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SOME NEW CONVERGENCE CRITERIA FOR FOURIER SERIES

by GODFREY HAROLD HARDY and JOHN EDENSOR LITTLEWOOD (Cambridge).

1. - In this paper (1) we are concerned with the convergence, in the classical
sense, of the FOURIER series of an integrable function We suppose that g(t)
is periodic, with period 2n, and even; that the fundamental interval is (-1l, n);
that the mean value of over a period is 0; that the special point to be
considered is the origin; and that the sum of the series is to be 0. In these

circumstances

(1.1~

and our conclusion is to be

(1.2)

It is familiar that these formal simplifications do not impair the generality of the
problem.

Since is even, any conditions which it is to satisfy may be stated for 

Criteria containing a condition on the order of magnitude of an.

2. - Our main theorem (Theorem 2) involves (i) a « continuity &#x3E;&#x3E; condition

on 99(t) and (ii) an « order » condition on an. One theorem of this character is

known already.
THEOREM 1. - It is sufficient that (i)

when t - 0, and (ii)
(2.2)

In fact (i) implies the summability ( C,1) of the series, and (ii) then implies
its convergence. As is well known, the theorem covers the classical case in

which g(t) is of bounded variation.

(1~ A short account of some of the principal results has appeared in the Journal of the
London Math. Soc. (HARDY and LITTLEWOOD, 6).
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It is natural to ask whether, if we strengthen the continuity condition (i), we

may correspondingly relax the order condition (ii). If we replace (i) by any of

where a &#x3E; 0, we may drop (ii) entirely, these conditions being sufficient in them-
selves. A natural intermediate hypothesis is

and it will be found that this hypothesis leads to very interesting results.
It should be observed first that (2.4) is not itself a sufficient condition for

convergence (2). This is no doubt well known, though we have not met with any
explicit proof; a more precise result is contained in Theorem 4 below. There is

a distinction here between convergence at a point and uniform convergence, since

uniformly in t, is a sufficient condition for the uniform convergence of the series (3).

3. - THEOREM 2. - It is sufficient that (i) should satisfy (2.4) and
that (ii)

for some positive 6.

We suppose, as we may, that I

We choose a positive c and take

It is necessary and sufficient for convergence that

when À - (X).

We write

(2) Indeed no condition 99 == o(Z), with

is sufficient (in other words, the classical test of DiNi is the best possible of its kind).
f) This is the 4 Dini-Lipschitz;- criterion; see for example HossoN, 7, p. 537,
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Then, in the first place

Here we do not require the full force of (2.4).
Next

if ~, &#x3E; ~4 (E); and so

It remain to consider S3(2). Here we replace by its FOURIER series and

integrate term by term. We thus obtain

say; where

~3.10.1~

4. - The function satisfies the inequalities

in which A is an absolute constant. Hence

Here, and in the sequel, C= C(b) denotes a number depending only on 6. It

follows that

(4.2)
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We write V in the form

say. Here, first,

by (3.2), (3.3), (3.10.2) and (4.1). Next, in Vi,

and so

(4.5)

Since x6(A-x) has one maximum, at

between 0 and A, and increases to this maximum and then decreases, (4.5) gives

The first term is o(l), and the second is

Hence and a similar, but rather simpler (5), argument shows that

V3=0(1). Combining these results with (4.3) and (4.4), we find that V 0(1).
It then follows from (3.9) and (4.2) that ~3(~)==o(l); and this completes the
proof of the theorem.

A particular case of some interest is that in which

for some p h 1 and small i. e. when (p belongs to what we have called the
class Lip (6). In this case (3.1) is certainly satisfied.

5. - There is a generalisation of Theorem 2 corresponding partly to LEBESGUE’S
generalisation of FEJER’s theorem.

THEOREM 3. - In Theorem 2, condition (ii) may be replaced by

(5) Because xa(x - ~) is monotonic in (I, cxJ).
(6) See HARDY and LITTLEWOOD (4, 5).



47

In this case

while

which may be shown to tend to zero as in § 3. The discussion of S3(~,) is

unaltered.

We have not been able to replace (5.1) by

Negative theorems.

6. - We prove next that Theorem 2 is a best possible theorem, in that the

condition (3.1) cannot be replaced by any wider condition on the order of an-
THEOREM 4. - Suppose that qn decreases steadily to zero when n - 00.

Then there is a function 99(t) such that (i) satisfies (2.4), (ii)

(6.1) an= 0 (n-""),
and (iii) ~ an is divergent.

We prove this by a modification of FEJÉR’S well known method for the con-
struction of divergent FOURIER series. We require

Lemma a. - There is a constant A such that

.

2 
*

To prove the lemma, let 03C4=[t-1] and write

when T falls between ~ and N. Then
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This proves the lemma when r falls in (3fl N), and in the contrary case the
proof is simpler.

We now define (p(t) by

where

(6.4)
Here

and mr and nr increase rapidly with r, in a manner to be specified more pre-
cisely later.

We prove first that 99(t) satisfies (2.4). We choose R so that

Then, by (6.2),

for 0  t s to (8, R) = to (8).
Next

1t

(6.7)
then, by (6.5),

and there is no overlapping between the cosines in different Cr, so that the
FOURIER series of is ~ A,C, written out at length in conformity with (6.6).
When t=0, the series contains blocks of terms of the type

and will certainly diverge if

We have finally to consider the order of an as a function of n. The largest
coefficient in Cr is (mr log and the highest and lowest ranks of a cosine
are qr+nr=3nr and qr-nr=nr. Also hr - 0. Hence condition (6.1) will certainly
be satisfied if .. --

and a fortiori if
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or if

or if

(6.10)

7. - A moment’s reflection will show that we can always choose our sequences
so as to satisfy (6.5), (6.7), (6.8) and (6.10). Suppose, for example, that

we write for log log log n and use a similar notation for repeated exponent-
ials. Take

Then (6.5) and (6.8) are satisfied, and (6.7) and (6.10) will be satisfied if

We may for example take

and then mr is given by

8. - There are two other theorems, of the same character as Theorem 4, whose
proofs we leave to the reader.

THEOREM 5. - Suppose that xn tends steadily to infinity with n. Then
there is a continuous function such that

and ~ an is divergent.
THEOREM 6. - There is a function qJ( t) such that

(iii) ~ an is divergent.
Theorem 5 shows that the condition (ii) of Theorem 1 is the best possible,

while Theorem 6 shows that Theorem 2 is a best possible theorem in a second
sense, viz. that condition (i) cannot be relaxed if condition (ii) is left unaltered.

An analogue of Theorem 2.

9. - It is natural to ask what happens to Theorem 2 when the o of (2.4) is
replaced by 0. The answer is that the order condition must then be strengthened
considerably; roughly, an must be 4c very nearly ~.

Annali della Sup. - Pisa. 4
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THEOREM 7. - It is sufficient that

and

(ii)
for every positive ð.

The proof is very like that of Theorem 2, and we do not give it in full. We

split up as in (3.5), but suppose now that r=1-t¡, where I is small.

is o(l) as before; and S2(~,) is bounded, and numerically less than e(t¡),
tending to zero with q. Finally

and tends to zero if 8  ~.
The conditions (i) and (ii) are again the best possible of their kind.

Tauberian proofs and one-sided conditions.

10. - The proof of Theorem 1 is « Tauberian », and we have no direct proof
corresponding to that of Theorem 2. It is natural to look for a Tauberian proof
of the latter theorem, and the argument thus suggested is interesting in itself

and leads to a generalisation which we cannot prove directly.
It will be convenient to introduce the notion of the « Tauberian index &#x3E;&#x3E; of

any method of summation of divergent series. Suppose that 8 is a method of sum-
mation, and that the hypotheses (a) £ an is summable (S), and (b) an= 0(n-k),
imply the convergence of the series. Then we say that S has the Tauberian

index k (’). Thus the CESÀRO and ABEL methods have the index 1. It is plain
that if we are to prove Theorem 2 by Tauberian methods, we must use some
method of summation whose Tauberian index is 6.

BOREL’s exponential method has the index 1. We proved this in 1916 (8),
and at the same time introduced a modification of BOREL’S method. We defined

the limit of a divergent sequence

as

C) Naturally we choose k as small as possible. We need the phrase only for general
explanations and it is unnecessary to be precise in our definitions.

(8) HARDY and LITTLEWQOD, 1.
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where is to be replaced by 0 if the suffix is negative. This definition is

equivalent to BOREL’S for « delicately divergent » series, and in particular for
series (such as FOURIER series) whose terms tend to zero. In particular, it has

the same Tauberian index 1
2

A little later VALIRON (9) obtained very extensive generalisations of our results.
We are concerned here only with a quite special case. If we define s by

where 1 -_ l  2, then the Tauberian condition is

and the index is 1 - 2I. This may be made as small as we please by taking I
sufficiently near to 2, and the case in which we are interested is that in which I

is a little less than 2.

When l=2, (10.2) becomes an= 0(l), and the method cannot sum a FOURIER
series unless it is convergent.

11. - We call the method of summation defined by (10.1) the method ( y, 1).
Its use in the theory of FOURIER series depends upon the following theorem.

THEOREM 8. - If 99(t) satisfies (2.4), then ~ an is summable ( T ; l) for 1:~-- 1  2,
and in particular summable (B).

We have to show that

where

In (11.1), is to be replaced by 0 if m + n ---- 0. We may however drop this con-
vention, and suppose to be defined by (11.2) for all m and n. For tn= 0(~ n ~),
and the change in Tn which results from this change of convention is

which obviously tends to zero.

(9) VALIRON, 10.
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Substituting from (11.2) into (11.1), we obtain

where

Writing H for nL-2, we have

where

By a familiar formula in the theory of elliptic functions

say; and what we have to prove is that

12. - We write

(taking in 8, all the terms of S for which m + 0). If, as we may suppose, then

and

for large n. If follows that

We may therefore replace S by Si in (11.4), and the proof of (11.4) is reduced
to a proof that

It will be observed that this integral reduces to DIRICHLET’S integral for l=2.
We now write



53

say, choosing r small enough to make

Then

and

as in § 3; it is here only that we use (2.4). Finally

13. - We can deduce Theorem 2 (and a more general theorem) by combining
Theorem 8 with appropriate Tauberian theorems, which we state as lemmas.

Lemma p. - If ~ an is summable ( T ; l), and satisfies (10.2), then it is

convergent.
This, as we stated in § 10, was proved by VALIRON (as a special case of a

much more general theorem).
Lemma 7. - In Lemma P the condition (10.2) may be replaced by the

more general condition
(13.1)

This has been proved explicitly when k=1 by SCHMIDT, VIJAYARAGHAVAN
and WIENER. The lemma as stated requires an adaptation of their methods which
has been undertaken for us by Mr. J. HYSLOP.

Taking / = 2 2013 2~ and combining Theorem 8 with Lemma P, we obtain

Theorem 2. If we use Lemma y, we obtain
THEOREM 9. - It is sufficient that (i) should satisfy (2.4) and (ii) an

should satisfy (13.1).
We have no direct proof of this theorem.

Criteria of Young’s type.

14. - We consider next a group of criteria suggested by the well-known cri-

terion of YOUNG. In these there is no « order &#x3E;&#x3E; condition, but there are two
conditions on (p(t). It is characteristic of these criteria, as of YouNG’s, that 
is assumed to be of bounded variation except at or at any rate for 

with some c and arbitrary 3.
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YOUNG’S test runs : it is sufficient that

and

An interesting special case is that in which

T(t) is an integral except at t=0, and

or at any rate

In this last case, if 1p is 99’ when gg’ 0 and 0 otherwise, then

and

so that (14.2) is certainly satisfied. A rather more detailed version of a similar

argument will be given in § 16.

15. - When we modify YouNG’s criterion in the manner suggested by Theo-
rems 2 and 3, we obtain

THEOREM 10. - It is sufficient that (i) should satisfy (5.1) and (ii) that

for some 4.

The emphasis here is on large positive d, whereas in Theorems 2 and 3 it

was on small positive 3. We may suppose d &#x3E; 1. From (15.1) it follows that

(’0) This condition may be replaced by

or by still more general conditions: see POLLARD (8), HARDY and LITTLEWOOD (3). We cannot

prove corresponding extensions of Theorem 10.
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and so that

(15.3)
We choose r so that

and split up as in § 3. Then Si(1)- 0 and S2{~,) -~ 0 as in § 5. As
regards S3 (~,), we have

say. Here

and

by (15.3) and (15.4). Finally

16. - The special case corresponding to the special case of YoUNG’s theorem
quoted in § 14 is

THEOREM 11. - It is sufficient that (i) should satisfy (2.4), (ii) 
should be an integral except at and (iii) that

It is sufficient to prove that (15.1) is satisfied. In the argument which
follows and O’s are uniform in t and E (the constants which they imply
are independent of both t and e).

We have first
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Next, if we define 03C8 as in § 14, we have

Finally

by (2.4). From (16.2), (16.3) and (16.4) it follows that

which is (15.2). This proves Theorem 11.

17. - The theorem which corresponds here to Theorem 7 is

THEOREM 12. - It is sufficient that

(ii) is an integral except at t=0, and

for any positive ð.

We leave this theorem and its obvious generalisations to the reader.

The conjugate series.

18. - There are simular theorems concerning the convergence of the series
conjugate to a FOURIER series. If we suppose (making the simplifications corres-
ponding to those of § 1) that y(t) is odd and

then the problem is that of the convergence of ~ an. We state one theorem
only, which corresponds to Theorem 2.

THEOREM 13. - If .. -f ,

(iii) an= 0(n-6) for some positive ð, then
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The standard arguments show that (18.1) is equivalent to

and this may be proved by arguments similar to those of § 3.

Transforms of Theorems 2 and 11.

19. - There is a theorem about general trigonometrical series which is in a

sense the « reciprocals or u transform &#x3E;) of Theorem 2 (1~).
THEOREM 14. - If (i) an= 0(n-6) for some positive ð, and (ii)

then

(19.2)

when t - 0.

We may express (19.2) by saying that ) an 18 summable (R,1), i. e. by
~ RIEMANN’S first mean ~, to s. It is familiar that £ an is summable (R, 2)
whenever it is convergent.

We may suppose s=0. We choose r so that

and write

(19.4)

(19.5)

Here

(19.6)

so that it is enough to prove that

Summing partially, we have (12)

(H) In our note 2 we gave a general description of a heuristic process of « reciproc-
ation ~ which often enables us to derive one theorem about trigonometrical series from another.
Theorem 14 was derived from Theorem 2 in this way; but the process requires, as usual, a
certain amount of adjustment of the data, and is difficult to describe precisely.

(1z) Here has no connection with the A of § 15.
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by (19.1). Also

say. In ~4~ and

so that

(19.10)

On the other hand, in ~5, nt ~ 1 and

and so

Collecting our results from (19.8)-(19.11), we obtain (19.7).
If ) an cos nt is the FOURIER series of 99(t), we can state the conclusion

in the form

20. - We end by proving
THEOREM 15. - If (i) ~ an cos nt is the Fourier series, or Cauchy-Fourier

series, of OP(t), (ii) Sn satisfies (19.1), and (ii)

for some d, then

when t - 0.

This theorem is related to Theorem 11 much as Theorem 14 is related to

Theorem 2. We have however replaced (16.1) by the more restrictive condi-

tion (20.1). There is no doubt a theorem with a « one-sided » condition, but we
have not attempted this generalisation.

Some hypothesis is required to establish a connection between the series

and and the most natural hypothesis for this purpose is (i). When we say
that £ an cos nt is the CAUCHY-FOURIER series of we mean that 99(t) is

LEBESGUE integrable except at 0 and that
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In these circumstances is the FOURIER sine coefficient of the odd and

continuous function X(t), and

the series being summable ( C,1). We shall in fact prove incidentally that the
series is convergent.

We take 
’

and (assuming provisionally the convergence of the series) write

We show that X, (t) - 0 as in § 19, and it remains to prove that

We write (13)

Then

say, where

We shall prove (a) that X3,N(t) and X4,N(t) tend to limits X3(t) and X4(t) when t is
positive and fixed and and (b) that

when t - 0, uniformly in N. It will then follow that X2, N(t) tends to a limit X2 (t)
when (so that the series of the theorem is convergent), y and that

when t -~ 0 ; and this will prove the theorem.

(13) If q is LEBESGUE integrable, so that ~ an cos nt is a FOURIER series, then the intro-
duction of N is unnecessary. We may replace N at once by oo, the term by term integration
in the argument which follows being justified by « bounded convergence ~.
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21. - We require the following properties of Bv, N(~c). In the first place

for all u, v, N. Next

for |u|  3/2 03C0 and all N. Thirdlyfor I u |  3/2

for 1 2a and all v, N. Finally

for every 2c and v, when and Sv(u) has the properties expressed by
putting in (21.1) and (21.2).

22. - We may confine our attention to X3,N(t), the corresponding discussion
for X4, N(t) being similar but a little simpler. We write

and consider ro3, W2, W4 and coi in turn.

First

when N - 00, since T is LEBESGUE integrable in the range and 8v, N - S, boun-
dedly. Also

uniformly in N, by (20.1), (20.3) and (21.1).
Secondly

for the same reasons as in (22.2). Also
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by (20.1~, (20.3) and (21.2). The integral here is

and so, by (20.3),

uniformly in N. A similar argument shows that

and

uniformly in N.

Finally, if

we have

The first term tends to

The second is

and (by the RIEMANN-LEBESGUE theorem) tends to

Hence

Again, the first term in (22.9) is
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uniformly in N, by (21.2) and (20.3); and the second is

by (21.3). Hence

(22.11)
uniformly in N.

It follows from (22.2), (22.4), (22.6) and (22.10) that

when N - 00, for any fixed t &#x3E; 0 ; and from (22.3), (22.5), (22.7) and (22.11 ) that

uniformly in N. There are similar results for X4, N(t); and the theorem follows
as was explained at the end of § 20.
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