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ACTIONS AND AUTOMORPHISMS
OF CROSSED MODULES

BY

KATHERINE NORRIE (*)

RESUME. — II est bien connu que Ie groupe des automorphismes d'un groupe N fait
partie d'un module croise N —>- Aut N . Dans cet article, on etudie des structures plus
compliquees, par exemple les carres croises, qui correspondent aux automorphismes
des modules croises. On peut ainsi etudier les actions et les produits semi-directs des
modules croises.

ABSTRACT. — It is standard that the automorphisms of a group N fit into a
crossed module N —f Aut N . This paper explores the corresponding more elaborate
structures, for example crossed squares, into which fits the automorphism group of
a crossed module. This also enables accounts of actions and semi-direct products of
crossed modules.

1. Introduction
Crossed modules have been used widely, and in various contexts, since

their definition by J.H.C. WHITEHEAD [24, 26] in his investigation of the
algebraic structure of second relative homotopy groups. Areas in which
crossed modules have been applied include the theory of group presenta-
tions (see the survey [3]), algebraic K-iheovy [12], and homological algebra
[10, 18]. Now crossed modules can be viewed as 2-dimensionnal groups [1]
and it is therefore of interest to consider counterparts for crossed modules
of concepts from group theory; in this paper we shall generalize some
aspects of the theory of automorphisms from groups to crossed modules.
The surprise is the ease with which the theory transcribes, which in effect
confirms the above view of crossed modules.

The automorphism group Aut N of a group N comes equipped with
the canonical homomorphism r : N —>• Aut N which has image Inn TV, the
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130 K. NORRIE

group of inner automorphisms of TV, and kernel Z(N), the centre of TV. The
quotient Aut N/ Inn N is the group of outer automorphisms of TV, denoted
by Out N. We note that r is one of the standard examples of a crossed
module. Now i f l — ^ T V — ^ G — ^ Q — ^ l i s a short exact sequence of groups,
then there is a homomorphism 0 : G —> Aut N making commutative the
following diagram( ' ' ; ̂  i- ~^ i' ~^ r ^'4. 4. 4.

1 ——> Inn TV ——> Aut TV ——> Out TV ——> 1.

However, in some other familiar categories, the set of structure preserving
self-maps of a given object will not fulfil the role just delineated for the
automorphism group Aut TV. In the category of groups, the automorphism
group plays a dual role of capturing the notions of action and of structure
preserving self-maps. In other categories these notions do not necessarily
coincide, and for our present purposes it is the notion of action that is
significant. We shall define actor crossed modules^ and show how they
provide an analogue of automorphism groups of groups. We establish that
a version of (*) holds for actor crossed modules. We use this actor to define
actions of crossed modules, and we establish the main properties of these.
In particular, we construct semi-direct products of crossed modules, and
the holomorph of a crossed module.

Part of the motivation for this work arose from analogies between
groups and algebras. In the category of associative algebras, the appro-
priate replacement for the automorphism group is the bimultiplication
algebra [15]; for Lie algebras we must employ the derivation algebra [14].

We shall also show that relationships between groups and crossed mod-
ules, involving the automorphism group, are mirrored in corresponding
relationships between crossed modules and their three-dimensional ana-
logues, crossed squares. Crossed squares were first defined by D. GUIN-
WALERY and J.-L. LODAY in [9], where they are applied to problems in
algebraic K-iheory. Some applications of crossed squares in homotopy the-
ory may be found in [13, 4, 5]. Since the homomorphism r : TV —> Aut TV
is a crossed module, we might expect that a crossed module and its actor
will give rise to a crossed square. We show that this is indeed the case. This
allows us to relate actors of crossed modules with the equivalence between
crossed squares and 2-cat-groups, due to GUIN-WALERY and LODAY, as
described in [13].
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1. The actor and centre of a crossed module
Recall that a crossed module (T, C?, Q) consist of a group homomorphism

9 : T —> G called the boundary map, together with an action (g, t) \-^ H
of G on T satisfying

1) 9W=g9(t)g-^

2) 9Wt=sts-l ,

for all g C G and s,t E T. In addition to the inner automorphism map
T : N —^ Aut N already mentioned, other standard examples of crossed
modules are :

• a G-module M with the zero homomorphism M —f G;
• the inclusion of a normal subgroup N —> G;
• and any epimorphism E —> G with central kernel.
There are two canonical ways in which a group G may be regarded as

a crossed module : via the identity map G —^ G or via the inclusion of the
trivial subgroup.

We say that { S ^ H ^ Q ' ) is a subcrossed module of the crossed module
(r,G,(9)if

i) S is a subgroup of T, and H is a subgroup of G;
ii) Q ' is the restriction of Q to 5, and

iii) the action of H on S is induced by the action of G on T.
A subcrossed module (S,H,9) of (T,G,9) is normal if

i) H is a normal subgroup of G;
ii) ffs € s for all g € G, s 6 5, and

iii) /^-1 (E^ fo ra l l /KE^er .
A crossed module morphism (a,(/)) : (T,G,Q) —> ( T ' . G ' . Q ' ) is a
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132 K. NORRIE

commutative diagram of homomorphisms of groups

T —a—> M

9 ^

^ 4> ^
G ——— P

such that for all x C G and t e T, we have a^t) = ^a(t). We
say that (a,(f>) is an isomorphism if a and (f) are both isomorphisms;
similarly, we define monomorphisms, epimorphisms and automorphisms
of crossed modules. We denote the group of automorphisms of (T, G, 9)
by Aut(r,G',(9). The kernel of the crossed module morphism (a,(/))
is the normal subcrossed module (kera,ker^,<9) of (r,G,(9), denoted
by ker(a,^). The ima^e im(a,(f)) of (a,0) is the subcrossed module
(im a, im <^>, //) of (M, P, /^).

The ^hma/crossed module (1,1,1) will be written simply as 1. We shall
occasionally supress explicit mention of the boundary map in a crossed
module (T,G,9) and write simply (T,G).

For a crossed module (T,G,Q), denote by Dev{G,T) the set of all
derivations from G to T, i.e. all maps \ : G —> T such that for all x, y € G,

X(xy) =^(x)x^(y).

Each such derivation \ defines endomorphisms a (= a^) and 0 (= 6^) of
G, T respectively, given by

a(x)=9x(x)x 0(t)=x9(t)t
Clearly,

a9(t) = 9^), 0x(x) = ̂ ), O^t) = ̂ (t).

Following WHITEHEAD [25], we define a multiplication in Der(G', T) by the
formula ^i o ̂  = ̂  where

\{x) = Xi^{x)^(x) (== 0^(x)xi(x)).

This turns De^G.r) into a semigroup, with identity element the
derivation which maps each element of G into the identity element of T.
Moreover, if X = Xi ° X2 then (7=0-10-2- The Whitehead group D(G, T) is
defined to be the group of units of Der(G', T), and the elements of D{G, T)
are called regular derivations.

The following proposition combines results from [17] and [25].

TOME 118 —— 1990 —— N° 2



AUTOMORPHISMS OF CROSSED MODULES 133

PROPOSITION — DEFINITION 1

The following statements are equivalent:
1) x € D ( G , r ) ;
2) a e Aut G ;
3) 0 eAuiT.

Moreover, A : D(G,T) -^ A}ii(T,G,9) defined by A(^) = {a,0) is a ho-
momorphism of groups and there is an action of A\ii(T,G,9) on D(G,T)
given by ^^\ = o^-1, which makes (D(G,T),A\ii(T,G,9)^) a
crossed module. This crossed module is called the actor crossed module
A(T,G,9) of the crossed module (T,G,9).

There is a morphism of crossed modules

(77,7):(r,G,9)—A(r,G,<9).

defined as follows. Let t C T. Then ^ : G -^ T defined by r]t{x) = ̂ -1

is a derivation, and the map t i—>- rjt defines a homomorphism r] : T —>•
D(G,T) of groups. Let 7 : G —^ Aut(T,C?,(9) be the homormorphism
y i-̂  {ay,(f>y), where Oy(t) = Vt and (f)y{x) = yxy~1 for t € T and y , x € G.

By analogy with group theory, we define the centre of the crossed
module (T,G,9) to be the kernel ^(T,G,9) of (77,7). Thus ^(r,G,<9) is
the crossed module (r^stG.Cr) 0 Z(G),<9) where T° denotes the fixed
point subgroup of T, that is,

T° = {t € T : x! = t for all x C G} ;

stG(T) is the stabilizer in G of T, that is,

stG-(T) = {^ C G : x! = ^ for all t e T} ;

and Z(G) is the centre of G. Note that T0 is central in T. In [19] this
definition is shown to be consistent with the categorical notion of centre
developed by S.A. HUQ in [11].

The inner actor I(T,G,9) of (T,G,9) is the image of the mor-
phism (^,7). It is a crossed module (E((?,r),C?,A), say, where the
elements ofE(G,T) are called principal regular derivations. It is routine to
verify that Z(T, G, 9) is a normal subcrossed module ofA(T, G, 9), see [17].
Thus we can form the quotient crossed module w4(T, G, 9 ) / I (T , G, 9); this
we call the outer actor of (T, G, 9) and denote it by 0(T, C?, 9).

Examples of actor crossed modules.
1) If N is a normal subgroup of a group G with inclusion i : N (—^ G

then A(N, G, i) is the crossed module (D(G, N), X) where X is isomorphic

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



134 K. NORRIE

to the subgroup ofAut G consisting of those automorphisms which restrict
to automorphisms of N . Thus if N is a characteristic subgroup of G, the
module A(N, G, i) is isomorphic to the crossed module {D(G, N), Aut G).
For example, this is the case when G is complete.

2) Special cases of 1) are that .4(1, G) is isomorphic to (1, Aut G) and
that A(G, G, 1) is isomorphic to (Aut G, Aut G, 1).

3) Let M be a G-module. Then (M,G,0) is a crossed module,
where 0 denotes the trivial homomorphism, and has actor (Der(G,M),
Aut(M, G, 0), 0). Here Der(G, M) is the set of all derivations G —^ M and
is an Aut(M,G,0)-module.

2. Actions and semi-direct products
An action of a crossed module (M, P, p) on a crossed module (T, G, 9)

is defined to be a morphism (M, P, p,) —^ A(T, G, 9) of crossed modules.
Thus the actor A(T,G,9) of (T,G,9) acts on (T,G,9). The inner actor
Z(r,G,<9) also acts on (r,G,<9) as well as on any normal subcrossed
module of (T, G, 9). Hence (T, G, <9) acts on any of its normal subcrossed
modules.

A sequence of morphisms of crossed modules

<^j> (<^)1 -^ (8,11,9') —— (T,G,9) ——— (M.P,/.) ̂  1

is called a short exact sequence if {i^j) is a monomorphism, (a,(f>) is
an epimorphism and the subcrossed modules im(i^j) and ker(a,0) of
(T, G, 9) coincide. In such case we call (T, G, 9) an extension of (5, Jf, 9')
by (M,P,/^). Then the action of (T,G,9) on (8,11,9') induces the
commutative diagram

1 —— ?^9') ——— (r,G,5) ——— (M,P^) —— 1

1 ——. I { S , H , 9 ' ) ——> A(S,H,91) ——> 0 ( S , H , 9 ' ) ——> 1.

Let the crossed module (M,P,<9) act on the crossed module (T,G,9), so
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AUTOMORPHISMS OF CROSSED MODULES 135

that we are given a morphism of crossed modules

M ——£-——> D(G,T)

" 4- -4--

P —p—^ Aut(G,r,9)

Suppose that p has components pi : P —> Aut T and p^ : P —^ Aut G,
that is to say p(p) = (p^{p),p^(p)) for all p € P. Then M acts on T via
pi/^, and with this action we can form the semi-direct product of groups
T xi M. Likewise, since P acts on G via /^ we can form the semi-dire t
product G xi P.

There is an action of G xi P on T x M defined by

-n(^)(^,m) = (^(^m)^-1),^).

Note that p^ means t acted on by p, that is ^ = pi (j?)(^). The map TT : T x
M —)• G x P given by (^, m) i-̂  (<9(^), /^(m)) is a homomorphism. Now it is
routine to verify that, with the above action, the triple (T xi M, G xi P, TI-)
is a crossed module. We call this crossed module the semi-direct product
of (T, G, 9) and (M, P, p) relative to (s, p ) and denote it by (T, G, 9) X(e p}
(M,P,9).

There is an equivalent internal viewpoint on semi-direct products,
analogous to that for groups. So let (5, H,9) be a crossed module with
subcrossed modules (T, G, 9) and (M, P, /^) satisfying :

i) (T, G, 9) is normal in (5, Jf, 9);
ii) 5 = TM and 7J = GP, and

iii) T H M = 1 and G H P = 1.
Then there is a morphism ( e ^ p ) : (M,P,/^) —> A(T^G,9) of crossed
modules defined as follows : e '. M —> D(G,T) is given by m ^—f Cm
where £m(^) = m^m"1 for all g C G, and p \ P \—^ Au^r.C?,^) is given
by p(p) = {ap^(j)p} where Op(t) = ̂  for all t e T and (^p(^) = pgp~1 for
all g (=. G. Then the resulting semi-direct product

(r,G,<9)x^(M,P,/z)

is isomorphic to the given crossed module ( S , H , 9 ) .

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



136 K. NORRIE

In the holomorph HoIX (= X xi AutX) of a group X , the action of
AuiX on X becomes conjugation. Thus there is a one to one correspon-
dence between characteristic subgroups of X and normal subgroups of
HoIX contained in X, see [22].

We now show that the analogous situation holds for crossed modules.
The holomorph ~H.o\(T,G,9) of a crossed module (r,G,<9) is the semi-

direct product

(r, G, 9) x A(T, G, 9) = (T x D(G, T), G x Aut(T, G, 9), 9 x A),

with action given by

(^(^))(^) = (M^T1^-1)),^-1)

for all g (E G,t e T, (a,0) c Aut(r,G,9) and ^ e D(G,T).

A subcrossed module ( T ' . G ' ^ ) of the crossed module (T,G,9) is
characteristic in (T, G, 9) if restriction defines a morphism A(T, G, 9) —>
A ( T ' ^ G ' ^ 9 ) . One then finds, analogously to the group case, that a
subcrossed module of (T, G, 9) is characteristic if and only if its image
in Hol(T, G', 9) is a normal subcrossed module.

3. Crossed squares
We recall the following definition from [9,13], in the form given in [4].

A crossed square is a commutative diagram of groups

A
L ————> M

\'

N ——v-—> P

together with actions of the group P on L, M and TV (and hence actions
of M on L and N via /A and of N on L and M via v) and a function
h: M x N —> L, such that the following axioms are satisfied :

i) the maps A, A' preserve the actions of P. Further, with the given
actions the maps /^, v and K, == ii\ = v\' are crossed modules;

h) \h{m,n) =mnm~l, \'h{m,n} = ̂ n"1;
iii) h{M,n) = ̂ -1, /i(m,A^) = m^-1;

TOME 118 —— 1990 —— N° 2
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iv) /i(mm',n) = ̂  (m',n)/?,(m,n), h{m,nn') = h(m, 71)^/1(771, n');
v) h(Pm, Pn) = Ph (m, n);

for all i € L, m, m' C M, n,n' e N and j? e P.

Note that in these axioms a term such as m^ is -^ acted on by m, and
so m^ = ^(m)^. It is a consequence of i) that A, A' are crossed modules.
Further, by hi), M acts trivially on kerA and N acts trivially on kerA.

The following result is the analogue of the fact that a group N gives
rise to a crossed module r : N —^ Aut N.

THEOREM 2. — Let (r,C?,(9) be a crossed module. Then the natural
morphism {77,7) : (T,G,9) -^ A(T,G,9) gives rise to the crossed square

T ——71-——> D(G,T)

Q \ A

G ———. Aut(G',r,9)

with function h : D(G,T) x G —^ T given by (\,g) ̂  \(g) and where
Aut(r,C?,<9) acts on T and G via the appropriate projections.

The proof is quite straightforward and is omitted.

As explained in [13], the crossed square of THEOREM 4 has associated
to it the complex of non-abelian groups :

T -^ D(G,T) x G -^ Aui(T,G,9).

It has been shown by D. CONDUCHE (private communication) that this
complex may be given the structure of a 2-crossed module, as defined
by CONDUCHE in [7]. This 2-crossed module is one of the automorphism
structures of (T^G,9) derived by BROWN and GILBERT in [2] from a
monoidal closed structure on the category of crossed modules (over
groupoids).

We now show that a crossed square gives rise to two actions of crossed
modules.
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138 K. NORRIE

THEOREM 3. — Let
\

L ————> M

X' f.
4' •»'v
N ————> P

be a crossed square with function h : M x N —> L. Then (A,^) :
(L.TV, A') —^ (M,P,/^) is a morphism of crossed modules, and (M,P,/A)
acts on (L,TV,A').

Proof. — Recall that the actor A(L,N,\') of (L.TV, A') is the crossed
module (D(TV,L),Aut(L,TV,A'), A). Consider the map ft \ M -> D(N,L)
defined by

/3(m)(n) = h(m,n) for m e M, n C N .

Let be the action of P on L and N be given by the following homomor-
phisms :

uj : P —> Aut L, J : P —> Aut N.

Now define ^ : P -^ Aut(L, N, A') by

p i—> (uj(p),Lj\p)) for all p C P.

Then the pair (/3,'0) is a morphism (M,P,/z) —> A^L.N.X') of crossed
modules.

Thus a crossed square as in Theorem 3

A
L ————> M

v! 1 '
N —v-—> P

gives rise to the crossed module (L,N,\1) X(/^) (M,P,/A). Of course,
we obtain a second semi-direct product crossed module (L,M,A) x / / ? / ^ / )
(TV, P, v) by interchanging the roles of M and N.

We note here that the construction of a semi-direct product of crossed
modules from a crossed square is implicit in the equivalence established
by GUIN-WALERY and LODAY between crossed squares and 2-cat-groups,
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see [9, 13]. A 2-cat-group gives rise to two crossed modules and these
are the two semi-direct products of crossed modules obtained from its
equivalent crossed square. (The other name for the 2-cat-groups of [9] is
cat2-groups as in [4].)

It would be interesting to interpret the results of sections 2 and 3 in
terms of 2-cat-groups.

4. The actor tower and complete crossed modules
By the definition of the centre of a crossed module (T, G, 9) we see

that (T,G,(9) embeds in its actor A(T,G,9) if the centre ^(T,G,9) of
(T, G, 9) is trivial. The analogy with group theory continues by virtue of.
the following result.

PROPOSITION 4. — If(T, G, 9) has trivial centre then its actor A(T, G, 9)
also has trivial centre.

Proof. — Let us assume that $(T,G,9) = 1, so that T° = 1 and
Z(G) H sto{T) = 1. Now the centre of A(T, G, 9) is the crossed module

(D(G, T)^^0^, Z(Aut(T, G, 9)) H stAut(T,G,a) (W, T), A).

So assume that x ^ D(G,T)Aut^G^. Then for all (a,0) e Aut(T,G,9)
we have (a^)-^ = ̂ . In particular this is true for all (o^, cf)y} where y C G.
But

<^<^=^_,o^

so that ^y^v)^ = \ implies that ^(y)-i = 1 tor all y e G, that is x(y)~1

x\(y) = 1 for all x ^ y € G. Now since T° = 1, \ is the trivial derivation
andso^r)^7^^!.

Now suppose that (a,(f)) e Z(Aut(r,G,<9)) H st^t{T,G,9)(D{G,T)).
Then (a^)^ = ^ for all \ € D(G,T). In particular, (^^ = rjt for
all t C T, that is T^) = ^ which implies that ^"^(^ e T0 = 1
for all t ^ T. Thus a = IT, the identity automorphism of T. Now
(a,^) G Z(Aut(r,G,<9)) and hence for all y G G,

(a,(j)}(ay,(j)y) = (ay,(l)y)(a,(f)}

implying that <^^ = (f>y(f> for all y 6 G. So (f)(xyx~1) == y(/)(x)y~1 for all
x,y ^ G. Since <^ is an automorphism of G, we have y'1^^) G ^(G) for
all i/ (E G.

Now since (a, (^>) is a crossed module morphism, a^t) = ^^0(1);
but a = IT so that Vt = ^t for all y E G and t C T. Therefore

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



140 K. NORRIE

y^^y) C Z(G)nstG(T) = 1 so that of) = IG. Therefore (a,(f>) = (IT, lo)
completing the proof.

In view of the above result we see that given a crossed module (T, G, 9)
with trivial centre, then a sequence of crossed modules can be constructed :

(r,G,9), A(r,G,<9), A(.4(r,G,<9)),...
in which each term embeds in its successor. We call this sequence the actor
tower of (r,G,<9). It is therefore natural to define the crossed module
(r, G, 9) to be complete if ^(T, G, 9) == 1 and the canonical morphism
(77,7) : (T,G,(9) —^ A(r,G,(9) is an isomorphism. Thus an actor tower
stops when it reaches a complete crossed module. We note that in [17]
LUE defined a crossed module (T,G,<9) to be semi-complete if {77,7) is an
epimorphism. Thus a semicomplete crossed module with trivial centre is
complete.

Examples.
1. — If N is a normal subgroup of a group G, then the crossed module

N ^ G is complete if and only if G has trivial centre and the only
automorphisms of G which restrict to automorphisms of N are inner
automorphisms of G. Therefore if G is complete the crossed module
N ^ G is complete for any normal subgroup N of G. So putting N = 1
or N = G we see that a complete group regarded as a crossed module
in either canonical way is a complete crossed module. More generally, if
N is a characteristic subgroup of G, then the crossed module N ^ G is
complete if and only if G is complete.

2. — The main result of [17] is that if T is a group with trivial centre,
then the crossed module T —> Aut T is semicomplete if and only if the
group Out T of outer automorphisms of T has trivial centre. However, the
centre of the crossed module T —^ Aut T is T^ T -^ 1, and so since T^ T

is a subgroup of Z(T), if T has trivial centre then the crossed module
T —> Aut T has trivial centre. Thus the above result can be restated as :
if T is a group with trivial centre then the crossed module T —> Aut T is
complete if and only if Out T has trivial centre. So any group whose centre
is trivial, and whose group of outer automorphisms also has trivial centre
will give rise to a complete crossed module. One such class of groups is
the class of free groups Fn of finite rank 71, where n > 3 (cf. [16]).

3. — Let (T, G, 9) be a crossed module with 9 surjective. Then (T, G, 9)
is complete if and only if T is isomorphic to G and is a complete group.

In order to provide further evidence that the actor of a crossed module
is the correct generalisation of the automorphism group of a group, we
give an analogue of a well known result of ROSE [20].
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THEOREM 5. — Let G be a group with a characteristic subgroup H
with trivial centralizer. Then G is naturally embedded in Aut H by means
of conjugation of H by elements of G, and restriction defines a natural
monomorphism Aut G —> Aut H whose image is the normalizer of G in
Aut ft.

A corollary is a famous theorem of W. BURNSIDE [6].

THEOREM 6. — If G is a group with trivial centre and if Inn G is
characteristic in Aut G then Aut G is complete.

The translation of the group theoretic terms in the statement of ROSE'S
result into their counterparts for crossed modules is straightforward. So,
suppose that ( S ^ H ^ Q ) is a subcrossed module of the crossed module
(T, G, 9). Analogously to the definition of the centre of a crossed module,
we define the centralizer C(T,G){S,H) of ( S , H ) in (T,G) to be the
subcrossed module (T^, CoW^siG^S)) of (T, G), where Cc(H) denotes
the centralizer of H in G. In view of the definition of a normal subcrossed
module it is natural to define the normalizer N(T,G)(S,H) of { S ^ H ) in
(T, G') to be the subcrossed module

(T^^NoWnsiGiS})

of (T, G), where Nc{H) is the normalizer of H in G, where stG?{6'} is the
stabilizer in G of S as a set, that is

sioiS} = [g e G : Ss e S for all s C S} and
r^) = {t e T : th-^ e S for all h c H}.

Note that this ties in with previous notation in that T^^ == T11. We can
now state the analogue of ROSE'S result.

THEOREM 7. — Let (S^H,9) be a characteristic subcrossed module of
(T^G^Q) and suppose that CfT,G)(S,H) = 1. Then the morphism

Res:A(T,G) —> A{S,H)

is a monomorphism and its image is

^(^^)(Res(Z(r,G)).

Proof. — Let Res : A(T,G) —> A(S,H) have components (Resi,Res2).
We firstly show that Resi : D(G,T) -^ D ( H , S ) and Res2 : Aut(r,G) -^
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Aut(5, H) are both injective. So let \ e D{G, T) be such that Resi(^) = 1.
Then since H is a normal subgroup of G, for ol\ g eG, he H,

^=x(9hg-l)=x{9)9{xWhx(g-l))=x{g)9hx(9~l)^

so that ^x(^~1) = X(^)~1 = ^(^-1). Now acting with ^-1 we see that
for all g C G, x(^~1) e T^ = 1, proving that ^ = 1.

Now suppose that (a,0) is such that Res2((a,^)) = ( I s , I n ) ' Then for
all g e G, s e S,

9s = a(9s) = ̂ a(s) = ^9)s.

Further for all g e G, h C H,

ghg-1 = (f>(ghg-1) = (f>(g)h(f>(g-1).

Therefore, for all g e G, we have g^^g) C CoW H stoW proving
that (/) = IG.

Now for all t C T, /i e AT, ̂ r1 e 5, and so

t^ =a(tht-l)=a{t)ha{t-l).

Therefore for all t e T, we have ^Q;^) e T11 = 1, so that a = lr,
completing the proof that Res : A(T, G) —^ A(S, H) is a monomorphism.

We now show that Res(A(T,G)) = N^H)(^(I(T,G))). Since
T(T,G) is a normal subcrossed module of A(T,G) it is clear that
Res(.4(r,G')) is a subcrossed module of ^(^(ResCTr,^))), and so
it remains to prove the reverse inclusion. Now ^(5^)(Res(Z(r,G'))) is
the crossed module

( D ( H ^(^iW^^R^G))
^Aut(5^)(Res2(G))nstAut(^)(ResiE(G,r))).

In the following discussion we write | either for restriction to Aut(5', H)
or for restriction to D(H,S). It will be clear from the context which is
intended.

Suppose then that x ^ D(H, 5')(Resi(£;(G,r)))^ r^^ ̂  ̂  ^ ^ ^
^o ̂ \x~1 ^ ReSl(£;(G?,^)). Therefore we can define a map ^* : G -^ T
by ^{x) == X ° ^^l^"1. Now ^* is well-defined and is a derivation
which restricts to \ on H : this is a straightforward check and we omit
the details. Thus

^^(Resi(E(G,r)),Res.(G)) < ̂ S,{D(G,T)).
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Now suppose that

(a,^) e A^ut(5,^)(Res2(G)) H stAut(^)(Pesi ^(G.T)).

Then :
1) ^^ | C Resi(E((?,r)) for all t C T and
2) (a,^}7(a;)(a,0)-1 c Res2(G) for all g e G.

Using 1) we can define a map 5:T ->Tby rf.^ \ = ̂  ̂  . Then it is
easily verified that a is an automorphism of T which extends a. Likewise
using 2) we can define a map (f): G —>• G by

7(^))| =(a^)^x)\(a^)-1.

Similarly (f) is an automorphism of G extending 0. Moreover, the pair
(5, (/)) forms an automorphism of (T, G, 9) which clearly restricts to (a, (f))
on (5,^9). Therefore A^Aut(^)(Res2(G)) H stAut(^)(Resi ^(G,T)) is
a subgroup of Res2(Aut(r,G)), which proves that A^4(^)(Res(Z(r,G))
is a subcrossed module of Res (.4(7^)), so that there is in fact equality,
completing the proof of the theorem.

COROLLARY 8. — If (T, G) is a crossed module with trivial centre and
I(T,G) is characteristic in A(T,G), then A(T, G) is complete.

Proof. — It is easily verified that $(T, G) = 1 implies that

CA^G)(WG)) =1.

Thus we can apply THEOREM 7 which tells us that Res : A(A(T,G)) —^
A(T(T^G)) is a monomorphism, and

im(Res) = A^(Z(T,G)) (ResZ(^(T, G))).

Now the canonical morphism (77,7) : (T, G') —> Z(T, G') is an isomorphism,
and so there is an induced isomorphism A(I{T, G)) —^ A(T, G) ; (/?, r) say.
Specifically, f3 : D(G,E(G,T)) -^ D(G,T) is given by \ ̂  Tr^ and
T : Aut(Z(r,G)) ̂  Aut(r.G) is given by (e^) ̂  {r]~1 er], 7-1^).

Let Res* denote the composite morphism

A{A(T,G)) —A(Z(T,G)) -^^(T,G).

In order to prove that A(T,G) is complete, we must prove that the
canonical morphism A(T, G) -> A(A(T,G)) (which we denote by (ri.rs))
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is an isomorphism. We shall show that Res* is its inverse. We consider
how Res* acts on I(A(T,G)), which is the crossed module

(£;(Aut(r, G), D(G^ T)), Aut(T, G)).

Recall that Aut(r, G) is the image of 7, where

7 : Aut(r, G) -^ Aut(A(r, (?))

is given by (a,0) ̂  (5^^),0^^), with 0^0) C Aui(D(G,T)) defined
by 5(a,0)(^) = cn^"1 and <^(a,0) ^ Aut(Aut(r,G)) the inner automor-
phism determined by (a,(f)).

Let Res : A(A(T,G)) —^ A(I(T,G)) have components fii and R^ and
Res* : A(A(T,G)) -> ^(r,C?) have components fi* and Ji*. Consider
Xd e £;(Au^^,G?),D(G?,^)) for arbitrary d C D{G,T). Then ^|G is a
derivation G —> E taking (a,^) »-̂  d^ayJ4)y>)d~l = rjd{y) for any y e G.
Therefore R^(\d) = T1Xd\G^~1 = d, and we have the commutative
diagram :

Then clearly R^ is surjective and is therefore an isomorphism. Now TI
is a right inverse and since R^ is an isomorphism r\ must also be an
isomorphism.

Now let (a^^,(J)^^) e Aui(T,G) for arbitrary (a,(f)) (E Aui(T,G).
Then

^2 ((5(.^), ^(a,0))) = ̂ T1^) I ̂ (G, T) 77,7~1^) I G 7) = (a, ̂ },

giving the following commutative diagram

(5(a,0)^(a,0)) '——————^ (5^^) [^(G'.r),^^^) |G)^
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This clearly implies that R^ is surjective, and is therefore an isomorphism.
Therefore Res* is an isomorphism of crossed modules, and (r^.r^) is its
inverse.

We conclude with an indication of further applications of the results
above. Recall that extensions of crossed modules are defined in section 2.
The actor crossed module can be used to give partial solutions to the
problem of determining when every extension of ( S , H ) by (M,P) is
necessarily isomorphic to the direct product (S x M,H x P). The results
are parallel to the treatment of group extensions in [21], pp. 228-230.
A specific instance is the following.

PROPOSITION 9. — If (5, H) is a complete crossed module then for any
crossed module (M,P) every extension of(S,H) by (M,P) is isomorphic
to ( S , H ) x (M,P).
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