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ON THE POLYNOMIAL EXPRESSIONS FOR THE NUMBER

OF WAYS OF COLORING A MAP

by GEORGE D. BIRKHOFF (Cambridge, Mass.).

1. - Introduction.

In the past, systematic attack upon simple unsolved mathematical problems
has invariably led to the discovery of new results of importance as well as to
a deeper understanding of the nature of these problems, if not to their actual

solution. Perhaps the simplest of all unsolved mathematical problems is that
concerned with the validity of the so-called « four-color theorem ». The present
paper is devoted to the study of the polynomials expressing the number
of ways in which a map Mn of n regions covering the sphere can be colored
in I (or fewer) colors; in terms of these polynomials the conjecture of the four-
color theorem is that 4 is not a root of any equation Pn(~,)=0.

A map lVln is said to be (properly) colored in the 1 given colors, a, b, c,..., p
if any two regions which touch along a boundary line are colored in distinct
colors. Two distinct colorings are regarded as « essentially &#x3E;&#x3E; distinct only when
they cannot be obtained from one another by a mere permutation of the colors.
Let mi (i == 1, 2,...., n) denote the number of « essentially» distinct colorings which
involve precisely i colors. Then the polynomial of degree n in 1,

will give the number of distinct ways of coloring Mn in 1 (or fewer) colors,
provided it is not required that the colorings be « essentially &#x3E;&#x3E; distinct. In fact

the term evidently represents the number of ways of

coloring in precisely i of the 1 colors It may be observed that the

leading coefficient mn is 1 in Pn(l), while m~ is 0 except for the trivial case
of a map of one region for which 

I introduced these polynomials a long time ago (1), and developed recently (2)

(1) A Determinant Formula for the Number of Ways of Colouring a Map. Annals of
Mathematics, vol. 14 (1912).

(2) On the Number of Ways of Colouring a Map. Proceedings of the Edinburgh Mathe-
matical Society, vol. 2, ser. 2 (1930). The result (2) is derived incidentally in the present paper.
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a certain inequality, namely

in which attention was restricted to integral values of À. More recently still,
H. WHITNEY has written an important paper (3) on the analogous polynomials
for graphs (those for’ maps being a special case).

2. - Maximal Maps.
Let us define a map Man as one of « maximal contact &#x3E;&#x3E;, y or merely as

« maximal », in case no map lVln* exists with the same contacts of corresponding
regions as Me, and at least one further contact. We propose to limit attention
almost exclusively to such maximal maps, inasmuch as the corresponding facts
for non-maximal maps flow immediately from those for maximal maps.

Necessary and sufficient conditions that a lVln (n ? 3) be maximal
are that all of its regions are simply connected, its vertices are triple,

and no two of its regions touch more than once.
In fact if any region in a maximal map lVln were mul-

tiply connected, for instance doubly connected as in figure 1,
we could bring any two of its regions as P and Q abutting
different boundaries of R into contact by means of a narrow

corridor, cut across from P to Q (see the figure) and assigned
arbitrarily to the region P say. The modified map thus

obtained would then possess all the contacts found in Man,
and in addition a contact of P and Q. Hence multiply connected regions cannot
be present in a maximal map.

Suppose next that it were possible for a maximal map to contain a vertex V
of multiplicity x &#x3E; 3, as tor instance one of multiplicity 4 (figure 2),
so that the neighborhood of V is made up of four regions P, Q,
R and S. It is clear that one pair of opposite regions, as P, R
or Q, S, may belong to the same (simply connected) region of
the map or be in contact; but evidently both pairs cannot do so.
For definiteness, let us assume that P and R are distinct and

do not touch one another. An opening across the vertex at Y will
then bring P and R into contact (see the figure) without inter-
fering with any of the contacts in Mn. This shows that lVln is not maximal

when such a vertex I7 0f multiplicity x &#x3E; 3 is present. Hence all of the vertices
of must be triple (4). 

’

(3) The Coloring of Graphs. Annals of Mathematics, vol. 33 (1932).
(4) It is clear then that no region of IVIn can touch itself at a vertex, since such a vertex
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Again, let it be supposed that Mn contains two regions P and Q which touch
more than once, say twice (see figure 3). In accordance with what precedes we
may assume that P and Q are simply connected and all of
the vertices are triple. Now one of the common sides 1, which
abuts on the two exterior regions R and S, may be opened
up so that R and S are in contact, without destroying any
existing contact, inasmuch as P and Q touch along at least
one other side. Hence Mn would not be maximal. It follows
then that no two of the regions in a maximal lVln touch
more than once.

Thus the necessity of the stated conditions that Man be
maximal has been established. To prove them sufficient we need only show that
there is essentially only one map having all of the contacts of a map lVln meeting
these requirements.

To this end consider any region R in such a map with k regions abutting
on it in cyclic order, say Ri, R2,...., Rk. We may exclude the case k=1 when n is
of course 2 since the outer region is simply connected; likewise the case k=2

need not be considered since the two outer regions possess only one boundary
line in common, so that n is 3 and the corresponding iV is obviously maximal.
Hence we may assume k ? 3 for every region of Mn.

Now it is geometrically evident that, from the standpoint of analysis situs,
the nature of the « neighborhood of R » formed by Ri + .... + Rk is completely
determined by the further single contacts of the regions Ri and Rj where Ri
and Rj are not adjacent along R ; for instance, if there are no further contacts,
this neighborhood together with R forms a simply connected region on which
Ri,...., Rk abut in cyclic order. This means that we can continuously deform

any other map Mn* with contacts corresponding to those in Mn so that the

corresponding regions R*, Ri *,...., Rk*, coincide with R, Ri, ...... Rk respectively.
If we proceed likewise with the adjoining regions, we can successively deform
all the regions of lVln* into the corresponding regions of in a continuous

manner. Thus is seen to be essentially the same map as Mn, and in con-
sequence not to admit of further contacts.

The number of contacts in a maximal map Mn (n ? 3) is 3n-6.

This follows at once from an application of EULER’S polyhedral formula (5).
Let fk denote the number of k sided regions in any map Mn (n ? 3) with simply
connected regions and triple vertices, so that the number n of regions is f2 + f3 +....

would be of multiplicity exceeding three. Hence the regions of considered as closed

regions, are simply connected.
(5) For this formula, used as below, see, for instance, my paper, On the Reducibility of

Maps. American Journal of Mathematics, vol. 35 (1915). _
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The number s of sides is then (2f2 + 3f3 + ....)~2, since each side is counted twice ;
similarly the number v of vertices is (2f2 + 3f3 +....)/3. Thus after simple reduc-
tions, EULER’S formula yields

But f2 is clearly 0 in the case of a maximal map (n &#x3E; 3), while the number

of contacts is s. By use of (3) the expression for s reduces to 3n - 6, as

stated.

A necessary and sufficient condition that a polynomial Pn(À) (n &#x3E; 3)
belong to a maximal map is that the coefficient of In-I in Pn(À)
is - {3n - 6).

Let us first prove the condition to be necessary. In a maximal map the
number of pairs of regions in contact has just been seen to be 3n - 6 ; for any
non-maximal map the number of contacts is less, namely 3~201362013~ ~&#x3E;0. Now
in the maximal case the number C of pairs of regions not in contact is clearly

Further, from equation (1), it appears that the coefficient of in is

In fact we have mn=1 and mn-i (the number of essentially distinct ways of

coloring Ñln in precisely n-1 different colors) is obviously the number of ways
of picking out a pair of regions not in contact to have the same color. Hence
we infer that the coefficient in question is 2013(3~20136).

The sufficiency of the condition is immediately obvious since this coefficient
is - (3n - 6) + 8 in the non-maximal case.

We can prove at once the following simple facts concerning the roots of Pn(l)
in the maximal case:

In the case of any maximal map lbln (n ? 3) not all of whose regions
are even-sided, 0, 1, 2 and 3 are roots of Pn(l) =0. If all of the regions
are even-sided, 0, 1 and 2 are roots but 3 is not (Pn(3) =24). In either

case the center of gravity of the remaining roots lies at the point ~,=3
of the complex plane.

It is clear in the first place that any maximal map Mn requires at least 3
colors in the neighborhood of any (triple) vertex. Hence 0, 1 and 2 are always
roots of =0. Now if any region of the map is odd-sided, three colors will
not suffice; for the successive abutting regions would necessarily be colored
alternately in two colors if only three colors are allowed, and this is not pos-
sible if the region be odd-sided. Hence we have Pn(3) =0 except perhaps for
the case of all even-sided regions. Let us prove that Pn(3) =24 not only for
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such maximal maps but for all other maps with only simply connected even-
sided regions and triple vertices (6). Obviously Pn(3)=0 or 24 in such a map.

Let us eliminate the first possibility P~(3)=0. By EULER’S formula (3) we
have, for such a map,

Now if the possibility Pn(3) = 0 in question could be realized for some such
map, it would be realized for some map Mn of a least number of regions. But
this M~2 cannot then contain a two-sided region R ; for obliteration of this

region R would leave a map of even-sided regions, colorable in three

colors; and could then also be colored in three colors a, b, c by assigning
to R the third color different from that of its two adjoining regions. Hence we
infer that f2=o. Consequently, by the above formula, there are at least six

4-sided regions in Mn.
Now let R be one of the 4-sided regions of Mn with four cyclically abutting

regions A, A2’ A3’ A4. Clearly either Ai and A3 or A2 and A4 are distinct
and without contact. Suppose that Ai and A3 are. Unite Rand A3 in a single
region (see figure 4). The new map will then also be made

up of only even-sided simply connected regions, since either A ~
and A4 each lose two sides or loses four sides,
while has four fewer sides than A 1 and A 3 to-

gether - an even number. Hence by hypothesis (n ? 6)
can be colored in three colors with the colors around ....4i + R + A3
in alternation. But, since A ~ and A 3 have an even number of
sides, A2 and A4 recefve the same color, and we may insert R
in the third color, different from that of As, A3 and A 2, A 4. Thus a contradiction
is reached in all cases.

To establish the last part of the italicized statement we need only observe
that 3n - 6 is the sum of all of the roots of P~)==0.

It is interesting to observe further that in the case of any Mn (n &#x3E; 2) of all
even-sided simply connected regions with simple vertices, Pn(4) is always at
least 12. 2~n-~&#x3E;rz. This is true for n=3 since P3(4)=24. If not true for n ? 3,
it fails for some lVln with least n &#x3E; 3. Now Mn contains no 2-sided region since
otherwise Pn(4) =2Pn_1(4) where is obtained from Iln by shrinking the
region to a point; this leads to a contradiction of course. Hence there are at

least six 4-sided regions R in Mn. Distinct opposite regions abutting such a 4-sided
region, R, cannot abut each other; otherwise three colors would not suffice to
color Mn. Also an R must exist for which both pairs of opposite regions are

(6) Proved by P. J. HEAWOOD: The Map-Colour Theorem. Quarterly Journal of Mathe-
matics, vol. 20 (1890).
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distinct. In fact otherwise every R lies on a ring R + S of two regions. These
rings cannot cross and hence there would exist a ring R + S without a 4-sided

region on one side of it, L But S has an even number of vertices in I since
three colors suffice to color Hence if the exterior regions be replaced by one

region T, the map I+R+~’~-T is made up of even-sided regions, with R and T
4-sided and 2-sided respectively, and S at least 4-sided. It follows from the rela-
tion of EULER above that I must contain at least two 4-sided regions, wich is

absurd. However, for an R with distinct opposite regions not in contact, we
find ~(4)=jP~_s(4)-}-.PB__2(4~ where jJ;!’n-2 and are obtained respec-

tively by coalescence of one pair of opposite regions with R, and are composed
of even-sided, simply connected regions with triple vertices. Hence a contradiction
results in this case also.

The relation of the polynomials Pn(l) for non-maximal maps to those

for maximal maps is sufficiently illustrated by the following result:

The polynomial Pn(Â) for any non-1naximal map can be expressed as a sum

where the polynomials P?2*(~,), belong to maximal maps (7).
A simple illustration is that indicated in the figure 5 below in which n=4,

To begin with, we observe that in all of the modifications by which a non-
maximal map 31,, was given further contacts (figures 1, 2, 3) a new map lVln’

was obtained with the con-

tacts of liTn and an addi-
tional one. Now if instead

of an additional contact

we had effected a union,
there would have been

constructed an 

Moreover, since, in the

original the regions P
and Q thus brought into contact or union must be given either different colors
or the same color, we have

Continuing in the same manner with etc., we must finally
express P~2 as the sum of the polynomials for maximal maps as stated.

(7) A slightly imperfect notation for maps and polynomials is admitted here and later
for the sake of brevity. Evidently for completeness one should write instead of 



91

3. - Irreducible Maps. -

We shall term any map (n &#x3E; 3) « irreducible » in case (1) all of the

regions P of Jfn are simply connected (i. e. are homeomorphic with a circle),
(2) any two regions P, Q of .Nln which touch along a side form such a simply
connected region, and (3) any three regions P, Q, R of lVln of which all three

pairs touch along a side, form a simply connected region about a triple vertex.
In addition we shall consider a map of two or three simply connected regions,
to be « irreducible ». All other maps will be termed « reducible ».

Evidently any maximal map will be irreducible provided that no doubly
connected rings of three regions P, Q, R exist in it.

The polynomial Pn(A) for any reducible map Mn can be expressed in
the form of a product,

where the polynomials Pnj (03BB) belong to irreducible maps and are a + p + 7 + 1
tn number, and where 

Suppose first that we have a r-fold (r &#x3E; 1) connected region R in a redu-
cible Mn. Obliterate all but one of the sets of regions into which R divides lVln,
thus obtaining r (reducible or irreducible) submaps with nin and with

corresponding polynomials Pni(l). We have then 

since any colorings of the r maps Mni which assigns the same one of the A colors
to R combine to give a coloring of Me, and conversely.

Evidently we may continue to apply this first process of decomposition to
the maps t etc., until finally only maps with simply connected regions
remain, say a + 1, in number. In this manner Pn(l) is expressed in the form

Now among these maps made up of simply connected regions, some may
be reducible and contain two regions which touch to form a r-fold connected
region R. The same process of obliteration as before may be applied to form r
submaps. Colorings of these may again be combined to give a coloring of the
corresponding Mn., provided that the two regions of .R be given the same two
of the l(l-1) distinct pairs of colors. Here then the divisor l(l-1) replaces l.
This second process of decomposition may also be continued until no two regions
in contact along a side in the submaps form a multiply connected region, and
we have then an expression of in the form
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where belong to maps in which all of the regions are simply con-

nected, and in which all pairs of the regions which touch along a side form simply
connected regions. ,

But among these maps JJfnk some may contain three regions P, Q, R forming
a ring of three regions, dividing the rest of the map in two parts. Here again
we may obliterate each of these parts in turn and so form two maps and Mn p
with corresponding polynomials P~2~(~,), P’, -P (A). But we have 

I p

since any coloring of 
l 
and Mn p which assigns the same three (necessarily

distinct) colors to the three regions of the ring leads to a coloring for M,,,,. This
third process of decomposition may also be continued until no such rings remain.
Hence if three regions P, Q, R in any of these maps are in contact by pairs,
they can only unite to form a simply connected region about a triple vertex,
or to cover the sphere. The maps lVlnl so obtained are clearly irreducible, and
the final expression of Pn(l) is evidently of the form specified in (5).

A necessary condition that a map with only triple vertices be redu-
cible is that 1, 2 or 3 be a multiple root of 

In fact if any region of is not simply connected, the first step taken
above expresses as a product in which is a root of multiplicity at
least two. Hence the statement certainly holds unless all of the regions of Mug
are simply connected. But in this case (a=0), 1=2 is clearly a root of multi-

plicity 03B2+1 in the product Hence the statement made is certainly true
unless, in addition, all pairs which touch along a side form a single simply
connected region. Thus we need only to consider the case in which at least one
ring of three regions is present. But in this case neither of the two partial maps
can be made up of even-sided regions exclusively since each contains a three-
sided region along the ring. Consequently 3 is a root of both equations =O
and for the two submaps. Hence 3 is a multiple root of 
Thus the statement made is established.

It is interesting to inquire whether the above obvious necessary condition
for reducibility is sufficient. The later work of this paper throws some light on
this question. In fact it will appear that in the case of irreducible maps with

triple vertices, 1 and 2 cannot be multiple roots of Pn(~,) = o. It seems to me
to be probable also that 3 cannot be a multiple root, so that the stated condi-
tion is sufficient as well as necessary.

A map which is both maximal and irreducible will be called a « regular.,
map ; accordingly, a regular map is one with simply connected regions and triple
vertices, no two of whose regions touch more than once and no three of whose
regions form a ring.
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4. - On the Polynomials Pn(Å.) for ~0.
The following important property of the polynomials Pn(Å.) was established

by WHITNEY, and communicated orally to me nearly two years ago.
For any map Mn whatsoever, if Pn(l) is written in descending integral

powers of Â,

then the successive coefficients 1, ,u~,...., pn-l alternate in sign.
A simpler and basically different proof than that of WHITNEY (loc. cit.,

p. 690) may be given as follows: If the statement is not true, it fails for

some lUln of a least number n of regions. We must have n &#x3E; 3, since for n=2

we have P2(~,)=~(~,-1), an for n=3, P~(~,)_~(~,-Z)(~,-2) or )~(1-1)2.
Now there can exist no multiply connected regions R in this map 

Otherwise, as in the preceding section, we could write

Hence, since all of the polynomials possess the stated property according
to our hypothesis, would also do so. Thus lVln can contain only simply
connected regions.

Consequently at any vertex Y in the map Mn
no region R can abut more than once, for other-

wise R would be multiply connected. If then we

take any boundary line which issues from V it

must continue into another vertex W distinct from V’ (figure 6). But if we

draw W down to V a map Mn* is formed, having n regions and one less vertex.
Furthermore we have either the relation

where corresponds to the map obtained by the union of the two regions
which abut on WV in Mn, or else

if these abutting regions touch elsewhere and cannot be so united in consequence.
However, if and Pn-i (1) both possess the stated property so will Pn(l).
We infer that the property cannot hold for Pn*(l) where Mn* has the same
number of regions as but one less vertex.

Thus, by successive use of (1), we are lead to maps of fewer and fewer

vertices, and thus finally to a contradiction of course.
The above result shows that is completely monotonic (8).

(8) More precisely, the quantities are all positive at A = 0 for k- 0,
1,...., n -1.
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We shall extend this result in the following section.
As an immediate consequence it follows that P7~(~,) =o has no negative

roots and that is a root of 

It may be remarked in passing that our results here and later concerning 
can always, if we wish, be expressed in terms of the characteristic constants ma
or the related constants wi=i! mi; these constants coi represent the number of

ways in which the given map can be colored in precisely i colors. For examplp,
we have from the above results the following equivalent set of inequalities,

The last of these inequalities, by means of the explicit formula (1) for 

takes immediately the equivalent form,

and the other inequalities may be similarly expressed.

5. - On the Polynomials for 2:!~-~2.

If we confine attention to maximal maps or even to a somewhat more extensive

set of maps we can show that is completely monotonic for ~, c 2.
For such maps this result implies of course the result of the preceding section.
More precisely, we shall prove the following:

For any map Mn (~~3)~ all of whose vertices excepting at most one
are triple, and all of whose regions are simply connected, if we write

have

where the successive coefficients 1, vn_~, v,1-5 ...... vo alternate in sign up to
the point where all the rest (if any) vanish.

The proof will involve a method similar to that employed in the preceding
section.

At the outset we may note that for n=3, when there are three regions in
contact, we have so that the stated result holds for n=3. Moreover

it holds for n = 4. In fact if there is no exceptional vertex we see that no region
can have as many as five sides for n = 4 since such a region would possess at
least four abutting regions. Thus EULER’S formula (3) reduces to

of which the three possible solutions are
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It is readily seen that only the first and last of these correspond to actual
maps (~ = 4); these are of the respective types of a) and b) in figure 7,
with (1- 2) + 0 or (A - 2) - 1 respectively, so that the stated result

obtains if there is no excep-
tional vertex.

’ 

In the case of an excep-
tional vertex (n=4), its mul-
tiplicity can only be x = 4

since the (simply connected)
regions abutting at the excep-
tional vertex must be distinct;
thus all of the four regions
abut at the vertex. Since these

four regions fill the sphere and all of the other vertices are triple, the only
possibility is that indicated in figure 8 c) with Qi(~)==(~20132)+0~ when the
stated result also obtains.

We can therefore restrict attention to the case n ? 5.

Suppose now that the stated result fails for some map Mn of a least number
of n ? 5 regions. In particular we may choose an Mn for which the number x &#x3E; 3

of regions meeting at the exceptional vertex T; is as
large as possible. This number is the same as that
of the index of the vertex of course.

Consider now any line which issues from V. In

following it along the boundary of some region R
which abuts (once) at V, at least one other vertex W
must be encountered (figure 8) since no region is
doubly connected. But if only one vertex were en-

countered there would be two regions S and T abutting on R, and we would have

where is formed from Man by letting .R shrink to a point. In fact any

coloring of would give a proper coloring for Man, if 1~ were inserted in

one of the l-2 colors different from those of 8 and T. But evidently is
a map of the stated type and fewer regions, so that has the specified
form. Obviously would have this form also, which is not possible.

Hence there are further vertices W’,.... on R, in addition to W. Furthermore
none of the regions which abut at V and which are not adjacent to R at Y can
touch R along a side. For if a region P did, then .R and ,P would divide Mn
into two parts. By shrinking the map on one or the other side of to a

point we would obtain submaps Me and of fewer regions with 
and these maps would be of the stated type with a a 3 and fl h 3, and with V
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as (possible) exceptional vertex. We would then. clearly have

where Qa-3(1) and Q~_3(~) are of the type specified, so that would also

be, contrary to hypothesis. Therefore we may assume that none of the regions
which abut at Y excepting the two adjacent to R at V, touch R. In precisely
the same way we may rule out the possibility that either region which abuts
on .R at Y touches R elsewhere.

Now draw W up to Y as was done in the preceding section (figure 6).
A map Mn* is thus obtained which will be of the allowed type, because of the
fact that the region T adjoining 8 along R (figure 8) nowhere abuts at V in 
here it is to be recalled that there is at least one further vertex W’ on R be-

sides W and V. Similarly if we unite R and S by obliterating the boundary 
we obtain an allowable Mn-t, since R and S have no further points in common.
Here it is to be observed that if V is of multiplicity x=3 in Mn, V is no longer
a vertex in 

We have the obvious relation

where Qn_3(~) and belong to Mn, Mn* and respectively.
However the two polynomials on the right have the stated property, since 
has an exceptional vertex of one higher order than Mn while Mn_s is a map of
one less region. It is seen then from the equation just written that would

have the stated property, contrary to hypothesis. 
’

We conclude that the stated result must always hold.
It is apparent from the result just established that 0 and 1 are simple roots

of 0 for any map of the type considered. But the root 2 may be of
maximum multiplicity n-3, so that Q?t-3(~)===(~20132)~~. This actually happens,
-for example, if the n regions Rs,...., Rn abut at the exceptional vertex V with
-the following pairs of regions in contact: R2, Ri ; R,,, R2 and R3, Ri ; R,,, R3
and R4, R2 ; etc. For then Ri can be first colored in any of the I colors, R2 in
-the 1-1 remaining colors, R3 in the 1-2 colors different from those of R2
and Ri, etc.

However we proceed to prove that if, further, no two regions of lVln form
a multiply connected region, then 2 is also a simple root of Pn(~,) =o, i. e. the

constant term vo in is not 0; in particular this further condition is

satisfied, of course, for maximal maps.
Our proof will more or less parallel the argument made above. In the first

place the fact that vo * 0 in the cases n=3 and n =4 may be established by
direct inspection of the various cases considered above (see, in particular, figure 7),
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where the two possible cases give Qo(l)=1 and ~(~)==(~20132)20131. Hence we
may assume nt:l---5.

Suppose now that Mn is the map of this type with least n (n &#x3E; 5) and greatest
multiplicity at the exceptional vertex V, for which the stated property does not

hold, i. e. for which Yo=O. We note first that no three regions P, Q, R in this

map can form a ring of three regions. For, by shrinking the regions on of one
side or the other of the ring to a point, we obtain two maps and Mg
(d+fl=n-3) such that 

--. - H’

These maps are of the stated type with so that clearly 2 is not a

root of Qa-3(1)=0 or of Qp-3(l) =0, and so not of Qn-3(l) =0, contrary to
hypothesis.

Arguing as before we deduce the situation of figure 8. If now we draw W

up to F, there is obtained an which will clearly be of the stated type
unless T in Mn touches some region P which abuts at V but not adjacent to R,
so that R and the region T+ P in the modified map form a doubly connected
region. In this case the map Mn* clearly has a Qn_3(~) with factor ~20132y because
of the presence of this region. Hence the relation (13) shows that we need

only show that Mn-i’ formed by the obliteration of the side WV; is of the stated

type. But there are no rings of three regions in Mn as has been seen, and hence
no ring of two regions can be introduced by this obliteration. Thus will

be of the stated type and 2 will not be a root of Qn-4(l) =O in this case. This
completes the desired proof.

We state these results only in so far as they apply to maximal maps.
If a map IVIn is maximal (so that the same restrictions are satisfied),

we have in addition ’)’0=1=0. Hence for maximal maps Pn(l)=0 has no real
roots ~~2 except for simple roots 0, 1, and 2.

6. - On the Polynomials for 

We propose next to show that Pn(A) is completely monotonic for A 5 for
all maps ll2n whatsoever. More precisely, we shall prove:

For all not colorable in two colors (9), so that we may
write before, we have

where the successive coefficients 1, (03C3n-3, CFn-4 ...... 00 are positive.
~ 

e) The only maps (n &#x3E; 1) colorable in only two colors have regions bounded by a set
of simple non-intersecting closed curves with at most vertices in common. In this trivial

excepted case it may be readily established that P,,(A)IA(A - 1) is completely monotonic
for A ~! 5.

Annali della Scuola Norm. Sup. - Pisa. 7
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Let us observe first that the italicized statement holds for n = 3 when Qo =1.
Hence if it does not hold for all n, it fails for some Mn with least n ? 4.

Now if this llln is not a maximal map, we may express the corresponding
polynomial as a sum of polynomials and according
to the results of section 1. Here no can be of the excluded type since if

any Mn_ were colorable in two colors, then .Nln would also be so colorable. We
infer then that and possess
the stated form. Consequently with

one more contact than Mn, has a po-

lynomial for which the italicized

statement fails to hold. By repetition of
this process we are led finally to an Nln
of maximal type for which the statement
fails to hold. Hence we may assume

that lVln is maximal.

Furthermore such a maximal lVln must necessarily be irreducible. Otherwise
it must contain a ring of three regions. Hence we are led to an equation (14),
in which the partial maps and Mp are clearly maximal with 
Thus Qa-3(1), Qp-3(1), and consequently Qn-3(A), would satisfy the condition of
the italicized statement contrary to hypothesis.

Now in this maximal, ir-educible Mn there may exist a four-sided region R.
If a2, a3, a4 are the four abutting regions in cyclical order, they form a

ring without further contacts (see a), figure 9). Furthermore if there exist no

such four-sided regions, there must exist at least 12 five-sided regions R, by
EULER’S formula (3); and each of these will necessarily be surrounded by a
similar ring of 5 regions (see b), figure 9).

At this stage I propose to make use of the first of the two following lemmas (10):
Lemma 1. - With the configuration of figure 9 a) in a map Mn we have

the following identity:

Here i are the maps of n-1 regions obtained by coalescence of ai and R,
(i=1, 2), respectively; and are the maps of n-2 regions obtained by
coalescence of ai, R, and ai+2 (i=-= 1, 2) respectively.

Lemma 2. - With the configuration of figure 9 b) in a map Mn we have
the following identity: 

- -

1 

(1°) See my article in the Proceedings of the Edinburgh Mathematical Society cited above.
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Here Jlijfi are the maps of n -1 regions obtained by the coalescence of ai and R,
(i=1, 2,...., 5) respectively; and are the maps of n-2 regions obtained by
coalescence of ai, R, and (i=1, 2,...., 5) respectively (11).

We shall give here the simple proof of Lemma 1; that of Lemma 2 is entirely
similar. It may be stated without proof that a like formula holds for a region R
surrounded by a ring of 6 regions: probably such a formula holds for a region R
surrounded by a ring of any number of regions.

To prove Lemma 1, let pj(I) be defined for i= 1, 2, 3, 4 as the respective
numbers of ways of coloring the map in 2 (or fewer) colors, with R deleted,
according to the type of coloring on the ring as indicated in the table opposite.

Then evidently we have the following relations :

From these relations we obtain the stated equation (16) by elimination of 
(i=1, 2, 3, 4) ; and in addition we obtain the further relation :

Now if the ll2n under consideration contains the configuration of figure 9 a),
the polynomials on the right in (16) correspond to maps which satisfy
the condition imposed in the italicized statement. Furthermore (16) may be written

if we put It is seen then that must have the stated form

inasmuch as Q"~ 5(~,) and Q~n~ 4(~,) have this form. This is contrary to hypothesis.
We infer that this lVln contains no four-sided region.

Consequently, as was remarked above, there must exist in lVln the configu-
ration of figure 9 b), which leads similarly to

whence we are led to a contradiction as before.

(11) Here a6 and a7 are identified with ai and az respectively.
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Thus we conclude that the statement under consideration is true in all cases.

On the basis of this statement it is clear that in no case whatsoever

has Pn(l) =0 a real root for 
In this manner as far as the integral roots of Pn(l) =0 are concerned, the

only remaining question is that of a root 4; the so-called four-color theorem

affirms that 4 is never a root of Pn(l) =0. It may be remarked in passing
that 1°) ~(4)~0, 2°) if for n &#x3E; 3, then is at least 24, and
30) Pn(4)=24 holds for special maps for any n. In fact 1°) holds by definition
of 2°) holds since a permutation of the colors yields a further coloring;
3°) holds, for instance, if R2 touches R1, if R3 touches R2 and R1, if R4
touches R3, R2 and R1, if R5 touches R,, R3 and R2 etc. We see then how

slight a margin of uncertainty is involved.

7. - Some Further Results for ~, ~ 2 and ~~5.

In the results of sections 5, 6, there are no limitations set to the increase

of Pn(A) for A-e----2 or 5. Simple limitations of this kind are contained
in the following result:

If Mn is a map of simply connected regions and triple vertices, then Qn-3(1)
is dominated by (À-2)n--a for A ~-~! 5 and by (A - 5)1’1-3 for ~, ~ 2 (~ 2).

To establish the result stated in so far as it refers to the range ~~5, we
assume it not to be true for some Mn with a least n. This it exceeds 3 since
for n=3 we have Qa(~)==l.

Now lVln contains no rings of two regions. In fact otherwise we recall the

relation (12) which leads at once to a contradiction since Qa-3(À) and 
are dominated for ~, ~ 5 by (À-2)a-3 and {~,-2)~-3 respectively. Similarly it

is seen that on account of relation (14) no ring of three regions exists in Nln.
Hence there must be a configuration in Mn as in figure 9 ~) or 9 b). In

the first case, we see, by use of (16) that is dominated by ,

(1-2)(À-2)n-5 + (1-4)(À-2)n-4

since and are dominated by (A-2 5 and (A - 2 respecti-
vely, according to hypothesis. Here it is to be observed that À-2 and À-4

are completely monotonic for ~~5. But from this we infer at once that 
is dominated by {~,-3)(~,-2)w4 and so by (~--2)w3 for 

But the case of a configuration as in figure 9 b), we conclude by a similar
use of the equation (17) that is dominated by

(12) The expression « A dominates B » means of course that A and A - B are comple-
tely monotonic over the range in question and possess the same sign. 
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and so by (2-2)n-3 (~3). Thus in this remaining case we are also led to a
contradiction. Hence the stated result holds for ~, ~ 5.

In order to obtain the result stated for À.;;;; 2, a similar method is available.
If Mn is a hypothetical map of the stated type with least n for which 
is not dominated by (A-5)n-3 the possibility of rings of two or three regions
in .Mn can be excluded just as before. Now if the configuration of figure 9 a)
is present we turn again to relation (16) and infer that is dominated

by (A20134) (~20135)~~ inasmuch as the first term on the right when expanded in
a series in ,u (~,=,u+5) has coefficients of opposite sign to those of the second
term while those in the second term are of the sign known to hold in the
expansion of in a similar series; hence in this case would be

dominated all the more by (~,-5)n-3. Again, if the configuration of figure 9 b)
is present we find for the same reasons that would be dominated by
(~, - 5) (~, - 5)’~-4, a contradiction. Hence such a hypothetical map Mn cannot
exist.

In connection with the above results it may be noted that for ~, ? 5, the inequa-
lities involved cannot be made more restrictive, for we may have Qn-3(À) _ (1 - 2)--l.
On the other hand for ~.~2, better results than those stated can certainly be
obtained.

8. - On the Polynomials for 2 ~~5. 
’

Turning our attention to the remaining interval of the I-axis, we shall first

prove the following facts concerning QM-3(~)==~(~)/~(~20131)(~2013~)~
If Mn is a map of triple vertices and simply connected regions, then

we have

In fact the results of sections 5 and 7 show that we may write with 

since dominates (A-5)-3 but is dominated by (A-2)-3 for ~~5.

Hence for ~, s 5 we see that

Likewise the results of sections 6 and 7 show that we may write, with O c g~~ s 1~

(~3) Note that if A === p + 5 we have
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Hence for ¡ ~ 2 we see that

Applying the first and second of these two inequalities to the respective
intervals 31, 5 and (2, 31/2) we infer that I Qn-3(Â.) I is restricted as stated

2 / B 2
throughout the interval (2,5).

Throughout this same range 2 ~~~=5 the integral values of A are of most
interest:

The following inequalities obtain for any map of triple vertices
and simply connected regions :

Of these inequalities all those involving for ~=2, 3 and 5 are obvious
consequences of what precedes. Furthermore since ~(4)=24(~_3(4)~0, we
need only establish that Qn-3(4) has an upper limit as stated..

The justification for this upper limit of Qn_3(4) may be made as follows:
Any Man of triple vertices and simply connected regions can obviously be cons-
tructed by choosing a first region Ri , then a second region R2 which touches Ri,
then a third region R3 which touches Ri and R2 (the three meeting at a triple
vertex on the boundary of then a fourth region which touches an

adjacent pair of the regions R1, R2, R3, etc. In fact at the kth stage it is only
necessary to select a vertex on the boundary of .... + Rk, and add the
outer region in contact with this vertex. But this construction shows that Ri
can be given one of four colors ; R2 one of three colors ; R3 one of two colors ;
R4 one of at most two colors; etc. Hence Pn(4)s4 3 . 2n-2, so that Q~3(4)~2~~
as was stated.

Evidently this inequality cannot be improved for the given class of maps,
since we can construct such a map with regions RI, Rz,...., .Rn having only the
contacts just indicated in which case the equality sign actually holds.

If, however, attention is restricted to the class of regular (i. e. maximal,
irreducible) maps, sharper inequalities of the type

can be established. It would be of interest to determine the lower limit of C more

closely. It is natural to conjecture also that, for such maps,

In other words there is probably an absolute constant D &#x3E; 1 such

that any regular map can be colored in four colors in at least 24 Dn-3
different ways.
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9. - Some Additional Remarks on the Roots of Pn(03BB) =0.
By way of conclusion I propose to make three simple remarks concerning

the roots of P~2(~)=~,(~,-1)(~,--2)Qn-a(~,)=o.
a) For a regular map 2o2th n even, there is at least one real

root of Qn_3(~) =0 for 225 besides a single root }¡,=3 and 1=4 (14).
In fact there must be an odd number of real roots of Q,-,(2)===O.

b) For a regular map not all of the roots oL’ Qn-3(À)=0 can be real.
Here we make use of the two leading terms in the formula for Pn(2) in its

leading terms :

We have already previously computed the coefficient of 2n- I in the coef-

ficient of can either be similarly computod, or obtained by use of the for-
mulas of WHITNEY (loc. cit.). From these terms we obtain immediately

Hence if 0, 1, 2, 3, ~~....~ ~_~ are the roots of this equation we obtain at once

Since the quantity on the right is negative (n ? 6), it is clear that not all of

the roots can be real.

It was observed earlier that the center of gravity of the n - 4 roots for a

maximal map other than 0, 1, 2, 3, falls at ~=3 in the complex plane. The

equation written above shows that the average of their squared deviations

from 1=3 is precisely - 2, a negative quantity.
c) For a regular rnap all the roots of Q,,-,(2)==O lie within a circle

of radius 3/(2i/(n-3)-1) with center at }~=5.
In fact the expression (21) for Q&#x3E;1_~,(&#x26;,) shows that for any real or complex

root of Qn-3(2)===O we have

whence we obtain the stated conclusion.

It is obvious also that the results of sections 6, 7 permit us to name an
interval a&#x3E;i 15 in which the equation Q~z_3 (,~) --- 0 has no root. However it

is natural to conjecture that there is no real root exceeding 4 in any map
whatsoever. In the simpler cases, inclusive of the dodecahedral case n=12, this

conjecture is valid; but I have not been able to establish its general validity
even under the hypothesis that the four-color theorem is true, i. e. ~(4)&#x3E;0.

~14~ Provided the map can be colored in four colors.
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