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POLYGENIC FUNCTIONS IN GENERAL ANALYSIS

by ARISTOTLE D. MICHAL, RODERICK DAVIS and MAX WYMAN

(Pasadena, California, U. S. A.).

INTRODUCTION - The theory of non-analytic or polygenic functions of a

complex variable seems to have been begun by RIEMANN, and has been carried
on by KASNER, CALUGARPANO and others. Unfortunately the treatment of

classical polygenic functions does not generalise very well to complex BANACH
spaces. For this reason we have had to use a slightly different approach in our

theory of polygenic functions of complex BANACH variables. -

Due to the inadequacy of the present theory of GATEAUX differential equa-
tions, we were unable to give the complete characterization of the differential

of polygenic functions, possessing only a continuous GATEAUX differential. We

were however able to do this for a certain class of polygenic functions.
Many new problems have been suggested by our present work, and these we

have tried to indicate throughout the paper.

Section 1. - Analytic Functions in General Analysis. -

A. E. TAYLOR (1) has generalised the CAUCHY-RIEMANN equations of classical
complex analysis to complex BANACH spaces. For earlier work in analytic
functions in general analysis the reader is referred to MICHAL and MARTIN [4]
and MARTIN [9]. Before proceeding with our own theory of polygenic functions,
we should like to give a brief summary of some of TAYLOR’s results.

Let E be a real BANACH space in which there exists a function [x, y] with
the following properties; (2)

1) [x, y] is a bilinear function on E2 to the real numbers,

(1) See TAYLOR [2] - [3]. 
°

(2) TAYLOR does not make this restriction on E, but we shall show that it is a necessary one.
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From E, we can construct a complex BANACH space in the following way.
Let E( C) be the set of all couples x, y ~, where x, y are elements of E. We

define

TAYLOR does not require E to posses the function [x, y], and states that E(C)
as defined above forms a complex BANACH space. This however is not true

in general for the following reason. One of the postulates that E(C) must
satisfy is that

But

and (1.2) is not in general equal to

be shown that (1.1) implies
In fact it can easily

and Von NEUMANN and JORDAN (3) have shown that (1.3) implies the existence
of a function [x, y] on EQ to the real numbers with properties 1-4. With the

added restriction we have made on E, it can be verified that E( C) is a

complex BANACH space (4). It might be pointed out that E( C) also possesses
a function [Z, U] on E2( C) to the complex numbers satisfying properties 3-4 and

1’) [Z, Uj is complex number valued and is additive and continuous in

each place

For if and we define [Z, ~] + [y, 
and this has the required properties.

Let ~==~~==~0~+~~0~ 1 be any element of E( C). Since there is a

simple isomorphism between the elements x, 0 ~ and the elements of E, we write z

(3) See Von NEUMANN and JORDAN [8].
(4) It would be interestring to know what definition should replace d), which would

make E(C) a complex BANACH space and place no restiction on the norm of E.
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in the form z = x + iy. If E(C), E’(C) are two complex BANACH spaces

of the above type, a function f(z) on a domain D(C) cE(C) to E’(C) can
be defined in the usual way. Any function f(z) can then be written in the

form f(z)=fi(x, y) + if2 (x, y).
DEFINITION 1.1. - A function f(z) on D( C) c E( C) to E’( C) is said to be

analytic if it is continuous throughout D( C), and possesses a unique GATEAUX
differential (5) at each point of D(C).

TAYLOR has shown that a necessary and sufficient condition, that f(z) =
y) + if2 (x, y) be analytic in a domain is that

1) y), f2(x, y) be continuous in the pair (x, y), and possess continuous
first GATEAUX differentials at all points of the domain,

2) the equations (6) (TAYLOR’s abstract CAUCHY-RIEMANN equations)

be satisfied.

Section 2. - Polygenic functions.
DEFINITION 2.1. - By a polygenic function y)+if2(x, y) on D(C)

to E’(C) we mean a function for which y), f2(x, y) are continuous in

the pair (x, y) for all points of D(C), and for which the total GATEAUx differ-
entials

exist, continuous in the pair (x, y), for all points of D(C) and arbitrary 03BE, ~ of E.
We shall write (2.1) in the form 6§i§fi(z, y). With this notation we see

THEOREM 2.1. - Let y) + if2(x, y) be a polygenic function on D(C)
to E’( C), and let If is a sufficiently small complex number

in modulus, then is in D(C). Further the lim exists,
1:

continuous in z for all paths of approach of 7: to zero, and any chosen 4z
in E( C ).

(5) By the GATEAUX differential of f(z), we

(6 ) The notation 62f(x, y) means the GATEAUX differential
larly for by x, y).
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Proof. - Let 7: tend to zero along the path tan 0, then

But by (2.1), the limit of the right hand side exists continuous in the pair (x, y)
and hence the theorem is proven.

The following two things should be noticed. First the limit of (2.2) as 03C4

tends to zero is not in general independent of the angle ø, and secondly if E

is taken to be the space of real numbers our theory does not reduce directly to
the classical polygenic theory. In this case however we do obtain the classical

theory by restricting (P to be zero.
DEFINITION 2.2. - Let f(z) be a polygenic function, and let T=a+if3 be a

complex number which approaches zero along the path f3 = a tan 0. Then

shall be written 3f(z ; Az, 4Y) and shall be called the directional GATEAUX differ-
ential of f(z).

Under the above hypotheses, it follows from TAYLOR’S work (1) that

where Thus (2.3) takes the form

and further (2.4) can be reduced to

where

THEOREM 2.2 - Let f(z)=fi(x, y)+if2(x, y) be a polygenic function, and
let D(f(z), 4z), P(f(z), 4z) be defined by (2.6), (2.7). Then a necessary and

(’7) TAYLOR [2].
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sufficient condition that these be simultaneously linear functions of Az is

that 6§f, (i =1, 2) be linear in their respective increments.
Proof. - Since we have for q=0 that Az==7$, and

Thus if P(f(z), Jz), D(f(z), Az) are both linear in dz, then the left side of (2.8)
is linear in ~, and this implies b§fi are both linear in ~. Similarly ~~fi can

be shown to be linear in n. This proves the necessity of the condition. The

sufficiency can be verified directly.
THEOREM 2.3. - A necessary and sufficient condition that a polygeni fun-

ction f(z) on D(C) to E’(C) be analytic throughout D(C) is that P(f(z), dz)=0
for all and all Az c .E( C).

The proof of this theorem is obvious.
If f(z) is a polygenic function we have by (2.5)

Thus (2.9) tells us that for fixed z and 4z all the values of bf(z; Az, 1» lie

on a BANACH sphere.
DEFINITION 2.3. - For fixed zo and dzo, the BANACH sphere (2.9) is called

the differential sphere of f(z) at zo .

We note the following properties of the differential sphere.
I. The differential sphere of f(z) is a point at each point of D(C), if and

only if f(z) is analytic in D(C).
This follows theorem 2.3.

II. If all of the differential spheres of f(z) have the same center then the
center must be the zero element of E’(C). This is true since D(f(z), 0) =0.
Hence if all the differential spheres of f(z) have a common center we must

have D(f(z), dz) = 0 for all z 8 D( C) and dz c E( C). This implies = - 

which means that f(z) is an analytic function of the complex conju-
gate of z.

Section 3. - Theorems on Derivatives and Differentials.
In sections’ (1) and (2) of this paper we have only required that fi(x, y)

(i =1, 2) possess continuous total GATEAUX differentials. We shall now make
the more restrictive condition that fi(x, y) possess continuous total FRECHET

differentials di/¡Iï(x, y). This of course implies that the partial FRECHET differ-
entials (8) d:fi(x, y), y) exist continuous in (x, y) and satisfy the relations

(8) We use the notation y) to denote partial FRECHET differentials.
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The remaining portion of this section shall be used to prove several isolated
theorems which we shall use later on.

THEOREM 3.1. - y be real variables, and let f(x, y) be a function

h 1 1.. B Z If 
6f bf 

d 
62/ . 

t towhose values lie in a BANACH space Z. If dx dy and .-.2013 exist continuous
Ox’ y x6y exist

d2f
in the pair (x, y) for and then exists for these

bybx

intervals and is equal to 62f" dxdy
Proof. - By integration we verify that

Calculating f(a, y) from (3.3), (3.2) becomesdu

By theorem 1.8 of MICHAL-ELCONIN [1] we have

Using this in (3.4), we can calculate
we find 

-

from the resulting expression, and

As an immediate consequence of this theorem we obtain the following theorem.
THEOREM 3.2. - Let x, y be elements of a BANACH space E, and let f(x, y)

be a function whose values lie in another BANACH space Z. If the FRECHET

differentials y) and y) exist continuous in (x, y) for

neighborhoods the FRECHET differential 

exists and is equal to y) for all x, y in these neighborhoods.
The proof is a direct application of theorem 3.1y and the fact that (9)

(9) See MICHAL and ELCONIN [1].
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KERNER (11) has shown that if f(x) is a function on an open subset of BANACH
space E to a BANACH space Z, and if f(x) has a continuous second FRECHET
differential then the latter is symmetrical in ~ and 17. By means of
theorem 3.1, we can extend this theorem to hold for GATEAUX differentials.

This is most easily seen by putting into the form (11)

THEOREM 3.3. - Let x, y, z, ~, q, u, v be elements of a BANACH space E and
let the functions cp(x, y, z), y, ~) having values in another BANACH space
satisfy the following conditions

a) gg(x, y, z), 7f(x, y, ~) are continuous in the pair (x, y), and linear in z, ~
respectively, for all (x, y) such that and arbitrary z, ~.

b) y, q), q) exist continuous in (x, y) for all x, y, z, ~
of (a), and arbitrary 27,

Then there exists a unique solution of the total FRECHET differential equation

up to an additive 

Proof. - Let us consider the real BANACH space E(R) of all couples Z= ~ x, y ~,
with and ] defined to be ~~ ~ x ~ 2 + ~ i y I I2 (i2). If in equations (3.8)
we consider x, y and z, ~ as couples ~==~y ~ and !7=~~ ~~ then (3.8) takes
the form

where O(Z, U) is a linear function of U, whose arguments are in E(R) and
weose values are in E. Conditions a) - e) imply N),

where i and By theorem 3.2 of MICHAL-
ELCONIN [1], (3.9) has unique solution up to an additive BANACH constant, and this

implies the same is true for (3.8) for all x, y such 

(10) KERNER [7].
TAYLOR [3].

(12) In E(R) equality, addition and multiplication by real numbers is defined by the

ordinary matrix operations. Thus we see E~R) is a real sub-BANACH space of E(C).



104

Let us define operators P, D by means of the following definitions.

By direct calculation we find that

DEFINITION 3.1. - Let S denote the class of all polygenic functions

f(z)=fi(x, y) +if2(x, y) on D(C) to E’(C) such that the FRÉCHET differ-

entials y), y) and dydyfi(x, y), (i=1, 2), exist and are conti-

nuous in the pair (.x, y).
THEOREM 3-4. - For all polygenic functions f(z) belonging to S, the oper-

ators P and D commute. That is

This follows from KERNER’S theorem and theorem 3.2.

Section 4. - Characterization of the differential of polygenic functions
which belong to S.

Let f(z) be any polygenic function belonging to S, and let

By means of (2.6), (2.7) and (4.1) we obtain

The following properties ef H, K, h, k can be verified by means of (4.1) and
theorem 3.2.
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linear in the pair (~, q) and continuous in (x, y).

The domain of validity of all these properties is of course the points (x, y)
such that z=x + iy lies in D(C).

Let u+iv be a fixed point of E(C). Then the totality of points x + iy such
that is of course a domain D( C) c E( C). For domains

of this type we obtain the following theorem.
THEOREM 4.1. - Let gi(z, 27), 

=h(x, y, $, r~) + ik(x, y, $, q) be two polygenic funclions of z, such that H, K, h,
and k satisfy properties I - II - III for all points of a domain D( C). Then

there exists a unique polygenic fonction f(z) == f, (x, y) + if2(x, y) (up to an additive
BANACH constant), such that

1) f(z) is an element of S,

for all and arbitrary 4z.
Proof. - Consider the differential equations
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Properties I - II - III and theorem 3.3 ensure solutions of (4.3), (4.4)
for f~(x, y) and y). Further we can obtain the following explicit expressions
for the partial FRECHET differentials of these solutions.

Obviously f(z)=f1(x, y)+if2(x, y) is a polygenic function, and we can easily
by means of property II and the linearity of that

Since bf(z; 4z, dz) + e-2ip P(f(z), dz), we see that properties I -

II - III completely characterize the directional GATEAUX differential of all polygenic
functions f(z) on D(C) to E’(C) which are elements of S.

Section 5. - Example of a Polygenic Function.
Let .E be the space of all real valued LEBESGUE measurable functions f(t)

on an interval (a, b), such that the LEBESGUE integral of f 2(t) exists for (a, b).
Define

Then E forms a suitable space from which we can form the complex BANACH

space E( C) as defined in section 1. As an example of a polygenic function
in E( C) we take
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For this particular function

and
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