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LIOUVILLE THEOREMS BASED ON

SYMMETRIC DIFFUSIONS

PAR

HIROSHI KANEKO (*)

Dedicated to Professor M. Fukushima on his 60th birthday

RESUME. — On etudie dans cet article Ie theoreme de Liouville pour les fonctions
sousharmoniques en se basant sur 1'espace de Dirichlet. L'integrale de Hellinger permet
d'ecrire les theoremes de Liouville pour les fonctions sousharmoniques sans hypothese
de regularite sur une fonction exhaustive donnee et d'examiner avec precision la
croissance des fonctions sousharmoniques non constantes.

ABSTRACT. — In this article, we study Liouville properties for subharmonic
functions based on the Dirichlet space theory. In order to describe Liouville theorems
for subharmonic functions, we will use the Hellinger integral which eliminates the
smoothness requirement on the given exhaustion function and enables us to examine
the increasing order of non-constant subharmonic functions.

1. Introduction
The study on Liouville theorems has been developed in geometry as

well as in complex analysis. Geometrical Liouville theorems ordinarily
state that if a Riemannian manifold enjoys certain condition on the
curvature, then it does not admit non-constant bounded subharmonic
function {e.g. [C-Y]). In complex analysis, Liouville theorems assert that
any bounded plurisubharmonic function or occasionally pluriharmonic
function does not exist except constant, whenever the underlying complex
manifold is parabolic in a certain sense {e.g. [K], [Tl] and [T2]). N. Sibony
and P.M. Wong [S-W] suggested that this sort of assertion is usually
related to the vanishing of the capacity of the infinity. The notion of
capacity for the value distribution theory was originally dealt with by
W. Stoll {e.g. [Stol]).

(*) Texte recu Ie 29 mai 1995, revise Ie 29 decembre 1995 et Ie 25 mars 1996.
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546 H. KANEKO

In the mean time, the capacity is expressed by the Dirichlet integral of
0-equilibrium potential with respect to the corresponding self-adjoint dif-
ferential operator. M. Fukushima pointed out in [F2] that the vanishing
of the Dirichlet integral concerns the non-transience of the correspon-
ding Hunt process. In the recent development of Dirichlet space theory,
H. Okura [Ok3] found a recurrence criterion for Hunt process in terms of
the Hellinger integral which is attributed to [H]. The method was utilized
to reproduce a sharp capacitary estimate by K.T. Sturm [Stu2]. Their
arguments are based upon the stochastic metric introduced by M. Biroli
and U. Mosco in [B-M2].

Throughout this paper, we focus our attention on the case that the
Dirichlet space has the strong local property, that is, the case that
the corresponding Hunt process is a diffusion with no killing inside.
We start with an inequality which will be the primary tool for our Liouville
theorems formulated in Section 3. Our theorems not only handle the
family of subharmonic functions locally in the domain of the Dirichlet
space but imply some of the known results on the absence of bounded
functions with subharmonicity such as [C-Y], [Tl] and [Stui]. Our method
also provides a Liouville theorem without exhaustion function, which
is directly applicable to the plurisubharmonic functions without the
approximating procedures as in [Tl].

As for notions and notations, the author recommends the reader to
consult the book [F-O-T]. The author expresses his thanks to Professor
M. Fukushima and Professor M. Takeda for their heartfelt encouragement
and the proof of Lemma 1 which is shorter than the author's original one.

2. Green's formula
We denote a regular Dirichlet space on L2(X,m) with the strong local

property by (f,.^), where X is a locally compact Hausdorff space and m
is a Radon measure with supp[m] = X. In this section, we deal with the
case that the underlying space X has a continuous exhaustion function
P ^ f\oc' Throughout this paper, all elements in F\oc are assumed to be
quasi-continuous already.

We use the following notations:

B{s} = [x C X ; p(x) < 5}, for s > 0,

B(r, s) = {x C X ; r < p(x) < s}, for s > r > 0,

e{u,v} (s) = /^) (B(s)), for u, v e J îoc ,

where f^/u,v} ls ^ne co-energy of n, v e ^loc-
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The measure ^(u,u} (resp. e^,u}) is denoted by ^^ (resp. e^).
MAIN LEMMA (Green's formula). — If u C ^ioc a^d ^ e ^ioc H Lg^,

^/ien

/ e^^(s)ds- \ dp.^,wr.,Rv} = / v^{u,p}
Jr JX JB{r,R)

holds for Wr,p = R - (p A R) V r, wfcere

a; V a = max{a;,a} and ^ A b = min{a;,6}.

Especially^ if u is E-subharmonic and v is non-negative, then

\ e<n,^(s)d5 < / vd^^,p} •
Jr JB(r,R)

Proof. — Since the assertion is local, it suffices to consider the case that
u € F and v € F^. By using Theorem 3.2.2 in [F-O-T], we can derive the
desired identity as follows:

/ G{u,v}(s)ds= / / d/^<^)ds= /w^d/^)
Jr Jr JB{s) JX

= ^{U^RV}- / ^d/^^^ >

Jx Jx

= /d/^,w,^)+ / ^^{u^}^
JX JB{r,R)

where the last equality follows from the identity in [M] (see also [Ok3,
Lemma 2.1 (i)]). The first term in the last expression equals 2£(wr,RV, n),
which is non-positive when u is subharmonic and v is non-negative. []

REMARK 1. — We consider the case that

y=Hl(RN) = {u C LW ; ̂  e LW, i = 1,..,^},

£(u, v)= 1 (V^, V^) dV for u, v G ̂
JRN

where V is the Lebesgue measure. If a bounded domain D is exhausted
by a smooth function p as D = {p < r} C M^ and dp 7^ 0 is satisfied
on 9D, we can verify the following convergences for functions u,v in C2:

lim - / e^(s)ds= / (V^V^dV,
£-'0 ^ Jr-e JD

lim - / <^(u,w.-.,̂ ) = - / ^AndY,£-'0 e Jx JD

lim- / v^{u,p} = / ^—^dfi',£-"0 ^ JB{r-e^ JQD 9y
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548 H. KANEKO

where QujQv denotes the outer normal derivative of u and 6' stands for
the volume element on QD. Therefore, our formula implies the classical
Green's formula.

In the sequel, we also use the following lemma.
LEMMA 1. — A function u in l̂oc is constant quasi-everywhere on X

if l^/u\ vanishes.

Proof. —By the strong local property, /^-a)vo) == I{u>a}l^{u} for any
a € M and accordingly ^((•a-a)vo) vanishes under the stated condition.
This implies the f-harmonicity of {u — a} V 0 and consequently

pt [(u - a) V 0] = (n-a)VO (Va e M, Vt > 0)

for the semi-group {pt} generated by (^, F). The prmvariance of {u < a}
follows from this identity. From the irreducibility of the diffusion it turns
out that u must equal inf{a; Cap(X \ {u < a}) = 0} quasi-everywhere
onX. D

3. The Liouville Theorems
We start with the case that (f,^7) is a regular Dirichlet space on

Z/^X.m) with the strong local property which generates an irreducible
diffusion and that X has a continuous exhaustion function p € ^loc-
For u G .Fioc 5 we set

m(u,s) = esssup{^(a;); p(x) < 5},

which is equal to inf{a ; Cap(£?(s)\{n < a}) = 0} by the quasi-continuity
of u. We further set

h^s)=h{s)-Y^{h^+)-h^)
^

for any left-continuous increasing function h.
We shall particularly need e T v ( - ) .
LEMMA 2.— I fu € ^locHL^ is non-negative and S-subharmonic^ then

rR _________
(i) j e^(s)ds < m(u,R)^e^(R) - e^(r)

x\/^)(-R)-^)(r),

/>JR

(ii) j e^(s)ds < m(u,K)^/e^(R) - e^(r)
XV^{R)-e^{r)'
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Proof. — Due to the inequality in [B-H, Thm 5.2.3], we have that /^)
never charges any level set {p = $} (where $ > infp). Therefore, we can
derive

/ e<n>(s)ds < / ud^p}
Jr J B{r,R)n{p^E}

for E = {$; e<^)(^+) > €(„)($)} from Main Lemma. Assertion (i) follows
from this inequality and Lemma 5.6.1 in [F-O-T]. Assertion (ii) is clear
from(i). D

For non-negative increasing continuous function g and positive non-
decreasing left continuous function h on the interval [a,6], we will need
the integral

[ b (ds)2

Ja h(s)dg(s)

to describe our Liouville theorems. For any divisions A and A' of [a,6],
we can show that

A = [a = $o < $i < • • • < ̂  = b} C A' = {a = 770 < ^i < • • • < m = b}

implies

V^ (^+1 - ̂ z)2 ^ V^ (^+1 - T]if
z^ ^te+i)(^te+i) - g^i)) - 2^ /i(^+i)(p(^+i) - g(rn)) '

Therefore, by running A = {a = $o < ^i < • • • < $fc = ^} in all
divisions of [a, 6], we can define the integral

[ b (ds)2 _ ^ te+i - gz)2

A ft(5)d^) ~T^ ̂ +i)(^+i)-^))

in the same manner as the standard Hellinger integral

[bw -cup^ te+1-^2

^ d^) A'^^+l)-^)

THEOREM 1. — If (<?,.?') %5 irreducible and for large enough r

r ^ Whm / ———- = oo,
R-^ocJ^ de^)(s)
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then any non-negative S-subharmonic function u C f\oc Ft L^ satisfying

r w
J^ m(^,5)2de^)(5)

for any r is constant quasi-everywhere on X .

Proof. — We shall first verify that eT^(-) == 0. Otherwise, eTJr) > 0
for some r > 0 and, for an arbitrary division A: r = ^o < ^i < • • • <
^ = R of the interval [r,7?], we can derive the following estimate from
Lemma 2 (ii):

k-l te+i-^)2
Y__
^ m(^+i)2(e^(^+i) - e(p)(^))

A;-l
^ (^)te+i)-^)fe))
~~ ^—^ l / rCt+1 _* / _ \ i— 2—^ i / r^+i ^* / \ ^ \2-0 (^"^^ '^^^^
^^(e^(^)-e^te))
- 2^ p* .^.'»2

^>te)2t=0

The assumption on the Hellinger integral implies that the left-hand
side can exceed arbitrarily large number by taking sufficiently large R
and sufficiently small ||A|| = maxo<z<fe-1(^+1 - ̂ ). However, the right
hand side does not exceed ——T-T +1, for ||A|| small enough, arriving at a

e{u^r)

contradiction. The identity e T v ( - ) = 0 and Lemma 2 (i) imply e/^\( ') = 0.
The function u is constant quasi-everywhere on X by Lemma 1. []

REMARK 2. — This theorem covers a wider family of subharmonic
functions than [C-Y] and [Tl] and describes the growth order of non-
constant subharmonic function more precisely than the Liouville theorem
in [Tl].

Here, we give the definition of e^up-i^(') by assuming p > 1. For an
£ -subharmonic function u € f\oc Ft Lf^, the method in [Stui] enables us
to define the co-energy measure e^^p-i^(-) by

e^np-^r) = {p- l)^y1 [W^^^^

(r E [infp.supp)), where {u^}^ C F^ is defined by

u^ =^n{u)-^n{u-n) (n=l,2,...)
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with {^n}^i C C^R) satisfying 0 ^ ̂  < 1, ̂  > 0 and

. . . n/n i f a ; < 0
^n(^)=1 ., - ,t x if x > 2/n.

We note the following equivalent expressions of e^p-iJ.) involving
f-subharmonic functions u^ = ̂ n(u):

e^-^r) = (p - 1) ̂  f^ [n^] ̂  d,^^

=^-l)nllmo/^^")](p-2)d^")."<"»•

LEMMA 3. — If /K(p) ^ m and p > 1, ^Aen any non-negative £-sub-
harmonic function u € îoc n L ,̂̂  enjoys the following properties:

yfl
(i) / e^^p-i)(s)ds ̂  ^(",-K) - i(u,r)

J r

X^/•P^ KH,UP-I)W - ̂ HP-l)^)] ,

/.fl

(") / ^u.up-^ds < ̂ /e(u,R)-e(u,r)
J T

x^/^l[^^-i>W-e^_^(r)],

where £(u,s) == J^/. ̂ dm.

Proo/. — It suffices to show (i). Thanks to the inequality jji^ < m, the
same discussion as in the proof of Lemma 2 (i) shows that

/ e^^, (s)ds < [ k^^d/^^
•̂  l b J / J B{r,R)n{p^E} " ' /

< J ~ t [ ^ T d m
V JB{r,R}x \ ^ [k n ) ] ( p - 2 ) d / .< . ( . ) , ( . )>

V ^B(r,I?)n{p^£7} ' ' /

for E = {^ ; e^>(^+) > e<^)(0}. Letting n -. oo, we have (i). []

Here, we have a generalization of [Stui, Thm 1].
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THEOREM 2. — // /^ < m and p > 1 and (S^) is irreducible,
then there exists no non-negative non-constant E-subharmonic function
u ^ ̂ loc H ̂ foc satisfying, for large enough r,

•00 ^^2(d^)2

d£(u,s)/
Proof. — We can show that e*^(p_i)v(-) = 0 through the same

discussion as in the proof of Theorem 1 by using Lemma 3 (ii). From this
identity and Lemma 3 (i), we obtain that e<(^Ab)va)( ') = 0 for any positive
numbers b,a (where b > a), which shows u is constant on {u > 0} by
Lemma 1. This together with the f-subharmonicity of u implies {u > 0}
is pi-invariant. Since (f,^7) is irreducible, u is constant. Q

Henceforth, we fix a non-polar compact set K in X and an increasing
sequence of relatively compact open sets {Gn}^=i enjoying

00

U Gn = X.
n=l

C8Lp(K',Gn) is defined as the Dirichlet integral S^e^.e^) of 0-equili-
brium potential e^. We will describe a Liouville theorem without ex-
haustion function. For that purpose, we set

.Gp,=l-e^ ( n = = l , 2 , . . . )i " i ' ' ' i i

which will be utilized as substitutes for exhaustion function. We introduce
the notation

^n) (5 I w) = ^{u,u} ({^ < 5})

for u, w € ^loc? especially we denote e^ (s \ w) by e^ (s). The continuity
of e ^ v ( ' ) is another consequence of Theorem 5.2.3 in [B-H].

THEOREM 3. — If (£ iF) is irreducible and recurrent, then there exist
no non-negative non-constant S-subharmonic function u G îoc H ̂ î c
satisfying

hm m(n,Gn)2Cap(^;Gn) = 0,
n—>oo

where m(u,Gn) = ess sup [u (x)-, x € Gn}-

Proof. — For any 0 < r < 1, the definition of the Hellinger integral
assures that

(ds)2

/'J r\ m(»)(u,s)2de^(s)
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dominates
(1-r)2

m^G^C^K^Gn)'
where

m^(u, s) = inf{a ; Cap({^ < 5} \ [u < a}) = 0}.

Thanks to the quasi-continuity of pn, the argument up to the proof of
Theorem 1 works in deriving the following inequalities:

(1-r)2 ^ /tl (d.)2

m{u,GnYC^(K',Gn) - J^ mW(u,s)2de^(s)

^ r 1 d^n^lPn)
Jr ^(^IPn)2

- ^^l^n)

Therefore lim e^(r | ̂ ) = 0 for 0 < r < 1. Since Lemma 2 (i) holds
for p = pn,

rR
f e^{s | pn)ds < m(u,Gn)^C^p(K^Gn) ̂ /e^(R \ pn) - e^(r | pn) ,

where 0 < r < R < 1. Letting n -^ oo, we can conclude that

P'{u,u} (PK > 1-r) = lim e(n)(r | p^) = 0,
Tt—^00

where PK is the 0-order hitting probability of K with respect to the asso-
ciated diffusion. On account of the irreducibility and [F-O-T, Thm 4.6.6],
we see by letting r f 1 that p.^u} W = ° and hence u is constant quasi-
everywhere on X by virtue of Lemma 1. []

As an application of Theorem 3, we can now formulate a Liouville
theorem for plurisubharmonic functions.

THEOREM 4. — If A is an irreducible closed complex analytic set in C^
with pure dimension k >_ 2 and if

r ° ° ds ^
Jc sn(A,s) -00?
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then A does not admit any non-constant plurisubharmonic function u
satisfying

m(u,R)2

lim ————-— == 0,
R-^oo [ R ds1-^00 r

J cc 5n(A,s)

'where
• n(A,5)= / [dcHogM2]';

^r(A)nBeuc(s)

• r(A) denotes the set of regular points in A;
N

• kl2 == S kd2 anc^1=1
• Beuc(s) = { Z C C ^ ; ! ^ ! <5}.

Proof. — We may assume that 0 < dist(0,r(A)) < c. Setting

0= [dcflogd^+l)]^1, r^dd'I^A^

we obtain a symmetric closable bilinear form on I^^r^A^m}

8^(u,v)= dnAd^A^, u,v^C^(A).
Jr{A)

Since po = \og{\z 2 + 1) is strongly plurisubharmonic on A, the smallest
closed extension (S0^0) of £^ generates an irreducible holomorphic
diffusion on r(A). From [F-0], we know that .T^ contains the family
of locally bounded plurisubharmonic functions on r(A) as a subfamily
of f^-subharmonic functions. We set

( \ r tdt
^'A (^2+l)n(A,t)?

WR^ = f(l - a^) A l1 V 0 G ̂  (R > inf po(^)).
L CrI-iL; J z^zA

We note that WR is equal to 1 on Beuc(c) and 0 on .Beuc^^ and that

n(A, r) = f d° log \z\2 A [dd0 log |^|2]/lfc-1

^r(A)n9Beuc(r)

vol(An9Beuc(r))
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We obtain a similar identity to the last one by replacing \z 2 and r with
\z\2 + 1 and with r -(-1 respectively. Thus

,. J.(A)n<^(.)dclog(H2+l)Ag
11111 , . » -L»r->oo n(A,r)

As a result, we obtain an estimate

£°{WR,WR)

=^W dad.DAd-ad.DA^
('•(it) Jr(A)hBeuc(c,fl)

=7-^2/' ^———^dIogd^+^A^logd^+^A^
4a(fl)27^)nBeuc(c,fl) "(^l^l)2

1 /*^ tdt /*
= 20(^1 (^TI)n(A^ Ln^(f10^)2y, (^+l)n(A^^)^euc(t)

1 ^ , ^ /^ ^^ ^ ^ 3̂< 1 ^ ^ ̂  r tdt ^ < c3
- a(^)2 V01 • "V, (^ + l)n(A^) ) - a{K)

for some constants Ci, ^2 and €3.
Theorem 4 now follows from Theorem 3, because

Cap(5(c), B(R)) < e^w^ WR) < c3

- a(R)

and lim a(R) / ( —ds—— == 1. D
R^oo I Jc 5n(A,s)
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