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DIOPHANTINE APPROXIMATION AND DEFORMATION

BY MINHYONG KIM, DINESH S. THAKUR, Jos6 FELIPE VOLOCH (*)

ABSTRACT. — It is well-known that while the analogue of Liouville's theorem on diophan-
tine approximation holds in finite characteristic, the analogue of Roth's theorem fails quite
badly. We associate certain curves over function fields to given algebraic power series and
show that bounds on the rank of Kodaira-Spencer map of this curves imply bounds on the
diophantine approximation exponents of the power series, with more 'generic' curves (in the
deformation sense) giving lower exponents. If we transport Vojta's conjecture on height inequa-
lity to finite characteristic by modifying it by adding suitable deformation theoretic condition,
then we see that the numbers giving rise to general curves approach Roth's bound. We also
prove a hierarchy of exponent bounds for approximation by algebraic quantities of bounded
degree.

RESUME. —APPROXIMATION DIOPHANTIENNE ET DEFORMATION. —Alors que 1'analogue
du theoreme de Liouville sur 1'approximation diophantienne se conserve en caracteristique finie,
il est bien connu que 1'analogue du theoreme de Roth echoue lamentablement. En associant
a des series de puissances algebriques donnees certaines courbes sur les corps de fonctions,
nous prouvons que des bornes pour Ie rang de 1'application de Kodaira-Spencer de cette
courbe impliquent des bornes pour les exposants d'approximation diophantienne de la serie,
les courbes "generiques" (dans Ie sens de deformation) donnant les plus petits exposants. Si
nous transportons - en ajoutant une condition de deformation appropriee - en caracteristique
finie la conjecture de Vojta sur 1'inegalite de la hauteur, alors nous voyons que les nombres qui
donnent les courbes generiques approchent la borne de Roth. Nous prouvons egalement une
hierarchic des bornes pour les exposants pour 1'approximation par des quantites algebriques
de degre borne.
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586 M. KIM, D.S. THAKUR, J.F. VOLOCH

0. Diophantine approximation exponents

0.0. —Let F be a finite field of characteristic p. For /3 an element of F((t~1))
algebraic irrational over F(t) (an algebraic irrational real number, respectively),
define its diophantine approximation exponent E(/3) by

^—(-tog^)log|Q|
where P and Q run over polynomials in F[t\ (integers, respectively), the absolute
value is the usual one in each case and the limit is taken as |Q| grows.

0.1. — The well-known theorems of Dirichlet and Liouville and their analo-
gues for function fields [M] show that

2 ^ E((3) < d(^),

where d{/3) is the algebraic degree of f3 defined as [F(t,/3) : F(t)] ([Q(/3) : Q],
respectively). That the diophantine approximation results and in particular, the
improvement on the Liouville bound of d((3) have interesting implications for
the study of related diophantine equations is well-known since the work of Thue,
Siegel, etc. For the real number case, the well-known theorem of Roth shows that

E((3) = 2,

but Mahler showed [M] that

E{f3) = d{f3) == q for (3=^t-^\

(so that /39 — f3 — t~1 =0) as a straightforward estimate of approximation by
truncation of this series shows. (Here and in what follows q is a power of p.)
Osgood [02] and Baum and Sweet [BS] gave many examples in various degrees.
See [T] for the references to other examples.

0.2. — For given d = d(f3), E(f3ys form a countable subset of interval
2 < x < d. What is it? Does it contain any irrational number? Does it contain
all the rationals in the range? In [Sc2] and [T], the following result was proved.

THEOREM 1. — Given any rational ^ between 2 and 9 + 1 , we can find a
family of /3's (given by explicit equations and explicit continued fractions)^ with
E((3) = IJL andd((3) < ̂ +1 .

The question of exact degree of [3 is easily addressed for explicit families.
(For more, see [T].)
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DIOPHANTINE APPROXIMATION AND DEFORMATION 587

1. Differential equations and deformations

1.0. — Osgood [02] proved that the Liouville-Mahler bound can be improved
to (even effectively)

^(/3)<^W)+3)J

(or rather [^d(f3)\ -h 1, see [Scl] or [LdMl]) for /3 not satisfying the generalized
Riccati differential equation d / 3 / d t = a(32 -(- b/3 + c, with a,6,c € F(t). Most
known (see e.g., [L] for exceptions) examples /3, whose continued fraction is
known, do satisfy Riccati equation and indeed (3 is an integral linear fractional
transformation of /3q. What is the range of exponents for (3 not of this form?

1.1. —In [V2], [V3] there is an observation (for the lack of a better reference,
we provide a proof of this in the appendix) that the Riccati condition is
equivalent to the vanishing of Kodaira-Spencer (we write KS in short-form)
class of projective line minus conjugates of /3. Hence, it may not be too wild to
speculate that it might be possible to successively improve on Osgood's bound,
if we throw out some further classes of differential equations coming from the
conditions that some corresponding Kodaira-Spencer map (or say the vector
space generated by derivatives of the cross-ratios of conjugates of f3) has rank
not more than some integer. It should be also noted that even though the KS
connection holds in characteristic zero, analogue of Roth's theorem holds in the
complex function field case. The Osgood bound still holds (conjectured in [VI],
proved in [LdMl] and again in [LdM2]) by throwing out only a subclass given
by 'Frobenius7 equation

^a^.
' c(3+d

This might be the best one can get. Similarly, the differential equation hierarchy
suggested above might have some corresponding more refined hierarchy.

2. Height inequalities for algebraic points

2.0. — Though we have not succeeded yet in improving the Osgood bound
unconditionally, by throwing out more classes of numbers (we want good
conditions like Osgood rather than a trivial way of obtaining this by throwing
solutions of y1 = P/c(^), where Pjc is a polynomial of degree A:, for j < k < d to
force exponents to be less than j via the Kolchin theorem [01] on denomination,
combined with the proposition of page 762 of [Scl]), we prove existence of
hierarchies, given by deformation theoretic conditions, of bounds, using results
of [K], which we now recall: Let X be a smooth projective surface over a perfect
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588 M. KIM, D.S. THAKUR, J.F. VOLOCH

field k. Assume that X admits a map / : X —^ S to a smooth projective
curve S defined over k, with function field L in such a way that the fibers of
/ are geometrically connected curves and the generic fiber XL is smooth of
genus g > 2. Consider algebraic points P : T -^ X of XL, where T is a smooth
projective curve mapping to S (such that the triangle commutes). Define the
canonical height of P to be

degP*c<; _ (P(T) • uj)h(p\ .= ° = x v / /
v / • [T : S\ [K(P(T)) : L]

where
u j = u j x :=Kx^fKg1

denotes the relative dualising sheaf for X -^ S. This is a representative for the
class of height functions on XL^L) associated to the canonical sheaf KXL • Define
the relative discriminant to be

^ 2g(r) - 2 ^ 2ff(P(T)) - 2
{ ' ' [ T - . S ] [K(P(T)) : L}

The Kodaira-Spencer map is constructed on any open set U C S over which
/ is smooth from the exact sequence

o - r^u —> ̂  — ^x,/u - o,
by taking the coboundary map

KS : f.(^/u) —— ̂ u^ R^f^Oxu)'

THEOREM 2 (see [K]).
1) Suppose the KS map ofX/S (defined on some open subset ofS) is non-zero.

Then
h(P)<(2g-2)d{P)^0(h(P)l/2) if g > 2.

If g = 2, then
W<(2+€)d(P)+0( l ) .

2) Suppose the KS map of X/S has maximal rank, then

h{P) < (2+6)d(P)+0(l).

2.1. —The inequality in 2) was proved [Voj2] in the characteristic 0 function
field analogue, without any hypothesis, by Vojta, who also conjectured [Vojl]
the stronger inequality with 2 replaced by 1 in the number field (and presumably
also in the characteristic 0 function field) case.

2.2. — Modifying the proof in [K] of Theorem 2, we get an hierarchy of
bounds:

TOME 128 — 2000 — N° 4



DIOPHANTINE APPROXIMATION AND DEFORMATION 589

CLAIM. — If the rank of the kernel of the KS map is <: z, then we have

h(P) < [max^2 5——2^) +e1d(P)+0(l), (0 < i < g).

(Note that the maximum is 2 only for i = 0,1.)

Proof. — To be consistent with the notation of [K], we change notation in 2.2
only: let F to be the function field of S and L to be a line bundle. The claim
follows by combining the last displayed inequality in the proof of Theorem 1
of [K] with the argument in the proof of Theorem 2 connecting deg(Gp) to the
rank of the kernel of the KS map.

In more detail, in [K], we have constructed a finite collection of exact sequences

0-^L —>^lx —> G ̂ 0

such that all points P : T -^ X not satisfying h{P) < (2 + c)d{P) + 0(1) will
be tangential to some L, z.e., the composed map

O ^ L — — ^ x ——P.W

will be zero, which implies that there is a non-zero map P*G -^ f^r giving us
an inequality hc{P) < d{P) for the height with respect to G. The bound

<2g—2+€\d(P)+0(l)
L g - z J v -

for the canonical height follows from comparing the two heights using a lower
bound for the degree of Gp. That is,

degGp = 2g - 2 - ̂ (Lp) + ^(Lp) - g + 1
>g- l-i+h1^?) ̂ g - i .

This follows from two facts: First, consider the exact sequence

0 ̂  ̂  ̂  H°(^x)F) —— H°{^x)F) -^ H\0x^ ^ ^F

appearing in the definition of the KS map (the last arrow). Any subspace
of H°({^x)F) not contained in f^ contributes to the kernel of KS. Now, if
degLp < 0, then degGp > 2 ^ — 2 . So we may assume degLp > 0. But,
then Lp is not contained in f*^p (which has degree zero) and hence intersects
with it trivially (because both are saturated subsheaves of (^x)^)- Thus,
H°(LF) n^F = 0 and H°(LF) injects into the kernel of the KS map. Thus,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



590 M. KIM, D.S. THAKUR, J.F. VOLOCH

we get h°(LF) ^ i by assumption. On the other hand, since Lp is not contained
in /*Q^, it must possess a non-trivial map to ujxp ^tom which we get that Lp
is special, i.e., ^(Ly) ^ 1.

For heights, we therefore get

h(P)< \29—2 + e1^(P) + 0(1) < [2 p—2+61d(P)+0(l).
L Cf 1 J Q — ^ -

More precise knowledge of jumps in the bounds would depend on the fine gap
structure for Gp.

2.3. — It would be of interest to have a nice geometric condition that would
allow us to extend to all points the bounds we get for degenerate points, since
this would give us better than a 2+e bound (namely, 2—2/p+e) in the maximal
rank case. But the argument for general points at the beginning of [K] cannot
be improved with the techniques of that paper. We also do not know whether
the points we use below are degenerate or not.

3. Exponent hierarchy

3.0. — We now apply this theorem to get bounds on the exponents for the
diophantine approximation situation by associating to (3 = (3(t) some curves X
over F(t) and associating to its approximations some algebraic points P on them.
Let

f(x)=^f^
z==0

be an irreducible polynomial with f3 = (3(t) as a root and with fi € F[t] being
relatively prime. Let

F ( x ^ ) = y d f ( x / y )
be its homogenization (there should be no confusion with the field F).

3.1. —Assume p does not divide d. Let X be the (projective) Thue curve with
its affine equation F(x,y) = 1. Given a rational approximation x / y (reduced in
the sense that x,y G F[t] are relatively prime) to /3, with F(x,y) = m(^), we
associate the algebraic point P = {x/m^-^.y/m1^) of X. Both F^ and Fy are
not simultaneously zero on F = 1 by Euler's theorem on homogeneous functions
and at infinity there are d distinct points given by F{x^ 1) == 0, so that X is
non-singular and Theorem 2 can be applied. Then

^= | (d - l ) (d -2 ) /

so that 2g - 2 = d2 - 3d, and [K(P(T)) : L} = d. Note that g > 2 implies that
d > 4, which implies g ^ 3.

TOME 128 — 2000 — ?4
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Now the naive height of P is deg(y) (if deg(;c) is bigger than degQ/), it
differs by the fixed deg(/3), so the difference does not matter below, similarly
we ignore 6's which do not matter at the end). Hence

W + 0(k(P^) = ̂ ^W ̂  _ ̂  ̂

Let e = E((3). We want upper bounds for e. If x / y is an approximation
approaching the exponent bound, then degree of the polynomial m(t) is asymp-
totically (as deg(y) tends to infinity) (d-e) deg(^). Since K(P) over L is totally
ramified at zeros of m and at infinity, by the Riemann-Hurwitz formula, we have
(since p does not divide d)

2g{P) - 2 < -2d+ ((d- e)deg(^) + l)(d- 1),

which is asymptotic to (d — e)(d — 1) deg(y).
Hence under the maximal rank hypothesis, the theorem gives us

a-^2^-^-^.
d

This simplifies to e < d/2+d/(d-l), which is slightly worse than Osgood bound,
but approaches it for large even d.

3.1.2. — Also note that if Vojta's conjectured inequality is assumed to hold
in characteristic p under the maximal rank hypothesis (this may be reasonable
to do, taking into account parallel results (Remark 1 above) in the two cases),
we get e < 2d/(d - 1), which tends to the Roth bound 2 as d tends to infinity.

3.2. — Let X have affine equation ^ = f(x), with k relatively prime
with p and d. Corresponding to a (reduced) approximation x / z , let P =
(^/^.(m/^^)1^), where m = F(x,z). Then by Riemann-Hurwitz (as p does
not divide k), we have g == j (d — l)(k — 1), so that

2 ^ - 2 = ( d - l ) ( A ; - l ) - 2 ,

and [K(P(T)) : L] = k. We assume that g > 1.
Now the naive height is deg(z) (deg(rc) differs by an additive constant, so it

does not matter which is bigger). Hence the h(P) + 0(/i(P)1/2) is

( d - l ) ( f c - l ) - 2
k

times that.
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592 M. KIM, D.S. THAKUR, J.F. VOLOCH

Now zeros of m and z can ramify totally, so that Riemann-Hurwitz (as p does
not divide k) gives (for approximation approaching the exponent bound)

2^(P) - 2 < -2k + (1 + d - e)(k - 1) deg(^),

which is (1 + d - e) (k - 1) deg(z) asymptotically. Hence under the maximal rank
hypothesis, the theorem gives (d - l)(k - 1) - 2 < 2(1 + d - e)(k - 1), which
simplifies to

e<^+3)+^.

This is again worse than, but asymptotic to, Osgood bound.

3.2.2. — In this case, if we assume Vojta's bound under the maximal rank
hypothesis, then we get e < 2+2/(/c-l) again approaching Roth bound, this time
with k approaching infinity. So we can say that e = 2 under the maximal rank
hypothesis and assuming the corresponding modification of Vojta's conjecture.

4. Approximation by algebraic functions of bounded degree

4.0. — Similar ideas can be used to study approximation of f3 by algebraic
functions of lower degree in the spirit of Wirsing's theorem [Sc3]. The setting is
as follows: Let (3 as before of degree d over F(t). Now we want to see how close
f3 can be to a of degree r < d over F(t). Let a have height H and be such that
-log |/3 - a\/H is close to e. We use the curves from 3.2: ̂  = f(x) and the
point P = (^./(a)1/^ and [F(t){P) : F(t)} = kr now. Then

h(P) = ((d- l)(A ;- l)-2)^
kr

by the same calculation as before. Also the ramification of K{P) over K{a)
(where K = F(t}) is bounded by (1 + d - e)(k - 1)H. So by Riemann-Hurwitz

2g(P) - 2 < k{2g(a) - 2) + (1 + d - e}(k - 1)H,

where g{a) is the genus of K ( a ) / F . To bound g{a) apply the Castelnuovo
inequality to K(a) viewed as the compositum of F{t) and F(a) both function
fields of genus 0 together with [K(a) : F(t)] = r, [K(a) : F(a)] = H. So

g(a)<Hr and 2g(P) - 2 < 2krH + (1 + d - e)(k - 1)H.

Finally, we can apply Theorem 2, provided the Kodaira-Spencer map is of
maximal rank and get

( ( d - l ) ( k - l ) - 2 ) H (2+6) (2 /c r7 j ^ +( l+d-e ) ( fe - 1)H)
kr < kr—————————— + 0(1)-
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Now divide by H and make H big and e small, obtaining

(d-l)(fe-l)-2 2(2Ar+(l+d-e)(/c-l))
A;r — kr

The last inequality gives a bound for e in terms of d, r and k. If we can take k
arbitrarily large it gives e < j (d + 3 + 4r). Of course this is only interesting
when r < ^ {d — 3) but it seems that other methods that yield improvements on
Liouville's inequality, such as Osgood's, do not give anything in this setting.

4.0.2. — In this case, our finite characteristic version of Vojta's conjecture
gives (under the maximal rank condition) e < 2r + 2, for r > 1.

5. Explicit formulas

5.0. — Now we turn to calculation of Kodaira-Spencer matrix and explicit
formulae for the rank conditions.

5.1. — For X as in 3.1, the basis for holomorphic differentials is

^(a,b) = x^^dx/Fy),

with a, b > 0 and a + b <^ d — 3: Differentiating F = 1 (treating t as a constant
for now), we get

F ^ d x + F y d y = 0 ,

hence d x / F y = — d y / F ^ . Since F^ and Fy are not simultaneously zero, one has
only to look at poles at infinity. Since dx has order two pole and Fy has order
d — 1 pole there, the claim follows.

Since F^dx + Fydy + Ffdt = 0, the relative differential d x / F y has good
liftings: d x / F y in the open set U\ where Fy 7^ 0 and — d y / F ^ in the open set U'z
where F^ 7^ 0. By our assumptions U\ and U^ cover X and Cech cohomology
computation shows that the map

KS : H°(^s) —— H\0x) ̂  ̂

sends d x / F y to F t d t / ( F ^ F y ) . Hence xayb d x / F y is sent to xaybFtdt/(F^Fy).
We calculate the g x g matrix M = (^j) of the KS map in the basis above:

If Pk's are zeros of Fy, i.e. points in the complement of (7i, then since the Serre
duality sends a differential on U\ D U^ to the sum of its residues at P^ 's (if we use
£/2 instead, we get negative of this: it is well-defined only up to a sign), we have

v^ /xa~{~ryb+SFtdx\ i
^(a,&)(r,.) = ̂ Resp, (^——^———J dt C ̂ s.^k

k ' ^ y '

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



594 M. KIM, D.S. THAKUR, J.F. VOLOCH

5.2. — In the situation of 3.2, now x has degree k and y has degree d, so that
x^x/y3 is holomorphic, as long as 0 < j < k and (% + l)k + 1 ̂  ^'d. Note that

V1 [ jd-1 | = Y- ̂  _ V- 3_ _ ^k(k-l)d ^k(k- 1) _
^i k 1 ^ k ^ k ~ k ~ ——k—— - 9 '

since A; and d are relatively prime. Since these differentials are linearly indepen-
dent, they give the basis of the holomorphic differentials.

Since
kyk-ldy=f^dx+ftdt,

d x / y 3 has good liftings: d x / y 3 in the open set U^ where y ^ 0 and ky^^3 d y / f ^
in the open set U^ where f^ ^ 0. By our assumptions [/i and U^ cover X. The KS
map sends x^x/y3 to x^tdt/f^y3.

Similar calculation then gives

^mn) = E^8^ (^+{^)^

where Pg are now zeros of y , i.e. the conjugates of f3. In the hyper-elliptic case
k = 2 (so that d and p are odd), this simplifies to

^E-,^)^®^
since y2 = f(x), so that f / ( x - P,)|p^ = /^(P,) and the fact that x - P, is of
degree 2 gives rise to the factor of 2.

6. Remarks and questions

6.0. — If /3 satisfies a rational Riccati equation, then we know that the KS
class of

Y := the projective line minus the Galois orbit of 0

is zero and hence Y is defined over F(^). So for appropriate models, we have
ft = Ft = 0 and since KS is independent of co-ordinates and separable base
change, we see that KS is zero in this case for the examples in 3.1 and 3.2.
In other words, KS is non-zero implies 'not Riccati' and hence our inequalities,
using Theorem 2, follow by Osgood's result proved under weaker hypothesis.
Hence, the hierarchy given in 2.2, does not give any new hierarchy in that
case unconditionally (except possibly in Wirsing-type result above as well as in
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approximation results on non-rational base field that we get using non-rational
base S in Theorem 2, where there are no earlier results), though it suggests that
there is such hierarchy conjecturally, giving Vojta's inequality under the maximal
rank. What are the best inequalities one can conjecture? (It is not just half the
bound, because that would be Roth for g == 2, on just 'not RiccatF hypothesis,
and that is known to be false by the examples in [V2]). For the height inequalities,
multiplier 2g — 2 would be best under non-zero KS and 1 would be best under
the maximal rank. (So we understand g = 2 at least). What would be the best
multipliers in between? Are they obtained by interpolating reciprocal-linearly
as in 2.2?

6.1. — One can ask the similar question for the exponent hierarchy: But
here different association of curves seem to lead to different conditions and
bounds and the correct formulation is still unclear (even whether the hierarchy
is finite or infinite), except it is likely that the maximal rank ('generic') gives the
exponent 2 and KS non-zero would give some exponent between ^ d (attained by
examples of [V2]) and Osgood bound. In this context, note that the condition
that KS vanishes is independent of k. Is the maximal rank condition (or the
whole hierarchy for that matter) also independent of k7 Explicit calculation
in 5.2 might help in deciding this.

6.2. — It is well-known that general curves have maximal rank KS, but
though most of our curves (namely Thue curves for irreducible polynomials and
super-hyperellptic curves with branch points consisting of Galois orbit together
with infinity) are most probably of maximal rank, since bounding a rank would
give a differentially closed condition, this has not been established. As a simple
example, if we are in characteristic 2 and f3 of degree 4 is given by

/34 + af33 + b(32 4- cf3 + d = 0,

then KS is zero (i.e. (3 satisfies Riccati) implies ac' = a'c. Now, if we can show
for any d, k (sufficiently large), p that there is at least one curve yk = f(x),
with deg / == d in characteristic p with maximal rank KS, then it is easy to show
that most do: The coefficients of / satisfy a differential equation, which can be
turned into an algebraic equation by writing each coefficient

p-i

-E^a =
0

so getting an algebraic equation on the di which is not identically zero so it is not
satisfied by most a^. Our explicit calculations of KS maps may help construct
such examples, but it has not been done yet.
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596 M. KIM, D.S. THAKUR, J.F. VOLOCH

6.3. — We have optimistically suggested that Vojta inequality would hold in
finite characteristic under the maximal KS rank hypothesis, but it may be that
higher order deformation theory is needed for that.

7. Riccati and cross-ratios

7.0. — Finally, we record the proof of the claim on Riccati connection (Note
that vanishing of KS (i.e. having no infinitesimal deformations of first order)
is equivalent in this case to vanishing of derivatives of all cross ratios of 4
conjugates): Let f3 G F((l/t)) be algebraic (and so automatically separable)
of degree d over F(t), with

^+^_l(^- l+...=0.

Implicit differentiation gives

(1) {3' = dn^ 4- • • • + ao, a, € F(t), dn + 0, n <_ d - 1.

CLAIM.—n = 2, i.e. (3 satisfies the rational Riccati equation f3' = a/^+^-t-c,
with a,6,c G F(t) if and only if the cross ratio of any four conjugates of (3 has
zero derivative.

Proof. — The derivative of the cross-ratio of /3,/3i,/32?/^3 being zero is
equivalent to

(->) f3'-^ + ^3-/?2 _ ff -ffl _ P'3-f3[ ^ .

' ' /? - /3l /?3 - 02 /? - /?2 A - /?!

Now conjugates /3, of f3 also satisfy (1). Hence

^-^ f3?-^ , , /3?-/3J ,
/^^"T^-^-^A"^1-

If an = 0 for n > 3, the left hand side of (2) then reduces to

a2((/3 4- (3i) + (/?3 + h) - (f3 + h) - (A + A)),

which is zero. This proves the 'only if statement.
The 'if statement will be proved by a contradiction: So we fix any three

conjugates ̂ i.^^s 8-nd assume that for any other conjugate /3 we have

^ m _ ^ ^ ^ _ ^ /y»-/^ /^-/^^n

^a"^ 13-13, + /33-/32 f3-/32 /?3-/3i ) ~
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om _ /am

Now •———— = E ^Pi and
D — /"h -—-p-p^

P3^ + Pip^ - p3?^ - pip^ =(/3-p3) [̂  ly——33- - ̂  (3——^

i-\-j=m—l

L P — P3 P — P3 •

so that taking out the non-zero factor (p — p3)(pi — p^) we get

o - v a r v ^'-^-^i^ "L 2-. ^-^ ^-/d-^ a^
2

J+fc=='^—l

^ ^0 ^-^3 A-^2

Now the quantity between the square brackets is just ^Ai • • • f t m - s ? where
each /^ is one of the four conjugates. Hence we get

o = an ̂  Ai • • • A,-3 + ̂ -i ̂  Ai • • • ft^-4 + • • • + 03.

The coefficient of dn is of degree n — 3 in f3^s. Subtracting a similar equation
that one obtains when f3 is replaced by another conjugate /3, and taking out
the non-zero factor f3 — /3 we get another equation with degrees dropping by
one. Continuing in this fashion with other conjugates (there are d — 4 ^ n — 3
of them), we get dn = 0, a contradiction.
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Note added in proof. — In 4.0, if we use the exact Castelnuovo bound
^(oQ < (H ~ 1)(7 — 1) m the place of the weaker version g(a) < H^f there,
then we get improvements e <^ 27 + ^ (d — 1) in 4.0 and e ^ 27 in 4.0.2.
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