11. - Per semplicità di esposizione vogliamo ora raccogliere nel seguente Lemma i risultati delle considerazioni che faremo nei numeri 12-17.

Lemma 8. - Se $\{Q\}$ è una collezione finita di punti di K tali che, per ogni t, t=1, 2, 3, le collezioni $\{Q_t\}$ siano tutte costituite di punti di $K_t-E_t-F_t-L_t$ e i punti di intersezione delle rette r_t non appartengano ad M, allora ad ogni numero $\varepsilon>0$ arbitrario può farsi corrispondere una suddivisione di \overline{A} in poligoni semplici π_1 , π_2 ,..., π_m e in campi poligonali R_1 , R_2 ,..., R_n tali che:

- a) sul contorno π_i^* dei poligoni π_i , i=1, 2, ..., m, non cadono punti di σ ;
- b) sui contorni interni dei campi poligonali R_i , i=1, 2,..., n, non cadono punti di σ mentre sui contorni esterni possono cadere punti di σ solo su quei lati e vertici che si trovano sulla periferia del quadrato A;
- c) $\eta(\pi_i) < \varepsilon/2$, i=1, 2,..., m, e, per ogni poligonale semplice γ appartenente a qualche R_i e avente al più i punti estremi sulla periferia di A, si ha $\eta(\gamma) < \varepsilon/2$;
- d) le superficie, contenute in S, immagini dei campi poligonali R_i , i=1,2,...,n, sono interamente contenute nell'insieme aperto costituito dai punti di K interni ai cilindri circolari retti di raggio $\varepsilon/2$ e aventi per assi le rette r_t , t=1, 2, 3;
- e) le curve continue e chiuse immagini di quelle poligonali semplici che costituiscono la frontiera di R_i e che sono completamente interne ad A

⁽²¹⁾ Basta applicare un numero finito di volte la seguente elementare proposizione: Se F_1 e F_2 sono insiemi chiusi e i componenti dell'insieme chiuso F_1F_2 sono componenti di F_1 e di F_2 , allora i componenti dell'insieme chiuso F_1+F_2 sono o componenti di F_1 o componenti di F_2 .

sono interamente contenute in una sfera di raggio $< \varepsilon/2$ non avente nessun punto in comune con le rette r_t , t=1, 2, 3.

f) per ogni punto Q_t di $\{Q_t\}$, t=1, 2, 3, esistono $m'=m'(Q_t)$ poligoni π_{i_s} , s=1, 2,..., m', tali che

$$egin{aligned} O(Q_t;\; c_{ti_s}) = &
u_s \pm 0,\; s = 1,\; 2,....,\; m',\; \sum_{s=1}^{m'} \mid
u_s \mid = \Psi_t(Q_t), \ O(Q_t;\; c_{ti}) = 0,\; i \pm i_s,\; s = 1,\; 2,....,\; m',\; i = 1,\; 2,....,\; m, \ O(Q'_t;\; c_{ti_s}) = 0,\; s = 1,\; 2,....,\; m',\; per\; ogni\; punto\;\; Q'_t \pm Q_t\;\; di\;\; \{Q_t\},\; O(Q_t;\; c_{ti_s}) = 0,\; s = 1,\; 2,....,\; m',\; per\; ogni\; punto\;\; Q_t\;\; di\;\; \{Q_t\},\; t' \pm t,\; t' = t,\; t' = t',\; t' = t',$$

ove c_i , c_{1i} , c_{2i} , c_{3i} , i=1, 2,..., m, indicano le immagini delle poligonali π_i^* sulla superficie S e le relative proiezioni sui piani (x, y), (x, z), (y, z). Inoltre le curve c_{i_s} , s=1, 2,..., m', sono interamente contenute in m' sfere di raggio $\langle \varepsilon/2$, aventi il centro nei punti M relativi al punto Q_t , che non sono segate da nessuna delle rette r_t non passanti per Q_t e da nessuna delle rimanenti rette r_t , $t' \neq t$.

12. - Consideriamo anzitutto la collezione finita $\{M\}+\{Q^*\}$ di punti a due a due distinti. Sia $\delta>0$ la minima mutua distanza tra questi punti. Consideriamo poi la collezione finita $\{r_t\}$ delle rette r_t passanti per i punti Q_t , t=1,2,3, e sia $\delta'>0$ la minima mutua distanza tra due qualunque rette r_t che non si incontrano. Sia δ_0 il più piccolo dei due numeri δ e δ' .

Consideriamo l'insieme $A-\sigma$ aperto relativamente ad A. Esso ha un numero finito o una infinità numerabile di componenti aperti e connessi. Diciamo $\{a\}$ la collezione di questi componenti e sia a uno di essi. La frontiera a^* di a è costituita di punti di σ e di punti del contorno A^* di A. Esiste uno ed un solo componente f di a^* che separa tutti i punti di a da ∞ (22).

⁽²²⁾ Dimostriamo infatti la seguente proposizione: Se α è un insieme aperto, connesso e limitato del piano π , esiste uno ed un solo componente f della frontiera α * di α che separa α da ∞ .

La frontiera a^* di a è un insieme limitato e chiuso. Sia q un quadrato contenente a e a^* nel suo interno. Tra i componenti dell'insieme aperto $\pi-a^*$ sia a_0 quello che contiene i punti esterni a q e sia f_0 la sua frontiera. Osserviamo che anche a è un componente di $\pi-a^*$. Dimostriamo che f_0 è un continuo. Infatti in caso contrario esisterebbe una poligonale semplice e chiusa p (Lemma 2, § 3, n. 1) senza punti in comune con f_0 e tale che tanto all'interno che all'esterno di essa cadono punti di f_0 . Esistono allora tanto all'interno che all'esterno di essa punti di a_0 e quindi esiste una poligonale semplice tutta costituita di punti di a_0 congiungente un punto interno con un punto esterno di p (Lemma 1, § 3, n. 1). Ne segue che su p cadono punti di a_0 e quindi p è tutta costituita di punti di a_0 perchè altrimenti su p cadrebbero punti di f_0 ciò che non è. Ma f_0 è interamente costituita di punti di a^* e quindi esistono tanto all'interno che all'esterno di p punti di a e perciò (Lemma 1,

Osserviamo che f è interamente costituito di punti di σ e di punti di A^* . Dimostriamo che o f è interamente costituito di punti di σ e quindi è completamente contenuto in un continuo g di σ che separa il piano, oppure f contiene punti di A^* che non appartengono a σ e allora, posto

$$f = f\sigma + f(A^* - A^*\sigma),$$

tutti i componenti di $f\sigma$ contengono almeno un punto di A^* e $f(A^*-A^*\sigma)$ è la somma di un numero finito o di una infinità numerabile di archi del contorno A^* di A senza punti comuni. Basta che ci occupiamo della seconda alternativa. Allora l'insieme $f(A^*-A^*\sigma)$ non è vuoto. Se P è un punto di esso P non appartiene a σ e quindi P ha una distanza positiva δ da σ .

Ne segue che tutto il cerchio C di centro P e raggio δ è costituito di punti non appartenenti a σ . Ma P è un punto di accumulazione di punti di α e quindi debbono cadere in C punti di α . Ne segue che tutti i punti di $\overline{A}C$ appartengono ad α e che tutto un arco di A^* di centro P e lunghezza $\geqslant 2\,\delta$ appartiene all' insieme $f(A^*-A^*\sigma)$. L'insieme $f(A^*-A^*\sigma)$ occupa perciò un insieme aperto di punti di A^* . Che i componenti di $f\sigma$ abbiano almeno un punto su A^* segue dal fatto che f è un continuo. L'asserto è così dimostrato.

Dal Lemma 5, § 3, n. 1, segue che i componenti dell'insieme aperto $\pi - f$ sono semplicemente connessi e a deve perciò essere completamente contenuto in uno degli insiemi aperti limitati e semplicemente connessi di $\pi - f$.

Sia a_0 questo componente di $\pi - f$ contenente a.

Se β è un componente di α^* distinto da f, sia δ la sua distanza da f e sia $0 < \eta \leqslant \delta/2$ un numero arbitrario. Sia p una poligonale semplice senza punti in comune con α^* racchiudente β nel suo interno e tale che tutti i punti di p distino da β per meno di η (Lemma 2, § 3, n. 1). Poichè tanto all'interno che all'esterno di p cadono punti di a, esiste (Lemma 1, § 3, n. 1) una poligonale semplice tutta costituita di punti di α congiungente un punto interno e un punto esterno a p e quindi esiste su p un punto di a. Ne segue che p è interamente costituita di punti di α perchè altrimenti cadrebbero su p anche punti di a^* ciò che non è.

Da qui segue che ogni componente β di a^* distinto da f appartiene ad un componente g di σ che non tocca f. Segue pure che due componenti β di a^* distinti e distinti da f appartengono a componenti g di σ distinti, e perciò mutualmente esclusivi.

^{§ 3,} n. 1) esiste una poligonale semplice tutta costituita di punti di α congiungente un punto interno e un punto esterno di α . Esiste dunque su p un punto appartenente contemporaneamente ad α e ad α_0 . Ne segue che α e α_0 sono un medesimo componente di $\pi-\alpha^*$, ciò che è impossibile perchè α è limitato e α_0 non lo è.

Abbiamo così dimostrato che f_0 è un continuo che separa i punti di α dai punti esterni a q. Ma f_0 è tutto costituito di punti di α^* epperciò f_0 sarà contenuto in un componente f di α^* che, a maggior ragione, separa α dai punti esterni a q, ossia da ∞ .

13. - Sia $\{g\}$ la collezione finita considerata nel n. 10 di tutti i componenti g di G relativi ai punti M di $\{M\}$ secondo il Lemma 6 del n. 8 di questo paragrafo. Sia $\{\eta\}$ la collezione finita dei numeri η ad essi relativi secondo il Lemma 6 e sia η_0 il più piccolo di tutti i numeri η di $\{\eta\}$ e del numero δ_0 dianzi definito.

I continui g di $\{g\}$ non separano il piano e non contengono punti di A^* . Sia g_0 uno di questi continui e sia M il punto di $\{M\}$ ad esso corrispondente su S. M appartiene ad uno e soltanto ad uno dei gruppi $M_t(Q_t)$ e Q_t è la proiezione di M su uno dei piani coordinati (cfr. n. 10). Appartenga M al gruppo $M_{t_0}(Q_{t_0})$. Dalla dimostrazione del Lemma 6 sappiamo che esiste una successione di poligoni semplici π_p , $p=\bar{p}$, $\bar{p}+1$,..., l'uno contenuto nel precedente, contenenti g_0 , non contenenti componenti di $\Phi_{t_0}^{-1}(Q_{t_0})$ separanti g_0 da ∞ e tali inoltre che $\pi_p^*\Phi_{t_0}^{-1}(Q_{t_0})=0$, $\eta(\pi_p)<1/p$, $p=\bar{p}$, $\bar{p}+1$,..... Possiamo evidentemente supporre che le poligonali π_p^* costituenti la periferia dei poligoni π_p , $p=\bar{p}$, $\bar{p}+1$,..., siano interamente costituite di punti interni al quadrato A.

Supponiamo \overline{p} abbastanza grande perchè $1/\overline{p} < \eta_0/2$. Allora in $\overline{\pi}_{\overline{p}} = \pi_{\overline{p}} + \pi_{\overline{p}}^{*}$ non possono cadere punti P di σ che non appartengano a $\Phi_{t_0}^{-1}(Q_{t_0})$. Infatti un tale punto P dovrebbe cadere in uno degli insiemi $\Phi_{t}^{-1}(Q'_{t_0})$ con $t = t_0$, oppure $t = t_0$, $Q'_{t_0} = Q_{t_0}$. Se diciamo Q l'immagine di P su S, allora Q appartiene ad una retta r_t distinta da quella r_{t_0} a cui appartiene M e quindi \overline{MQ} è \geqslant alla minima mutua distanza tra le rette r_t senza punti in comune, oppure \geqslant alla minima distanza tra l'insieme $M_{t_0}(Q_{t_0})$ e le rette r_t che segano la retta r_{t_0} passante per Q_{t_0} . Si ha dunque $\overline{MQ} \geqslant \delta_0$ e quindi P non può appartenere a $\overline{\pi_0}$.

Ne segue che su ciascuna delle poligonali π_p^* ($p=\bar{p}, \bar{p}+1,...$) non cadono punti di σ e quindi π_p^* è tutta costituita di punti di un solo insieme α di $\{\alpha\}$.

Sia π_p^* una delle considerate poligonali, a l'insieme al quale essa appartiene, f il continuo relativo ad a. Osserviamo anzitutto che $f\pi_p^*=0$. Infatti i punti di π_p^* sono tutti interni ad A e non appartengono a σ mentre i punti di f interni ad f appartengono tutti a f0. Ne segue anche che f1 è completamente esterno a f2 perchè altrimenti f3 sarebbe completamente interno a f3 e i punti di f4 che sono su f4 non sarebbero separati da f5 da f6. Infine se f7 è un punto di f8 interno a f7 allora sia f8 separano f9 da f9 e quindi (Lemma f9, f9 3, f9, f9 separare f9 da f9.

Dimostriamo che le poligonali $\pi_p^*, p = \overline{p}, \overline{p} + 1,...$, appartengono tutte al medesimo insieme a_0 di $\{a\}$. Ragioniamo per assurdo e supponiamo che, per un certo p, π_{p+1} appartenga ad un insieme a' di $\{a\}$ distinto dall'insieme a di $\{a\}$ a cui appartiene π_p^* . Intanto aa' = 0. Siano f ed f' i continui relativi ad a e ad a'. Con lo stesso ragionamento adoperato sopra si dimostra intanto che $f'\pi_p^*=0$, $f'\pi_{p+1}^*=0$. Se Q è un punto di a' interno a π_{p+1}^* , Q è separato da ∞ sia da f', sia da π_{p+1}^* e quindi anche da π_p^* . Ne segue (Lemma 7, $\{3, n, 1\}$) che o f' è separato da π_p^* da ∞ e separa π_{p+1}^* da π_p^* , oppure f'

separa π_p^* e quindi anche π^*_{p+1} da ∞ . La prima alternativa è da escludersi perchè il continuo f', tutto interno a π_p , risulterebbe un componente g di $\Phi_{t_0}^{-1}(Q_{t_0})$ e g separerebbe π^*_{p+1} e quindi g_0 da ∞ , ciò che è impossibile. La seconda alternativa è pure da escludersi perchè esisterebbero sia all'interno di π^*_{p+1} che all'esterno di π_p^* punti di a' e quindi, essendo a' connesso, esisterebbero su π_p^* punti di a'. Gli insiemi a e a' avrebbero dunque un punto in comune ciò che è impossibile.

È con ciò dimostrato che esiste un insieme a_0 di $\{a\}$ che contiene interamente tutte le poligonali π_p^* , $p=\overline{p}$, $\overline{p}+1$,..... Ricordando che queste poligonali convergono verso il continuo g_0 diremo nel seguito, per semplicità di esposizione, che l'insieme a_0 di $\{a\}$ « contiene » il continuo g_0 .

Siano a_1 , a_2 ,...., $a_{n'}$ gli insiemi a che « contengono », nel senso espresso dalle righe precedenti, qualcuno degli insiemi g di $\{g\}$. Aggiungiamo inoltre agli insiemi a_i anche tutti quelli, in numero finito, per i quali si ha $\eta(a) \geqslant \varepsilon/4$. Siano in totale a_1 , a_2 ,..., a_n gli insiemi così costruiti. Diciamo f_1 , f_2 ,...., f_n quei componenti degli insiemi a_i^* che separano a_i da ∞ , i=1,2,...,n (23).

Dividiamo gli insiemi a_i in due categorie mettendo in una prima categoria tutti quegli insiemi a_i per i quali f_i è esclusivamente costituito di punti di σ epperciò f_i è contenuto in un componente g di σ che separa il piano π . Mettiamo in una seconda categoria tutti gli altri.

14. - Sia a_i un iusieme della prima categoria. Sia g_{i0} quel componente di σ che separa il piano e che contiene interamente l'insieme f_i . Sia β un qualsiasi altro componente di a_i^* distinto da f_i . β è completamente contenuto in un componente g di σ e in g non vi sono altri componenti β di a_i^* .

Siano g_{i1} , g_{i2} ,...., g_{im} quei soli componenti (eventuali) di σ in numero finito, contenenti componenti di α_i^* distinti da f_i e per i quali $\eta(\overline{g}_{is}) \geqslant \min \left[\varepsilon/4, \eta_0/2 \right]$, s=1, 2,..., m. Certamente i continui g_{is} separano il piano perchè altrimenti sarebbe $\eta(\overline{g}_{is}) = 0$. I continui g_{is} non hanno perciò punti in comune con quei continui (eventuali), in numero finito, della collezione $\{g\}$ che sono « contenuti » in α_i .

Sia g_{is} uno dei componenti visti sopra. g_{is} appartiene ad una e ad una sola delle collezioni \mathcal{L}_m del § 3, n. 6. Sia \mathcal{L}_{m}' la collezione dei continui g di \mathcal{L}_m , appartenenti tutti alla collezione G, che separano g_{is} da ∞ . Manifestamente \mathcal{L}_{m}' non è vuota, altrimenti g_{is} sarebbe ultimo elemento di \mathcal{L}_m e quindi l'immagine di g_{is} su S apparterrebbe ad L e quindi almeno un punto Q_t dovrebbe appartenere a L_t , eiò che è stato escluso. Con il ragionamento già fatto per il Lemma 3 di

 $^(^{23})$ Gli insiemi f_i , i=1,2,...,n, non sono necessariamente distinti. Basti ricordare che L. E. J. Brouwer ha tra l'altro provato che si possono costruire un numero finito ed anche una infinità numerabile di insiemi aperti limitati e semplicemente connessi aventi tutti la stessa frontiera.

questo paragrafo, n. 5, si vede che, ordinata la collezione \mathfrak{L}_{m} in senso inverso, g_{is} deve contenere l'insieme di accumulazione di \mathcal{L}_m .

Sia η_i la minima mutua distanza tra i continui $f_i,\ g_{i1},\ g_{i2},...,\ g_{im}$ e quegli eventuali continui di $\{g\}$ che sono «contenuti» in α . Sia P un punto di g_{is} che appartenga all'insieme di accumulazione di \mathcal{L}_m '. Allora in ogni intorno U(P,1/n) di P esiste un punto $P^{(n)}$ appartenente ad un continuo $g_{is}^{(n)}$ di \mathfrak{L}_{m} che separa q_{is} da ∞ (cfr. lo stesso ragionamento fatto per il Lemma 3 di questo paragrafo, n. 5). Dimostriamo che la massima distanza δ_n dei punti $g_{is}^{(n)}$ da g_{is} tende a zero quando $n \to \infty$. Infatti in caso contrario esisterebbero un numero $\varepsilon>0$ e certi punti $P^{(n)}$ di $g_{is}^{(n)},\ n=1,\,2,....$, tali che $\overline{\lim}\ \{P^{(n)},\,g_{is}\}\geqslant \varepsilon>0$. Esisterebbe altresì una sottosuccessione di tali punti $P^{(n_{in})}$, m=1, 2,..., tale che

 $\lim P^{(n_{ij})} = P_0, \{P_0, g_{is}\} \geqslant \varepsilon.$

Ma l'insieme di accumulazione dei continui $\{g_{is}^{(n_m)}\}$, in virtù del teorema di ZORETTI, è un continuo e questo deve contenere P_0 ed essere tutto contenuto in g_{is} . Il punto P_0 apparterrebbe dunque a g_{is} e avrebbe da questo distanza positiva, ciò che è assurdo. Abbiamo così dimostrato che lim $\delta_n=0$. Si dimostra

pure facilmente che anche l'estremo superiore $\delta_n'>0$ delle distanze da g_{is} dei punti P di A, che non sono separati da ∞ dal continuo g_{is} e lo sono dal continuo $g_{is}^{(n)}$, tende a zero quando $n \to \infty$

Per semplicità diciamo g_{is} il primo dei continui $g_{is}^{(n)}$ per il quale $\delta_n \leqslant \eta_i/5$, $\delta_n' \leqslant \eta_i/5$, $\omega(\delta_n) \leqslant \min [\varepsilon/4, \eta_0/2]$. Il continuo g_{is}' separa g_{is} da ∞ , non appartiene a σ e la sua immagine e quella di tutti i punti che sono separati da ∞ da g_{is}' e non ne sono separati da g_{is} sono tutti contenuti in una sfera avente per centro l'immagine Q su S del continuo g_{is} che è un punto appartenente alle rette $\{r_t\}$, t=1, 2, 3, e avente raggio $\varepsilon/4$. Diciamo τ_{is} , $0 < \tau_{is} \le \varepsilon/4$, la distanza dal punto Q', immagine del continuo g_{is}' , dall'insieme delle rette $\{r_t\}$, t=1,2,3. Quanto si è ora detto per un qualunque continuo g_{is} , s=1, 2,..., m, può essere ripetuto con ovvie modificazioni per il continuo g_{i0} . Sia g_{i0} un continuo, separato da ∞ da g_{i0} , non appartenente a σ e tutti i punti del quale, nonchè tutti i punti P di A che sono separati da ∞ da g_{i0} e non lo sono da g_{i0}' , distano da g_{i_0} per meno di $\eta_i/5$. Tutti i punti di α che distano da f_i per più di $\eta_i/5$ sono separati da ∞ dal continuo g_{i0}' . Sia infine τ_{i0} , $0 < \tau_{i0} \leqslant \varepsilon/4$, la distanza del punto Q' immagine di g_{i0}' su S dall'insieme delle rette $\{r_t\}$, t=1, 2, 3. Poniamo $\tau_i = \min \tau_{is}$. Sia η_i il massimo numero reale tale che $\eta_i \leq \eta_i/5$, $\omega(\eta_i) \leqslant \tau_i/2$.

In forza del Lemma 2, \S 3, n. 1, esistono m+1 poligonali semplici e chiuse π_{is}^* , s=0, 1,..., m, interamente costituite di punti non appartenenti a σ e tali che, per ogni s, a) π_{is}^* separi g_{is} da g_{is}' nel piano (u, v); β) ogni punto di π_{is}^* abbia una distanza da g_{is}' minore di η_{i}' (si applichi il Lemma citato ai componenti g_{is} e g_{is}' degli insiemi chiusi $\sigma + g_{is}$). Poichè sia all'interno che all'esterno di π_{is}^* eadono punti di α_i , le poligonali π_{is}^* debbono contenere almeno un punto di α_i e quindi, col solito ragionamento, esse sono interamente costituite di punti di α_i . Ma g_{is}' , s=1, 2,...., m, separa g_{is} da ∞ e quindi g_{is}' è esterno e g_{is} interno al poligono π_{is} . Analogamente g_{i0} è esterno e g_{i0}' interno al poligono π_{i0} . È evidente inoltre che i poligoni π_{is} , s=1, 2,...., m, nonchè i continui g di $\{g\}$ che sono « contenuti » in α_i , sono interni a π_{i0} .

La poligonale π_{i0}^* e le poligonali π_{is}^* , s=1, 2,..., m, esterne le une alle altre e interne a π_{i0}^* , definiscono un campo poligonale Σ_i di ordine di connessione m il quale contiene tutti i continui g di $\{g\}$ relativi all'insieme aperto a_i .

Se g è un qualunque componente di σ contenuto in Σ_i si ha $\eta(\overline{g}) < \min [\varepsilon/4, \eta_0/2]$ e g non separa nessuna delle poligonali π_{is}^* , s=1,2,...,m, dalla poligonale π_{io}^* . Esiste perciò (Lemma 2, n. 4, questo paragrafo) una suddivisione di Σ_i in poligoni semplici π sul contorno dei quali non cadono punti dell'insieme σ e tali inoltre che, per ciascuno dei poligoni π , si abbia $\eta(\pi) < 2 \min [\varepsilon/4, \eta_0/2]$.

15. - Sia ora a_i un insieme della seconda categoria. Sia f_i quel componente di a_i^* che separa a_i da ∞ . Siano $g_{i1}, g_{i2},...., g_{im}$ quei componenti di σ contenenti continui β di a_i^* per i quali $\eta(\overline{g}_{is}) \geqslant \min\left[\varepsilon/4, \eta_0/2\right]$. Sia come sopra $\eta_i > 0$ il numero relativo ad a_i . Procediamo come per gli insiemi della prima categoria alla scelta dei continui g_{is}' che separano g_{is} da ∞ e alla scelta delle poligonali $\pi_{is}, s=1, 2,..., m$.

Come abbiamo già osservato in principio, poichè f_i contiene punti di A^* che non appartengono a σ , posto $f_i = f_i \sigma + f_i (A^* - A^*\sigma)$, l'insieme $f_i (A^* - A^*\sigma)$ è non vuoto e costituito di archi aperti mutualmente esclusivi della periferia A^* di A.

Diciamo F_i l'insieme chiuso ricoperto da tutti i componenti di σ che hanno almeno un punto in comune con $f_i\sigma$. I componenti di F_i sono componenti di σ e, se g è uno di questi componenti, g deve contenere almeno un punto di f_i . Per ogni n siano $p_1^{(n)}$, $p_2^{(n)}$,...., $p_{\mu_n}^{(n)}$ poligoni semplici che ricoprono interamente F_i il cui contorno non contiene punti di σ . Ogni punto del contorno di $p_s^{(n)}$ abbia una distanza dall'insieme chiuso p_sF_i non maggiore del più piccolo fra i numeri $\eta_i/5$ e 1/n. Infine ogni poligono $p_t^{(n+1)}$ sia interamente contenuto in un

poligono $p_s^{(n)}$. Si dimostra immediatamente che $\lim_{n\to\infty} \left[a_i - a_i \sum_{s=1}^{\mu_n} p_s^{(n)}\right] = a_i$ e inoltre $\lim_{n\to\infty} \max_{s=1,2,\dots,\mu_n} \eta(a_i \, p_s^{(n)}) = 0.$

Diciamo Σ_{in} il campo poligonale costituito di tutti i punti di \overline{A} che sono non interni ai poligoni π_{is} , s=1, 2,...., m, che sono non interni ai poligoni $p_s^{(n)}$, $s=1, 2,...., \mu_n$. La sua frontiera è costituita delle poligonali interne π_{is}^* e di una poligonale esterna $\pi_{i0}^{(n)}$ formata da archi dei poligoni $p_s^{(n)}$ e da tratti del contorno A^* di A

che appartengono ad $f_i(A^*-A^*\sigma)$ alternatamente. Ogni punto P di questa poligonale che non appartenga ad A^* appartiene ad un poligono $p_s^{(n)}$ e la sua distanza da $f_ip_s^{(n)}$ è non maggiore del più piccolo tra i numeri $\eta_i/5$, 1/n. Sia \overline{n} il più piccolo intero tale che max $\eta(a_i p_s^{(\overline{n})}) \leq \min\left[\varepsilon/4, \eta_0/2\right]$. Per semplicità seriveremo in seguito $s=1, 2, \ldots, \mu_{\overline{n}}$

$$\Sigma_i = \Sigma_{in}^-, \quad \pi_{i0} = \pi_{i0}^{(n)}, \quad p_s' = p_s^{(n)}, \quad s = 1, 2, ..., \mu, \quad \mu = \mu_n^-.$$

Per il Lemma 2 di questo paragrafo, n. 4, esiste una suddivisione di Σ_i in poligoni semplici π sul contorno dei quali non cadono punti dell'insieme σ e tali che su ciascuno dei poligoni π si abbia $\eta(\pi) \leq 2 \min [\varepsilon/4, \eta_0/2]$.

16. - Abbiamo così costruito (nn. 14 e 15) certi campi poligonali Σ_1 , Σ_2 ,...., Σ_n , ciascuno dei quali è stato suddiviso in poligoni semplici sul contorno dei quali non cadono punti di σ .

Per ogni punto P di A diciamo $\delta(P)$ la distanza del punto Q = S(P) immagine su S del punto P dall'insieme delle rette $\{r_t, t=1, 2, 3\}$. In tutti i punti P dell'insieme σ si ha $\delta(P) = 0$. Consideriamo l'insieme chiuso costituito di tutti i punti di \overline{A} sui quali $\delta(P) \leq \varepsilon/2$. Il suo complementare in \overline{A} è un insieme aperto χ e quindi costituito di un numero finito o di una infinità numerabile di componenti. Siano $\gamma_1, \gamma_2, ..., \gamma_\mu, ...$ i componenti di χ .

Ciascuno di questi deve essere interamente contenuto in un insieme a perchè su di esso non cadono punti di σ . D'altra parte su ciascun insieme \overline{a} esistono punti di σ e quindi se un insieme a contiene un γ si ha $\eta(a) \geqslant \varepsilon/2$. Ne segue che ciascuno dei componenti γ_1 , γ_2 ,...., γ_{μ} ,.... appartiene interamente ad uno degli insiemi α_1 , α_2 ,...., α_n e inoltre anche al corrispondente campo poligonale Σ .

Ne risulta in tal modo che tutti i punti P dell'insieme $\overline{A} - (\Sigma_1 + \Sigma_2 + + \Sigma_n)$ hanno una immagine Q che dista dall'insieme delle rette $\{r_t\}$, t=1, 2, 3, per meno di $\varepsilon/2$. L'insieme ora considerato è spezzato in un numero finito di campi poligonali R_1 , R_2 ,...., R_n . Sia R uno di questi. La sua frontiera è costituita di una poligonale π_0^* esterna e di un certo numero di poligonali π_i^* interne.

Se π_0 è poligonale interna della frontiera di un campo poligonale Σ allora le poligonali π_i , i=1, 2,...., n, saranno poligonali esterne della frontiera di campi poligonali Σ relativi a insiemi a della prima categoria e quindi, per la costruzione eseguita nelle righe precedenti, le curve continue e chiuse immagini di π_0^* e di π_i^* su S saranno interamente contenute in sfere di raggio $\tau/2$ aventi per centro certi punti la cui distanza $\tau>0$ dall'insieme delle rette $\{r_t\}$, t=1, 2, 3, è minore di $\varepsilon/4$.

In caso contrario π_0^* dovrà contenere punti di A^* . Allora π_0^* sarà costituita di certi archi consecutivi l_1 , λ_1 , l_2 , λ_2 ,..., l_{ν} , λ_{ν} ; λ_1 , λ_2 ,..., λ_{ν} essendo archi del contorno A^* di A, l_1 , l_2 ,..., l_{ν} essendo poligonali semplici congiungenti punti

distinti di A^* . Gli archi l_1 , l_2 ,...., l_ν appartengono inoltre a poligonali p' e quindi su ciascuno di essi si ha $\eta(l_i) < \varepsilon/2$, $i = 1, 2,...., \nu$.

17. - Resta da dimostrare la f) del Lemma 8. Riprendiamo in considerazione i campi poligonali Σ_1 , Σ_2 ,...., Σ_n i quali sono stati suddivisi in poligoni semplici. Diciamo π_i , i=1, 2,...., m, i poligoni semplici così ottenuti. Diciamo c_i , c_{1i} , c_{2i} , c_{3i} le curve continue immagini delle poligonali π_i^* su S e le relative proiezioni sui piani (x, y), (x, z), (y, z), i=1, 2,...., m. Sulle poligonali π_i^* non cadono punti di σ e inoltre $\eta(\pi_i) < \eta_0$, i=1, 2,...., m. D'altra parte i continui g della collezione $\{g\}$ sono interamente costituiti di punti di σ e sono tutti interni ai campi poligonali Σ_1 , Σ_2 ,...., Σ_n (cfr. n. 14). Ne segue che i continui g di $\{g\}$ saranno completamente interni ad alcuni dei poligoni π_i , i=1, 2,...., m.

Sia Q_t un qualsiasi punto della collezione $\{Q_t\}$, t=1,2,3. Siano P_1 , P_2 ,...., $P_{m'}$, $m'=m'(Q_t)$ i relativi punti della collezione $\{P\}$, ciascuno contenuto in uno ed uno solo dei continui g di $\{g\}$ (cfr. Lemma 6, n. 8 e n. 10). Esistono perciò m' poligoni π_{i_s} , s=1,2,...,m', che contengono interamente i punti P_1 , P_2 ,...., $P_{m'}$ e i continui g ad essi relativi. Ricordando la definizione del numero η_0 (n. 13) e in forza del Lemma 6, è evidente che tali m' poligoni non hanno punti in comune. Inoltre

(13)
$$O(Q_t; C_{ti_s}) = v_s \pm 0, \quad s = 1, 2, ..., m', \quad \sum_{s=1}^{m'} |v_s| = \Psi_t(Q_t)$$

e ciascuna curva c_{i_s} è interamente contenuta in una sfera di raggio $<\eta_0$ avente il centro in uno dei punti M relativi al punto Q_t . Detti punti M appartengono alla retta r_t passante per Q_t e la loro distanza da ogni retta r_t non passante per Q_t e da ogni altra retta r_t , t' = t è $> \delta_0 > \eta_0$. Ne segue che per ogni punto $Q'_t = Q_t$ si ha

$$O(Q_t'; c_{ti}) = 0, \quad s = 1, 2, ..., m',$$

e, per ogni punto $Q_{t'}$, $t' \neq t$,

$$O(Q_{t'}; c_{t'i}) = 0, \quad s = 1, 2, ..., m'.$$

D'altra parte si ha

$$\sum_{t=1}^{m} |O(Q_t; c_{ti})| \leqslant \Psi_t(Q_t), \qquad t=1, 2, 3,$$

e dalla (13) segue

$$O(Q_t; c_{ti}) = 0, \quad i = i_s, \quad s = 1, 2, ..., m', \quad i = 1, 2, ..., m.$$

Il Lemma 8 è così completamente dimostrato.

18. - Dimostreremo nei numeri 19-33 il seguente definitivo

Teorema. - Condizione necessaria e sufficiente perchè la superficie continua

S:
$$x=x(u, v), y=y(u, v), z=z(u, v), (u, v) \in \overline{A} \equiv (0, 1, 0, 1),$$

abbia area finita L(S) secondo Lebesgue è che le tre trasformazioni piane

$$\Phi_1: \qquad x=x(u, v), \qquad \qquad y=y(u, v), \ \Phi_2: \qquad x=x(u, v), \qquad \qquad z=z(u, v), \qquad \qquad (u, v) \, \varepsilon \overline{A}, \ \Phi_3: \qquad y=y(u, v), \qquad \qquad z=z(u, v),$$

siano a variazione limitata. Inottre, per ogni superficie continua, si ha

(12)
$$W(\Phi_t) \leq L(S) \leq W(\Phi_1) + W(\Phi_2) + W(\Phi_3), \quad t=1, 2, 3,$$

ove $W(\Phi_t)$ è la variazione totale della trasformazione piana Φ_t , t=1,2,3.

19. - La necessità della condizione segue dal teorema 5 del § 1, n. 12. Dobbiamo dimostrare la sufficienza della condizione enunciata. A tale scopo basta dimostrare che ad ogni intero m>0 può farsi corrispondere una superficie poliedrica \mathcal{L}_m tale che

$$(13) || \Sigma_m, S|| < \frac{1}{m}, L(\Sigma_m) \leqslant I \equiv W(\Phi_1) + W(\Phi_2) + W(\Phi_3) < +\infty.$$

Nel seguito m indicherà perciò un intero prefissato qualunque. Il cubo K dello spazio (x, y, z) nel cui interno è completamente contenuta la superficie S abbia lato k. Supporremo inoltre, come è lecito, che K sia il cubo (0, 0, 0, k, k, k). Sia N il più piccolo intero tale che

$$a=\frac{k}{N}<\frac{1}{8m}$$
.

20. - Dividiamo K nelle N^3 celle (cubi)

$$S_{ijh}$$
: $a(i-1) < x < ai$, $a(j-1) < y < aj$, $a(h-1) < z < ah$, $i, j, h = 1, 2, ..., N$, ciascuno di lato a . Diciamo **R** l'insieme degli spigoli delle celle S_{ijh} , ossia il reticolato costituito dai segmenti

tutti contenuti in \overline{K} . Diciamo $M_{ijh} \equiv (ai, aj, ah), i, j, h=0, 1, 2,..., N$, uno qua-

lunque dei vertici di R. R può anche essere considerato come costituito dai punti di \overline{K} appartenenti alle rette

$$x = ai,$$
 $y = aj,$
 $x = ai,$ $z = ah,$ $i, j, h = 0, 1, 2,..., N.$
 $y = aj,$ $z = ah,$

Siano E_t , F_t , L_t , H_t gli insiemi dei quadrati K_t , t=1, 2, 3, già definiti nel n. 2 di questo paragrafo.

21. - Consideriamo l'insieme $M=M_1+M_2+M_3$ di punti di K. Effettuiamo sull'insieme $M\bar{S}_{ijh}$, ossia sull'insieme dei punti di M che appartengono alla cella \bar{S}_{ijh} , uno spostamento rigido di componenti -a(i-1), -a(j-1), -a(h-1); sia m_{ijh} l'insieme così ottenuto, tutto appartenente alla cella $S_0 \equiv S_{114}$.

Poniamo $m = \sum_{i,j,h=1}^{N} m_{ijh}$. Poichè $|M_i| = 0$, i = 1, 2, 3, (Lemma 7, n. 9) si ha, successivamente, $|m_{ijh}| = 0$, i, j, h = 1, 2, ..., N, |m| = 0.

Gli insiemi E_1 , F_1 , H_1 , L_1 sono costituiti di punti di $K_1 \equiv (0 \leqslant x \leqslant k, 0 \leqslant y \leqslant k)$. Diciamo E_{1ij} l'intersezione di $E_1 + F_1 + H_1 + L_1$ con il quadrato

$$[a(i-1) \le x \le ai, \ a(j-1) \le y \le ai], \quad i, j=1, 2,..., N.$$

Eseguiamo su E_{1ij} uno spostamento rigido di componenti -a(i-1), -a(j-1). Sia E'_{1ij} l'insieme che si ottiene tutto contenuto nel quadrato $(0 \le x \le a, 0 \le y \le a)$.

Poniamo $E_1'=\sum_{i,j=1}^N E'_{1ij}$ e infine diciamo e_1 l'insieme dei punti (x,y,z) della cella $S_0\equiv S_{1i1}$ che appartengono ad una retta parallela all'asse z e passante per un punto di E_1' . Poichè $|E_1|=0, |F_1|=0, |H_1|=0, |L_1|=0$, si ha, successivamente, $|E_{1ij}|=0, |E'_{1ij}|=0, i,j=1,2,...,N, |E_1'|=0, |e_1|=0$. Analoghe definizioni abbiano gli insiemi, di misura spaziale nulla, e_2 ed e_3 . Poniamo infine

 $e=m+e_1+e_2+e_3$. L'insieme e ha misura spaziale nulla. Diciamo F(x,y,z) la funzione definita in tutti i punti (x,y,z) di S_0

(15)
$$F(x, y, z) = \sum_{i,j=1}^{N} \Psi_{1}[a(i-1) + x, a(j-1) + y] +$$

$$+ \sum_{i,h=1}^{N} \Psi_{2}[a(i-1) + x, a(h-1) + z] +$$

$$+ \sum_{i,h=1}^{N} \Psi_{3}[a(j-1) + y, a(h-1) + z], \quad 0 \le x, y, z \le a.$$

La funzione F(x, y, z) è integrabile L in S_0 e si ha

(16)
$$\frac{1}{a} \iiint_{0 \ 0 \ 0}^{aaa} F(x, y, z) dx dy dz = \sum_{i,j=1}^{N} \iint_{0 \ 0}^{aa} \Psi_{1}[a(i-1) + x, a(j-1) + y] dx dy + \dots = \\
= \iint_{K_{1}} \Psi_{1}(x, y) dx dy + \iint_{K_{2}} \Psi_{2}(x, z) dx dz + \iint_{K_{3}} \Psi_{3}(y, z) dy dz \equiv I < + \infty.$$

22. - Dimostriamo che esiste un punto (ξ, η, ζ) interno a S_0 e non appartenente all'insieme $e=m+e_1+e_2+e_3$ tale che

(17)
$$a^2 F(\xi, \eta, \zeta) \leqslant I.$$

Dimostriamo anzitutto che l'insieme Σ dei punti (x, y, z) di S_0 tali che

$$a^2F(x, y, z) \leqslant I$$

è di misura positiva μ . Infatti in caso contrario si avrebbe, per quasi tutti i punti (x, y, z) di S_0 ,

$$a^2 F(x, y, z) > I$$
, $(x, y, z) \varepsilon S_0$,

e quindi, integrando in S_0 e dividendo per a^3 ,

$$\frac{1}{a} \iiint_{0 \neq 0}^{aaa} F(x, y, z) dxdydz > I,$$

ciò che contrasta la (16). Dobbiamo ora seegliere un punto (ξ,η,ζ) dell'insieme Σ · Poichè F(x,y,z) è quasi continua in S_0 , esiste una legge che, ad ogni intero m>0, fa corrispondere un insieme aperto i, contenente tutti i punti di e, di misura <1/m e tale che F(x,y,z) è continua nell'insieme chiuso S_0-i . Ma $|S_0-i|>|S_0|-1/m$, $|\Sigma|=\mu>0$ e quindi $|(S_0-i)\Sigma|>\mu-\frac{1}{m}$. Sia \overline{m} il più piccolo intero tale che $|(S_0-i)\Sigma|>0$. L'insieme $(S_0-i)\Sigma$ è chiuso perchè F è continua fuori di i e ha misura positiva epperciò contiene punti interni ad S_0 . Sia n il più piccolo intero tale che, indicato con S_{0n} il cubo concentrico e omotetico con S_0 di lato (n-1)a/n, anche l'insieme chiuso $S_{0n}(S_0-i)\Sigma$ per il quale è minima la quantità $|z-\frac{a}{2}|$. Se di questi punti ve ne fosse più di uno scegliamo quelli per i quali è minima anche la quantità $|y-\frac{a}{2}|$ e indi quelli per i quali è minima anche $|x-\frac{a}{2}|$, infine quello (unico) per il quale è minima anche z. Il punto (ξ,η,ζ) è interno ad S_0 e non appartiene all'insieme e.

23. - Poniamo

$$x_i = a(i-1) + \xi$$
, $y_j = a(j-1) + \eta$, $z_h = a(h-1) + \zeta$, $i, j, h = 1, 2, ..., N$.

Siano ora i punti

(18)
$$Q_{ij} \equiv (x_i, y_j, 0), \quad Q_{ih} \equiv (x_i, 0, z_h), \quad Q_{jh} \equiv (0, y_j, z_h), \quad i, j, h = 1, 2,..., N,$$
 $Q_{ijh} \equiv (x_i, y_j, z_h), \quad i, j, h = 1, 2,..., N,$

e le rette

(19)
$$r_{ij}: \quad x = x_i, \quad y = y_j, \quad i, j = 1, 2, ..., N,$$

$$r_{ih}: \quad x = x_i, \quad z = z_h, \quad i, h = 1, 2, ..., N,$$

$$r_{jh}: \quad y = y_j, \quad z = z_h, \quad j, h = 1, 2, ..., N.$$

Le proprietà di questi punti e rette possono essere riassunte come segue:

- a) Il punto Q_{ijh} appartiene alle rette r_{ij} , r_{ih} , r_{jh} ; il punto Q_{ijh} è interno alla cella S_{ijh} e non appartiene a $M = M_1 + M_2 + M_3$;
- b) Le proiezioni di Q_{ijh} sui piani coordinati sono Q_{ij} , Q_{ih} , Q_{jh} e Q_{ij} non appartiene ad $E_1+F_4+H_4+L_4$, Q_{jh} non appartiene ad $E_2+F_2+H_2+L_2$, Q_{jh} non appartiene ad $E_3+F_3+H_3+L_3$;
- c) L'intersezione $M_1(Q_{ij})$ della retta r_{ij} con l'insieme M_1 relativo alla superficie S è costituita di un numero finito di punti. I punti Q_{ijh} , h=1, 2,..., N, non sono in essa. Analoghe proprietà hanno le rette r_{ih} , r_{jh} ;
 - d) Dalle (15), (16), (17) segue

$$(20) \quad \sum_{i,\,j=1}^{N} a^2 \Psi_1(x_i,\,y_j) + \sum_{i,\,h=1}^{N} a^2 \Psi_2(x_i,\,z_h) + \sum_{j,\,h=1}^{N} a^2 \Psi_3(y_j,\,z_h) = a^2 F(\xi,\,\eta,\,\zeta) \leqslant I < +\infty.$$

I punti Q_{ij} non appartengono a $E_4 + F_1 + H_4 + L_4$ e quindi, in particolare, i relativi insiemi $\Phi_1^{-1}(Q_{ij})$, i, j=1, 2,..., N, sono chiusi e i loro componenti sono continui di G. La stessa proprietà hanno gli insiemi

$$\Phi_2^{-1}(Q_{ih}), \quad i, h = 1, 2, ..., N, \qquad \Phi_3^{-1}(Q_{jh}), \ j, h = 1, 2, ..., N.$$

Ne segue che anche l'insieme

$$\sigma = \sum_{i,j=1}^{N} \Phi_{1}^{-1}(Q_{ij}) + \sum_{i,h=1}^{N} \Phi_{2}^{-1}(Q_{ik}) + \sum_{j,h=1}^{N} \Phi_{3}^{-1}(Q_{jh})$$

è chiuso e i suoi componenti sono continui di G (cfr. n. 10).

Ciascuno degli insiemi $M_i(Q_{ij})$ di punti della retta r_{ij} è costituito, come sappiamo, da un certo numero m_{ij} finito di punti che diremo $Q'_{ij;t}$, $t=1, 2,..., m_{ij}$.

Poichè il punto Q_{ijh} , punto d'incontro delle rette r_{ij} , r_{ih} , r_{jh} , non ha punti in comune con alcuno degli insiemi finiti $M_1(Q_{ij})$, $M_2(Q_{ih})$, $M_3(Q_{jh})$ costituiti di punti delle tre rette ora considerate, e ciò vale per tutti gli i, j, h=1, 2,..., N, ne segue che i punti $M_1(Q_{ij})$, $M_2(Q_{ih})$, $M_3(Q_{jh})$ nonchè i punti Q_{ijh} , i, j, h=1, 2,..., N, sono tutti distinti e quindi esiste una loro minima distanza positiva ε' . Sia poi ε'' la minima distanza di ogni punto Q_{ijh} dalle facce della cella S_{ijh} a cui appartiene. Sia infine $\varepsilon=1/2$ min $(\varepsilon', \varepsilon'')$. Manifestamente $\varepsilon \leqslant a/4$.

24. - È ben evidente che tutte le condizioni del Lemma 8 sono qui soddisfatte e quindi esiste una suddivisione di \overline{A} in poligoni semplici e in campi poligonali che hanno tutte le proprietà enunciate e che qui, per brevità, non ripetiamo.

Prima di procedere oltre costruiamo una nuova superficie S' nel modo seguente.

Sia R_i uno dei campi poligonali della considerata suddivisione e supponiamo che tutti i contorni di R_i siano interni ad \overline{A} . Siano π_{i0} , π_{is} , s=1, 2,..., m, tali contorni. Come sappiamo ciascuna delle curve continue e chiuse immagini di queste poligonali è completamente contenuta in una sfera di raggio $< \varepsilon/2$ non avente nessun punto in comune con le rette r_{ij} , r_{ih} , r_{jh} (19).

Siano π_{i0}' e π_{is}' , s=1, 2,..., m, nuove poligonali vicinissime alle precedenti, π_{i0}' contenuta in π_{i0} , π_{is}' contenente π_{is} , s=1, 2,..., m.

Come sappiamo la superficie S_i immagine del campo poligonale R_i è interamente contenuta nell'insieme aperto Ω costituito dai punti di K interni ai cilindri circolari retti di raggio $\varepsilon/2$ e aventi per assi le rette (19). Ma $\varepsilon/2 \leqslant a/8$ e a è la minima delle distanze tra le rette r_t che non si intersecano. Ne segue che possiamo pensare di deformare con continuità la superficie S_i in altra superficie S_i' tutta costituita di punti delle rette (19). Ciò può essere ottenuto mediante una trasformazione

$$T: x'=x'(x, y, z), y'=y'(x, y, z), z'=z'(x, y, z),$$

continua in $\overline{\Omega}$ e che ad ogni punto (x, y, z) di $\overline{\Omega}$ faccia corrispondere un punto (x', y', z') delle rette (19). La superficie S_i ammette la seguente rappresentazione

$$S_i': x'=x'(u,v)=x'[x(u,v), y(u,v), z(u,v)], y'=y'(u,v), z'=z'(u,v), (u,v) \in \overline{R}_i.$$

Procediamo alla costruzione della trasformazione T. Consideriamo le $(N+1)^3$ celle (cubi)

$$s_{ijh}: x_i < x < x_i + a, y_j < y < y_j + a, z_h < z < z_h + a,$$

 $i, j, h = 0, 1, 2, ..., N, (x_0 = x_1 - a, y_0 = y_1 - a, z_0 = z_1 - a),$

e indichiamo con U_{ijh} il centro di s_{ijh} e con s_{ij} , s_{ih} , s_{jh} le rette passanti per U_{ijh} e parallele rispettivamente agli assi z, y, x. Sia $P \equiv (x, y, z)$ un punto di \bar{s}_{ijh} non appartenente alle rette s_{ij} , s_{ih} , s_{jh} . Sia $\sigma_1(P)$ la proiezione di P dalla retta s_{ij} sulle facce della cella s_{ijh} parallele alla retta s_{ij} , siano $\sigma_2(P)$ e $\sigma_3(P)$ le analoghe

proiezioni del punto P dalle rette s_{ih} e s_{jh} . La trasformazione $T = \sigma_3 \ \sigma_2 \ \sigma_4$ è continua e univocamente definita in tutto $\overline{\Omega}$ e verifica le condizioni richieste. Sia ora $S_i{}''$ la superficie

$$S_i'': \qquad x'' = x'(u,v) + \frac{\varepsilon}{4}, \quad y'' = y'(u,v) + \frac{\varepsilon}{4}, \quad z'' = z'(u,v) + \frac{\varepsilon}{4}, \qquad (u,v) \, \varepsilon \overline{R}_i \, .$$

La nuova superficie S_i " non ha punti in comune con le rette (19) ma tutti i suoi punti appartengono ad un sistema di rette r' parallele alle rette (19) e similmente disposte. Infine rappresentata biunivocamente la regione \overline{R}_i nella regione \overline{R}_i ' compresa tra le poligonali π_{i0} ' e π_{is} ', s=1, 2,...., m, diciamo S_i " la superficie così ottenuta identica alla precedente

$$S_i'': x'' = x''(u, v), y'' = y''(u, v), z'' = z''(u, v), (u, v) \in \overline{R}_i'.$$

In infiniti modi è possibile completare la definizione delle funzioni x'', y'', z'' nelle regioni comprese tra le poligonali π_{is} e le π_{is}' , s=0, 1, 2,..., N, in modo che le nuove funzioni ristabiliscano la continuità con le funzioni x, y, z sulle poligonali π_{is} , s=1, 2,..., n, e in modo che la superficie S_i''' così ottenuta in \overline{R}_i non abbia punti in comune con le rette (19) (24).

(24) Per fissare le idee sostituiamo alle poligonali π_{i_0} e π'_{i_0} le circonferenze $\gamma^* \equiv (u^2 + v^2 = 16)$, $\gamma''''^* \equiv (u^2 + v^2 = 1)$. Sia c la curva immagine della poligonale π_{i_0} sulla superficie S. La curva c è tutta contenuta in una sfera s di raggio $\langle s/2 \rangle$ tutta esterna alle rette (19). Sia Q_0 il centro di s. Sia c' la curva immagine della poligonale π_{i_0}' sulla superficie S_i'' . Noi supporremo che c e c' siano le immagini delle circonferenze γ^* e γ'''^* .

Osservando che la sfera s dista dalle rette (19) meno di $\varepsilon/2$ e quindi dalle rette s_{ij} , s_{ih} , s_{jh} non meno di $a/2-3\varepsilon/2\gg a/8$, ne segue che l'intera sfera s viene trasformata da T nei punti di un segmento oppure di tre segmenti passanti per un punto e appartenenti alle rette (19). La curva e' è perciò costituita dei punti di un segmento o di tre segmenti passanti per un punto che si ottengono dai precedenti mediante la traslazione di ampiezza $(\varepsilon/4, \varepsilon/4, \varepsilon/4)$. Sia Q_0' il punto comune ai tre segmenti considerati oppure un punto qualunque del segmento al quale appartiene la curva e'. Siano γ'^* e γ''^* le circonferenze $u^2+v^2=9$ e $u^2+v^2=4$. Siano $\gamma, \gamma', \gamma'', \gamma'''$ i cerchi (aperti) definiti dalle circonferenze $\gamma^*, \gamma'^*, \gamma'''^*, \gamma''''^*$. Sia O il punto (u=0, v=0).

Ad ogni punto $P \equiv (u, v)$ di $\overline{\gamma} - \gamma'$ facciamo corrispondere il punto $Q \equiv (x, y, z)$ di K che si ottiene come segue. Sia P' la proiezione del punto P da O sulla circonferenza γ^* , sia Q' l'immagine di P' su c, sia Q il punto di K appartenente al segmento Q_0Q' e avente da Q_0 distanza $= \overline{Q_0Q'}(\overline{OP} - 3)$. Ad ogni punto $P \equiv (u, v)$ di $\overline{\gamma}|'' - \gamma'''$ facciamo corrispondere il punto $Q \equiv (x, y, z)$ di K che si ottiene come segue. Sia P' la proiezione di P da O sulla circonferenza γ'''^* , sia Q' l'immagine di P' su c', sia Q il punto di K appartenente al segmento $Q_0'Q'$ e avente da Q_0' distanza $= \overline{Q_0'Q'}(2 - \overline{OP})$. Supponiamo ora che il segmento Q_0Q_0' non passi per alcuna delle rette (19). Ad ogni punto $P \equiv (u, v)$ di $\overline{\gamma}' - \gamma''$ facciamo corrispondere il punto $Q \equiv (x, y, z)$ del segmento Q_0Q_0' avente da Q_0' distanza $= \overline{Q_0Q_0'}(\overline{OP} - 2)$. Se il segmento Q_0Q_0' tocca qualcuna delle rette (19) si sostituisca a detto segmento una spezzata vicinissima al segmento Q_0Q_0' e non passante per alcuna delle rette (19). Dalle precedenti posizioni risultano definite certe funzioni x(u, v), y(u, v), z(u, v) continue e ad un valore in tutto l'anello circolare (chiuso) $\overline{\gamma} - \gamma'''$ che soddisfano alle condizioni richieste.

Supponiamo ora invece che il contorno esterno di R_i contenga punti di A^* . Siano π_{i0} , π_{is} , s=1, 2,..., m, i contorni di R_i . Per i contorni interni valgono le stesse considerazioni come nel caso precedente. Siano come prima π_{is}' , s=1, 2,..., m, poligonali vicinissime alle π_{is} e contenenti queste poligonali.

La poligonale π è invece costituita di archi consecutivi γ_1 , λ_1 , γ_2 , λ_2 ,...., γ_{μ} , λ_{μ} , ove γ_i sono poligonali senza punti in comune con σ sulle quali $\eta(\gamma_i) < \varepsilon/2$ e λ_i sono tratti del contorno A^* del quadrato A.

Siano γ_i' , $i=1, 2,..., \mu$, archi vicinissimi agli archi γ_i e congiungenti un punto di λ_{i-1} con un punto di λ_i (al posto di 0 si legga μ). Siano λ_i' gli archi contenuti in λ_i compresi tra i punti in cui γ_i' e γ'_{i+1} toccano λ_i . Diciamo R_i' il nuovo campo poligonale così costruito.

Si proceda ora alla costruzione della superficie S'' come sopra

$$S_i'': x=x''(u,v), y=y''(u,v), z=z''(u,v), (u,v) \in R_i'$$

tutta costituita di punti non appartenenti alle rette (19).

Il raccordo tra la superficie S_i'' e la superficie S nelle regioni comprese tra i poligoni π_{is}' e π_{is} e nei poligoni compresi tra le poligonali γ_s e γ_s' si faccia come sopra avendo cura che la superficie di raccordo non abbia punti in comune con le rette (19) (25).

Da quanto precede risulta così definita in tutto \overline{A} una nuova superficie che

⁽²⁵⁾ Eseguiamo il raccordo tra la superficie S_i " e la superficie S nei poligoni compresi tra le poligonali γ_s e γ_s '. Per fissare le idee supponiamo (cfr. nota (24) a piè di pagina) che un tale poligono sia il trapezio ABDC e che γ_s e γ_s ' siano rispettivamente le basi AB e CD di esso.

Sia c la curva (aperta) immagine del segmento AB sulla superficie S e sia c' la curva (aperta) immagine del segmento CD sulla superficie S_i'' . Le curve c e c' sono prive di punti delle rette (19). Ne segue che anche i punti A e C rispettivamente sulle curve c e c' sono fuori delle rette (19).

Se il segmento Q_0 Q_0' non passa per alcuna delle rette (19) ad ogni punto $P \equiv (u, v)$ del segmento AC facciamo corrispondere il punto $Q \equiv (x, y, z)$ del segmento Q_0 avente da Q_0 distanza $= \overline{Q_0} \, \overline{Q_0'}$. $\overline{AP}/\overline{AC}$. Se il segmento $Q_0 \, Q_0'$ tocca qualcuna delle rette (19) si sostituisca ad esso una spezzata vicinissima al segmento $Q_0 \, Q_0'$ e non passante per alcuna delle rette (19). Diciamo c'' l'immagine (segmento o spezzata) del segmento AC.

Dividiamo il segmento BD in tre parti uguali e siano E ed F i punti di divisione. Ad ogni punto $P \equiv (u, v)$ del trapezio ABCD facciamo corrispondere il punto $Q \equiv (x, y, z)$ di K definito come segue. Se P appartiene al quadrilatero AEFC sia $r \equiv P'P''$ la retta passante per P che divide AC ed EF in parti proporzionali; se P appartiene al triangolo ABE sia $r \equiv P'P''$ la retta passante per P e parallela ad AE; se P appartiene al triangolo CDF sia r = P'P'' la retta passante per P e parallela a CF. Il punto P' appartenga rispettivamente ai segmenti AC, AB, CD. Sia Q il punto di K immagine del punto P' sopra la corrispondente curva c'', c, c'.

Dalle precedenti posizioni risultano definite certe funzioni x(u, v), y(u, v), z(u, v) continue e ad un valore in tutto il trapezio (chiuso) ABCD che soddisfano alle condizioni richieste.

diremo S'. Osservando che la trasformazione T trasforma ogni punto Q di Ω in un punto Q' distante da Q meno di $\sqrt{3} \varepsilon/2$, si ottengono facilmente le relazioni

$$||S_i, S_i'|| < \sqrt{3} \epsilon/2, \quad ||S_i', S_i''|| = \sqrt{3} \epsilon/4, \quad ||S_i'', S_i'''|| < \sqrt{3} \epsilon/2 + \sqrt{3} \epsilon/4$$

e quindi $||S_i, S_i^{\prime\prime\prime}|| < 3\varepsilon$, per ogni i. Ne segue

$$||S, S'|| < 3\varepsilon < a < 1/8 m.$$

Divideremo ora in un modo qualunque i campi poligonali R_i in poligoni π_i' in ciascuno dei quali e in relazione alla nuova superficie S' si abbia $\eta(\pi_i') < \varepsilon$. È evidente che le superficie immagini su S' dei nuovi poligoni non toccano le rette (19). Abbiamo così una suddivisione di \overline{A} in poligoni semplici π_s , s=1, 2,..., M.

25. - Dalla f) del Lemma 8 segue che per ogni i, j=1, 2,..., N, esistono m_{ij} poligoni π_{s_i} , $t=1, 2,..., m_{ij}$, tali che

(21)
$$O(Q_{ij}; c_{1s_t}) = 0, \quad t = 1, 2,..., m_{ij}, \quad \sum_{t=1}^{m_{ij}} |O(Q_{ij}; c_{1s_t})| = \Psi_1(Q_{ij})$$

e tali che per ogni punto $Q_{i'j'} \pm Q_{ij}$ e per ogni punto Q_{ih} e Q_{jh} si ha

$$egin{aligned} O(Q_{i'j'}\,;\;\;c_{1s_t})\!=\!0,\quad t\!=\!1,\,2,\!...,\,m_{ij},\quad Q_{i'j'}\!\pm\!Q_{ij},\quad i',j'\!=\!1,\,2,\!...,\,N,\ O(Q_{i'h}\,;\;\;c_{2s_t})\!=\!0,\quad O(Q_{j'h}\,;\;\;c_{3s_t})\!=\!0,\quad t\!=\!1,\,2,\!...,\,m_{ij},\quad i',j',\,h\!=\!1,\,2,\!...,\,N. \end{aligned}$$

Inoltre per tali m_{ij} poligoni π_s le curve c_s sono tutte contenute nella sfera di centro $M_{ij;t}$, $t=1, 2,..., m_{ij}$, e raggio ε . Valgono infine proprietà analoghe alle precedenti scambiando l'ufficio degli indici i, j, h.

Per tutti gli altri poligoni π_s che non appartengono ai

$$\mu = \sum m_{ij} + \sum m_{ih} + \sum m_{jh}$$

poligoni ora considerati si ha

(22)
$$O(Q_{ij}; c_{1s}) = 0$$
, $O(Q_{ih}; c_{2s}) = 0$, $O(Q_{jh}; c_{3s}) = 0$, $i, j, h = 1, 2, ..., N$.

26. - Consideriamo ora le $M-\mu$ regioni considerate nel numero precedente. Se r_s è una di tali regioni, la curva c_s è tutta contenuta in una sfera di centro C_s ' di diametro ε . Se la sfera C_s ' non tocca nessuna delle rette (19), allora la curva c_s può deformarsi in un punto senza traversare nessuna delle rette menzionate.

Se la sfera C_s' tocca una sola delle rette (19), ad es. r_{ij} , allora, poichè

$$O(Q_{ij}; c_{1s}) = 0,$$

la curva c_s può deformarsi in un punto senza traversare nessuna delle rette (19).

Supponiamo infine che la sfera C_s' incontri due o tre rette (19) ciò che può accadere solo se C_s' e quindi c_s è tutta contenuta in una sfera C_s di raggio 2ε avente per centro uno dei punti Q_{ijh} . Dimostriamo che anche in questo caso la curva c_s può deformarsi in un punto senza attraversare nessuna delle rette (19). Sia $2\delta_1$ la minima distanza della curva c_s dalle rette (19). Ricordiamo che $\Psi_1(Q)$ è una funzione semicontinua inferiormente che assume soltanto valori interi, epperciò esiste un numero $\delta_2 > 0$ tale che in tutti i punti Q del cerchio di centro Q_{ij} e raggio δ_2 del piano (x, y) si ha

$$(23) \Psi_{i}(Q) \geqslant \Psi_{i}(Q_{ij}).$$

D'altra parte Q_{ij} non appartiene ad H_i e perciò

$$\lim_{\varrho \to 0} \frac{1}{\pi \varrho^2} \iint_{\overline{QQ}_{ij} \leqslant \varrho} \Psi_{\scriptscriptstyle 1}(Q) dQ = \Psi_{\scriptscriptstyle 1}(Q_{ij}).$$

Sia δ ($\delta < \delta_1$, $\delta < \delta_2$) un numero positivo tale che

$$0\leqslant \frac{1}{\pi\delta^2} \iint\limits_{\overline{QQ}_{ij}\leqslant \delta} \varPsi_i(Q)dQ - \varPsi_i(Q)\leqslant \frac{1}{6}.$$

Supponiamo inoltre δ abbastanza piccolo perchè valgano formule analoghe alla (23) e alla (24) per i punti Q_{ih} e Q_{jh} nei piani (x,z) e (y,z) relativamente alle funzioni $\Psi_2(x,z)$, $\Psi_3(y,z)$. Siano γ_1 , γ_2 , γ_3 i cerchi di raggio δ e centri Q_{ij} , Q_{ih} , Q_{jh} dei rispettivi piani. Allora in γ_1 l'insieme I_1 dei punti Q in cui è

$$\Psi_{\scriptscriptstyle 1}(Q) = \Psi_{\scriptscriptstyle 1}(Q_{ij})$$

ha misura $\geqslant \left(1-\frac{1}{6}\right)\pi\delta^2$; infatti in caso contrario si avrebbe $\Psi_{\scriptscriptstyle 1}(Q)-\Psi_{\scriptscriptstyle 1}(Q_{ij})\geqslant 1$ in un insieme di punti di $\gamma_{\scriptscriptstyle 1}$ di misura $\geqslant \frac{1}{6}\pi\delta^2$ e quindi

$$\frac{1}{\pi \delta^2} \iint\limits_{\overline{QQ}_{i,i} \leq \delta} \Psi_i(Q) \, dQ - \Psi_i(Q_{ij}) > \frac{1}{6}.$$

Analogamente in γ_2 e γ_3 hanno misura $\geqslant \left(1-rac{1}{6}
ight)\pi\delta^2$ gli insiemi I_2 e I_3 in cui

$$\Psi_2(Q) = \Psi_2(Q_{ih}), \qquad \Psi_3(Q) = \Psi_3(Q_{ih}).$$

Ne segue che l'insieme I dei punti della sfera τ di centro Q_{ijh} e raggio δ le cui proiezioni sui tre cerchi $\gamma_1, \gamma_2, \gamma_3$ di centri Q_{ij}, Q_{ih}, Q_{jh} e raggio δ appartengono rispettivamente a I_1, I_2, I_3 ha misura $\geqslant \frac{4}{3}\pi\delta^3 - 2\delta\left(\frac{1}{6}\pi\delta^2 + \frac{1}{6}\pi\delta^2 + \frac{1}{6}\pi\delta^2\right) = \frac{1}{3}\pi\delta^3 > 0$.

- 27. Possiamo allora scegliere in τ quattro punti (x_i, y_i, z_i) , i=1, 2, 3, 4 distinti, appartenenti all'insieme I della sfera τ e tali che
 - a) $Q'\equiv(x_1,\,y_4)$ sia un punto di γ_4 non appartenente a $E_1+F_1+H_1+L_1;$ $Q''\equiv(x_2,\,z_2)$ sia un punto di γ_2 non appartenente a $E_2+F_2+H_2+L_2;$ $Q'''\equiv(y_3,\,z_3)$ e $Q^{\text{IV}}\equiv(y_4,\,z_4)$ siano punti di γ_3 non appartenenti a $E_3+F_3+H_3+L_3;$
 - b) $z_3 > z_2 > z_4$, $y_3 < y_4 < y_4$, $x_2 < x_4$;
 - c) $\Psi_1(Q') = \Psi_1(Q_{ij}), \ \Psi_2(Q'') = \Psi_2(Q_{ih}), \ \Psi_3(Q''') = \Psi_3(Q^{rv}) = \Psi_3(Q_{jh}).$

In tal modo le quattro rette

$$g_1: \quad x=x_1, \quad y=y_1, \\ g_2: \quad x=x_2, \quad z=z_2, \\ g_3: \quad y=y_3, \quad z=z_3, \\ g_4: \quad y=y_4, \quad z=z_4,$$

passanti rispettivamente per (x_i, y_i, z_i) , i=1, 2, 3, 4, sono a due a due senza punti comuni e le rette g_1 e g_2 segano la striscia piana compresa tra le rette, tra loro parallele, g_3 e g_4 .

Di più se diciamo π_1 , π_2 , π_3 i cilindri circolari indefiniti di assi r_{ij} , r_{ih} , r_{jh} e raggio δ_1 è evidente che la curva c_s è tutta esterna all'insieme $\pi_1 + \pi_2 + \pi_3$ mentre le rette g_1 , g_2 e g_3 , g_4 sono rispettivamente interne ai cilindri π_1 , π_2 e π_3 .

Rileviamo poi che

$$O(Q'; c_{48}) = O(Q_{ij}; c_{48}), \quad O(Q''; c_{28}) = O(Q_{ih}; c_{28}), \quad O(Q'''; c_{38}) = O(Q^{\text{IV}}; c_{38}) = O(Q_{jh}; c_{38}).$$

28. - Sia 3τ la minima mutua distanza tra le rette g_1 , g_2 , g_3 , g_4 , a due a due senza punti comuni.

Aggiungiamo all'insieme σ l'insieme dei punti

$$\Phi_1^{-1}(Q') + \Phi_2^{-1}(Q'') + \Phi_3^{-1}(Q''') + \Phi_3^{-1}(Q^{\text{IV}}).$$

Anche il nuovo insieme σ' è chiuso e i suoi componenti sono continui di G. Possiamo inoltre supporre che σ' non abbia punti in comune con nessuna delle poligonali π_1^* , π_2^* ,...., π_M^* come è lecito poichè possiamo supporre δ comunque piccolo.

Sia η un numero tale che $\omega(\eta) < \tau$. Con le stesse considerazioni fatte per la dimostrazione del Lemma 3 del n. 5 di questo paragrafo, possiamo dividere π_s in un numero finito di poligoni semplici $\{\pi_{si}, i=1, 2,..., M'\}$ sul contorno dei quali non cadono punti dell'insieme σ' e inoltre tali che

a) se π_{si} , i=1, 2,..., M'', sono quei poligoni eventuali che contengono componenti g di σ' che separano il piano e per i quali $\eta(\overline{g}) \geqslant \tau/4$ allora le curve

continue e chiuse c_{si} , immagini su S delle poligonali π_{si}^* sono completamente interne a sfere di raggio $\tau/2$.

b) per tutte le altre regioni π_{si} , i=M''+1,...,M', si ha $\eta(\pi_{si}) < \tau/2$ e quindi vale ancora a).

Siano dunque π_{si} i nuovi poligoni tutti contenuti in π_s e siano e_{si} , e_{1si} , e_{2si} , e_{3si} le curve immagini di π_{si}^* e le loro proiezioni sui piani coordinati, i=1, 2,..., M'. Ciascuna delle curve e_{si} è interna ad una sfera e_{si} di diametro e_{si} e perciò tale sfera o è esterna alle quattro rette e_{si} , $e_{$

(26)
$$O(Q'; c_{18i}) = 0$$
, $O(Q''; c_{28i}) = 0$, $O(Q'''; c_{38i}) = 0$, $O(Q^{\text{IV}}; c_{38i}) = 0$.

Supponiamo infatti che per un certo i si abbia, ad es., $O(Q', c_{isi}) \pm 0$. Allora dalle (21), (22), (25) segue

$$egin{aligned} arPsi_1(Q') &\geqslant \sum_{t=s}^{M} ig| \ O(Q' \; ; \; c_{\imath t}) ig| + \sum_{i=1}^{M_{s'}} ig| \ O(Q' \; ; \; c_{\imath si}) ig| \geqslant \sum_{t=1}^{m_{ij}} ig| \ O(Q' \; ; \; c_{\imath t}) ig| + \ &+ ig| \ O(Q' \; ; \; c_{\imath si}) ig| > \sum_{t=1}^{m_{ij}} ig| \ O(Q_{ij} \; ; \; c_{\imath t}) ig| = arPsi_1(Q_{ij}), \end{aligned}$$

ossia $\Psi_{i}(Q') > \Psi_{i}(Q_{ij})$ ciò che contraddice la c).

Le (26) sono con ciò dimostrate.

Ogni curva c_{si} è interna ad una sfera σ_{si} di diametro τ . Se la sfera σ_{si} non ha punti in comune con le rette g_i , i=1, 2, 3, 4, allora c_{si} è a fortiori il contorno di una superficie (del tipo topologico del disco circolare) senza punti in comune con le rette g_i , i=1, 2, 3, 4, anzi tutta interna a σ_{si} . Se σ_{si} ha punti in comune con qualcuna delle rette g_i , allora σ_{si} ha punti in comune con una sola di queste rette, ad es. g_i . Ma dalle (26) e con il ragionamento già fatto nel n. 25 segue subito che anche in questo caso la curva c_{si} è il contorno di una superficie del tipo topologico del disco circolare senza punti in comune con la retta g_i e anzi tutta interna alla sfera σ_{si} e quindi senza punti in comune anche con le rette g_2 , g_3 , g_4 . Dunque tutte le curve c_{si} sono il contorno di una superficie del tipo topologico del disco circolare senza punti in comune con le rette g_i , i=1, 2, 3, 4. Ma le curve c_{si} sono in numero finito e quindi anche tutta la curva c_s è il contorno di una unica superficie dello stesso tipo topologico e senza punti in comune con le rette g_i , i=1, 2, 3, 4.

Ricordando ora (n. 26) la disposizione delle rette r_{ij} , r_{ih} , r_{jh} , g_1 , g_2 , g_3 , g_4 e della curva c_s e ricordando un nostro precedente risultato sulla topologia delle curve (26) abbiamo ora: Condizione necessaria e sufficiente perchè esista una

⁽²⁵⁾ L. CESARI: Su di un problema di Analysis Situs dello spazio ordinario. Rend. Istituto Lombardo di Scienze e Lettere, Sez. III, Vol. LXXIV (1941).

superficie del tipo topologico del disco circolare avente per contorno c_s e senza punti in comune con le rette g_1 , g_2 , g_3 , g_4 è che esista una superficie dello stesso tipo topologico avente per contorno c_s e senza punti in comune con le rette r_{ij} , r_{ih} , r_{jh} .

Ne segue perciò che esiste una superficie σ_s del tipo topologico del disco circolare avente per contorno c_s e non avente punti in comune con le rette r_{ij} , r_{ih} , r_{jh} . Di più poichè c_s è tutta interna alla cella S_{ijh} possiamo supporre che anche σ_s sia tutta interna alla stessa cella.

29. - Per riassumere riprendiamo il reticolalo π_s , s=1, 2,..., M, nel quale noi abbiamo diviso \overline{A} e osserviamo che a μ poligonali π_s^* , s=1, 2,..., M, corrispondono μ curve c_s $s=1, 2,..., \mu$, che circuitano, ciascuna, una ed una sola delle rette (19) r_{ij} , r_{ih} , r_{jh} e, più precisamente, si ha

$$(27) \quad O(Q_{ij};\,c_{1s}) = 0, \quad O(Q_{ih};\,c_{2s}) = 0, \quad O(Q_{jh};\,c_{3s}) = 0, \quad \sum_{s=1}^{m_{ij}} |O(Q_{ij};\,c_{1s})| = \Psi_i(Q_{ij}),$$

oppure relazioni analoghe scambiando tra loro gli indici. Inoltre

$$\mu = \sum m_{ij} + \sum m_{ih} + \sum m_{jh}.$$

A tutte le altre poligonali π_s^* , $s=\mu+1,...$, M, corrispondono curve c_s che sono il contorno di certe superficie σ_s del tipo topologico del disco circolare che non hanno punti in comune con nessuna delle rette r_{ij} , r_{ih} , r_{jh} . Più precisamente dette superficie o sono completamente interne ad una cella S_{ijh} , oppure sono interne ad una sfera di diametro ε minore della minima distanza dei punti Q_{ijh} dal contorno della cella S_{ijh} .

- 30. Sostituiamo ora alle curve c_s , s=1,2,...,M, delle poligonali \bar{c}_s passanti per tutti i punti delle curve c_s che corrispondono a qualche vertice dei poligoni π_s . Sostituiamo inoltre le superfici σ_s con superficie poliedriche $\bar{\sigma}_s$ aventi per contorno le corrispondenti poligonali \bar{c}_s e la distanza nel senso di Fréchet tra le attuali e le precedenti superficie sia <1/8m e così piccola che valgano ancora tutte le proprietà enunciate nel n. 29.
- 31. Sia λ_0 la minima distanza dell'insieme chiuso $I = \sum_{s=1}^{\mu} \bar{c}_s + \sum_{s=\mu+1}^{M} \bar{\sigma}_s$ dalle rette (19) r_{ij} , r_{ih} , r_{jh} . Tale distanza è evidentemente positiva. Proiettiamo ora da ogni punto Q_{ijh} l'insieme $I\bar{S}_{ijh}$ su S^*_{ijh} . Poichè i punti che sono sulla frontiera delle celle S_{ijh} rimangono invariati nella proiezione ed essendo $\lambda_0 > 0$, la trasformazione effettuata è continua su I e perciò le poligonali \bar{c}_s e le superficie

poliedriche $\bar{\sigma}_s$ si saranno trasformate in nuove poligonali \bar{c}_s' e nuove superficie poliedriche $\bar{\sigma}_s'$ tutte costituite di punti di $\sum_{i,j,\ h=1}^N S^*_{ijh}$. Il nuovo insieme $I' = \sum_i \bar{c}_s' + \sum_i \bar{\sigma}_s'$ ha una distanza dalle rette (19) che è non minore della precedente e perciò $\geqslant \lambda_0 > 0$. Eseguiamo successivamente su I' le seguenti operazioni elementari:

- a) proiezione ortogonale dalle rette r_{ij} sulla frontiera dell'insieme $\sum_{h=1}^{N} \overline{S}_{ijh}$;
- b) proiezione ortogonale dalle rette r_{ih} sulla frontiera dell'insieme $\sum_{j=1}^{N} \overline{S}_{ijh}$;
- c) proiezione ortogonale dalle rette r_{jh} sulla frontiera dell'insieme $\sum_{i=1}^{N} S_{ijh}$.

Le poligonali \bar{c}_{s}' e le superficie poliedriche $\bar{\sigma}_{s}'$ si trasformeranno in nuove poligonali \bar{c}_{s}'' e in nuove superficie poliedriche $\bar{\sigma}_{s}''$.

Si deve ora osservare che l'insieme chiuso $I'' = \sum \bar{c}_s'' + \sum \bar{\sigma}_s''$ è tutto costituito di punti del reticolato \mathbf{R} . Più precisamente le poligonali sono interamente costituite dei punti dei quattro lati di una delle facce delle celle S_{ijh} e di punti (eventuali) degli otto segmenti che partono dai vertici di questa e sono ad essa perpendicolari. Le superficie poliedriche $\bar{\sigma}_s''$ essendo tutte costituite di punti del reticolato \mathbf{R} , hanno area nulla secondo Lebesgue.

Finalmente osserviamo che le poligonali \bar{c}_s " possono pensarsi come ottenute dalle curve c_s mediante successive deformazioni continue senza incontrare nessuna delle rette (19) r_{ij} , r_{jh} , r_{jh} , r_{jh} e quindi valgono le seguenti relazioni

(29)
$$O(Q_{ij}; c_{1s}) = O(Q_{ij}; \overline{c}_{1s}) = O(Q_{ij}; \overline{c}_{1s}') = O(Q_{ij}; \overline{c}_{1s}''),$$

$$O(Q_{ih}; c_{2s}) = O(Q_{ih}; \overline{c}_{2s}) = O(Q_{ih}; \overline{c}_{2s}') = O(Q_{ih}; \overline{c}_{2s}''),$$

$$O(Q_{jh}; c_{3s}) = O(Q_{jh}; \overline{c}_{3s}) = O(Q_{jh}; \overline{c}_{3s}') = O(Q_{jh}; \overline{c}_{3s}''),$$

$$i, j, h = 1, 2, ..., N, s = 1, 2, ..., \mu,$$

ove c_{1s} , c_{2s} , c_{3s} ,..., \bar{c}_{1s}'' , \bar{c}_{2s}'' \bar{c}_{3s}'' sono le proiezioni sui piani (x, y), (x, z), (y, z) delle curve c_s ,..., \bar{c}_s'' , s=1, 2,..., μ .

32. - Supponiamo, per fissare le idee, che $\bar{c}_s{''}$ sia tutta costituita dei punti della periferia della faccia Q_1 Q_2 Q_3 Q_4 (parallela al piano (x, y)) di una delle celle S_{ijh} e di punti degli otto segmenti che partono dai suoi vertici e che sono a questa perpendicolari. È evidente che possiamo sopprimere da $\bar{c}_s{''}$ tutti i lati che cadono su tali segmenti. Sia $c_s{'''}$ la nuova poligonale. $c_s{'''}$ è una poligonale piana tutta costituita di punti della periferia del quadrato Q_1 Q_2 Q_3 Q_4 . Sia o_s una superficie poliedrica del tipo topologico dell'anello circolare che ha per

contorno esterno $\bar{c}_s{''}$ e per contorno interno $c_s{'''}$ e di area nulla secondo LEBESGUE. Sia $\sigma_s{'}$ una superficie poliedrica, del tipo topologico del disco circolare, avente per contorno esterno $c_s{'''}$ e la cui area è

$$\mathfrak{A}(\sigma_{s}') = a^2 |O(Q_{ij}; c_{s}''')| = a^2 |O(Q_{ij}, \overline{c}_{1s}'')|,$$

ove a^2 è l'area del quadrato Q_1 Q_2 Q_3 Q_4 e ove si dovrà porre Q_{ih} o Q_{jh} se la faccia Q_1 Q_2 Q_3 Q_4 non è parallela al piano (x, y).

L'area della intera superficie $\bar{\sigma}_s''$ formata da σ_s e σ_s' è uguale alla precedente e le M superficie $\bar{\sigma}_s''$, s=1, 2,..., M, costituiscono una unica superficie poliedrica Σ_m del tipo topologico del disco circolare, la cui area è

$$egin{align} \mathfrak{A}(\Sigma_m) = \sum_{s=1}^M \mathfrak{A}(\sigma_{s}{}'') = \sum_{s=1}^\mu \mathfrak{A}(\sigma_{s}{}'') = \ &= a^2 \sum_{s=1}^\mu \big| \ O(Q_{ij}; \ c_{1s}{}'') \big| + a^2 \sum_{s=1}^\mu \big| \ O(Q_{ih}; \ c_{2s}{}'') \big| + a^2 \sum_{s=1}^\mu \big| \ O(Q_{jh}; c_{3s}{}'') \big|, \end{split}$$

ove, per ogni s, uno soltanto dei $3N^2$ numeri

$$O(Q_{ij}; c_{1s}"), O(Q_{ih}; c_{2s}"), O(Q_{jh}; c_{3s}"), i, j, h=1, 2,..., N,$$

è non nullo, dato che, in forza della (29), questi numeri sono uguali a

$$O(Q_{ij}; c_{1s}), O(Q_{jh}; c_{2s}), O(Q_{jh}; c_{3s}), i, j, h=1, 2,..., N.$$

Ne segue, in forza della (21),

$$egin{aligned} \mathfrak{A}(\Sigma_{m}) = & a^{2} \sum_{s=1}^{\mu} \sum_{i,j=1}^{N} \left| \ O(Q_{ij}; \ c_{1s}) \ \right| + a^{2} \sum_{s=1}^{\mu} \sum_{i,h=1}^{N} \left| \ O(Q_{jh}; \ c_{2s}) \ \right| + a^{2} \sum_{s=1}^{\mu} \sum_{j,h=1}^{N} \left| \ O(Q_{jh}; \ c_{3s}) \ \right| = \ & = & a^{2} \sum_{i,j=1}^{N} \Psi_{1}(Q_{ij}) + a^{2} \sum_{i,h=1}^{N} \Psi_{2}\left(Q_{ih}\right) + a^{2} \sum_{j,h=1}^{N} \Psi_{3}(Q_{jh}). \end{aligned}$$

Infine dalla (20)

$$\mathfrak{A}(\Sigma_m) \leqslant I = W(\Phi_1) + W(\Phi_2) + W(\Phi_3).$$

33. - Osserviamo ora che, se P_s è un punto qualunque della curva c_s e \overline{P}_s , $\overline{P}_s{}'$, $\overline{P}_s{}''$, punti delle poligonali \overline{c}_s , $\overline{c}_s{}'$, $\overline{c}_s{}''$, se P e Q sono punti delle superficie σ_s e $\sigma_s{}''$, si ha

$$\{P, P_s\} \leqslant \frac{1}{8m}, \ \{P_s, \overline{P_s}\} \leqslant \frac{1}{8m}, \ \{\overline{P_s}, \overline{P_s'}\} \leqslant \frac{1}{8m}, \ \{\overline{P_s'}, \overline{P_s''}\} \leqslant \frac{1}{8m}, \ \{\overline{P''_s}, \ Q\} \leqslant \frac{1}{8m}$$

e quindi $\{\sigma_s, \sigma_s''\} \leqslant \frac{5}{8m}$. Ne segue

$$||S', \Sigma_m| < \frac{6}{8m}$$

e poichè $\|S, S'\| < \frac{1}{8m}$ si ha $\|S, \Sigma_m| < \frac{1}{m}$.

Per ogni intero m esiste dunque una superficie poliedrica Σ_m che verifica la (13) del n. 19 ciò che basta per dimostrare la sufficienza della condizione enunciata nel teorema del n. 18.

Dalla (13) segue inoltre la seconda delle disuguaglianze (12) nell'ipotesi che le tre trasformazioni piane Φ_1 , Φ_2 , Φ_3 siano a variazione limitata. Se per almeno un t si ha $W(\Phi_t)=+\infty$ la seconda delle (12) è banale. Infine la prima delle (12) segue dal teorema 4, § 1, n. 11 osservando che, per ogni t, si ha $W(\Phi_t) \leqslant L(\Phi_t) \leqslant L(S)$, t=1, 2, 3. Il teorema del n. 18 è così completamente dimostrato.

34. - OSSERVAZIONE. - Supponiamo che la superficie continua S sia definita da relazioni del tipo

$$x=x(u, v), \qquad y=y(u, v), \qquad z=0$$

e quindi $||S, \Phi_1|| = 0$, $L(S) = L(\Phi_1)$, $W(\Phi_2) = W(\Phi_3) = 0$.

Dal teorema del n. 18 segue, per t=1,

$$W(\Phi_1) \leqslant L(S) = L(\Phi_1) \leqslant W(\Phi_1)$$

e quindi

$$L(\Phi_1) = W(\Phi_1).$$

Abbiamo cioè il teorema: Per ogni superficie piatta Φ si ha $L(\Phi) = W(\Phi)$. Dal teorema del n. 18 segue allora la seguente proposizione: Per ogni superficie continua S qualsiasi si ha

$$L(\Phi_t) \leqslant L(S) \leqslant L(\Phi_1) + L(\Phi_2) + L(\Phi_3).$$