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CURVE-SPACE TOPOLOGIES ASSOCIATED

WITH VARIATIONAL PROBLEMS

by EDWARD JAMES MCSHANE (Charlottesville, Va., U. S. A.)

In the calculus of variations it is usual to say that a curve ~’ gives a
weak relative minimum to an integral

in a class I~ of curves if there is a representation

of r and a positive s such that J(C) ? J(1’) for all curves C of the class K

which have representations

such that

for 

except at corners.
While there can be no doubt of the usefulness of this definition, it would

seem esthetically more desirable to develop an appropriate definition of weak

neighborhood, and then to say that T gives a weak relative minimum to J( C)
in the class K if J(C) ~1-1- J(F) for all curves C of the class K which lie in a

sufficiently small weak neighborhood of t The purpose of this note is primarily to
discuss certain definitions of weak neighborhoods and the interrelations between
them. However, to avoid conflict with the usual topological terminology, we shall
speak of our neighborhoods as « first-order » neighborhoods, rather than calling
them « weak » neighborhoods.
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1. - Notation. - Henceforward y will denote a v-tuple (or vector) (yl,...., yv),
and so will y. Likewise y(t) will denote (1) ( y1(t),...., yv(t)). The length of y
will be denoted by : 

I

A system of continuous functions y=y(t) (i. e., will be

called a representation of a continuous curve C. The concepts of change of
parameter on a curve and of the length ~(C) of a rectifiable curve C need

no elucidation here. Every rectifiable curve can be represented by equations
y=y(t) in which the functions yi(t) are absolutely continuous. Henceforth we
assume that all representations mentioned are absolutely continuous and, unless
the contrary is stated, all curves mentioned are non-degenerate. Moreover,
if C is rectifiable it can be represented in terms of arc length as parameter:
y=y(s), 0~~~~((7). A curve is of class D’ if it has a representation y=y(t),
a ~ t ~ b in which the functions y(t) are continuous and the derivatives y’(t)
are continuous except at a finite number of discontinuities of the first kind

(simple finite jumps), and I y’(t) I is bounded from zero. Henceforth, in discussing
curves of class D’ we restrict ourselves without further mention to representations
of the type just mentioned.

2. - Definitions of First-Order Neighborhoods. - The idea to which we

desire to give precise expression is that a curve C is in a small first-order

neighborhood of a curve 1’ if a correspondence between the points of the curves
exists under which corresponding points are near each other and the directions
or derivatives at corresponding points also differ only by little. A first attempt
would be as follows. The curve C is in the first-order 8-neighborhood of 1~ if

the curves have respective representations

(If C and 1’ were of class D’ the words « for almost could be replaced
by « except at corners.&#x3E;&#x3E; without changing the content of the definition). However,
this is merely a new and more complicated definition of an E-neighborhood

(i) With CARATHTODORY, we denote by ~(t) the function which is y’(t) when y’(t) is
defined and finite, and which is zero elsewhere.
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of order zero (defined by suppressing (2.4)); inequality (2.4) introduces no

restrictions. For simplicity, we suppose C and r of class D’. Let (2.3) hold.
The function y(t) - I is bounded, say less than M8. Introduce the new

parameter the curves C, T then have the respective representations

Then

so in the representations (2.5) inequality (2.4) holds. Since (2.5) continues to

hold, we see that by this definition C is in the first-order 8-neighborhood of r
if and only if it is in the zero-order E-neighborhood of r.

It follows that if we are to have a useful definition inequality (2.4) must be
altered so as to neutralize the effect of such changes of parameter. Two devices

suggest themselves readily. The s in inequality (2.4) may be replaced by 
or it may be replaced by B/(b-a). We shall see that these two devices lead to
very different notions of first-order neighborhoods.

Still another self-suggesting device is to require that the least positive angle
0(t) (0  §  n) between the vectors y and be small. This is clearly equivalent
to demanding that 2 sin 0/2 be small; and by elementary trigonometry we have

Our six definitions are as follows.

The curve C lies in the first-order E-neighborhood (i=1,....,6)
if C and r have respective representations (2.1), (2.2) for which I y I and I Ý I
are almost everywhere positive, inequality (2.3) holds, and there is an E, ~ E
such that the corresponding condition below is satisfied for almost all t
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The definition of is a mild rephrasing of one given by TONELLI (2)
for curves of class C’.

It is readily seen that if any of the inequalities (2.3) or (2.7)-(2.12) with the
exception of (2.10) is satisfied and a new parameter is introduced
on both C and F, the inequality continues to hold almost everywhere in the new
representation. It is also evident that each neighborhood is determined by 1’
and 6 alone, and does not depend on any particular choice of representation of 1’.
Furthermore

3. - Metrics. - The neighborhood-systems U2, C/~ U85 and U86 have the

virtue of leading at once to a definition of distance. For we can define the

distance d2( C, r) to be the greatest lower bound of numbers B such that C is
in U/(T). The usual postulates for a distance are easily shown (3) to hold.

The neighborhood U82(T) appears in terms of this metric as the sphere in

curve-space consisting of all curves C with d2(C, T) 8, so these neighborhoods
must satisfy the HAUSDORFF postulates for neighborhoods. A like statement holds
for U83, U85 and U6. Later we shall show that U4(h) is identical with U~(l’),
so that the U4 neighborhoods also yield a metric ~4(C~r’)=~5(C,jT).

If we apply the same process to the topology C~B we obtain a « regular ecart »
instead of a metric. It is then true (4) that there is a metric leading to the same
notion of limit, but we shall not use this. Nevertheless it is our duty to show
that the sets U1(~’) actually constitute a set of neighborhoods in the sense of
HAUSDORFF. Clearly r is in U1(r) for all positive 8. If T1. and T2 are distinct,
by use of (2.3) alone we can find a positive B such that and 

are disjoint. Let now C be in then (2.7) holds. We must show that
there is a positive ð such that Choose ð so small that

By (2.7), ~ ~~=(l+~i))~. If Ci is any curve in it has a representation
y = q (1), a ~ t ~ b almost everywhere and

(2) L. TONELLI: Fondamenti di Calcolo delle Variazioni, vol. II, p. 171.

(3) In fact, as Mr. A. D. WALLACE commented, this is exactly the FRECHET metric for
the (possibly discontinuous) curves in 2v-space defined by equations

(4) ALINE FRINK : Distance Functions and the metrization problem. Bull. Amer. Math.
Soc. 43 (1937), pp. 133-142; in particular, p. 138.
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With the above estimate for I  I we have

and (8+8!)/28, so C, is in U1(T ).
The above proof, with (2.13), shows that if C is in both and 

there exists a neighborhood UE1( C) which is contained in both these neighborhoods.
The neighborhood definition most evidently related to the usual definition of

weak relative minimum is U1. In fact, in the usual discussion of weak relative
minima the definition in § 1 could be replaced by the definition in terms of U..’(F)
with nothing more than trifling changes. Or, directly, we notice that the family
of curves satisfying the conditions in § 1 for a fixed representation of r contains
a neighborhood U1(T ), while conversely if we use arc length as parameter on F
the neighborhood U6(1-") contains the curves of § 1 if 8  6.

4. - Relationships. - The relations between the topologies defined in § 2 are
summed up in the following theorems.

THEOREM I. - Let r be a rectifiable curve and 8 a positive number.
Then there is a positive 6 such that each neighborhood UZ(1’) (i=1, 2, 3)
contains both Us (T ) and Us (T ), and each neighborhood UE (T ) ( j = 4, 5, 6)
contains ui(r) (i=1, 3, 4, 5, 6).

THEOREM II. - If in addition to the hypotheses of Theorem I we assume
that r is of class D’, then there is a positive 8  0 such that each of the
neighborhoods U,,(F) (i=1,...., 6) contains U~ (I’).

THEOREM III. - If r is a non-degenerate rectifiable curve and 0  8:::; 1,
neither U’ (T ), UE2(r) nor UE3(r) contain any neighborhood 
(i = 4, 5, 6), ð&#x3E; 0.

THEOREM IV. - If .l’ is rectifiable but not of class D’, it is possible
that neighborhoods UZ(1’) (i=1, 3, 4, 5, 6) may exist which do not contain
any neighborhood U2(r), 6 &#x3E; 0.

The proof of the first theorem requires a number of separate investigations.
(A) If ð=min (1/2,8/2), then Ua (h).

Let C be in the latter set. Then (2.7) holds with ð!  6 in place of 81. For

almost all t we have &#x3E; 0, so

But 6,  1/2, so

Annali della Scuola Norm. Sup. - Pisa.



50

This verifies the second of inequalities (2.9). For the first,

1 11 , 11 ,

This verifies the first of inequalities (2.9), so C is in 

Let C be in Then inequalities (2.9) hold with 313 in place of 8!,
and (since 

inequality (2.10) holds, and on integrating we see that
(2.11) holds. Therefore u,4(r) c Conversely, suppose that C is in 
Since (2.11) holds, we can choose a positive number n so small that

Define

Then for almost all t we have

so z(I) has an absolutely continuous inverse t( 1’), and for almost all z its

derivative is

From (4.1) and (4.2),
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Introducing z as parameter on C and 1’, we obtain the representations

Using (4.3), (4.4) and (4.1), for almost all r

so C is in The other statement follows from this together with (B).
(G) is small enough, contains Ua (r) and This follows

from (E) and (F).
enough, 

Suppose that this is false. Then for every positive integer n the set 
contains a curve Cn not in 

Let 2/===~(~ 0 -_ t ~ 1 be the representation of r in terms of the parameter
and let 0 1 1 be the analogous representation of en.

By hypothesis, the Cn have representations 0 ~ t ~ 1 such that

uniformly on [0, 1 ], and

By the lower semi-continuity of length,
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Hence equality holds in all these inequalities, and

The integrals in equation (4.7) are continuous monotonic increasing functions
of t, and converge to a continuous limit; so (5) the convergence is uniform.
The length of arc on Cn between and 1Jn(t) is

which tends uniformly to zero as n tends to infinity, y by (4.7) and (4.6).
Hence I tends uniformly to zero. This, with (4.5), proves

uniformly for 0 c t ~ 1.
Over every interval (a, ~) contained in [0, 1] we have

which tends to zero with 1ln. The integrands in (4.9) are uniformly bounded,
so by a theorem of LEBESGUE (1) the integrals in (4.9) continue to approach
zero if any summable function is introduced as a factor in the integrand. In
particular,

Because of the choice of parameter, for almost all t

(5) H. E. BUCHANAN and T. H. HILDEBRANDT : Note on the convergence of a sequence
of functions of a certain type. Annals of Math., vol. 9 (1908), p. 123.

(6) HOBSON: The Theory of Functions of a Real Variable, vol. II, p. 422 or p. 464.
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Hence

Adding (4.10) and (4.11) member by member, we obtain

By SCHWARZ’S inequality,

so the left member of this inequality tends to zero. In particular, it is less

than e for all large n. By equation (4.8), the inequality  ~ holds

for all large n. Hence Cn is in for all large n. This contradicts the

assumption that no Cn is in and statement (H) is established.

Statements (A) to (H) constitute the proof of Theorem I.

To prove Theorem II, we suppose first that r is of class C’ and that (Cn)
is a sequence of curves tending to r in the U2-topology ; that is, for every
positive 8 the neighborhood U2(1’) contains all but a finite number of the Cn .
If we can show that Cn also tends to r in the U3-topology, then as in (H)
we shall have shown that each contains a neighborhood 

By hypothesis, the curves r and Cn have representations 
for which I and

,

tend uniformly to zero. Without loss of generality we may suppose that t

represents arc length on 7~ ranging over the interval O c t c L=~(.I’). The
functions ;,i(t) can be extended so as to remain of class C’ on the interval

[0, L+il.
The uniform convergence of expression (4.12) to zero implies, because of (2.6),

that the least upper bound 8n of the angle between and tends to

zero with Define (1)

Since / is continuous, as h tends to zero d(t, h) tends uniformly to 

Therefore I d(t, h) I tends uniformly to and the unit vector

(7) If 1’ is of class C", we can replace d(t, h) by itself and omit the limiting
process h - 0.
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also tends uniformly to y(t). From the definition, D(t, h) is a C’ function of t

for each h. From the uniform convergence of D(t, h) to y(t), we see that if 6(h)
is the least upper bound of the angle between these vectors, then 8(h) tends to
zero with h.

The angle h, t) between 7,,(t) and D(t, h) cannot exceed 8n+8(h), so

This, with an integration by parts, yields

If we hold h fixed and let n tend to oo, then on recalling that yn tends uniformly
to y we obtain (with another integration by parts)

This holds for all h between 0 and 1. Letting h tend to 0, and recalling that

D(t, h) tends uniformly to and y ~ =1

But by the lower semi-continuity of length,

so

v

The integrals are continuous monotonic increasing functions of t, and converge
to the continuous limit function t, so (8) the convergence in (4.13) is uniform.

(8) H. E. BUCHANAN and T. H. HILDEBRANDT, loco Cit. (5).
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As the particular case of (4.13) with t = L,

The functions

converge uniformly to t, by (4.13) and (4.14), and Tn(O)=O, They
have positive derivatives for almost all t, so they possess absolutely continuous
inverses It is easily seen that tn(z) converges uniformly to z.

If we introduce ~c as parameter on Cn by the equation

we compute

for almost all z. Hence

whence log I uniformly for 0 -_ t ~ L. Also,

which converges uniformly to zero since yn and tn converge uniformly to the
respective limits y and z. Finally, recalling 171~l,

and this tends uniformly to zero because of the uniform convergence of (4.12)
to 0 and of tn to z.

Hence Cn converges to ~’ in the U3-topology, and we have shown that if r

is of class C’, then every neighborhood UE3(r) contains a neighborhood 
If JT is of class D’, we have only to apply the above reasoning to each arc of jT

between corners. When we observe that each neighborhood (i =-- 1, 4, 5, 6)
contains a neighborhood and by the preceding proof this contains a
neighborhood we have completed the proof of Theorem II.

Let y= y(t), a;~~ t---- b be any non-degenerate rectifiable curve. Let v =-- (vi ,...., vv)
be a fixed vector. We define the curve Cn by the equation Y=Yn(t), 
where

the functions yn(t) being linear on the intervals [b, b+1] and
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Using the metrics dj(C, T) defined (as in § 3) by the topologies Uj (j = 2,...., 6),
we easily find

whence by Theorem I we also have T) - 0 and d4( en, T) - 0. So every
neighborhood contains all but a finite number of the Cn, and likewise
every and every However, no matter how the Cn are represented
on the interval [a, b] we find that for almost all values of t near b the vectors 
and are oppositely directed (n == 1, 2,....). Hence Cn+1) ~ 2 and
d2(Cn, Cn+i) ’-- 2.

Consequently for all n either or else and

infinitely many curves Cn fail to lie in Likewise for U,2(F). It follows

that neither nor u,3(r) can contain any or Also,
for almost all t near b either 1 or I- 7 y ,,+, 1:~-&#x3E; 1 so that infinitely
many Cn fail to lie in Hence U1 (r) contains no neighborhod 
(i = 4, 5, 6). This completes the proof of Theorem III.

In the interval [0, L] we choose a sequence of points

Let ( an) be a sequence of numbers tending to zero. If is the

function such that

is linear on each of the intervals [q, pi] and [pi, qi+i],

then 99 is continuous, and the curve C defined by the equations

is a continuous curve. In particular, let ai=2-i. The curve h thus defined is

rectifiable ; its length is 2. We define other curves Cn,m by choosing

If we write the equations (4.15) in the form 0 c t c 1 for Cn,m
and y=r(t), for r, we readily verify that Also,

except at the values qi, of t. Hence for any sequence of values

of n the sequence Cn, tends to r in the U2-topology. But from equations
(4.15) we find that for each fixed n,
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Hence we may choose m(n) large enough so that

Then the curves will not tend to 1’ in the U6-topology, nor even have
uniformly bounded lengths ; and by part 1 they will not tend to 7~ in the U~,
U4 or U5 topologies. This establishes Theorem IV.

5. - Remarks. - As commented in § 2, the neighborhood-system U2(C)
defines a metric d2 ( C, r ) in the space of non-degenerate rectifiable curves.

However, with this metric the space is not complete. For example, consider the
sequence of curves Cn defined by the equation where

~)=-=~=0, 
We readily find and

Hence and the curves Cn form a CAUCHY sequence.
But £(Cn) - 0, so they cannot converge to any non-degenerate curve.

The same example shows that with the metric r) based on the U6
topology the space of non-degenerate rectifiable curves is not complete. It remains
incomplete even if the degenerate curves are added; for the curves Cn : 
O ~ t ~ 2~ defined by sin nt, y 2 =yn=0 form a CAUCHY sequence
in the d6-metric (they all have length 4); but by (2.3) the only limit curve they
can have is the degenerate curve 7~ consisting of the origin alone, while

d6 (cn, T)=4 for all n.

On the other hand, with the d3-metric the space of non-degenerate rectifiable
curves forms a complete space. For let i be a CAUCHY sequence in this
metric. We can select a subsequence Cn* ~ i such that d3( Cn*, Cm*)  2-n if m &#x3E; n.

Let Ci* be represented by equations y = y1 ( t), 0 ~ t ~ 1, where t is proportional
to arc length. The representations of the other curves are successively determined;
given the representation y=yn(t) of Cn*, the curve has a representation

such that the inequalities

all hold. From inequality (5.3) it is not difficult to show that I tends

uniformly to a bounded non-vanishing limit, except on a set of measure zero.
From this, with inequality (5.2), we see that the sequence is uniformly
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convergent, if we omit a set of measure zero. Let y. (t) be the limit of the

functions If we define
If

we can verify that the curve y = y(t) is the limit in the d3-metric of Cn*,
hence of Cn.

The same proof shows that, with the d3-metric, the space of all non-dege-
nerate curves of class C’ is complete.

The U5-topology also gives us a metric in terms of which the space of

non-degenerate rectifiable curves is complete. Let i be a CAUCHY sequence
in this metric. We can select a subsequence i Cn* ~ and successively determine
representions of the Cn* in such a way that

and

By the completeness of the space Li, the functions tend in Li to a

limit y(t), so that
6

If we again define y(t) by (5.4), the curve

y = y(t) is the limit in the d-metric of Cn*, hence of Cn .
We have thus shown that while the topologies Us and U5 are equivalent

and both lead to metrics, the metrics are not equivalent; that is, the ratio

r) is not bounded.
In any of our six topologies the space of non-degenerate curves of class D’

is a separable space. For any such curve C can be arbitrarily closely approximated
in any of the six topologies by polygons whose vertices are at points y all of

whose coordinates are rational. By the same approximation we can show that
the space of non-degenerate rectifiable curves is separable in the U4, U5 and U6
topologies. However, this space is non-separable in the Ul, U2 and U3 topologies.
We shall show this for v=2 ; it will follow at once for v &#x3E; 2.

Choose points 
Corresponding to each infinite sequence i of numbers 0 or 1 we define a

curve C as follows. The functions y(t) are linear on each of the intervals [qi, pil
and and y(1) =y(qi) =o (i=1, 2,....). If an = 0, we take y ( pn) = (2-n, 0) ;

we take (0, 2-n). All these curves have length 2. They form
a non-denumerable collection. We shall show that any two curves Ci, C2 corres-
ponding to distinct sequences an and bn have distance d2(Cl, C2) 2, from which

I
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the non-separability of the space of rectifiable curves in the d2-metric (hence in
the U2, U3 and U1 topologies) will at once follow.

Let Ci , C2 correspond respectively to the sequences an, bn and have distance
C2)  ~2. Let C, be represented as in the paragraph. There is then a

representation of C2 such that

for almost all t. That is, the angle between y and q is less than ~~2. For
small t the direction of is (1, 0) or (0, 1) according as a, is 0 or 1, and
that of ~ is (1, 0) or (0, 1) according as bi is 0 or 1. In order that the angle
be less than n/2 we must have bi =a1. Let be the value of t defining the
first corner of C2. If 7i*~ then for almost all t between and q, the

angle between y and 27 is n, which is impossible; so q1* ? qui . By a similar
argument, q1 ? so the two are equal. We now repeat the argument for

values of t a little greater than qs, and find that defines the second vertex

of C2 as well as of Ci. Continuing, we obtain successively the equations 
and qn*=qn, n=2,.... Hence the sequences bn and an are identical, and

the proof is complete.
Theorem I and the remarks in § 3 show that topologies U1 and U3 are

equally suited logically to define weak relative minima, the first being somewhat
superior in convenience; and if T is of class D’, topology U2 is also logically
suitable, but practically inconvenient. The other three topologies are too weak
for the definition of a weak relative minimum. They have however an independent
interest in that every integral

of the calculus of variations is continuous in these three topologies. As usual,
we assume that F is of class C’ for all y in a set S and all y~(o,...., o), and
is positively homogeneous of degree 1 in y. Let G Ci, C2,.... be rectifiable

curves such that d5 (~, C~)~0; we shall show lim J( Cn) =J(T). For convenience
we suppose S to be bounded and closed (9).

The curves r, Cn have respective representations y=y(t), y=yn(t), 0----t---l
such that I tends uniformly to zero and

(9) This involves no loss of generality, since the set of all points y lying on one or
more curves 1’, C1, C2,.... is such a set.
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By definition,

Since F is uniformly continuous and yn tends uniformly to y, the second

integral in the last member of the equation tends to zero. To discuss the first
integral, we observe that the partial derivatives are continuous for y
in S and and are positively homogeneous of degree 0, so there is

an M such that

Then

This, with (5.5), shows that the first integral in the last member of equation
(5.6) tends to zero, so that lim Thus J( C) is continuous in the U5
topology, hence in all six topologies.

_ The U4, U5 and U6 topologies are the weakest topologies in which this is

true, in the following sense. Let J(C) be any regular integral, and let U be a
topology such that if Cn tends to r in the U-topology, then Crz tends to r in
the FRECHET metric and J( C~) tends to J(1’). Then every neighborhood 
( j=4, 5, 6) contains a neighborhood C~T). If this were false, we could find a
sequence Cn tending to r in the U-topology (hence having J(r», but
not tending to r in the U6 topology, so that X(C~) does not tend to ~(7~).
This, however, is impossible, by a known theorem (so).

(10) L. TONELLI : Fondamenti di Calcolo delle Variazioni, vol. I, p. 331; E. J. MCSHANE :
Semi-continuity in the calculus of variations, and absolute minima for isoperimetric problems,
published in Contributions to the Calculus of Variations, University of Chicago, 1930 ; in

particular, p. 44.


