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THE MECHANICS OF THE STABILITY OF A CENTRAL ORBIT

by OLIVER E. GLENN (Lansdowne, Pennsylvania).

I.

The astronomical type of orbit and the trajectory of an electron in the atomical

realm, may both be studied, in relation to stability, through the circumstance of
their perturbations. Especially significant is the automatism of self-restitution

under small perturbations, which is a property of these trajectories. The orbital
arrangements which form the atom of any chemical element, under typical con-
ditions, undergo small disturbances, with the result that matter can pass through
a great variety of modifications while the atoms themselves retain their essential
identity through this power of restitution. A. BERTHOUD of Neuchatel discourses (1)
as follows upon this property: « The principle of conservation of the elements

is thus nothing more than the expression of the fact that, in chemical phenomena,
these modifications of the atom are never sufficiently radical to cause a complete
upset in the balance of the (orbital) system which always returns to its original
state as soon as the primary conditions are re-established ».

Postulates of the property of self-restitution under perturbations, of an astro-
nomical orbit, form the foundation of this paper. Its problem involves the question
of the determination of all potential functions for which central orbits are stable,
and applies to electronical orbits which satisfy BOHR’S laws.

Definition : A continuous central orbit, (represented by one or by two polar
equations), is stable if the rotating body is maintained upon it permanently,
by the potential.

II.

Consecutive Curves and Interpolation.

Let C be any branch of a continuous space curve, ir==f,(99), 
which is an orbit of a material particle and consider any curve C’ consecutive
to C according to the following definition (2). Instead of the two curves joining A

(1) A. BERTHOUD : The New Theories of Matter and the Atom (Translated) ; HERBERT
SPENCER : First Principles (4 ed.), p. 501.

(2) DIENGER : Grundriss der Yariat-ionsrechnnng, p. 1.
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and take two broken lines, one being a system of chords, a2a3,...’., of C,
and the other a system of segments hi b2, bzb3,....,
choosing ai, bi, as corresponding vertices. Assume
all distances aibi less than 6 with 3 arbitrarily
small. Suppose that all segments approach
zero, their number in the meantime increasing
indefinitely so that there is transition to the

curve C. Simultaneously then b2b3,.... can
be made to approach as a limiting position a curve C’ such that the distance

between any two corresponding points on the two respective curves is less than 6.

III.

The Perturbations of an Astral Orbit.

A planet in solitary rotation about a sun whose gravitational attraction is

newtonian would describe a plane elliptical orbit. Astronomical suns, however, are
in fact attended by planets in groups, some being moons. The mutual attractions
of the planets within a group perturb the orbits of all so that the actual trajec-
tories, constantly shifting in all three dimensions by small amounts represented
by o of § II, exhibit perturbations from truly elliptical forms. In addition account
must sometimes be taken of orbital alterations due to relativity and inequalities
due to small changes in the central potential.

The circumstances relating to electronical orbits are analogous.
Definition : Consider the problem of two bodies where a heavenly body

subject to small perturbations, is otherwise in stable rotation around another,
that is, around a center of force. The totality of finite orbital segments which

pass near a given segment S of the totality in a chosen time interval, is the

field F of perturbed orbits in the vicinity of b~’: (By definition).
Whether the stable orbit is a closed contour about the center of force, or

not, we can waive the question of the actual mechanical description of all of the
curves of F and imagine as dravn near a segment of the stable orbit a field

of perturbed orbits any one of which could be traversed by the body if it were
properly perturbed as it passes through the field.

Except where further stipulations are added the following are our hypo-
theses.

Poslulate 1. - We assume that the potential due to the center of force 0~

is a definite function of the radius r, constant over a small sphere whose
center is 0.

Post1tlate 2. - We assume it to be always possible to draw through the
field F a segment C, (which may or may not belong to F), consecutive to the
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segments S in the sense of § II, such that the segments of F would all return
to coincidence (3) with C if the perturbative causes were removed.

The postulates 1 and 2 assign to the orbit of reference C the power of

self-restitution within the field during the operation of the perturbing forces.

The existence of C is to be proved by the determination of its equation.
The manner in which the perturbing influences are assumed to be removed

is of importance. In the astronomical problem we suppose the release to be

sufficiently gradual that the equivalent variation of the central perturbing function
described in § VI is not discontinuous or even sudden, as this would be equi-
valent to an impact upon the rotating body. This restriction will be found to
be inherent in the analysis, (cf. § IX).

If the rotating planet is in a librating plane or if its perihelion is advancing
it may be necessary to establish an upper bound to the time interval which

delimits the field.

IV.

Restitution by Transformation.

The following construction relates to a three-dimensional field about an orbit
of reference C.

Let C’ be an arbitrary curve of the field. The coordinates of P, which is any

point of C, are OP= r, 
The coordinates of Q are 

We have RQ=6,  QOP= -7:, and u and 03C4

are small. The center of the force is 0.

Let the equations of 
and assume as observationally known the coor-
dinates of n points Q, distributed with some
regularity along C’:

A plane SO Qi drawn through such a point intersects C in a point Pi : (ri, ggi, Oi),
where 

°

If (r, a) are variable coordinates they may be considered to be functionally
connected through the n determinations, (ri, gi), (i =1,...., n), and the coeffi-

cients a,...., x, in the function

may be assumed to have been calculated by methods current in the theory of

curve-fitting, from (ri, (i=1,...., n).

(3) In the sense of analytic approximation.
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Likewise, we may write

since (0, ’l) are functionally connected through n determinations (0i, z2), (i === 1...... n),
furnished by the observations. The accuracy of the representations (1) evidently
depends upon the magnitude of n. The length of the field F is determined by
that of the segment C’ which contains the n observed points Qi. The curve C’
traverses F as a,...., x’, are allowed to vary. If the equations of C’ are assumed

g~’ _ ~(o’) ~, there follows:
THEOREM 1. - Any curve C’ of the field F can be returned to 

tive coincidence with the orbit of reference C by a transformation of the type,

(2) T ; o’ = o -~-- sq(o), (s, t-0).
The operation TC’ therefore represents the quality of self-restitution which

is inherent in the orbit of reference as a result of the assumed central potential.
We revert to this theme in section VII. The property of ~self-restitution is a

necessary condition for stable astral motion.

V.

The Equations of the Perturbed Orbit.

The assigned equations of C’ and the conditions of the problem may be
combined to give,

Hence, by solving the two linear differential equations we determine the equa-
tions of C’, from those of C assumed as arbitrary. The solutions are,

From these at once the equations of C’, in the form, g~’=~(r’), g~’=~(9’), may
be written. 

°

If the small numbers s, t are negligible beyond the second powers only, the
two differential equations are
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Thus whatever the forces may be which, under the postulates, actuate the motion,
the following is the orientation of the figure of the orbit. The locus of 
is an arbitrary surface of which every section by a plane through the z axis
is a circle with its center at the origin 0. We refer to it as a pseudo-sphere.
The surface q=1(0) is a cone ~1 with. its vertex at 0. The intersection of these

two surfaces is the orbit C’ and C is consecutive to the latter.

The coordinates assumed for points of C are of the heliocentric type.

VI.

The Perturbing Function.

In this section a more special case is assumed in which the cone ~1 is the (r, 99)
plane, both orbits C, C’ being curves in this plane. The point 0 being the polar
origin, the equation of C may be derived in the well-known form:

P being the force function, and by interchange of the dependent and independent
variables this becomes,

The transformation is now

and the equation (4) does not exist. In the equation of C’, viz: 99’==,q(r’), it is

convenient to drop the primes. The force function Pi whose trajectory is the

arbitrary C’ is then obtained by substituting q(r) four 99 in (7).
We abbreviate as follows:

Then from (3),
(9) 

(10)

Hence,

Similarly the force P corresponding to C is obtained by replacing g~ by f in (7);
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Hence the perturbing function whose effect, when added to N is to shift C

into C’ is L=M -N and is equal to

The use of L as a practical formula requires the knowledge of the equation of
the orbit of reference in coordinates of the heliocentric type. Note that when
our formulary is adapted to planetary perturbations in the solar system it is not
assumed that newtonian gravitation is invariably the law of the central force.

Every curve of the field F is the free trajectory of a force function M

corresponding to a definite choice of the set a,...., x, and M is obtained by
adding the perturbing function L to the given force function N.

VII.

The Orbit of Reference.

The mechanical property of self-restitution will be as well fulfilled if, instead
of the curve C’ being returned to coincidence with C by the removal of pertur-
bations, it returns to some other curve Co which could be brought into coinci-
dence with C by a small translation which does not also bend the curve,

(cf. Postulate 2).
. Both C and Co, when plane, are integral curves of (6). In three dimensions

they are integral curves of the simultaneous equations (4),

where P(r, 0) is the force function.

We refer to the case where C’ returns to Co instead of to C as that of an

advancing orbit of reference. A planetary orbit whose perihelion advances is an
example.

Consider the formal equations obtained by transforming C’ by the corre-

sponding T: 
r t’I I

(4) These were derived by the author. They are probably new.



303

where A, A’, B, B’ are arbitrary constants. It follows that C’ is returned to C
as a particular case,.but in general it is transformed into a neighboring curve,
which can be Co, viz:

The rest of this paper treats exclusively of plane motion, the second equa-
tion (14) being omitted. Since the determination of the potential may be said to
be the principal objective, this is particularization only in appearance, if we assume
that the force is uniform with respect to all directions outward from the center.

By writing f(r) as f(r, a, b) where a, b are the constants of integration of (6),
the hypothesis that Co is (14) gives

Therefore a special case of the equation, of Co, is

Substituting from (15) in (7) we obtain the corresponding special formula for
the force:

Proposition : To determine the general formula for f(r). The object in
constructing the field F was to study the question of mechanical stability. Let To,
(cf. § VI), as an expression involving t and p, be written as T(t, p). Suppose K
to be a curve C’ of F and let t1 be the value of t for which T(ti,p)K = 00. If t2, t3
are any admissible values of t such that t2 + t3 = ti, the curve T(t2,p)K=L, is
a curve of the field. For,

Hence L is the curve of F, which is returned to Co by T(t3,p).
Thus K belongs to a single parameter system S, containing Co and forming

a subset of ~’. The curves of the system are obtainable from .K by the trans-
formations T(ti, p) of the set [T(t, p)] obtained by varying t in T(t, p). The
parameter is t, with a limited, though continuous, range of variation and Co
corresponds to the value If S is the system of integral curves of a (first
order) differential equation, the latter must be a universal invariant of [T(t,p)]:
But we can readily determine all of the first order universal invariants. Thus

we shall determine a differential equation which Co satisfies, identify it with (7)
and determine P(r) in its most general form. 

’

Annali della Scuola Norm. Sup. - Pisa. 21
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’ 

VIII.

Universal Invariants.

Keeping in mind the essential fact of the mechanics, that any To operates
to return C’ to a Co whenever perturbative conditions permit To to act, let us

determine the universal invariants of the first oder of the set [T(~,~ro)]. We assume
the general form, in the primed variables, as Q(r’, 99’, dr’, dcp’) =0. Transforming Q
by the typical To of [T(t,p)],

Hence Q is the solution of the linear partial differential equation for which
LA GRANGE’S system is

The general solution, from (18), is readily found to be

Hence the general form for the equation of Co, universally invariant under
is

(19) 
,

The integral is

(d arbitrary). Hence,

and by substitution of ~ from (20) in (7),

In case the rotating body describes a closed contour around the center of force,
which is of period 2nn, then, since Co coincides with it in F, Co is of period 2nn.
Since To is identity in 99, all curves of S are periodic and (19) is, - that is,

is a periodic function if the whole orbit is periodic.
LEMMA 1. - Excluding the use of any field curve Co for which the following

limit is non-existent or very large :

we can take to be a binomial, linear in 99.

(5) CAUCHY’S convergence ratio for MACLAURIN’s expansion of u(gg).
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Proof: The field F may be short like the arc used in computations of the
elements of a planetary orbit from three observations. Assuming this, let the

polar axis be chosen to intersect Co in the central region of F. The entire arc Co
will be traversed by the end of the radius vector (of Co), as cp varies between

narrow limits near to zero. The MACLAURIN expansion of y(cp) will converge

rapidly and p(g) may, with accuracy, be replaced by its first two or first three

terms. Thus

also the value zero for can be avoided by a small alteration of posi-
tion of the polar axis. If, for accuracy, p(g) is taken to be quadratic in g the
force P(r) in (21) involves and is not single-valued, (cf. Postulate 1).

The question, affecting generality, whether we do not pass below an admissible
minimum of length for F when requiring the expansion of to reduce to its

initial terms, is avoided by assuming the distance from the center of force to
the field to be sufficiently large in comparison with the length of F.

Using (20) in the form (~, p constant), we obtain, under the

assumptions and postulates, (from (7)).
THEOREM 2. - The orbit of reference of Postulate 2 is proved to exist by

the determination of its equation. It passes through the field F as an are of

A necessary condition that a central orbit should remain stable after small

perturbations is that the central force should be

The force was determined from a segment of the orbit (within the field). The
whole orbit is then obtained by integrating (6). The formulas (21), (24) are
equivalent to a generalized law of gravitation.

The proof when is periodic excludes, as an orbit of reference, the for-
mula (15). This is the orbit (19) for which, under the present hypotheses,

If the stated periodicity of the whole orbit is not assumed, (15) is an admissible Co.

IX.

Newtonian gravitational force as a special case.

The forms of P(r), for the successive values of n in (24), with
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are as follows :

Several new conclusions relating to astronomy have been derived from these

results, among them the proof that the mass of a stable asteroid is necessarily
greater than a fixed lower limit (6). We conclude with a computation of an

example of such a minimum mass.
The analysis associated with this problem also shows in detail how the for-

mula (25), {n=3), becomes, in a special instance, the newtonian gravitational law
of inverse squares.

We write the equation of Co in the form,

with,

The integrated form of (26) is,

where,

The formula for central force analogous to (25), n == 3, may now be reduced to,

Note that when u is large and v small evidently the orbit of reference (27),
(~=za+8), can pass through the field F as an ellipse with small eccentricity.
Then the above formula may be written, (e . 0, e2 =0),

and, when r is large enough to make the last two terms negligible within the
approximations being employed, this is the newtonian force plus a perturbative
correction. The latter may be negligible or considerable according to choice of
the constant e. We select the arbitrary 7 so 16y2e2 is the gravitational constant.
Note that the set (u, v) can remain fixed while the set (a, b, c) enjoys one degree
of freedom.

(6) Proc. Indiana (U. S. A.) Acad. Science, Vol. 40 (1931), p. 265.
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The product of the masses 31, lVl" of the two attracting bodies is now

and since 2c is large, (the aphelion distance when ~&#x26;=0~, and v small, this product
is seen to be necessarily large. Hence, if M is the mass of the sun, the other

planetary body can not have a mass M" so small that MM" would cease to be
large. The limiting value of M" will now be computed for the case of an asteroid
in solitary rotation upon the earth’s orbit.

The procedure consists, first, in the choice of a unit of mass, appropriate for
use by an observer situated upon the revolving asteroid ~. We assume the mean

density of Z to be that of the earth.
Secondly, we determine the minimum mass of 2, for which the formulas allow

the gravitational attraction to remain approximately newtonian.
With the linear unit chosen as 100,000 miles, the equation of the path of

the stable earth is

By placing an instance of (27), viz. (7),

in coincidence with (arc) at a chosen point, (taken as ~= 10°), the eccentricity a
being assigned, the quantity V is determined. It may be computed from the

equation rc=rd, Vre then solve for the mass Jf of the sun and the mass M’ of
the earth from,

The unit will be the fractional 1lM part of the sun’s mass.
Next, we substitute ~ for the earth on the path and place a field curve

in coincidence with (arc) at the same point, (where ~p= ~0°). Writing M’IX for
the mass of Z, v is determined from and e from (X being
assigned).

Thus, u, v, e being known, the first term S and the second T, of the bracketed

expression in (28), are determined. The last two terms are negligible. But T must
be small in comparison with S, else the newtonian law is vitiated. This comparison
gives the test for largeness and smallness in the values of lVl".

When a =.01 and X=10,000 the values at the point cp=100 are,

and these are evidently too near to equality.

(~) Cartesian equation:
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There are, then, two and only two ways to secure divergence between the

computed values of S and T. First we can diminish the eccentricity. However,
it is assumed that an asteroid will not maintain forever an orbit whose eccen-

tricity remains less than .00001. Secondly we can decrease X, that is, increase
the diameter Y of Z. The following table shows the typical results.

Thus with a at its minimum (.0001), as Y ranges from 790 miles to 170 miles,
the ratio SlT varies from near 220000, which is sufficiently large with some to
spare, to approximately 22 which is too small. Hence the least diameter is near

to 370 miles. With a=.00001, the least diameter is approximately 170 miles.
Therefore:

LEMMA 2. - The minimum diameter of an asteroid whose mean distance

from the Sun, and mean density are respectively those of the earth, exists,
and is not less than 170 miles. With a smaller diameter the asteroid is

either unstable or else the potential between it and the Sun is not newto-
nian (Cf. the hypotheses of lemma 1).

The analogous computation for a least asteroid on the orbit of Mars, gives
a minimum which is smaller by about 100 miles, the mean density being assumed
equal to that of Mars.

A possible verification of the result is obtained if we consider the indentations

(« Craters ») on the surface of the moon to have been caused by asteroids falling
throughout the ages. The diameters of these indentations range from small values
up to near 130 miles, but not larger.

The zone of asteroids is limited in position by the gravitational laws.


