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EXISTENCE THEOREMS FOR ORDINARY PROBLEMS

OF THE CALCULUS OF VARIATIONS

(PART II)

by EDWARD JAMES McSHANE (Gottingen).

In the first part of this paper (1) we have studied the properties of ordinary
integrals by means of the associated parametric integrals, and we have there

proved that under certain conditions the associated parametric integral J[ C] is

lower semi-continuous on the class K. In the next two sections we shall establish
theorems (7.1 and 8.1) on the existence of a minimizing curve for the integral J[ C]
on the extended class K. But these theorems do not represent the solution of
our original problem. The chief purpose of this whole study is to find conditions
under which the integral I[y] attains its minimum on a complete class K of

absolutely continuous functions. Theorems 7.1 and 8.1 do not solve this problem ; -,
they are to be regarded rather as basic lemmas in its solution, which we now

proceed to investigate. By Theorems 7.1 and 8.1 we are assured of the existence
of a minimizing curve C for the integral J[ C] in the extended class Ka. We
seek now to find conditions on I [y] which will assure us that C lies not merely
in K, but in ~~a itself. This proved, it follows at once that C is a minimizing
curve for J[ C] = I [y] on the class I~a.

Sections 9 to 13 of this study will be devoted to the search for such con-
ditions. We readily obtain theorems (10.1 and 10.2) which include most of the
known existence theorems for the ordinary problem, in particular that of NAGUMO

(part I, footnote 2) and those of TONELLI cited in footnote 1. We then proceed
to discuss problems in which the associated integrand G is bounded, and finally
obtain existence theorems whose hypotheses are satisfied, for example, by integrals

where 99 is positive and continuously differentiable.

(i) This volume, pp. 183-211. We retain all the definitions and notations of Part I, and
number the sections of this part 7 to 13 to avoid confusion in references to the theorems

in Part I.
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~ 7. - Existence Theorems for the Associated Parametric Problem.

In order to construct an existence theorem for the parametric problem asso-
ciated with a problem in ordinary form, we first need a lemma which will permit
us to prove the existence of a convergent minimizing sequence. This lemma

follows closely the lines of the well-known existence proof of HAHN, and is given
here more for the sake of completeness than because of the need of new details.

Lemma 7.1. - If

a) A is a bounded closed set;
b) I[y] is positive quasi-regular semi-normal on A ;
c) F(x, y, y’) is bounded below for all (x, y) on A and all y’ ;
d) there is a constant p such that all the plane curves

of A for which J[ C] =0 have lengths less than y;
then for every positive M all (2) the curves C of A such that J[ C]:!::--~: M

have lengths less than a constant N depending only on M.
By hypothesis there exists a constant I~ such that

or, in terms of the associated parametric integrand,

The function F+ K satisfies all the hypotheses of the lemma, and f Kdx is
bounded, for all curves in A. Hence the class of curves for which

contains the class of curves for which and so we need only prove
the conclusion for the In other words, we may consider
without loss of generality that

(7.1) I[y] is positive semi-definite
to begin with.

Suppose now that the lemma is false. There then exists a sequence of curves Cn
such that

From equation (7.2) we see that for every n we can choose one of the curves Cm
whose length is greater than n3 ; and we consider not the whole curve, but an

(2) Of course we suppose that C satisfies the condition x’(s):~f o.
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arc of it of length exactly n3. We re-name this arc Cn, and thus have (using
the positive semi-definiteness of ~[~/]):

Let us denote by a the greatest difference of x-coordinates of any two points
of A. We first subdivise Cn into n equal arcs of length n2 ; on at least one of

these arcs the functional J has value at most 2013. This arc we again subdividen

into n equal parts of length n ; at least one of these arcs has a projection [an, fIn]
on the x-axis whose length fIn -an is at most f. This last arc we call C1n; we

n

then have

where an and fIn are the projections on the x-axis of the ends of Cn.
The points an have a point of accumulation a; from the C~ we select a sub-

sequence Cn2,.,.., such that

from (7.4) it follows that

Each of these curves has length from the curve we select,

an arc of length k and name this arc Ck. For these arcs Ck the relationship

hold; and since the projections Zk, flk of the end points of Cx lie between ank
from (7.5) we obtain

We now subdivide C/~ into k arcs Ck, 2,...., of equal length, so that

The arcs Ok, i have uniformly bounded lengths, hence have a limit curve Cs*.
We choose a subsequence C~~~~ such that tends to Ci*. For this subsequence
the arcs G’k~2 have a limit curve C2*. We choose a subsequence ( C§2) ) of the

sequence C~~~ such that ~~2~ tends to C2*, and continue the process. Thus for each
positive integer r we obtain a subsequence such that the r-th arc of sa-

tisfies the relation

The arcs Ci% C2*,...., thus defined have the property that the end point of each
is the beginning point of the next. Hence they join together to form a curve C*.

By the closure of the set A, C* lies in A.
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For the whole curve Ck, and a fortiori for its subarcs, the x-coordinate lies
between ak and flk; hence by (7.7) the curve C*, which consists of limit curves Can*
of arcs of the Ck, must have its x-coordinate constantly equal to a. By its defi-
nition, each curve is one of the curves Ch with h ? I~, so that by (7.6)

From this, together with equation (7.9) and Theorem 6.1, we see that

Therefore the curve C*, pieced together out of the Cr*, is such that

Thus by our hypothesis d) we find that C~’ has finite length. Since

it is possible to choose a subsequence such that

From this subsequence we choose a further subsequence, for which we retain
the same symbol, such that the initial point of tends to a unique limit
point P : (a, cl, c2) of A. By lemma 6.1 we can find an s&#x3E;0 and constants vO,

such that 
1

for all z’ with z°’ ~0 and all points z of A in a neighborhood U of P. This
neighborhood U we take to be a sphere with P at center and radius 3~, 6 &#x3E; 0.

Since P is a limit point of the initial points of the Cnk, we can find infinitely
many of the whose initial points are less than 6 distant from P. By (7.11),
all except at most a finite number of these curves lie entirely in the sphere about P
with radius 28. Each curve Cnk is a limit curve of the arcs Cm,nk (by 7.9, recal-
ling that the are selected from the Hence for each Cnk we can find
an arc at a distance less than i and hence entirely within the sphere U.k’ k nk

Each of these arcs has length 1 (by 7.8), so we may suppose that it is

given by the equations

By (7.12) we obtain

The last expression tends to zero; for the points lk(0) and have distance
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less than 8 from the initial and terminal points of C;: respectively and thenk

length of C:1t tends to 0 by (7.11). Hence (7.13) implies that

But is an arc of Crlnk’ 1 so that by (7.6) we have

This contradiction establishes the lemma.

As an aid to the applicability of lemma 7.1 we have
Lemna 7.2. - In lemma 7.1, hypothesis d) is satisfied whenever it is

true that

d’) for each constant value of zO, the inequality

holds for all non-vanishing z’ with z"’=--O and all zl, z2 except at most those
belonging to a denumerable set E[zO].

For let C be a plane curve z= z(s) with and with Z[C]&#x3E;0,
the parameter s being the length of arc on C. Omitting the set of measure 0

on which z’(s) is undefined or is equal to (0, 0, 0), the remaining values of s
for which z(s) coincides with a specific point of E[z°J form an isolated, hence
denumerable, set, and so the values of s for which z(s) is in E[z°] form a set
of measure 0. For all remaining s we have G &#x3E; 0, so that J[ C] &#x3E; 0. It follows

that the curves C with z° = const. for which J[ C] = 0 all have length 0, so that
hypothesis d) of lemma 7.1 is satisfied.

Remark. - If in the statement d’) we replace (7.14) by

then the same argument shows that for every plane curve C: z=z(s), with
z° (s) = const., we have J[ C] _ + o~o unless C has length 0.

Let us suppose that K is any class of absolutely continuous (3) functions y(x)
such that the curves y=y(x) lie in A. From K we form the class K by ad-

joining to Ka all the rectifiable curves C : z=z(t), a:E~-~- t c b, which are
limit curves of sequences of curves of Ka. We say that the class Ka is complete
if every absolutely continuous function y(x) which is a limit of functions of Ka
is itself a function of the class Ka. But whether or not Ka is closed, the class Ka is
is necessarily closed, in the sense that every rectifiable curve C which is a limit

(3) The subscript a connotes the absolute continuity of the functions, which is later as-
sumed without specific mention. For brevity we sometimes say that « Ka is a class of curves
in A », meaning exactly what is here stated.

Annali della Scuola Norm. Sup. - Pisa. 20 
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curve of curves of is itself a member of the class .Ka. The proof is quite
simple. With this terminology we state

THEOREM 7.1. - If I[y] satisfies the hypotheses of lemma 7.1, and Ka is
any class of curves in A, then in the class Ka there exists a minimizing
curve (4) for the associated parametric functional J[ C].

For, first, since ~’ is bounded below there exists a constant c such that

hence J[ C] is bounded below. Let i be the greatest lower bound of four

all curves C of K. We choose a sequence of curves such that

By lemma 7.1 there exists a constant N such that every curve Cn has length

Hence we can select a subsequence of the ( Cn ) (for which we retain the same
notation) which converges to a limit curve Co. Since for every Cn we have

the same is true for Co ; and by the completeness of K, Co is a curve of Ka,
Hence

On the other hand, by Theorem 6.1 and inequality (7.14) we have

Comparing (7.17) and (7.18), we have

and the theorem is established.

The hypothesis d) of lemma 7.1 has a somewhat artificial appearance. Ne-

vertheless, if it is not fulfilled there may be no minimizing curve for J[ C], as
is shown by the example (5)

where the set A is any closed set containing the cylinder 0~.r~l~ ~+~~1~

(4) We assume here and in all later existence theorems that in the class Ka there exists
a set of functions y such that I[y] is finite; otherwise the problem is meaningless.

(5) At the suggestion of Dr. RELLICH, who has constructed a somewhat similar exampler
I have modified the integrand in such a way as simultaneously to show that the theorem
of LEWY (cf. footnote (7)) can not be extended directly to problems in space.
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and we seek a minimizing curve for J[ C] in the class of all rectifiable curves C:
x=x(t), y=y(t), z=z(t), x’(t)?0, joining the points (0, 1, 0) and (1,1, 0). The
associated parametric integrand is

By use of the elementary inequality and also of the ine-

quality of SCHWARZ we find

the equality signs holding only when all the conditions

are satisfied. This shows that the integral I[y] is positive definite, and it is also
easily seen to be positive quasi-regular semi-normal (6). Yet no minimizing curve
exists. For inequality (7.19) shows that i ~ 0 ; and in fact we find that 

when we consider the curves

joining (0, 1, 0) and (1,1, 0). For these curves we have

which tends to 0 with 1. But for no curve C joining (0, 1, 0) and (1,1, 0) is
n

the relation J[ C] =0 satisfied; for there must exist a set of values of t of posi-
tive measure on which and y’ and z’ are finite, and for such values of t
we know by (7.19) that G is positive; hence J[ C] &#x3E; 0.

Likewise, if hypothesis c) is not fulfilled the lower bound of J[ C] may be - oo.
To show this we need only replace the term 2(zy’-yz’) in the above example
by a(zy’-yz’), a&#x3E;2, and consider the same family of curves (7.20).

However, for problems in the plane matters are essentially simpler. We can
for instance show that in the plane hypothesis d) is a consequence of hypo-
theses a) and b). But as a matter of fact hypothesis c) also proves to be unne-
cessary. The proof that in the plane hypotheses a) and b) are adequate to imply
the conclusion of lemma 7.1 requires a somewhat different type of proof, to which
we devote the next section.

(6) And in fact positive regular, in the usual sense of the term.
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~ 8. - Existence Theorem for the Associated Parametric Problem
in the Plane.

For problems in the plane lemma ’~.1 can be replaced by
Lemma 8.1. - If I[y] is positive quasi-regular semi-normal on the bounded

closed set A, then for every 1VT all the rectifiable curves C of A such that

have length less than a constant lV, depending only on M.
To prove this we need only to show that there are constants mi &#x3E; 0 and rn~

such that

By lemma 6.1, to every point (x, y) of A there correspond constants a, b and k &#x3E; 0
such that the associated parametric integrand G satisfies the inequality

for all (x, y) in a neighborhood of (y, ~;) and all x’, y’ such that x’ &#x3E; 0. Let Q:
- c ~ y  c be a square containing A. By standard devices we can

subdivide Q into equal smaller squares

such that the inequality

is satisfied for all (x, y) of A on Q1’ and all x’, y’ with x’ ? 0 ; the are

here constants, and k1’&#x3E; 0. Moreover, since x’ ? 0, if we denote the greatest of
the ar by a and the smallest of the kr by k&#x3E;0 we have from (8.4)

holding for the same arguments as before.
Let us suppose that C is represented in the form y = y (s), 0 ~ s ~ L,

with length of arc s as parameter. We subdivide the interval [0, L] into the
subsets C~,...., Cr, where Q is the set of values of s for which (x(s), y(s)) belongs
to the square qj. On integrating both sides of inequality (8.5) we obtain

The term a[z(L) -z(0)] is bounded for all curves C in A ; hence if we can show
that each of the r terms of the sum on the right is also bounded, (8.6) has the
form of inequality (8.1), and the lemma is proved.
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Consider then the integral over C~. Denoting by a and fl the lower and upper
bounds of 6~ we see that

for

because x(s) is a monotonic increasing function of s. On the interval [a, /1] we
define q(s) by the relations

where

where

where

Since y(s) is absolutely continuous, so is q(s). On the set Cj we have 
so that for almost all points of q the equation

holds. (The points of C~ at which q’(s) and y’(s) both exist but are unequal are
isolated points of Q). The set ~a, ~8] - C~ subdivides into the set on which q =y;
and the set on which r~ = y~ ~ ~ ; on each of these sets we have q’(s)=0 almost
everywhere. Hence

But the integral on the left has the value -q(a) and by the definition of q
this difference is at most 6 in absolute value. Hence the inequality

holds for all rectifiable curves C, and the proof of the lemma is complete.
This leads us to

THEOREM (7) 8.1. - If I[y] is an integral in the plane which satisfies
the hypotheses of lemma 8.1, and Ka is any class of curves in A, then in
the class Ka there exists a minimizing curve for the associated parametrici
problem J[ C].

The proof of this is the same as that of Theorem 7.1, the reference to lemma 7.1
being replaced by a reference to lemma 8.1.

---

(7) H. LEWY has proved a theorem (Math. Annalen, 98, pp. 107-124), which in our

terminology may be thus stated: If I[y] is a regular integral in the plane, and A is a

convex region, and Ka is the class of all curves with continuous derivatives joining two

points of A, then there exists a curve C of Ka such that for all y in Ila, and
the derivatives with respect to arc length of the functions defining C are continuous. The
methods used by LEWY seem very appropriate for regular problems, but apparently do not
extend to the class of problems here considered.
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§ 9. - First Existence Theorem for the Ordinary Problem.

From the preceding theorems we can easily obtain an existence theorem for
the ordinary problem by adding to the hypotheses of lemma 7.1 the following
assumptions: I[y] is positive quasi-regular, and its associated parametric inte-
grand G(z, z’) has the value + oo for all z on A and all unit vectors z’ 
The proof is quite simple. But these added hypotheses in fact imply the hypo-
theses b), c) and d) of lemma 7.1, as we shall establish in two lemmas.

Lemma 9.1. - If at the point z the functions

for all unit vectors z’u and z’u, and if for all unit vectors z’ u with z.O’==O
one of the equations

or

(9.3)
holds,

then there exists a unit vector Z’u such that

for vectors 

We recall that in § 2 we have seen that for all z’u, so that for
unit vectors z’u with z0u=0 we must have Go(z, z’u) either finite or - ~, and

likewise G(z, z’u) either finite or + 00.

By (9.1)

the index a here takes the values 1, 2. Since P and G differ only by a function
linear in z’, they have the same 6-function. Also equations (9.2) and (9.3) remain
valid for r as well as for G. Hence we need only to prove (9.4) for r.

Let us consider the surface defined in polar coordinates by the equation

Since r ? 0 by (9.5), there exists a unit vector Z’u such that is a minimum.

For this vector we must have ~ &#x3E;0; for if 2~ =0y then either r= o~o by (9.2)
or else by (9.3) there exist neighboring unit vectors z’u for which r(z’u)  r(Z’u).
Hence the point with coordinates Z’u, lies on the differentiable part of
the surface (9.6). Since r(Z’u) is a minimum the normal to the surface (9.6) at Z’u
has the same direction as the radius vector, that is, the same direction as Z’.
itself ; hence
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where a is a constant. Moreover, a &#x3E; 0, since by (9.5) and (9.7)

If we now write the 6-function for .r, we obtain by use of (9.7)

Let 0 be the angle between the vectors z’u and rj, or what is the same thing
the angle between z’u and Z’u ; by (9.8), equation (9.9) can then be written

Since r(z, Z’u) is the least value of 1~ for all unit vectors z’u with z °’ ? 0, this
last inequality shows that if Z’u and z’ ’it are distinct vectors inequality (9.4) holds.
The lemma is thus established.

Lemma 9.2. - If I[y] is positive quasi-regular on the bounded closed

set A, and at every point z of A the inequality

holds for all unit vectors z’u with z.0~0, then F(x, y, y’) is bounded below
for all (x, y) on A and all y’.

Since for every constant C the parametric integrand associated with

F(x, y, y’) + C has the form

we need only to show that there exists a C such that the expression (9.11) is

non-negative.
By lemma 2.1, G(z, z’) is lower semi-continuous; hence from (9.10) we see

that for each argument (z, z’) in the bounded closed set

z in A ;

we can find a neighborhood

on which

A finite number of these neighborhoods cover the set (9.12) ; letting 6 be the
smallest of the values of 6 in (9.13) corresponding to these neighborhoods, we
find that (9.14) holds for all arguments z, z’ such that

z is in A ;

On the bounded closed set

[z in A ;
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the function G has a lower bound; that is, there is a positive number M such
that on the set (9.16). Hence on this set

A fortiori, from (9.14) we see that (9.17) continues to hold on the set (9.15).
Hence (9.17) holds for all z in A and all unit vectors z’, and by homogeneity
for all vectors z’, and the lemma is established.

We are now in a position to prove
THEOREM 9.1. - If I[y] is positive quasi-regular on a bounded closed

set A, and for every point (x, y) of A and every y’ =i= (0, 0) the relationship

holds,
then in every complete class Ka of absolutely continuous functions in A

there exists (8 ) a function ,(x) == (y’(x), for which I [y] assumes its

least value on Ka.
Equation (9.18), expressed in terms of the associated parametric integrand G,

states that

for all z in A and all unit vectors z’u In lemma 7.1, hypothesis a)
is satisfied; hypothesis b) follows from lemma 9.1; hypothesis c) from lemma 9.2,
and hypothesis d) is satisfied by lemma 7.2. Hence by Theorem 7.1 there exists
a rectifiable minimizing curve Co for J[ C] in the class Ka. By (9.19), at almost
every point zo (s) on Co at which zr =0 the equation

holds. Hence from the finiteness of J[ Co] we see that the set of such values of s
has measure 0. By lemma 2.4, this implies that Co can be represented in the
form y=yo(x), with absolutely continuous functions yo(x). Since the
class Ka is complete, the functions yo(x) belong to Ka. But by lemma 2.7, for
every set of functions y(x) in Ka defining a curve C the integrals J[C] and I[y]
are the same; hence

for all functions y of Ka, and the functions yo(x) therefore minimize I[y] in
the class Xa.

From Theorem 9.1 there readily follows

Corollary (9) to Theorem 9.1. - The conclusion of Theorem 9.1 is valid

(8) Here and in all succeeding theorems we assume without mention that the class Ka
actually contains a curve for which the integral is defined and finite.

(9) NAGUMO, loC. cit. (3), part I.
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if the class K of functions has the properties there described, I[y] is posi-
tive quasi-regular, and there exists a continuous monotonic increasing
function 0(p) such that

for all (x, y) in A and all y’, and

1

For then, denoting by y’ , we have

In particular, if we take a&#x3E; 0, we obtain for plane problems a
theorem of TONELLI (loc. cit. (I)) and for space problems a theorem of GRAVES
(loc. cit. (2), part I).

~ 10. - Second Existence Theorem for the Ordinary Problem.

In this section we shall relax the hypotheses of Theorem 9.1 by allowing an
exceptional set E on which (9.21 ) is not fulfilled.

THEOREM 10.1... If

a) A is a bounded closed set of points;
b) Ka is a complete class of absolutely continuous functions lying in A;
c) I[y] is positive quasi-regular semi-normal on A ;
d) the equation / ~~’B

holds for all y’ =1= (0, 0) and for all (x, y) in A - E, the exceptional set E
consisting of the points lying on a finite or denumerably infinite set of
absolutely continuous curves

e) for all (x, y) on a neighborhood U of the set E and for all y’ the
integrand F(x, y, y’) is bounded below ;

then there exists a function y=--yo(x)=--(yi(x), in the class .Ka for
which I[y] assumes its least value.

On the closed set A - U the hypotheses of lemma 9.2 are satisfied, hence for
all (x, y) on this set and all y’ the integrand F(x, y, y’) is bounded below. There-
fore by hypothesis e) F is bounded below for all (x, y) in A and all y’. Hence
hypotheses a), b), c) of lemma 7.1 are satisfied. Hypothesis d) is fulfilled as is

shown by lemma 7.2.
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Theorem 7.1 now assures us that there exists a curve Co : z=zo(s), 0 ~ s ~ L
of the class ~a such that J[ Co] is a minimum. It remains only to prove that Co

belongs to K.
Since this can be quite readily proved in case the functions Yn*(x) defining

the exceptional set E each satisfy a LIPSCHITZ condition, we first prove this

special case, and then take up independently the general result. Denote then by Mn
the set of values of s such that zo(s) lies on the curve Cn*. From this set lVln
we reject the subset on measure 0 on which zo(s) fails to exist or is equal
to (0, 0, 0), and from the remaining set we reject the isolated points. This gives
us a subset of Mn. Select any point so of Mo,n, and choose a sequence sn
of points of Mo,n approaching so. Since the points zo(so) and lie on Cn*,
we have

where Kn is the LIPSCHITZ constant of C~*. Hence

and since the three derivatives are not all 0 we must &#x3E; 0. Hence only
on a subset of lVln of measure 0 can we have zoO’(s) == 0. Denoting M1 + M2 +....
by for only a subset of M of measure 0 can ~(~)==0.

For the values of s which do not belong to M, the point zo(s) lies in A-E,
and by equation (10.1) for at most a subset of measure 0 can we 
Hence z§’(s) &#x3E; 0 almost everywhere, and by lemma 2.4 the curve Co can be repre-
sented in the form

with absolutely continuous functions yo(x). By the same argument as that which
concluded the proof of Theorem 9.1, Co is the minimizing curve sought.

For the general case, in which the curves

are absolutely continuous, we argue as follows: The curve Co can be represented
in the form ,~ , , I -- --.,

For if to one xo there correspond two distinct points y2) and (xo, y2, y2)
of Co, on the whole arc of length &#x3E;o joining these points we have xo(s)=xo=const.,
and by the remark after lemma 7.2 this would imply J[Co]= 00.

Moreover, the functions yo(x) are continuous. For if as z - zo there exist two
distinct limit points (xo, yt, y2) and (xa, y’, y2) of the points zo(s), these points
both belong to the curve Co, and as before It remains to show that

the functions yo(x) are absolutely continuous.
First, the yo(x) are of limited total variation, since they define a curve Co of

finite length. Second, they satisfy LusIN’s condition N; that is to every set of
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values of x of measure 0 corresponds a set of values of yi of measure 0. For
let E* be any set of values of x of measure 0. We subdivide E~ into the subset Eo,
in which the point (x, yo (x)) lies on A-E, and the sets En (possibly overlap-
ping) for which (x, lies on the curves Cn*. If the set of values of s for

which zo(s) lies in Eo has positive measure, it is easy to show that xo’(s) =0
for almost all such s, and hence by (10.1) J[ 00]= Since J[ Co]  oo, the mea-

sure of this set of values of s is 0, and a fortiori the measure of (10) 
For x on En, the functions yl(x) and coincide, hence

for by hypothesis yn* is absolutely continuous and hence satisfies condition N.
Hence summing for all n, 

--

This proves that yl(x) satisfies condition N. Together with the facts that yl(x)
is continuous and of limited total variation, this implies (ii) that yl(x) is abso-

lutely continuous. Likewise y2(X) is absolutely continuous, and the theorem is

established.

The corresponding theorem for curves in the plane requires fewer hypotheses :
THEOREM 10.2. - If

a) A is a bounded closed set of points in the plane;
b) Ka is a complete class of absolutely continuous functions lying in A;
c) I [y] = F(x, y, y’) dx is positive quasi-regular semi-normal on A ;

I

d) the equation

holds for all and all (x, y) in A -E, the exceptional set E consisting
of the points lying on a finite or denumerably infinite set of absolutely
continuous curves

then there exists a function yo(x) in the class Ka for which assumes

its least value.

The hypotheses of lemma 8.1 are satisfied, hence by Theorem 8.1 there exists
a curve Co : z=zo (s), 0 c s ~ ~ of ,Ka such that is a minimum. From

here we can follow the proof of Theorem 10.1, making no changes except to
suppress all references to 

(10) By we mean the set of values of corresponding to the values of x on
the set M.

(1i) S. BANACH: Sur les lignes rectifiable, etc Fund. Math.. 7 (1925), p. 229.
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Corollary (12). - In Theorems 10.1 and 10.2, hypothesis d) can be re-

placed by
d’) there exist positive constants a, lVl, b such that

for all (x, y) in A - E and all y’ such that the set E having
the same properties as in hypothesis d).

The proof is the same as that of the corollary to Theorem 9.1.

§ 11. - Extension to Unbounded Fields.

In all our existence theorems we have made the assumption that the field A
is bounded. We shall now establish a lemma which will enable us to replace that

hypothesis by certain hypotheses on the integrand F. For the statement of these
conditions it is convenient to define II y /I = Y (y1)2 + (y2)2. Then

Lemma (13) 11.1. - If

a) the set A lies between the planes x= -c and x=c;
b) the associated parametric integrand G(z, z’) is non-negative (14)

for all z on A and all vectors z’ with zO’~-&#x3E; 0 ;
c) there exist positive constants h, a, b such that for all y for which

~~ y ? h and for all unit vectors y’u) with x’,, :~-&#x3E;- 0 the relation

holds whenever

d) A* is a bounded subset of A ;
then for every number M the class of all curves C in A having at least

one point in A* and satisfying the inequality

lies in a bounded portion of (x, yi, y2) space.
In case it is desired to have the hypotheses stated in terms of the integrand F

instead of in terms of the associated integrand G, we have only to notice that
for every unit vector (x’~, y~~, yz’) with ~M&#x3E;0 the relationship

holds; hypotheses b) and c) then transform respectively into

(12) TONELLI: Fondamenti di Calcolo delle Variazioni. Vol. II, pp. 287-307.

(13) This lemma includes the theorem of TONELLI : Op. cit. ~12), Vol. II, pp. 307-310.

(14) It is in fact sufficient to assume that there exists a constant d such that G -~- dx’
is non-negative.
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b’) the function F(x, y, y’) is non-negative (i5) for all (x, y) on A

and all y’ ;
c’) there exist positive constants h, a, b such that for all y for

the relation

holds wherever

We now take up the proof of the lemma. Let H be a number greater than h,
whose value we shall later specify. We may assume without loss of generality
that the constant h is large enough so that the cylinder includes the 

4

bounded set A* of hypothesis d). Suppose then that C: x=x(t), y=y(t), is a
curve having a point in common with A* and a point outside of the cylinder Ilyll = H.
We can choose an arc C of C with initial point on the cylinder y I =h, with
all its other points outside of that cylinder, and with length exactly H-h. This
arc we represent in the form

where s is the length of arc plus h. For II y II I we have the obvious inequality

since and and also

by hypothesis b).
Let us suppose, as we may without loss of generality, that in hypothesis d)

the inequality x ~ ~ holds. Then for almost every point s of the interval [h, H~
either x’(s) &#x3E; y II I or G(x(s), y(s), x’(s), y’(s)) &#x3E; y ; and thus, by inequa-
lity (11.7), 

-- --

Hence

The last term in (11.9) has value at most equal to 2c, since both ends of C
lie in A. Hence we can choose H large enough so that the right member of

inequality (11.9) has a value greater than M. A fortiori, by (11.8),

(15) It is sufficient to assume that F is bounded below, since a constant a added to F

changes I[y] by at most 2ae for all in A.
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Thus every curve C with a point in A* and with must lie com-

pletely interior to the cylinder y H, and the lemma is proved.
It is obvious that hypothesis c) could be replaced by

Ci) there exists a constant h and a function gg(x), continuous, positive,
monotonic decreasing, and not summable from h to oo, such that for all y for

and for all unit vectors x’u, with ~~0 the inequality

holds whenever

For then

and we need only choose H large enough so that the integral on the right is

greater than M+ 2c to insure

For example, we can take or

Examples of integrands F(x, y, y’) satisfying the hypotheses of lemma 11.1 are

From lemma 11.1 we have at once

THEOREM 11.1. - The conclusions of Theorems 7.1, 8.1, 9.1,10.1 and 10.2
remain valid, if in the hypotheses of those theorems we remove the as-

sumption that A is bounded and assume instead that the hypotheses of
lemma 11.1 are satisfied.

For let 01 be any curve of A for which /[(7i] ] is finite. Since we seek a

minimum for J, we need consider only curves C for which J[ C]  J[ C, ] + 1. By
lemma 11.1, all of these lie in a bounded closed portion of A. If we restrict our
attention to this portion of A, the hypotheses of the theorems are satisfied.

§ 12. - Third Existence Theorem for Integrands in Ordinary Form.

The preceding existence theorems have all contained the assumption that

G(z,z’u)=oo if z u 0’:== 0, at least at almost points of A. We now turn our atten-
tion to integrands in which this condition may fail to hold. Naturally we are
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obliged to strengthen our other hypotheses; in fact, we find it necessary to add
stronger conditions on the integral, on the field and on the curves considered.
In order to state these new conditions, we define, with TONELLI, an arc of
indifference of a curve. We say that an arc C of a curve C, lying in a set A
and belonging to a class K of absolutely continuous curves in A is an arc of
indifference with respect to I~a , and A provided that every absolutely conti-

nuous curve C’ of A lying in a sufficiently small neighborhood (16) of C and
coinciding with C except along the arc C is also a curve of K. When (as is

the case in all the theorems following) only one set A and only one family I~~
enter the discussion, we abbreviate the expression and say simply that C is an
arc of indifference. An analogous definition holds for classes .Ka of rectifiable
curves with z°’ &#x3E; 0 ; we need only to replace the symbol by Ka and the
words « absolutely continuous curve » by « rectifiable curve in
the definition above.

With this terminology, we state
Lemma 12.1. - If

a) the integral (F(x, y, y’)dx is positive quasi-regular on a set A ;

b) there exist positive constants Mi’ M2, 6 such that (i7)

for all z in A, all z’u with z.O’:~---O, and all Z-0 such that z° - z° I  a ;
c) for all z in A and for all z’u with zO’=-- 0, the equation

holds ;
d) Ka is a class of rectifiable curves z=z(t) with z°’(t)?0, lying in A;
e) for the curve C: z=z(s), the associated parametric inte-

gral J[C] assumes its least value on .Ka;
f) the arc Co : z =z(s), a----s:!~~b, of C is interior to A and is an arc

of indifference with respect to Ka and to A, and z°(a)  z°(b);
then zl’ (s) &#x3E; 0 for almost all values of s in the interval [a, b].
In proving this lemma we find it convenient to return to the (x, y) notation.

Suppose then that the theorem is false, and that the set E, on which z’(s) =0
has positive measure. Since x(b) &#x3E; x(a), there is a set of positive measure on
which x’(s) &#x3E; 0; hence we can find a constant k&#x3E; 0 and a set E2 of positive
measure such that

for s on E2.

(~6) That is, having a sufficiently small distance from C, in the sense of § 1.

(17) G is as usual the parametric integrand associated with F. We assume that the deri-
vative Gzo exists. 

°
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Denoting by xi(s) the function which has the value 1 for s on Ei and the value 0
for s not on Ei (i === 1, 2), we define

We have at once

and remembering that

has the value 1 for almost all points of Ei and the value 0 for almost all points
of the complement of Ei, we find

for almost all points of E2,
for almost all points of Ei,
for almost all points of 

where G[Ei +E2] is the complement in [a, b] of the set Ei +E2.
We now define C, by the equations

Since C is interior to A, so is Ca for all sufficiently small values of a. Moreover,
by (12.6), for almost all s not belonging to E2,
while for almost all points s of E2 we have

provided that Hence for almost all s we have x’,,(s);~-~!0; and

since xa(s) is absolutely continuous, this implies that it is monotonic and that

whenever it exists.

Thus for all sufficiently small values of a the curve formed by substituting
the arc Ca for the arc Co is a curve of K, and so the inequality

holds for all sufficiently small a.

On the other hand, let us write the identity

For every value of s for which x’ and y’ are defined and not equal to (0, 0, 0)
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the last bracket can be transformed by the theorem of the mean (since by hypo-
thesis b) the derivative as to x exists) into

~ between x and xa. By the same hypothesis this shows that

for all sufficiently small a.

Again for almost every value of s not in the set Ei we have

where P is a suitable chosen constant. For at all points of E2 we have 
&#x3E; k if a is small k

so that x’a(s) &#x3E; k if a is small enough; and for unit vectors (x’, y’) with x’ ? k2 = 2
the derivative Go == Gx’ is bounded, say  P1 in absolute value, and the expres-
sion on the left of (12.12) can be written in the form

And for almost all points of C[Ei + E2] we have x’a=x’, so that the expression
on the left in (12.12) is zero.

We still have to consider the points of Ei.
For this purpose we first notice that if U is a bounded closed neighborhood

of the points of C lying in A, then for every N there exists a y &#x3E; 0 such that

for every (x, y) in U, every x’ less than y, and every y’ such that ya’ya’ =1.
For by lemma 2.2 and equation (12.2), to each point (x, y, 0, y’) with (x, y) in A
and there corresponds a neighborhood

on which (12.13) holds. A finite number of these neighborhoods cover the

set [ (x, y) in U, , ya’ya’ =1, x’ = o], and we need only to choose for y the smallest
of the values of 6 for these neighborhoods.

Suppose now that we have chosen a positive N, and that a has been restricted
to be small enough so that Ca lies in U. By (12.4) and (12.5), for almost all

points of Ei we have x’ (s) = U, whence ya’ya’ =1, and we also have 
so that for these points

Annali della Scuola Norm. Sup. - Pisa.
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Combining (12.10), (12.14), (12.12) and (12.11), we obtain

valid for all sufficiently small a. But since N can be chosen arbitrarily large,
this is inconsistent with (12.9), and the lemma is proved.

Let us define a cylindrical set in the following way :

(12.15) The set A is a cylindrical set if it consists of all points (x, yl, y2)
such that x belongs to an interval and (yl, y2) belongs
to a set B in the (yl, y2)-plane.

With this terminology we state that if the field A is a cylindrical set, the
hypothesis that the arc 00 is interior to A can be omitted. For in the family
of curves (12.5) the functions y(s) are independent of a, and for all sufficiently
small values of a we know by (12.8) that so

that Ca lies in A.
This leads to

THEOREM 12.1. - If

a) the set A is a bounded closed cylindrical set [c:-x----d, (yl, y2) in B];
b) the integral I[y] is positive quasi-regular on A;
c) the integrand F(x, y, y’) is bounded below for all (x, y) on A and all y’ ;
d) hypothesis b) of Lemma 12.1 is satisfied;
e) hypothesis c) of lemma 12.1 is satisfied ;
f ) Ka is the class of all absolutely continuous curves in A joining

two points (18) P, and P2 of A;
then there exists a curve of the class Ka for which I[y] assumes its,

least value.

The extended class ka here consists of all rectifiable curves x=x(s), y=y(s)
in A joining P, and P2 and having x’(s)~0. We first show that there exists a
curve C of Ka for which J[ C] assumes its least value.

By lemma 9.1, I[y] is semi-normal on A. So referring to lemma 7.1, we
find that hypotheses a), b) and c) are satisfied. To prove that hypothesis d) is

also satisfied, we notice that since y, y’) is bounded below, there exists an m
such that

(18) As an obvious generalization, we could define Ka to be the class of all absolutely
continuous curves joining two closed subsets each point of Ps having a smaller
x-coordinate than every point of P2.
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for all z such 0. If now there existed a point z of A and a unit vector z’n
with z°’ = 0 such that G(z, z’ u)=O, by (12.16) we would have

contradicting hypothesis e). Hence for all z in A and all z’ u with zu’ = 0 we
have G(z, z’u) &#x3E; o. Lemma 7.2 then shows that hypothesis d) of lemma 7.1 is

satisfied. Hence by Theorem 7.1 there exists a curve C: x =-- x(s), y =-- y (s), 
in K for which J[ C] has minimum value. It remains to show that the curve C
belongs to the class K.

Since the hypotheses of lemma 12.1 are all satisfied for the curve C, except
perhaps that C is not entirely interior to A, from lemma 12.1 and the remark
following it we find that 

"

for almost all values of s. Hence by lemma 2.4 the curve C can be represented
in the form

with absolutely continuous functions y(x); and by lemma 2.7 we have
and the curve (12.17) is the solution sought.

For problems in the plane hypothesis c) can be omitted, since this hypothesis
was used only in proving, by way of Theorem 7.1, that a minimizing curve
for J[ C) exists. For plane problems we can refer instead to Theorem 8.1, in
which hypothesis c) is not needed.

It is possible also to allow an exceptional set E* consisting of a finite or

denumerable set of absolutely continuous curves y=yn*(x), on which hypothesis e)
(i. e., hypothesis c) of lemma 2.1) is not fulfilled, similarly to what was done in
Theorems 10.1 and 10.2. But we shall not enter into these matters.

Finally, the extension to unbounded cylindrical fields can be made by use
of lemma 11.1.

An example of a function satisfying the hypotheses of Theorem 12.16 is

for which the associated parametric integrand

is bounded on the class of all unit vectors.

As a corollary to Theorem 12.1 we have:

Corollary (19). - If. for a plane problem hypotheses a), b), d), f) of 12.1 are
fulfilled, and in addition there exist positive numbers a, Mi, M2 such that

(19) TONELLI, II, p. 370. The theorem of TONELLI has alternative hypotheses [n.0 116 d)
o f)], so that our corollary covers only half the theorem [n.o 116 f)].
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then there exists a curve of the class K~ for which 1[y] assumes its least value.
For hypothesis c) is not needed for plane problems, and inequality (12.18)
can be written 

...

whence (?o(~~0~)~=+oo~ which can only be the case if Hence

hypothesis e) is fulfilled.

§ 13. - Existence Theorems for Integrals for which Go is Bounded.

In applications of the Calculus of Variations a particularly frequently occur-
ring integrand is that of the type

For example, the least length problem and the brachistochrone problem are of
this type. But for such integrals we find that the associated parametric inte-

grand G has the partial derivative

which fails to tend to - 00 as x’ tends to zero. Thus none of our previous
theorems are applicable. But for problems in the plane such integrands form a
special case of a class treated by TONELLI, in the other half of the theorem cited
in (19). This theorem overlaps our Theorem 13.2. We now proceed to prove
several theorems referring to such integrands.

THEOREM 13.1. - If

a) the field A is a bounded closed cylindrical set (yl, y2) in B];
b) the integral I[y] is positive quasi-regular semi-normal on A ;
c) the integrand is a function F(y, y’) of y and y’ alone;
d) F(y, y’) is bounded below for all (x, y) on A and all y’ ;
e) hypothesis d) of lemma 7.1 is satisfied;
f) for all (x, y) in A and all y’~ (o, 0) the equation

holds if and only if x’=0;
g) Ka is the class of all absolutely continuous curves joining two

points (20) Pi and P2 of A ;
then there exists a curve C: y=y(x) of the class Ka for which I[y] as-

sumes its least value on the class Ka, and the functions y(x) are Lipschitzian.

(20) Cf. footnote (18).
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From equation (13.1) we first draw two conclusions concerning the integrand G.
First, for all points (x, y) of A and all unit vectors x’u, y’ u the integrand G(y, x’, y’)
is bounded. For if yi’ ~ ~ 1 (i = 1, 2), then

where the existence of the constant M follows from the continuity of F and the
boundedness of the arguments. Since by § 2 Go is a monotonic increasing func-
tion of x’, we have by (13.1)

for all arguments; hence if 0 ~ x’ ~ 1, from (13.2) and (13.3) follows

and G is bounded above. On the other hand, we already know from lemma 2.3
that G is bounded below.

Sccond, for fixed (y, y’) the derivative Go(y, x’, y’) is a continuous function

of x’. The derivative Go exists for x’ = 0 by hypothesis f), and for x’ &#x3E; 0 by § 2;
hence if for fixed (y, y’) it assumes two distinct values a, v, it assumes all (2’)
values between fl and v, and so can not have jump discontinuities (discontinuities
of the first kind). But for fixed (y, y’) the function Go is monotonic in x’ and

can have no discontinuities except jump discontinuities. Hence it can have no

discontinuities at all.

These facts established, we begin with the proof of the theorem. By Theorem 7.1
there exists a curve C: x=x(s), y=y(s), the extended class Ka such
that J[ C] is a minimum. We must prove that C belongs to Ka; that is, according
to lemma 2.1, we must prove that x’(s) &#x3E; 0 for almost all values of s.

Suppose that this is false; there then exists a set Ei of positive measure
such that

(s on ~1).

Clearly x(b) -x(a) &#x3E; 0, for otherwise P, and P2 would have the same abscissa
and the class Ka would be empty. Hence x’(s) &#x3E; 0 on a set of positive measure,
and we can therefore find a k &#x3E; 0 and a set ~2 of positive measure such that

(s on E2),

We now define g(s) by equation (12.4); equation (12.5) and (12.6) then follow.
Likewise we define Ca by the equations

(~s) DE LA V ALLÉE POUSSIN: Cours d’Analyse, p. 97.
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The integral

exists, for G is measurable and bounded. By (12.8), Ca belongs to for all

small values of a, and so for all small a we have

Omitting a set of values of s of measure 0, the integrand in (13.7) is a differentiable
function of a. Moreover, its derivative

is bounded if a ~ 1lm(E2); for then x’a never exceeds 1, and since Go is monotonic

and g’(s) is bounded. Hence (22) we can differentiate under the integral sign.
On setting a=0, this yields

For almost all s in the complement of Es +E2 the factor g’ has the value 0
by (12.6); for all s in E1 the factor Go vanishes by (13.4) and (13.1); hence,
using (12.6), 1

But on E2 we have x’2-~!k&#x3E;O; hence on this set and by (13.4) we
have so that

Hence for all sufficiently small positive values of a we have

This contradicts inequality (13.8). Therefore the assumption that x’=0 on a set

of positive measure leads to a contradiction; hence x’(s) &#x3E; 0 for almost all s, and

the curve C belongs to K.
We have yet to prove that the functions y=y(x) defining C are Lipschitzian.

For this purpose we use the Du BoIs-REYMOND relation which 
hays elsewhere (23)

(22) CARATHPODORY, p. 664.
(23) E. J. MCSHANE : The Du Bois-Reymond Relation in the Calculus of Variations, 

to

be published in Math. Annalen. In particular, we make use of corollary 1, § 5.
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been proved to be valid for absolutely continuous minimizing curves under the
present hypotheses. This states that there exists a constant C3 such that the equation

holds for almost all s. Also, for almost all s we have x’(s»O. Letting so be a
value at which x’(s) &#x3E; 0 and (13.12) holds, we have by (13.1)

There exists a 6 &#x3E; 0 such that for all (x, y) in A and all unit vectors
with x’u  8 the inequality

holds. For otherwise we could find a sequence of points (xn, yn) of A and of
unit vectors x’n, y’n such that x’n -- 0 and

Let (xo, yo, xo’, yo’) be a limit point of the (xn, Yn, x’n, y’n); then xo’ =o. By the
upper semi-continuity of Go (lemma 2.2) we would have

contradicting (13.1).
Hence for almost all values of s at which (13.12) holds we have x’(s) ? 8.

Thus if xi and be any two abscissas of the curve and s1 and s2 the

corresponding parameters, we have

a fortiori,

and so the functions yi(x) are Lipschitzian.
In the above proof hypotheses d) and e) were used only in proving, by way

of Theorem 7.1, that a minimizing curve for J[C] exists. For problems in the

plane this can be established by use of Theorem 8.1, in which hypotheses d)
and e) do not occur. Hence for plane problems we have

THEOREM 13.2. - If

a) the field A is a bounded closed cylindrical set in B];
b) the integral I[y] is positive quasi-regular semi-normal on A ;
c) the integrand is a function F(y, y’) of y and y’ alone ;
d) for all (x, y) in A the equation

holds if and only if x’=0;
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e) Ka is the class of all absolutely continuous curves joining two

points (24) P, and P2 of A ;
then there exists a curve C: y=y(x) of the class Ka for which I[y] as-

sumes its minimum value, and the functions y(x) defining C are Lipschitzian.
As a final generalization of Theorem 13.1, we state
THEOREM’13.3. - Let the hypotheses of Theorem 13.1 (or, if the problem

is a plane problem, those of Theorem 13.2) be satisfied, and let be a

non-negative differentiable function of the variable y. Denote by N the set
of y for which y~(y)=o. Let the inequality

be satisfied for all unit vectors (x’, y’) with x’:~-~ 0 and all y on a neigh-
borhood U of the set N.

Then there exists a curve C: y=y(x) of the class (25) Ka for which

assumes its minimum value on ka.
The integral associated with 1* is

We may assume (diminishing U if necessary) that (13.13) holds on the closure U
of U. Let "Pi(Y) be a continuous function coinciding with y(y) on the complement
of U, everywhere positive, and such that on U; and let

Applying lemma 7.1 to Ji, the curves for which have uniformly
bounded lengths. But this is a fortiori true of the curves for which 
since Hence every minimizing sequence for J~ has a limit curve

in the class Ka.
Let Ns be the set of values of s for which the point y (s) lies in N. For all

such s we have + oc, so that N1 has measure 0. Moreover, N is closed
because of the continuity of 1p(Y), so that N1 is also closed. Therefore if e be

any positive number, we can enclose N1 is a finite set of closed intervals ðt ,...., 6,
with the properties

(24) Cf. footnote (18).
(25) Cf. footnote (8). We consider the integrand in (13.14) to be + 00 when y(y) = 0.
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a) The arcs s on bk are interior to U.

b) The measure of the set .... + 3r is so small that

The remaining parts of [0, L] form a finite number of intervals; to these

we add their end points, and call these closed intervals Ai ,...., dp. Every arc Ck:
x=x(s), y=y(s), s on dk has a positive distance from N, and hence can be
enclosed in a closed neighborhood on which If (Cn ) is a sequence of curves
tending to C, we subdivide each Cn into subarcs Cn,...., G[ and ~,...., C~ in such
a way that lim and lim For sufficiently large n the arc Ct lies

n-&#x3E;oo

in U, and by (13.13) C&#x3E;0, so that

On each Ck the hypotheses of Theorem 6.3 are satisfied by and so

By (13.16), (13.17) and (13.18) we have

This being true for every positive E, the E can be omitted from the right of the
inequality. If in particular is a minimizing sequence for J*, it follows that C
minimizes J*.

Since J*[C] is finite, (V(y))-l is summable along C; for on the arcs Ck the
factor G(y, x’, y’) is bounded from zero, and on the arcs Ck the function (1p(y»-i
is bounded. Hence the proof of Theorem 13.1 (from equation (13.7) to bottom
of page) can be applied with only trivial modifications to J*[ C] to show that
the curve C can be represented in the form y=y(x) with absolutely continuous
functions y(x).

An example coming under Theorem 13.3 is the problem of the brachistochrone:
to minimize

in the class of all curves joining the points (a, and (b, Y2),


