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THE HIGHER TOPOLOGICAL FORM OF PLATEAU’S PROBLEM

By JESSE DOUGLAS (Brooklyn, N. Y. - U. S. A.).

1.

The object of the following exposition is to provide, in a more concentrated
and perspicuous form than hitherto, an outline of the methods and results of
the author’s recent work on the general topological form of the PLATEAU problem.
In order that the essential features of our theory may stand out more clearly,
all proofs and similar details have been omitted; for these, we refer to the papers
listed at the end (1), particularly, [2, 3, 4, 5].

The guiding theme is a comparison between the two main procedures that
we have followed: the first based on the direct study of GREEN’S function for
a general RIEMANN surface, the second on 0-functions (2). These two modes of
treatment will be confronted under the respective headings of real harmonic
and complex analytic. Indeed, an exact one-one correspondence can be pointed
out between the basic formulas of the two methods - thus, the formulas (10.2)
and (12.7) for A(g, R) correspond, the formula (12.6) for F’2(w) to (10.4)
for aH(Q) · aH(Q), and the identity (15.2) in 0-functions to the variational for-

a r
mula (10.5) for GREEN’S function.

As formulated by the author a number of years ago (3), the precise statement
of our problem is the following.

Given :

1) k contours (~’)=(~’1, T2’’’’’’ Tk) in the form of Jordan curves in

n-dimensional euclidean space, each of assigned form, position, and sense
of 

2) a prescribed genus h or topological characteristic (4) r;
3) either character of orientability, i. e., two-sided or one-sided.

(i) References to these will be made by numbers in square brackets.
(2) Chronologically, these two methods were published in the reverse order.
(3) Bulletin Amer. Math. Soc., v. 36 (1930), p. 50.
(4) The definition of r is the maximum number of circuits, no linear combination of

which separates the surface. For a two-sided surface, r=2h. For a one-sided surface, r may
be odd or even; examples: Mobius surface with h handles, r = 2h + 1 ; Klein surface with h

handles, r = 2h + 2. See HILBERT and COHN-vOSSEN : Anschauliche Geometrie, 1932.
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To determine a minimal surfacc M corresponding to these data; i. e.,
.1Jf shall have the k boundaries (r) and no others, shall have the genus h
or characteristic r, and shall be two- or one-sided, as prescribed.

This problem vas solved completely by the author in a number of papers

published in recent years - first, particular cases: k=--l, h=0, [7, 8]; k=2,
h=0, [9]; r=1 (Mobius strip), [10]; and then the general case [1-6].

Subsequent to the author’s work, an alternative method of treating the

problem, with details for the particular case of k arbitrary, h=0, was given by
R. COURANT [11-13]. Independently, the same method was presented for the

simplest case, h=0, by L. TONELLI [14]. The method of these authors is

based essentially on permitting the vector v) in the multiple DIRICHLET
functional (see (6.2)) to be arbitrary, provided sufficiently regular in

respect of continuity and derivatives. The author’s method, not fundamentally
different (5), restricts x, in the main, to be a harmonic vector H(u, v). The
respective problems -r-.. / , 1 -r-.. ITY" .

are exactly equivalent in virtue of the relation: D(H)::-::--~: D(x) whenever H and x
have the same boundary values.

A still more general form of the PLATEAU problem has been formulated
and solved by the author [5, 6], where an infinite number of boundaries and
infinite connectivity of the required minimal surface lVl are permitted. In other

words, lVl may have the topological structure of the RIEMANN surface associated
with a perfectly general real analytic curve or function, a, The case - which
alone will be considered here - of finite values of k and h corresponds to an

algebraic curve or function.

~2.

The minimal surface M whose existence is to be established will be obtained

as conformal image of a RIEMANN surface R having the topological form
prescribed for M: k boundaries and genus h.

R may always be considered as one of the conjugate halves of the complete
RIEMANN surface #l of a real algebraic curve a : P(x, y) =0 (real coefficients);
i. e., R is the abstract geometric manifold which results by identification of

conjugate complex points (x + iy, x - iy) of is a closed surface - i. e.,
without boundaries - of genus

(5) As remarked by TONELLI, loc. cit., p. 333.
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R, on the other hand, has k boundaries - namely, the real branches C of at
and is of genus h ; i. e., R admits h and no more non-mutually-intersecting
circuits which do not separate it. In relation to ~, the riemannian manifold R
is often called a semi Riemann surface.

The interchange of conjugate complex points of 8 constitutes an inversely
conformal transformation T of * into itself, which is involutory: T 2== 1. A

RIEMANN surface A with such a related transformation T is called, following
KLEIN (6), symmetric, and T-equivalent points w, w of A are termed symmetric
or also conjugate. The points fixed under T form what are called the transition
curves of A; these correspond exactly to the real branches of the algebraic
curve a, since any real point is its own conjugate complex.

Two cases as to A may present themselves, termed respectively orthosym-
metric or diasymrnetric : either C may separate R or not. In the former case,
the semi RIEMANN surface R may be identified with either of the two conjugate
halves of 8 bounded by C. R is then a two-sided manifold. In the latter case,
R is a one-sided manifold; for the conjugate points w, w represent two antipodal
points between which it is possible to pass by a continuous path without crossing
the boundary C - a circumstance which typifies one-sidedness.

To fix the ideas, the wording of the sequel will be arranged with the two-
sided case in mind, but is easily adjusted to the one-sided case. Indeed, the
latter may be referred to the former by means of the standard device of a
two-sided covering surface in two-one point correspondence with the one-sided
surface (see [3], § 2, arts. 2, 3).

One form of the RIEMANN surface of el is the two-dimensional locus g in the four-
dimensional space (X=Xi +ix2, of the equation P(Xi +ix2, 
of d. Another form is the many-sheeted surface 8z over the complex x-plane,
or 8y over the complex y-plane. Slx, Sly are exactly the orthogonal projections
of 8 on the planes mentioned, and the correspondence between S, and S, Sly
thereby set up is conformal. 

’

In all respects, conformally equivalent RIEMANN manifolds are identical for
our purposes. For this reason, the algebraic curve a may, without affecting
anything essential, be replaced by any algebraic curve d’ equivalent to a by
a real birational transformation, where « real » means: respecting conjugate
points. This is because the RIEMANN surfaces * and o%’ of any two such bira-

tionally equivalent curves are conformally equivalent, so that the corresponding
semi-surfaces R, R’ are precisely conformally equivalent.

(6) F. KLEIN : Uber Riemanns Theorie der algebraischen Functionen und ihrer Inte-

grale, 1882.
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The closed RIEMANN surface a% of genus p has p circuits Aj of the first
system and p circuits B? of the second system. The inverse conformal transfor-
mation T associates the circuits of each system, or their indices, in pairs j, j’
so that we have

This is illustrated by the following figure, where, for the semi RIEMANN
surface R, k = 4, h = 2 : while, for the complete surface ~ p==7. The inverse
conformal automorphism T of Sl is the reflection in the plane containing C1,

C2, C3, C4, the boundaries of R. The indices j, j’ are paired according to the
substitution

(3.2)

We term corresponding indices j, j’ symmetric, and call the index j self-
symmetric or alter-symmetric according as j’ = j or j’=t=j. The essence of the
case h=0 is that then, as is evident from a figure, all indices are self-symmetric.
On the other hand, the index corresponding to any handle of R is alter-sym-
metric, since there is a distinct image handle on the conjugate semi-surface R’.
We shall denote alter-symmetric indices by Greek letters: a, ~8, ~,, p, and the

respective symmetric indices belonging to R’ by a’, 1’, it
On Xl there exist exactly linearly distinct normal abelian integrals of the

first kind, Their characteristic property is to be continuable indefinitely
on * as multiform functions without any singular point. « Normal » means that

the period of vi(w) with respect to Ak is d~k (=1 if j=k, =0 if j+-k). The
period of v;(w) as to Bk is denoted and we have the well-known relation

of symmetry :
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It is readily shown that, due to the symmetry of ~ we have the relations

where the bar denotes the conjugate complex quantity.
The following quantities play an important role in our formulas:

where the range of the alter-symmetric indices is

while a’, ~8’ are the respective symmetric indices :

The quantities are real, as can be seen by (3.5), in fact,

They are also symmetric, as follows from (3.3): 
It can be proved quite easily that the determinant T= tap does not vanish.

Hence, we can construct the reciprocal matrix

where we have the usual relation between reciprocal matrices :

(summation convention for 1= 1, 2,...., h).

The 0-functions on * play a fundamental role in our theory.
For the genus of 8, we have the elliptic 0-function of JACOBI:

with a single summation index n and a single period z. This is not essentially
different from the elliptic function 6(u) of WEIERSTRASS with the periods 1, Ty
the relation between 0 and a being

Annali della Scuola Norm. Sup. - Pisa.
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where A, B are certain constants as to u, being functions only of z. From 6,

WEIERSTRASS derived the other two elliptic functions

fundamental to his theory.
RIEMANN generalized the one-index 0-series of JACOBI to a p-index 0-series,

function of the p primary variables uj and of a matrix of periods namely:

where the summation ~ is with regard to the indices ni, n2,...., n~, which vary
independently over all integer values from - o to +00. The summation con-

vention as to repeated indices applies to j, k=1, 2,...., p.

The half-integers 1Qk, 1 Gk constitute the characteristic of the 0-function (7);2 2

usually their values are 0 our 2. 1 We presume an odd characteristic, i. e.,

This implies that 0 is an odd function of its arguments u :

We also suppose

(satisfied automatically in the self-symmetric case j’ j), which, together with
(3.5) implies the relation of conjugacy

The 0-function has important period properties, expressed by the formulas

Finally, we note the partial differential equation obeyed by the 0-function :

(7) The introduction of the characteristic in the RIEMANN 0-series is due to HERMITE.
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Following RIEMANN, let us substitute for each argument uj in 0(u) the
corresponding abelian integral v;(z, The resulting function of z,
complex variable on thc RIEMANN surface $l, namely 0(v(z, w)) is called a

0-function on this RIEMANN surface. since the periods of v;(z) as to Ak, Bk
are respectively ~~k, z;k, it follows by (4.9, 10) that when z performs a circuit
of Ak, 0(v(z, w)) receives the factor and, for a circuit of Bk, the factor
indicated in (4.10), where uk=vk(z, w). The multiform function 0(v(z, w)) has
no singular point on &#x26;It.

Writing we know that for any RIEMANN surface &#x26;R., the qua-
n 

J

dratic form is positive definite (8). This implies, referring to (4.4), that
the 0-series and all its derived series are absolutely and uniformly convergent
for all bounded values of the variables u, 1’; accordingly, it is permissible to
differentiate this series term-wise to any order - this is the way in which the

partial differential equation (4.11) is obtained.

Generalizing the definitions (4.3) of (, ga in the theory of elliptic functions
(p =1), we have for a general value of the genus ~ro the systems of functions

(j, k=1, 2,...., ~ro), namely :

The period properties of 0(u) imply, by logarithmic differentiation of (4.9, 10),
the following period properties of ~:

From these, it follows, by differentiation as to Uk, that 8Djk(U) is 2p-fold periodic
in the exact sense, remaining unchanged in value when each argument ul is
replaced by or Uz + ’lZm, for 2,...., p.

We define also, following RIEMANN, the normal integral of the second

kind on *:

(summation convention for j). The only singularity of t(z, w) is a pole of the first
order at z=w with residue equal to unity. By the period properties of 8(v(z, w)),
the periods of t(z, w) as to the circuits Ak all vanish, while the period of t(z, w)
as to Bk is 

(8) E. PICARD : Traité d’Analyse, v. 2, 1925, p. 483.
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A minimal surface M is, by definition, a harmonic and conformal image
of a RIEMANN surface R. Vectorially written, the formulas for Mare

I I 

Uc u 27

Here Q denotes an arbitrary point of R; $, q are any two perpendicular
directions on R at Q ; x, H are vectors in euclidean space of any number n
of dimensions; and the dot denotes the scalar product of vectors. (5.1) expresses
the harmonic character of M, and (5.2) its conformal representation on R, for,
according to (5.2), perpendicular directions on R correspond to perpendicular
directions on M (9).

Since any harmonic function is the real part of an analytic function of a
complex variable, we may represent M in an alternative form as follows:

or vectorially,
I- -"

In (5.4), E, F, G are the coefficients in the ds2 of M, and (5.4) or (5.6), i. e.,

E= G, express the conformality between M and R.
The parallelism between (5.1, 2), on the one hand, and (5.5, 6), on the other,

will be continued systematically throughout our theory. According as the one or
other pair of formulas is applied, we have two modes of treatment of the problem:
the real harmonic and the complex analytic. Beginning a little later, we shall
present these two methods succesively in a dualistic way.

~ 6.

Classically, going back to LAGRANGE (i°), the PLATEAU problem presented
itself as one of least area:

among all surfaces S having a given boundary r.

(9) Which is sufficient to secure conformality, according to standard theorems on maps
(TIssoT’s theorem).

(10) J. L. LAGRANGE: Miscellanea Taurinensia (1760-1761); also Oeuvres, v. 1, p. 335.
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The essential contribution made by the author was to employ, instead of (6.1),
the minimum principle

Indeed, the defining formulas of a minimal surface given in the preceding section
represent exactly the vanishing of the first variation of D(x).

The functional D(x) depends on the parametric representation x=x(u, v)
of S as well as on this surface itself. The minimum condition (6.2), besides
distinguishing S as a minimal surface M, determines its parametric represen-
tation as conformal.

In the general topological form of our problem, the assigned boundary (r)
of M consists of k JORDAN curves, and the topological type of M, as well as
that of all the surfaces S with which it is compared, is prescribed.

S is represented parametrically on a RIEMANN surface R of the assigned
topological form (genus h and k boundaries), and is given by an equation
x = x(u, v) which converts the bounding curves (C)=--(C,, C2 ,...., Ck) of R into
the given contours (~’) in a one-one continuous way. We shall denote by g,
abbreviation for x=g(z), this one-one continuous or parametric representation
of (1’) on (0).

Then, for a given RIEMANN surface R and given parametric representation g
of (r), it is a classic result that the minimum value of D(x) is attained for the
harmonic function H(u, v) on R determined by the boundary values g on ( C); i. e.,

if x(u, v) is any (piece-wise continuously differentiable) vector function on R

with the same boundary values g as H(u, v).
D(H) is completely determined by g and R; it is a functional of these

arguments, which we denote by A(g, R) :

According to (6.3), the minimum principle (6.2) is completely equivalent to

We may say that A(g, R) is the « minimizing core » of D(x). The minimum
in (6.5) subsists simultaneously with regard to all RIEMANN surfaces R of the

prescribed topological type and all parametric representations g of (1’).
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Our method of solution of the PLATEAU problem consists of two parts, namely:
1°). The proof of the attainment of the minimum of R).
2°). The discussion of the variational condition (EULER-LAGRANGE equation),

to prove that it expresses the defining conditions (5.1, 2) or (5.5, 6) for a

minimal surface.

§ 7.

As a preliminary to the proof of the attainment of the minimum of A(g, R),
we enlarge the set [R] of all RIEMANN surfaces of the given topological type so
as to secure closure; i. e., we adjoin those RIEMANN surfaces R’ which, while
not belonging to [R], can be expressed as the limit of a sequence of surfaces
of [R]. R’ either consists of a number of separate parts or is of lower topological
type than the surfaces R.

Also, we enlarge the set [g] of one-one continuous correspondences between ( C)
and (r) so as to include the case where a whole arc of a contour Ij corresponds
to a single point of C~, or vice versa; as an extreme case (degenerate repre-
sentation), all of 15 may correspond to a single point of 0, while all of q
corresponds to a single point of 

The set [g, R] of all representations of the given contours (T), thus enlarged
by the adjunction of improper representations, is, by construction, closed. The
functional A(g, R) can be shown to be lower semi-continuous - this results

from the positive nature of the integrand in (6.4) (or in (10.2), that follows).
Therefore, following a standard pattern of WEIERSTRASS-FRECHET, the mi-

nimum of A(g, R) is attained for some representation (g*, R*), which, as far as
we know at first, may be proper or improper. The proof is logically the same
as that for the minimum of a continuous function of a real variable on a closed

interval (11).
It remains to exclude the eventuality of improper character of the minimizing

representation (g*, R*).
To obviate the possibility of a singular nature for R*, we need the following

hypothesis:

where the notation is

« min » being used in the sense of « lower bound » without prejudice of the
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question of attainment. R ranges over all RIEMANN surfaces which are properly
of the assigned topological form, and g over all parametric representations of (r).
R’ denotes all RIEMANN surfaces which are im p roperly of the assigned topo-
logical form in the sense explained in the first paragraph of this section. Thus,
d(F, h’) is the least of the quantities

where

and where we must have either m &#x3E; 1 or the  sign prevailing in (7.5).
As a matter of fact, it suffices to consider only primary reductions of R

to R’ ; i. e.,

where an actual partition of the contours must take place, i. e., at least one of

the sets (7~)~ (r) 2 is not empty.
We may observe that in all cases the relation :5-~- holds in (7.1).
The possibility that the parametric representation g* be improper is also

easily avoided. The type of improper ; first described is avoided because then

A(g, R) == + co, whereas we assume in the main part of theory that

d(F, h) = min A (g, R) is finite :

The second type of improper g can be shown to be inconsistent with (5.2) or (5.6),
while the degenerate type, as can be proved, contradicts (7.1).

A more concrete interpretation of h) is as a lower bound of areas:

where ranges over all surfaces of genus h bounded by the k contours (1~).
The equality of d and a has been proved in the author’s previous papers (12)
on the basis of the conformal mapping of polyhedra approaching to S.

With the analogous definition for a(F, h’), referring to surfaces S reduced
in their topological type, the sufficient conditions (7.8, 1) for the existence of
the required minimal surface M can be put in the form
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It can also be easily proved that, for the area of M, we have

where S may be any surface of the topological type of M bounded by (I’).
Accordingly, M also solves the least area problem which constitutes the original
form of the problem of PLATEAU.

In summary, our main result is (13):
If h) is finite, and in the relation h) ---- d(Z’, h’), applying to

all data (~’, h), we actually have for our particular data

then there exists a minimal surface M of genus h bounded by the k given
contours (T).

The minimum value d(r, h) of the multiple Dirichlet integral D(x) is
equal to the minimum area a(F, h) of all surfaces S of genus h bounded
by (T). Accordingly, a(r, h) may replace d(F, h) in the preceding sufficient
conditions, giving them a more concrete form.

Finally, the minimal surface M solves the least area problem for the
data (r,. h) :

for every surface S of genus h bounded by (T).

~8.

If the given contours are perfectly general JORDAN curves, then the finiteness
condition (7.8) is generally not verified, but rather

Indeed, the necessary and sufficient condition for h) to be finite is that each
contour be capable of bounding some simply-connected surface of finite area, i. e.,

In turn, a sufficient (but not necessary) condition for this is the rectifiability
of each contour.

Relatively simple examples have been given by the author of contours, all

of the surfaces bounded by which have infinite area, e. g., the spiral defined in
spherical polar coordinates by the equations

(13) First given in [1]. See also [3], Theorems, I, II.

(14) J. DOUGLAS : An analytic closed space curve that bounds no orientable surface of finite
area. Proc. Nat. Acad. Sci., U. S. A., v. 19 (1933), pp. 448-451. See also: J. DOUGLAS: A Jordan
space curve having the infinite area property at each of its points. Ibid., v. 24 (1938), pp. 490-495.
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If one or more such contours belong to the set (7~ then we have the general
situation (8.1).

To give also in this case a sufficient condition for the existence of to

replace (7.1), we define, first in the case h) finite, the essentially non-

negative quantity
10 "I

and then, regardless of the finite or infinite value of d(r, h),

also essentially non-negative. Here denotes any sequence, m=1, 2, 3,....,
of finite- area- bounding contour-systems, k in number, which tend to (r)
as The « lim sup » is with respect to m, and the « max » with respect
to all possible sequences 

With these definitions, a sufficient condition for the existence of the

minimal surface M is that

(not merely ~ 0, which is always the case).
Since in the present case we have + 00 for all surfaces ,S bounded

by (r), the least area property of M now loses its meaning. But every completely
interior portion Mi of M has a finite area which is a minimum for its own

topological structure (genus hi) and boundaries (r), (i5).

~9.

The attainment of the minimum of A(g, R) being established, our two alter-
native modes of procedure are distinguished by their treatment of the variational
condition

Accordingly, we divide the rest of this paper into: (I) Real Harmonic Method,
(II) Complex Analytic Method.
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I. - Real harmonic method.

§10.

PLAYING the principal role in all our formulas is the GREEN’S function G(P, Q)
of the RIEMANN surface R, as determined uniquely by the following properties:

(i) as function of the point P, G(P, Q) is uniform and harmonic on R ;
(ii) G(P, Q) has a logarithmic singularity at Q:

G(P, Q)=log 1 + (function of P regular at Q);PQ

(iii) for P on the boundary C of R, G(P, Q)=0.
In terms of GREEN’S function, the solution of the DIRICHLET problem for R

can be represented explicitly. Let H(Q) denote the uniform, regular, harmonic
vector function on R with the boundary values g(P) on C; then

where 6. denotes differentiation in the direction of the interior normal to C at
on

the point P.

By substituting this formula in (6.4), we obtain - after certain transfor-
mations involving principally GREEN’s formula for converting a regional integral
into a contour integral - the following explicit formula for A(g, R):

Here, written vectorially,

V-1

is the square of the distance between two arbitrary points on the given system
of contours (F). The second normal derivative of GREEN’S function is an

essentially positive quantity.
Also, referring back to the condition (5.2) for a minimal surface, we obtain

for the expression figuring there the formula

Only a few simple transformations are needed to give this formula exactly the
form indicated.
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The fundamental formulas (10.2), (10.4) bcing established, y the principal
feature of the proof is the demonstration, by means of an explicit construction,
that an arbitrary representation (g, R) of the given contours (h) can be varied
so that the variation of GREEN’S function is precisely:

where Q denotes an arbitrarily chosen point of R, and , r¡ any preassigned
pair of perpendicular directions through Q on R.

Combining the formulas (10.2, 4, 5), we have - under our particular
variation of (g, R) -

Hence for the minimizing representation (g*, R*) of A(g, R), we have

where H*(Q) is the harmonic function on .R* determined by the boundary
values g* on C*, in accordance with (10.1). Consequently, y the surface

is a minimal surface M, and solves the PLATEAU problem for the data (T, h)
- for R, and therefore M, is of genus h, and the values x=g*(P) of H*(Q)
on the k boundaries (C*) of R* form some parametric representation of the

given contours (I’).
It remains only to describe precisely the special variation of the semi RIEMANN

surface R of a real algebraic curve which has the effect (10.5) on the corre-
sponding GREEN’S function.

v 
---

We imagine that the variation of R to RE takes place by simultaneous
variation of the individual points: Pi to P2 to etc. Then GREEN’S

function G(Pi, P2), which depends on the form of the RIEMANN surface R~ and
the position of the points P2(E), becomes, for given points Pi, P2 on R,
a function of s :

We define the variation of P2) by the usual formula
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where it may be remarked that 6 denotes a derivative instead of, as is more

customary, a differential.
We are now in a position to state our

Variational theorem concerning Green’s function.

THEOREM. - Let a denote any real algebraic curve, on whose Riemann
or the points Q, Q are any two conjugate imaginary 

Let the tangent lines t, t to a at Q, Q intersect in the real point 0.
Choose a reference triangle with one vertex at 0; then in homogeneous
line coordinates u, v, w, the equation of d will evidently have the form

represents the conjugate imaginary tangents t, t. K and L are homogeneous
polynomials.

Construct now the family of curves with parameter 8,

where a’, b’, c’ are fixed but arbitrary real coefficients.
Then by rectilinear projection from 0, the Riemann surfaces S, BE

of A, As are set into one-one continuous and conformal correspondence,
P to P(8), in the immediate vicinity of Q, Q. In particular, the
real branches C, C, of a, as are thereby set into one-one continuous

correspondence. This depends on the circumstance that all the real tangents
from 0 to as - which are defined by the real factors of the equation
K(u, v)=O - remain invariant, since this equation is independent of e.

In fact, for the same reason, all the tangents, real and imaginary,
from 0 to as, ts, ts, remain fixed. These, however, vary with 8;

and ts, for instance, intersects the Riemann surface 8 of a in two points
near to Q (16), which, as s passes through the value zero from positive to
negative, always enter Q from two opposite directions a’, a" and leave in
the perpendicular opposite directions P". Let the angle-bisectors of

these a, fl directions be the perpendicular directions ~, q.
Denote by G(P,, P2) the Green’s function of either conjugate semi-

(i6) We suppose that the contact of the tangents t, t to a at Q, Q respectively is ordi-

nary two-point contact. Higher contact can always be avoided by means of a preliminary
birational transformation.
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surface R of the symmetric Riemann surface 8 (i7). Then, under the

precedingly described variation of the form of 8 and the position of the
points P,, P2, we have for Green’s function the variational formula

(apart from an inessential nunterical factor).
Finally, the directions ~, ~ can be made to coincide with any preassigned

perpendicular directions at Q by proper choice of a’, b’, c’.

This theorem seems of interest not only for its direct application to the

PLATEAU problem, but also for its interplay of fundamental analytic and geometric
entities. A detailed proof of the theorem is given in [4], § 5.

The figure illustrates the real branches of the curve a drawn full, and of
the varied curve d, drawn dotted. The real tangents from 0 ore indicated by

full drawn lines. One other projecting line from 0 is drawn dotted, and upon
it corresponding points P, P~ are indicated.

It is evident how the fact that ete remains always tangent to the same real
lines through 0 conditions the one-one nature of the correspondence between the
real branches of d and established by the projection from 0. For, otherwise,
either a or 9~ would protrude outside one of the real tangents to the other from 0,
and then the protruding arc, say of could have no corresponding real arc on d.

(1’) We suppose the notation arranged so that R contains the point Q, while the conjugate
semi-surface contains the point Q. 

"
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II. - Complex analytic method.

§12.

GREEN’S function G(z, w), being a harmonic function, can be expressed as
the real part of an analytic function of the complex variable z. This expression
has the form

where w denotes the conjugate point to w on the symmetric RIEMANN surface R.
We derive from S(z, w) the two other important functions 

.

S, Z, P are analogous to log a, in the theory of elliptic functions.
The solution of the DIRICHLET problem for the semi RIEMANN surface R,

with given boundary values g(z) on C, can be expressed in the form

Here F(w) is to be considered as a vector with n components Fi(w). The second
term in (12.4) is a constant, arranged so that, for a suitable branch of the

multiform function (18) F(w),

at the arbitrarily chosen particular point wo. The complex analytic formula (12.4~
for solving the DIRICHLET problem is the analogue of the solution (10.1) in
real terms.

From (12.4) we derive, for the first member of the condition (5.6) for a
minimal surface,

We also obtain, by a series of calculations, the following explicit formula
for A(g, R):

(18) The periods of F(w) are all pure imaginary, so that x is a uniform

function on R.
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Although complex elements intervene in this formula, they combine in such a

way that the value of A(g, R)=D(H) is positive real. We may remark also that

the integral is improper, since P(z, ) becomes infinite like 
1 z 

when z=I.
(z-F)°

Accordingly, we must integrate first with z- E, and then allow 8 - 0. A similar
remark applies to the real form (10.2) of the formula for A(g, R).

§ 13.

The GREEN’S function of the semi RIEMANN surface R can be simply expressed
in terms of the 0-functions pertaining to the complete RIEMANN surface e% through
the intermediary of the related function S(z, w) of (12.1).

In the case where the genus h of R is zero, we have simply

This gives, by (12.2),

(systematically, the summation convention as to repeated indices will be
applied to j, k, l, m =-- 1, 2,...., p).

Thus, the formulas (12.7, 6) become in the case 

§14.

Given any symmetric RIEMANN surface 8 upon which Q, Q are any two
conjugate points, a symmetric RIEMANN surface &#x26;It’ can be found, conformally
equivalent to 8 with preservation of conjugate points, and upon which the

points Q’, Q’ corresponding to Q, Q are branch-points. For, as in the statement
of the Variational Theorem of § 12, let a be any real algebraic curve (P(x, 
with real coefficients) having o% for its RIEMANN surface, and let 0 be the real

point of intersection of the conjugate imaginary tangents t, t to d at Q, Q. Then
any real projective transformation of the plane of d which sends 0 to the infinite
point in the direction of the y-axis is evidently a real birational transformation
of a, or a conformal transformation of 8 with preservation of conjugate points,
such that the points Q’, Q’ corresponding to Q, Q are branch-points of the
transformed surface 8’.
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Accordingly, since conformally equivalent RIEMANN surfaces are identical for
all our purposes, no generality is lost if we suppose an arbitrarily chosen point Q
or w of &#x26;Jt to be a branch-point of that surface. We may also assume the order
of the branch-point to be the first, like that of rz, since this means that the

tangent t at Q has the usual two-point contact with d, and any higher contract
can easily be avoided by a preliminary birational transformation (inversion).

If a branch-point w of the RIEMANN surface 8 is displaced by the complex
vector 8, then, as was proved by the author, the abelian integrals of the first
kind undergo the variation (19)

Since the period of t(z, w) as to the circuit Bk is -2ni’Pk’(w) (see end § 4),
it follows that the periods 7:jk undergo at the same time the variation

However, to vary w alone disturbs the symmetry of 8. In order to keep 8
symmetric, we must simultaneously subject the conjugate branch-point w to the

conjugate complex displacement e. This gives, by (14.1), the variation

Now, first let 8=8=1, a real quantity, and second let
- 

have the two variations

Formally, as we have shown [3, § 11], there is no objection to considering
the variation 6 which results by complex linear combination of bi and ~2:

Under this permissible formal variation 6, we have, by (14.4, 5),

Correspondingly, for the periods ’ljk,

(19) It will be observed that in all the following formulas, 6 denotes a differential,
whereas in the formulas of method I, it denoted a derivative. See [2], § 4 and [3], ~ 11 for a

proof of (14.1).
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In summary, the variations (14.1, 2) are permissible in our formulas, even
with due regard to the necessity of keeping Q symmetric.

§ 15.

An important and extensive part of our theory is concerned with proving
that, under the variation defined by the last two formulas, we have

When this is shown, it follows - the attainment of the minimum of A(g, R) for a
particular (g*, R*) having been disposed of - that the defining condition F’2(w) =o,
for a minimal surface lVl is obeyed by the harmonic surface H* determined

by (g*, R*) according to the formulas (12.3, 4).
The proof of the relation (15.1) rests principally on a certain identity in

0-functions, first arrived at by the author precisely as an essential element in

the present theory of the PLATEAU problem. This identity - which plays in the
complex analytic method the same role as the variational formula (10.5) for
GREEN’S function in the real harmonic method - is, in its simplest form, the
following:

Here R(w) denotes some (undetermined) function of w alone, rational on gl, i. e.,
uniform and with only polar singularities.

In the simplest case, where the genus of 8 is ~ro =1, this identity becomes the
following classic addition theorem for the elliptic functions (2°) :

It should be observed, however, as a matter of notation, that in the last formula
the functions ~, go are derived from the WEIERSTRASS function g by the defi-
nitions (4.3), rather than from the JACOBI function 0, which would be more in
line with the definitions (4.12) of Cj, that apply in (15.2). However, as pointed
out in (4.2), the function g is only an inessentially modified form of 8. With the
use of 6, the term R(w) in (15.2) reduces to zero, and the factor cancels

from both sides, which gives exactly (15.3) after we write w),
therefore w).

(2°) See GOpRSAT-HEDRICK : A Course in Mathematical Analysis, v. 2, pt. 1 (1916), p. 167.
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A more elementary preliminary form of the identity (15.2) than the one involving
elliptic functions is the following trigonometric identity:

A still more simple version is the algebraic identity
1 1 1 r 1 1 ~19

The actual form in which we use the identity (15.2) is not exactly the one origi-
62

nally given, but rather the following, which results by applying the operator d2 i
among other desirable features, this procedure gets rid of the undetermined

function R(w).

Here, as notation,

The partial differential equation (4.11) of the 0-function is used to derive the

last term in the first member of (15.6).

~ 16.

In the general case, when the genus of R is h &#x3E; o, the formula for GREEN’S
function acquires a complementary term, due to the acquisition of such a term

by the function S(z, w) in the expression (12.1); namely, for 

in contrast to (13.1), where, h being zero, the complementary term is not present.
Due to this addition to the expression for GREEN’S function, the formula (13.3)

for A(g, R) also acquires a complementary term:

where

~2~) Refer back to § 3 for the notation.
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The summation convention as to repeated indices applies to (and later A,
/~)==1, 2,...., h, while the symmetric indices vary simultaneously with a, fl ; i. e.,

always a’=a+h, fl’=fl+h (see (3.7, 8)).
At the same time the formula (13.4) for F’2(w) acquires the complementary term

where

We find that, under the variation 6 defined by (14.7, 8), we have exactly

This comes out by straightforward calculations, (22) no such rather deep-lying
identity as (15.2) or (15.6) being involved.

Accordingly, by the formulas (16.2, 4, 6), we have

If we add this to the precisely similar relation (15.1), which applies in the
case h= 0, it results that also in the general case h &#x3E; 0 we have

It follows that, in the general case likewise, the variational condition, 3A (g, R) = 0,
in the problem A(g, R)=--min. implies the defining condition F’2(w) =0 for a
minimal surface.

§17.

As a concluding comparison between the methods I and II, it may be

remarked that I - not involving any explicit formula for the GREEN’S function
of R, but only the existence of this function - proceeds in the same way in
all cases, regardless of the particular topological form of R. Indeed, R may even
have an infinite number of boundaries and infinite connectivity; i. e., it may be

the semi RIEMANN surface of any real analytic - not necessarily algebraic -

curve ; all the fundamental formulas of method I apply unchanged to this highly
general case (see [5, 6]).

(22) See [6], pp. 350-351, and [3], § 12, art. 2.
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In the complex analytic method II, on the other hand, an explicit formula
(12.1), (13.1), (16.1) is employed for GREEN’S function, involving principally
the 0-functions on the corresponding RIEMANN surface. This formula acquires
certain complementary terms when whose treatment is of quite a minor
order of difficulty as compared with that of the principal terms, which alone
are present when 
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