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ON FUNCTIONS OF RECTANGLES

AND THEIR APPLICATION TO ANALYTIC FUNCTIONS

by STANISLAW SAKS (Warszawa) and ANTONI ZYGMUND (Wilno).

1. - BESICOVITCH has recently proved the following generalizations of the
OSGOOD and the RIEMANN theorems (1). 

’

A) If a function f(z) of a complex variable, defined in an open simply con-
nected domain D, is known to be continuous at all points of D and to be diffe-
rentiable at all points, except, possibly, at the points of a set E of finite or of

enumerably infinite linear measure (2), then f(z) is also differentiable at the

points of E, and thus is holomorphic in the domain D.

B) If a function f(z) of a complex variable, defined in an open simply con-
nected domain D is known to be bounded in the domain and to be differentiable

(i. e. to have a finite derivative) at all points of the domain, except, possibly,
at the points of a set E of linear measure zero, then, for every point a of E,
the limit of f(z), as z tends to a through values of D-E, exists, and the
function f(z), defined at the points of E by the values of these limits, is also

differentiable at the points of E and thus is holomorphic in the domain D.
In this paper we intend to give theorems A) and B) in a more abstract

form, viz. in a form of theorems on additive functions of rectangles. In the

case a=o, where a denotes the order of length (see below), the exceptional sets
considered in Theorems 5.1 and 5.2 become enumerable and we refind the well

known theorems of LEBESGUE and DE LA VALLÉE POUSSIN. In the case a=1

we obtain the theorems of BESICOVITCH in a slightly more general form.

2. - The Lebesgue measure and the diameter of a point set E will be denoted
respectively by and 6(E). Given an enumerable family of sets and

a number a ~ 0, we shall put

(1) BESICOVITCH [1], Theorems 2, 1. Cf. also TONELLI [1].
(2) A set E is said to be of enumerably infinite linear measure if it can be split into

an enumerable set of sets of finite linear measure.
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Let E be a point set. By we denote the lower bound of all numbers

where G is an arbitrary family of circles covering E and satisfying the
condition 8a(~)  n-1. The limit will be called the length of

n ~ ~

order a of the set E (3). In the sequel it will be generally assumed that 0 a 2.
It will be readily seen that -

A set E that is the sum of a sequence of sets of finite length of order a
is said to be of enumerably infinite length of order a (4). For the sake of
brievity we shall term such sets the Ba-sets. Bo-sets coincide, obviously, with
the enumerable ones. In the case a=1 the expression « of order a » and the

index a in the above notation will be usually omitted.

3. - We shall only consider the rectangles and squares with sides parallel
to the axis. A function of rectangles is said to be additive if 

==.F(7i)-{-~(72) for any pair of adjacent rectangles. It is said to be continuous

if F(l)-+ 0 whenever 
Let now be a function of rectangles and x an arbitrary point. Consider

the four expressions

S denoting an arbitrary square containing x. The numbers F(x) and F(x) are
called respectively the Iupper and the lower derivatives of F(x) at the point x.
When F(x) =F(x) we shall call this common value the differential coefficient

of F(x) at the point x and shall denote it by F’(x).
We shall say F(I) has the property (Lt) in a rectangle 10 if Fa(x) &#x3E; - Qo

everywhere in Io ; if, moreover, everywhere in Io, we shall say
that F(I) has the property The analogous properties (L7) and (17) cor-

respond respectively to the inequalities Finally, if a

function has both the properties (It) and (17) (respectively (Lt) and (L7)) it

will be said to have the property (1a) (respectively (La)).

4. - 0,, will denote the n-th net on the plan, i. e. the enumerable set of

squares into which the plan is divided by the two systems of parallel lines

The squares belonging to 1Pn will be called meshes of order n.

(3) See HAUSDORFF [1]; HAHN [1], pp. 459-461.
(4) See footnote (’).
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LEMMA 4.1. - Given a set E and non negative numbers N, ~ &#x3E; 0, a ~ 2,
there exists a i of meshes of order &#x3E; N, which satisfy the
following conditions:

(ii) to any point x of E there corresponds an integer n&#x3E; 0, such that
any mesh of order n that contains (5) x belongs to ~i.

Proof. - Let be a sequence of circles such that

and

Let, for every i, Ni denote the posive integer such that

It is easily seen that there exist at most four meshes of order N2 that have points
in common with Ci. Let % be the set of all meshes of orders Ni, N2,...., Ni,....
that have points in common respectively with the circles C,, C2).....) Ci,.... The set Z
obviously satisfies the condition (ii). Next, it follows from (4.1) and (4.2) that

and so the condition (i) is also satisfied.

5. - LEMMA 5.1. - If an additive and continuous function F(I) has the
property (1+), where O.::Ça.::Ç2, in a rectangle Io, and if everywhere
in 10, perhaps, for x belonging to a Ba set D c Io, then 

Proof. - On account of the continuity of we may assume that 10 is a

mesh, say of order No.
Let s be an arbitrary positive number and let G(l) === F(l) + 8 - · ~ I ~. Put

where for

Let Ri, n denote the set of points x in 10 such that

for any mesh S of order ~ n containing x. Since possesses the property 
we have

(5) There exist at most four meshes that have this property.
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and therefore, since the sets Ri,,, are measurable (B) (more exactly, any of them
is the product of a sequence of open sets)

where for n &#x3E; 1, and (i =1, 2,....).
Now, by Lemma 4.1, there exists for any pair of positive integers n, i, an

enumerable set Zi,,, of meshes of order &#x3E; n that are contained in Io and

satisfy the following conditions:

(5.4) for each point :r in Di, n there exists an integer n&#x3E;No, such that any
mesh of order n containing x belongs to 5i, n,
(5.5) each mesh S that belongs to 5i,,, has common points with Di, n, and,
consequently, satisfies the inequality (5.1).

00

Let us put 5 =-- E 5i, n - It easily follows from (5.5), (5.3) and (5.2) that
i, n=1

for any sequence of (different) meshes of 55 we have the inequality

We shall say that a rectangle has the property (A) if it is the sum of a

finite number of meshes S, each of which either belongs to S or satisfies the
inequality If follows from (5.6) that

for any rectangle I having the property (A).
We are now going to prove that lo has the property (A). In fact, suppose

that it does not possess this property. Then, by the well known argument, a
decreasing sequence 10 = S1, 52,...., Sk,.... ~ of meshes can be found, so that

no Sic has the property (A). Hence, each Sk neither belongs to S nor satisfies
the inequality &#x3E; 0. However this is impossible, for, if the limiting point xo
of the sequence Sk ~ belonged to D, it would follow from (5.4) that at least
one Sk belonged if, on the contrary, then + E &#x3E; 0
and, consequently, G(Sk) &#x3E;0 for all k sufficiently large. Hence lo has the pro-
perty (A) and therefore the inequality (5.7) holds for I=Io. Thus

and, since B may be chosen arbitrarily small, 
THEOREM 5.1. - If an additive and continuous function F(I) has the pro-

pert y (la+) (O~a2) in a rectangle Io, and if the inequality - 
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where 1p(x) is a summable function, holds everywhere in Io, perhaps,
o?,,t a Ba-set, then, for any rectangle I c Io, we have

Proof. - Let be a minorant (6) of 1p(x) , i. e. an additive and conti-

nuous function of rectangles such that + !P(~)  y~(x) for every x in I,,.
From the inequality iji(x) =F + oo it follows that has the property (17) and,
therefore, the difference J (7) has the property (1~). Furthermore,
everywhere in Io, except, perhaps, on a we have the inequality

Hence, by the preceding lemma, J(7)~0, i. e. Since the last ine-

quality holds for any minorant P(1) of ’ljJ(X) , we have

and the theorem is established.

From theorem 5.1 we obtain at once

THEOREM 5.2. - If an additive and continuous function F(l) has the pro-
(la) (o  a  2) in a rectangle Io and if both derivatives F(x) and !(x)

are summable over Io and finite everywhere in Io, with the exception at
most of a Ba-set, then F(I) is an absolutely continuous function in Io,
and, therefore

for any rectangle 1 c 10.

6. - Now let f(z) be a (complex) continuous function of a complex variable.
For any rectangle I consider the complex integral

taken along the boundary (1) of I in the positive sense. The real and imaginary
parts, U(I) and V(-[), of this integral are both additive and continuous functions
of I, and f(z) being continuous, they satisfy the condition (li). Next, il is easily
seen that U’(z)=V’(z)=0 at any point z at which f(z) has a differential coef-
ficient. Moreover, the derivatives U(z), U(z), V(z), V(z) are finite, whenever

(6) See DE LA V ALLÉE-POUSSIN [1], pp. 74-76.
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Hence, using the MORERA theorem, we deduce from Theorem 5.2 that :

If a complex continuous function f(z) is differentiable almost everywhere
R and if lim + h) - f(z) I everywhere, except, perhaps,in an open region R and if h-0 I h I  00 everywhere except, per aps,

on a set of enumerably infinite length, then f(z) is holomorphic in R.

7. - Lemma 5.1 as well as Theorems 5.2 and 5.3 hold true if the condi-

tions (It) and (la) are replaced respectively by (Lfi) and (La), provided that
the exceptional Ba-sets are simultaneously replaced by sets of length zero of
order a. The proofs become even simpler. Consequently by the argument similar
to that used in § 6, we get the second theorem of BESICOVITCH generalized
as follows :

If a complex function f(z), bounded in an open region R, is differen-
tiable almost everywhere in R, and if lim + h) h - f(z) I  00 everywhere in R,

h-&#x3E;0 I I
with the possible exception of a set of length zero, then f(z) is equivalent
(i. e. almost everywhere equal) to a function holomorphic in R (7).

(7) It should be noticed that from the hypothesis of the theorem it follows that f(z) is

measurable on any straight line in R, and consequently the complex integral (6.2) may be
considered in the LEBESGUE sense. We also need the following analogue of the MORERA
theorem : if the complex integral (6.1) of a bounded and measurable function vanishes for

any rectangle I, then f(z) is equivalent to a holomorphic function. This follows at once

from the MORERA theorem by the well known argument of integral means.
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