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S^BUNDLES AND EXOTIC ACTIONS
BY

A. RIGAS (*)

RESUME. — Le but de cc travail est la construction cxplicite de represcntants pour toutes
fibrations prindpales avcc fibres S3 et SO (4) sur 54 et 57. Comme consequence on obtient
les premieres etapes d'une construction cxplicite des -̂actions libres, sur chaque espace
totale des S f̂ibrations principales sur S7, ayant pour quotient des 7-sphcrcs exotiques.

ABSTRACT. — We construct explicit representatives for all S3 and SO (4)-principal bundles
over 54 and 57. Moreover, the first steps are taken towards describing explicitly the free
-̂actions, on each of the total spaces of the -̂principal bundles over S7, with quotients

exotic 7-spheres.

0. Introduction

In this note we construct explicit representatives for all principal bundles
with group S3 and SO (4) over the spheres S4 and S7. As a consequence
we get an insight into some of the exotic free S3 actions on S7 x S3. I. e.,
free actions with quotient a seven dimensional sphere with non-standard
differentiable structure. Seven out of the fifteen exotic 7-spheres that are
S3 bundles over 54 with group SO (4) [E-K] appear as such quotients,
each in an infinity of ways. It also turns out that there are such exotic
free actions on Sp(2) and on each of the other S^prindpal bindles over
S7. One could describe these actions in a way that will become clear in
paragraph 4, generalizing the example of GROMOLL and MEYER [G-M]. In
the present note we have not pursued these calculations.

Our motivations for seeking explicit descriptions for the S^-prindpal
bundles over S4, and consequently over S7, came from the following
considerations:

(*) Texte recu le 24 mars 1983. revise le 26 janvier 1984.
A. RIGAS. I.M.E.C.C.-UNICAMP. Caixa Postal 1170. 13100 Campinas SP, Brasil.
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70 A. RIGAS

First, one expects some of the beauty of the ^-principals over S2, with
total spaces the lense-spaces S3/^ although the group S3 is not commuta-
tive like S1. See for example [S]. The trick we employed to bypass this
non-commutativity was to keep increasing the size of the matrix.

Second, it appears from the work of ATIYAH, HITCHIN and SINGER
[A-H-S] that bundles over S4 and "natural" connections on them arc of
some interest to Theoretical Physicists. Building blocks for such bundles
are the ̂ -principals and some "natural" description of theirs could concei-
vably facilitate calculations and give some insight.

Finally, a problem in Differential Geometry suggested by the work of
CHEEGER and GROMOLL [C-G]: Do all vector bundles over euclidean
spheres admit complete riemannian metrics of non-negative sectional
curvature? This problem begins to be non-trivial at exactly this point:
the principal S ̂ bundles over S4.

See for example [RJ, [RJ, [We], [D-R]. Connection and curvature
calculations will appear elsewhere.

Several routine homotopy arguments have not been written down expli-
citly for the purpose of avoiding excessive formality. We hope to have
not made the note unclear by doing so.

We wish to thank Andrzej DERDZINSKI for many hepful discussions.

1. Preliminaries

Let Sp(n) denote the group of quatemionic nxn matrices A such
that AA*^A*A^l, where A* denotes the conjugate transpose of A. If
/l==(ay) the above relations translate to:

(a) All rows have unit length: R1. ̂ = 1 for all i;
(b) Rows are mutually orthogonal: R^K^O for all i^j,
(a') Columns are of unit length: Cp G(== 1 for all i;
(V) Columns are mutually orthogonal: C^ C^=0 for all i^j.
Where the product R1. ̂  is ̂ »i ̂ a^, etc., the conjugate of a quarte-

nion flsxo+xii-hjc^j+^k is a=Xo—x^i—x^j—x^k and {(fl'), (b')} is
equivalent to {(a), (&)}. Observe that the group of unit quaternions
Sp(\) is identified with S3 in JR4 and if A:Sp(l)^Sp(n) is the diagonal

(v °\inclusion A(g)=( . j we denote the subgroup A(S/?(1)) by

\0 ' q/-

TOME 112— 1984—?1



^-BUNDLES AND EXOTIC ACTIONS 71

Sp(l). Recall that n^Sp(n)^Z and that it is generated by any of the
^

canonical inclusions of Sp(\) m Sp(n) as q-^ or

Therefore the inclusion A induces the following map:

A»: n^Sp(\)^n^Sp(n)
M

with A»(l)=n which implies that n^(Sp (l)\S^(n))s=Z,. Observe that
M

the quotient is the one induced by left action of Sp(l) on Sp(n). Let
now n^2 and consider Sp(n-\) acting from the right on the Quotient

(\ 0\
and leaving the first column unaltered: A in Sp(n—\) acts as i I

\U A/
from the right.

CLAIM. - This is a free action with quotient fiP""1.
p^of. — If B is in Sp (n), q in S^ (1) and A in 5p (n -1) then B^ = (qT B

implies that B and {qTB have the same first column, so <?== 1 and therefore

/4=1 too. The quotient Sp(l)\S/?(n)/5/y(n—l) is also obtained as
follows:

Sp(\)^Sp(n)/Sp(n^\) ^4n-1

H 1 \ "̂

Sp(\)\Sp(n)/Sp(n^})^QP11-1

Diagram 1

BULLETIN DE LA SOCIETfe MATHEMATIQUE DE FRANCE



72 A.RIGAS

I. e., B^(lst column of B) and q acts from the left on the first column
as:

qb^

^
with quotient fiP""1.

In [G-M], S^^QP1 is written as 2Sp(\)\Sp(2)/Sp(l).
Now we have the principal bundles:

Pn
Sp(n -1) Q Sp (l)\Sp (n) -» QP1'l

and we will denote the elements of QP11-1 by a2 meaning the equiva-

-^
lence class of the corresponding element of S4""1 under the action of

Sp(l), i.e., the quatemionic line defined by . As S4 is QP1 and

the natural inclusion of QP^ in fiP""1 :• ; [:]- 0 generates

6
^4 QP" ~1 = Z, we have:

CLAIM. - A:,,̂ ;'1^?1) is the total space of a principal S^(n-l)
bundle over S4 with n^(X^)^Zy

Proof. — Immediate from the homotopy sequence of the pull back
diagram.

CLAIM. — The bundle Sp(n—\)c^X^^S^ reduces to a principal
Sp(l) <5 P, -^ S4 with 7t3 (?,)== Z,.

Proo/. — Such a reduction exists if and only if there is a section a of
the associated bundle:

Sp(n- 1)/S^1) c? XJSp(\) ̂  S\

TOME 112—1984—?1



S'-BUNDLES AND EXOTIC ACTIONS 73

and then P,^"1^^4)), where u : X,-^XJspw K tne projection (see
[K.-N]). In our case, such a section always exists because the fibre
Sp (n — 1 ) / S p (1) is at least 3-connected. That 113 P, = Z, follows then imme-
diately from the commutative

Sp(l^Sp(n-l)

f f
P^X,

\ \
S4=S4

Diagram 2

Instead of seeking sections a, we only retain the following information:
a
b

(i) Each P, lives in Sp(l)\Sp(n), its first column looks like 0 and

6
the Sp(\) free action is from the right on, say, the last column.

h
Now we pull-back the P^s by the Hopf-fibration S7-^4 as in the

diagram:
Sp(\) Sp(\)

. ' f f*
SP(I) ̂  P» !L^ Pn\f. i;.

S3 c, S7 -^ S4
h

Diagram 3

Recall that if S^ [ ( } in H2\aa+bE= 1} then:"-{(:)••L b.

»(̂ -(2a,,«--n,).[̂

and we write S7 as| . jwith n quaternionic coordinates.

BULLETIN DE LA SOCIETE MATHfeMATIQUE DE FRANCE



74 A. RIGAS

From information (i) and the above diagram we have that jP, is a
10 dimensional submanifold of Sp(n) with first column of the form

an Sp(l) right action on the last column by quatemionic multiplica-

tion, producing S7 as quotient and an Sp(l) left free action with
quotient P,.

Therefore P^ also comes about as a pull back of the following type:

Sp(\) Sp(\)r , r
?.c_ Sp(n)

< ,. tS^c^SpW/SpW

Diagram 4

where the i^s are inclusions.
From the homotopy ladder of this diagram follows that n^P^Z and

that r,: 713 P^ -»7(3 Sp (n) is an isomorphism. This implies that the inclu-
n

sion of Sp(\) induces the following map of n^s :Z-^Z with
M

1 ̂ n. Therefore the quotient P.=S/?(1)\.P, has n^(P^^Z^ and the
bundle ?„ over S4 is classified by its size. In the next section we construct
an infinite sequence of the P^s, but before we do so we classify them.

2. -̂bundles over 57

The ^-principal bundles over S7 are classified by n^S3^!.^ and
generated by Sp(l) . . . Sp(2) ̂  S7 [Hu].

We denote the total spaces of these bundles by £<, with £i==Sp(2),
£3= (twice Sp(2)\ . . . , £0= £12= (twelve times Sp(2)) and diffeo-
morphic to S7x53. Here, (twice Sp(2)), etc., means the pull back of

(Sp(2) sf^S'J) over S7, by a map of degree two/a : S7 ̂  S\

TOME 112—1984—?1



^-BUNDLES AND EXOTIC ACTIONS 75

For the classification of .P, as an ^-principal bundle over S7 we increase
Diagram 3, page 6, as follows:

S3 S3 S3

. r r r
Sp(l)<-^^--P.——S7

\ \ \'
$3 <_^s7 —- S4 —- S4 -^BS3

H Jll J

Diagram 5

where /, is a map of degree n and j is the inclusion of S4 ̂  QP1 in
BS3 = lim, fiP". The classifying map for -P, is j o /, o fc. We shall confuse
maps and their homotopy classes when this causes no aparent disaster.

First we calculate /, o h in n-j S4 ̂  Z + TL^ using the following theorem
of Hilton [H].

THEOREM. — Ifg is in n^(S"), m<3n-3 and Fi, F^ are in n^(X) then:

(F,+F^)og^F^g^F^g+[F^ F^H(g\

where [Fi, F^] denotes the Whitehead product of F^ and F^ and H(g) the
Hop/invariant ofg.

In our case g = h in n-j S4 with H(g)= 1.
For calculating the Whitehead product we use the formula ([Hu], p. 330).

[i.i]=2A-e2(y,

where i is the identity element of 714 S^Z, e is +1 or —1 depending on
orientation conventions and S(y is the suspension of fy: S6-^S3 that
generates TC^ S 3 = 212-

It follows from [Hu], p. 330 that S(y generates the torsion part of
1(7 S4 and h generates the free part. We shall simplify these notations to
h=(l, 0) and E(y s(0,1) in Z © Z^. For the time being we shall leave
es±l. The spheres are suspensions and therefore co-H-spaces, so the
Whitehead product is bilinear whe& X=S4.

BULLETIN DE LA SOClfeTE MATHfeMATIQUE DE FRANCE



76 A. RIGAS

From all the above it follows:

/i°fc=(l, ±1),
/2ofc=(i+i)^=2ih+[i,i]=(2,0)+{(2,0)±(0, 1)}=(4, ±1),

/3oh=(i+2i)°A=ifc+2ifc+[i,2i]=(3,0)-h2(2, ±1)=(7, ±2), etc.,
/,°h=(3n-2, ±(n-l))inZ+Z^, for all n.

Before determining j °f^ ° h observe that j is essentially the boundary
map 8 of S3 c? S7 -^ S4 and that 5 : Z+Z^ -^ ^12 "^P5 (^ fr) to ^ L ̂  7
is the projection of 717 S4 to its torsion component.

We may now decide the exact value of e by testing on Sp(2): In our
notation, Sp(2)^E^, j°f^°h is the generator 1 in Z^. Therefore e==l
and we have:

COROLLARY. —— P^ £(«-i) nod 12/or n^3-

In particular P^, P^, ^i2k+i are isomorphic to the trivial bundle
S^S3.

Now we are ready to give a concrete description for each P^ and
consequently each ?„, n=3, 4, ...

First we construct ^3 a 10-dimensional submanifold of Sp(3), invariant
under 3 Sp(\) acting from the left:

.a -fc|fr|2 X Y
^3= ( f r bob y )inSp(3)

\0 a^ / l+ l fc l " z/

I. e., ^3 is the bundle of quatemionic 2-frames over 57 with first vector
the 2nd column.

The invariance with respect to the 3 Sp( Inaction works because each
element of the 2nd column is a product of the form bab or a or b
multiplied by a real number, always starting with a or b (not a or 5) and
having an odd number of a's and Vs.

This ^3 is a principal S ̂ bundle over S7, by projecting to its first
column, i.e., S3 (or Sp(\)) acts by quatemionic multiplication from the
right on the last column.

Now we construct P^ as a 10-dimensional submanifold of Sp(4) inva-
riant under S3 action on the last column from the right and therefore a

TOME 112— 1984—?1



^-BUNDLES AND EXOTIC ACTIONS 77

principal S3 bundle over S7:
^ /a -bIfrpL-1 0

b babL^1 0
0 flifll2!--1 -fc

<0 aSaL~1 a

P.- in 5^(4) ,

w./

where L == /Ifl l4^!^!4 . Observe that the conditions for the first three
columns to be mutually orthonormal are satisfied and that all entries are
smooth in a and fc.

Next we give an inductive process for constructing P^^i from P^
and illustrate each step by performing gradually the construction of P^
from ?4.

STEP 1

Forget all divisions by the lengths of the columns and also forget the
last column of x^s:

' a -b\b\2 0\
b bob 0\

a\ay
a5a

-b\
fl/

STEP 2

Cut off the first two rows and the first column:
/ o l f l l 2 -b'/a\a\2 -b\
\ aEa a )

STEP 3

Multiply each element of the first column by aE from the left and put
the result as a new first column:

(aBa\a\1

\ Wa
fl|a|"
aEa

-^

STEP 4
Put —b over the second column and af^ over the first column where/»

is a function of | a |2 and [ b |2 that makes the product of these two columns
equal to zero. I. e., ——

(Col)..(Col)p=0,

BULLETIN DE LA SOCIETE MATHfeMATIQUE DE FRANCE



78 A. RIGAS

and complete the first row with zeroes:

( afk -b 0
aKa\a\2 a\a\2 -fc]
(aK)2 a aEa a )

Here.As/o-H4.

STEP 5

Put back the piece that we took out at step 2 completing with zeroes
down the first column and the first two rows. Put back the last column
of the x.'s:

-b\b\2 0 0
bob 0 0

a\a\4 -b 0
a5a\a\2 a\a\2 —b
(of))2 a aEa a

STEP 6

Divide each column by its length to become unitary.
Observe now the following: The last columns are essentially constant

except for the zeroes that one adds on the top places. Denote by L^ the
length of the 2nd before the last column of P,, by L^ the length of the
third before the last, etc., by £,.4 the length of the (n-3)-before the last
column, which is the third column from the left. Let L denote the length
of the second column.

Then we have the following:

PROPOSITION:

L^laMbl^/o+lbl2,
LJ^I^+lanfrMbl^+H2.

Ll=f^\b\2

I^=/,-5+|fr|2,

L^/^+lfcl4,

TOME 112 — 1984 — N° 1



S^BUNDLES AND EXOTIC ACTIONS 79

where:

/^Ifll^l^-hlfcl2)^!6!.2.

/^H^Li
.^M^LjL2.

^^Ifll21-4^...^.

Also, for n^lwe have:

^i-I^IV^Iarifrp^.+lal6!^4/^^ . . .
+|fl|211|b|211-2/i+|fl|2^10|fc|211+|fl|21•+6|fe|2"+2.

The proof of this proposition is elementary, though quite tedious, and
is omitted.

/a\Observe that all L,'s and /.'s are smooth and that f^ ( ) = 1 for all i,

so Lf is always positive and therefore bounded away from zero, with

-K:)--
From the clasification of P^ we have that the first trivial one is P^

which is illustrated below in matrix form:
a -fcl&l2!^1 0 0 ... 0 2i
b babL"1 0 0 . . . 0 z^
0 fl/8^"1 -bL;1 0 . . . 0 Z3
0 (fl6)a/7L-1 af^L;l -frLg-1 ... 0 Z4
0 Waf^L-1 (c£)af^ a^L^ ... 0 z,

0 (aF)9fl|a[2L~l (aF)8fl|fl|2L91 (aE)'7 a\a\2 L^1 ... -fc z^
0 W^aL"1 (a^aL^1 (a^aL^ ... fl z^

An element of Pi 3.
In paragraph 4 we attempt the construction of a global section for P^,

i. e., an explicit diffeomorphism with S7 x S3. The formulas, however,
depend on a homotopy which we have not been able to write down
explicity.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



80 A.RIGAS

3. 50 (4)-bundles and exotic actions

It follows from the construction of P^ that there is a free SO (4)-action
on PjZz with quotient S4 (see also [R ]̂). First we look at ^3.

Write SO (4) as the semi-direct product S3 x SO (3) with the following
linear action on R4:

(p,Q)^(^pQ^)

and the following multiplication:

(AeK^-n^O^MTi),
where all products are products of quaternions.

Let Z^= {1, -1} act on the last column of ^3 and take the quotient
?3 =?3/Z2. The right free SO (4) -action on P^ is then as follows:

a -b\b\2

b bob
o ayrq&r

^2

^3

^(p,6):=
8flpe
^bpQ

0

^(-b^^pQ 8x1
^(bab)p6 8x2

8(fl^/rTT^)^e 8x3]

In other words we multiply each element of the first two columns by
the real 4x4 matrix (p , Q) from the right and each element of the last
column by 8 from the left. Although 6 is not well defined as a quaternion
(it is the class {6, —6} that is well defined), having divided by Z^ removes
this ambiguity and the SO (4) action is well defined. To check its frceness
just look at the first and last column: at least one of a, b and one of Xi,
x^, X3 is different from zero.

The quotient four-dimensional manifold is a homology four sphere as
follows from the homotopy sequence of the fibration:

SO(4)c;P3-^M4

A map from M4 to S4 may be constructed as follows:

~a -b\b\2 xF
Orbit of b bob x^

0 o^/TTP X3_
^ (635-5/2X3fl6x3, iO^^-^flnbl10)172).

with the "+" sign if \a\ ̂  1/^6 and the "-" sign if \a\ ̂  1/^/6.

TOME 112— 1984—?1



S^BUNDLES AND EXOTIC ACTIONS 81

The coefficients and powers of |a| and \b\ are a consequence of
[ X31 == | b |2 and the maximum value of | ̂ 3 06x31.

Now we see that M4 is the union of two 4-discs glued along their
boundaries by the identity. It follows that M4 is diffeomorphic to S4.

The projections of the SO (4)-bundles, to be considered further on, onto
S4 are completely analogous.

The classification of P^, and in general ?„, as an SO (4) bundle over S4

may be carried out as follows:
From the pull back Diagram 4 one has that i» : n^(P^^n^Sp(n)=^

is an isomorphism and that the inclusion of S3 in ̂  as any of the diagonal
elements induces an isomorphism on '̂s. Let now ^3 SO (4)=Z ® Z be
generated by (1, 0) and (0, 1) where (1, 0) comes from the S^part, i. e., the
/^-component and (0, 1) comes from the SO (3)-part, L e., the 0-component.

Therefore, the inclusion of a SO (4) orbit in P^ induces the following
map on n^s:

(1.0)^2,
(0,1)^-1,

i.e., (a, b)t-»2a—& in Z.
The relevant part of the homotopy sequence of SO (4) . . . P^ -+ S4 is:

TC4S4^1t3SO(4)-^3P3-^0=TC3S4

and Image 5=Ker i*. It follows the that Ker 4 is generated by (1, 2) or
by (-1, -2), and therefore 8(1) =(1, 2) or (-1, -2). As 8 is essentially
the classifying map at homotopy level for the bundles SO (4) c? P^ , -»• S4

we have that P^P^ 2- Notations and conventions are the same as in
?2].

This same reasoning implies that P, with the analogous SO (4)-action
(^^(/y, 9): =8^/?e for every entry of each column except the last and
(±x)^(p, 9)=±8x for the entries of the last column) is the principal
SO (4) bundle P^ ̂  over S4.

The following theorem was proved by Eells and Kuiper in [E-K] where
different conventions were used.

THEOREM. — The associated 3-sphere bundle to P^ , has total space
homeomorphic to S7 if and only if m^\. This seven sphere will have an

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



82 A. RIGAS

exotic differentiable structure if and only if n(n+l) is not a multiple
of 56. In fact n(n+l) mod 56 provides a complete classification of the
7'spheres that appear as S3 "bundles over S4 with structure group
SO (4). These are exactly sixteen out of the twentyeight 1'spheres.

In [G-M] GROMOLL and MEYER constructed an exotic 7-sphere as the
free quotient of Sp(2) by an S3 action: In [R^], this action was seen
from the angle of principal SO (4)-bundles over S4. We want to generalize
this point of view to include all sixteen of these homotopy 7-spheres.

LEMMA 1. — IfS3 acts on ^+1 by q^^q^q for each element of any
column except the last and by q^x^qx for each element of the last column
then ^k+i/S3 is diffeomorphic to P^+i Xso(4)S3, where SO (4) acts on S3

by (p,9)^:==8Me.
Proof. — Let (A, X) represent an element of ^+1 where A stands for

any column except the last and X is the last column. If q is in S3 we
denote by Aq the column with entries a^q where a. are the entries of
A. Similarly with qA q, qX, etc.

The following maps are smooth and inverse to each other:

with:

and:

by:

<^: ^iXsowS^J^/S3,

<S>{(A^X),q}^[(Aq,X)]

^ : Pfc+ i IS ~~^ Pk^lxS0^4-) ^ f

^[(A,X)]={(A,X),l},

where [ ] and { ) denote the class in ^+,/S3 and the class in
^t+i ><so<4)S3 respectively.

The map <I> is well defined because:

{(A, JQ, q}={ftAp9, 8^). 8^6}

which is mapped by <S> to:

[ftAqQ, 9X)]=[(Aq, X)]=9{(A, X), q}.

Similarly [(A, X)] =[(8 AQ, 8.X)] which is mapped by ^ to:

{ftAQ, 8^), 1 }={(A, X), 1 }=<|/[(A. X)}.

TOME 112— 1984—1^1



S^BUNDLES AND EXOTIC ACTIONS 83

Finally,

^ o < D { ( A , X), q}^[(Aq, X)]={(A^, X), 1}={(A. X), q}
and

<&oXK(A, ^)]=0{(A. JO, 1 }=[(A, JiQlQ.E.D.

This together with the Eeels-Kuiper theorem and the classification of
the P^s implies that some of the principal S^bundles over each of the
Eeels-Kuiper S^s have the standard differentiable structure, i.e., their
total space is diffeomorphic to the space of the corresponding ^-principal
bundle over S7. One may say this in a different way: There exist nonstan-
dard free actions of S3 on E^S^xS3, £i^Sp(2), . . ., E^ with quo-
tients exotic seven spheres.

Before we straighten out the book-keeping we comment that the above
statement is neither very remarkable nor peculiar to our kind of
argument For example, the vanishing of the group L^(0)== 1-3(0)
(see [W]) implies that for all exotic E^s one has that E7 x S3 is diffeomor-
phic to S7xS3.

We owe this observation R. Schultz. However, in our case, the actions
of S3 are explicit and the diffeomorphims between certain S7 x S3 and
57 x S3 should not be too complicated.

So, what seems interesting is that some of these actions have a good
chance to be written down explicitly.

Now back to our book-keeping.
(a) The manifold E^S7 x S3 is diffeomorphic to ^i2k+i tor all k and

from the lemma we have Puk+i/^^^kaik^i)} where [12k(12k+l)]
is the Eeels-Kuiper index of the Z^s. The possible indices are, 0, 2, 6,
12, 14, 16, 20, 26, 28, 30, 34, 40. 42, 44, 48, 54.

The number 12k (12k 4-1) is divisible by 4 and therefore so must be its
residue mod 56. In other words the only possible candidates are the
spheres with indices 0, 12, 16, 20, 28, 40, 44, 48.

In fact all possibilities occur, each for infinitely many values of k. For
example:

Index Index
Value of sphere Value of sphere
of k obtained of k obtained

1 ^ 44
2 ^ 40
4 ^ 0
5 •-» 20

7 ^ 28
8 ^ 16
9 ^ 12

20 ^ 48
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COROLLARY. — There exist free actions of S3 on S7 x S3 with quotient
each of the exotic seven-spheres S^ for s=12, 16, 20, 28, 40, 44, 48.

(&) The manifold E^Sp(2) is diffeomorphic to P^^z for all k. With
the same reasoning as above there exist exotic S3 actions on Sp(2) with
quotient SKiik+Ddik+Di- The product 1.2 is divisible by 2, but not
by 4, so the only possible indices arc 0, 2, 6, 14, 26, 30, 34, 42, 54.

A quick checking implies again that all possibilities occur, each for
infinitely many values of k.

Index Index
Value of sphere Value of sphere
ofk obtained of k obtained

0 ^ 2
1 i-. 14
2 ^ 34
3 ^ 6

4 ^ 42
5 ^ 30
6 ^ 26

13 »-. 54

COROLLARY. — There exist free actions ofS3 on Sp(2) with quotient the
exotic seven sphere S^/or r=2, 6, 14, 26, 30, 34, 42, 54.

The reasoning for each of the remaining £/s is the same. Each £„
i=2, . . ., 11 is diffeomorphic to ^k+i+i for all k=l, 2, . . ., and we
get as quotients of the S3 actions on £< one of the above two sets of
exotic seven spheres. The set indexed by 12, 16, 20, 40, 44 and 48 if
i(i+1) is divisible by 4 or the set indexed by 2, 6, 14, 26, 30, 34, 42 and 54
if i(i+1) is not divisible by 4.

COROLLARY. — There exist free S3 actions on each of E^ £5, £e, £9,
£10 with quotient each of the seven spheres S ,̂ r==2, 6, 14, 26, 30, 34,
42, 54. And there exist free actions of S3 on each of£3, £4, £7, £g, E^
with quotient each of the ̂ , 5= 12, 16, 20, 40. 44, 48.

To complete this section we remark that one can describe explicitly all
principal SO (4) bundles over S4 using the P/s (see also [S], § 26.6, [J-W]
and [T]).

For example, the free SO (4) action on P^ i/Za by
(p, 9)* (A, X): =(9 A, QX^p) with the notation of Lemma 1, has
quotient S4 and projection: (2ab, da—bV). The Z^ action changes the
sign of the A-part
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The inclusion i of an SO (4)-orbit induces the following map on n^ S:

4: Z+Z-^Z

with:

i»(1.0)=-l

and:
4(0, l)=n-l.

Therefore the image of the classifying map:

9: n^S4^n^SO(4)

is generated by (n—1, 1), so in our notation, PjZi with the above
described action is the principal S0(4)-bundle P»-i. i over S4.

The bundles P^ o have total spaces P, x 53 SO (4) with the obvious
SO (4) action from the right and ?o,« have total spaces
(PJZ^) x so o) SO (4) where the Z^ action on P, changes the sign of the
last column.

The bundles P^ ^, are obtained from Pjl^ m a similar way:
p(Q)^(A,X)=((pff)A^ (p6)X).

The bundles P^ „ for w and n other than 0, 1, — 1 can be obtained as
quotients of P^ „ by Z^, where P^, are the Spin(4)sS3xS3 principal
bundles over S4.

The homotopy ladder of the pull-back diagram:

S^S3 S^S3

r r
P... -T^'-.X''.
( \
S* -—*• S*xS*21

implies immediately that P^ , is indeed the pull-back by the diagonal A
of the Cartesian product ?„ x ?„.

The same construction applies to the Spin (4) and SO (4) bundles over
S7: just replace S4 by S7 and ?„, P, by P^, Py
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In order to write down the action of SO (4) we find it more convenient
to use the description:

Sf^s^x^S3,

with (-1) (p, q)=(-p, -q\ denoting the elements of SO (4) by { p, q}
now, rather than the semidirect product S3 x SO (3) we used up to now.

In the direct product case the linear action on R4 is:

[p.q](Q-P^

As an illustration we have:

"a
b
0

x
y\
0

-b\b\2
bob

a^W

^

Yi
Zl

Pi.

where the first two columns are an element of Sp(2), the first, third and
fourth column are an element of ^3 and there is no constraint between
the second and fourth columns. The bracket denotes the quotient by S3

from the left acting on all columns. Therefore, P^ 3 is P^ 3/i2^ with z!
multiplying by — 1 the second and fourth columns and where the element
{ p , q] of SO (4) acts by:

a xp -b\b\2 x^q
b y p ; bob y^q
j) o oyrrf&f z^j

4. A trivializatioD of ^13

Let ^J^inS^^ol and ^{(^) in ^[b^ol. Then

U U ^=S7 and 17 0 V is diffcomorphic to S3 x S3 x (0, w/2). In fact, if

a: [ /^V^S 3xS 3x(0,TC/2)is(^]^(f l | f l | ' l ,b |&|~ l ,cos" l | f l [ )and

if P : S3 x S3 x (0,7C/2) -^ 17 0 V is:

((A, B), 9)
^cos 9A'

sin OB

then a o P and P o a are the identity because sin (cos"1 \ a \) = | b |.
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We first construct a section over U by solving the linear system that
consists of the 12 equations:

(Col()(Coli3)=0, !=!,..., 12

plus a 13th:
|Row.[=l

for one convenient a between 1 and 13:

(1) flZi+6z2=0 => z^-flS'lfll"^,

(2) -6zi2-+-flZi3=0 => z^^fi'jol^z^,

(11) -fe3+fl/7Z4-Kfl6)fl/6Z5+ . . . ^(fl^/iZio+Wfllfl^Zn

4- (flfi)8 fl [ a |2 z^ + (fl6)9 ozi3 =0,

(12) -5'|b|2Zl+5fl6z2-^flir8^3+(^fl/7^4+ • • •

+(fl5)7fl/lZlo+(fl6)8fl|fl|4^11

^(flS)9^ i a |2 z^ + (ocy îs =0,
(13) I fe^+lb l^ f l^L-^ lz^ l^L

Recall from Step 6, in paragraph 2, that L and L( are lengths of columns.
We first solve (2) and substitute in (3), then solve (3) and substitute

in (4), etc., till at the end we have z^ z^ . . ., z^ as functions of z^:

Z4=flF[fl|~2L8"2Z3,

z^Wlfll-4!^,

z^Wlfll^L^Lsr^,

^-WH''18^!.--^)'2^

z,3=(^lo|fl|;20(L,...Lg)-2Z3.
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Put these together with z^=—aE\a\~2z•^\a equation (12) and obtain:

za^-^a^lal-4^^,

z^-Ca^lal-^LgL,)-^,

z^^aE)10^-20^...^)-2^
z^=-(a5)"|a|-"(Li . . . Ly)-2^,
z,3=-(a5)l2|fl|-24(Ll...L,)-22,.

From (13) we have [zil^lo^O—H4^"2) aod by the proposition in
paragraph 2, | z, |2 = | fl |2/, L-2. As /, = | a |22 (L, . . . L,)2,

|z2|=|a|l2(Ll...L,)L-l.

Let now z^ : = —a l2L^ . . . LyL~1.
We chose this value so that the transition function, to be determined

later, can be factored through to S6.
Putting this value of z; in the above equations we obtain a section:

X: l/x^3-^^,
with:

((:)-)-((:)-)•
whose coordinates Xj, i= 1,. .., 13 of the last column are:

Xl=(aK)al2\a\~2Ll...L9L-lg,

^=-fll2Ll...L,L-l^.

^(fl^fl^lal-4!.! . . . Lg^oL)-^,

x^a^a^lal-6!-! . . . Z^LgLgL)-^,

Xi^Wa12^!-20^ . . . L,L)-1^

^^W^H'"^! • • • L^L)-^,
x^CaS)12?2^)-24^ . . . L,L)-̂ .
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To obtain a section y o n V = = { f r ^ O } w e solve the same set of equations
(1)-(12), being allowed to divide by b now:

(1) => z^-frfllfrl-^,
(2) ^ z^^l'2^.

Substitute in (3), etc.,

Zn-WM^ia.
z^Wlfcl^Ltz^
z^Wlbl-8^^)2^,

Z3=(fea) lo|b|-20(L,...L8)2z,3.

Now put everything in (12):

z^w1!^2^...^)2^
and:

z^-(ba)l2\b\-^(L^..L^2z^

It is easier to get the length of z^ from the last coordinate of X than
directly from the matrix P^:

|z,3|=|fr|12(L,...L<,Lr l .

For the same reason as in choosing z^ we set now:

z^3:=F2(Ll . . .L9Lr l .

The coordinates y^ i==l, . . ., 13 of the last column of the section

y:.^3^,^((^^y((^,) are:

.^WP2)^-22^ . . . L^L-^q,
y^-W2?2^-2*^ .. . L,)L-1^
>-3=(fcfl)10512|fc|-20(L^ . .. LgKLgL)-1^
y^{bS)2P2\b\-*(Lt...L„L)-lq,
.̂ (WH-'CLi . . . Z^D-^,
y^=P2(Lt...LyLrlq.
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The transition function \w : t/0 V-^ S3 is therefore:

^(^=fll2(fcfl)12F21fll'241frl'24

We use the map P defined at the beginning of this section to pass to
S3xS3:

^voft:S3xS3x(0,n|2)^S\

((A,B\9)^A12(BS)12E1\

i. e., it is independent of 6.
Recall that there is a continuous projection from S3 x S3 to S6, the

equator of S7, defined by collapsing 1 x S3 and S3 x 1 to the same point,
the base-point of S6.

Call this map c and observe that Xyy0? factors through c to a map
5l: S6 ->• S3 making the following diagram commutative.

S3xS3————"S3
^UV oP ^

As Pi 3 is trivial, there is a homotopy F : ^xIO, n/2]-^S3 with

..(c(:))-,..^(c(:))-.(c(:)).

This homotopy is lifted to

f : S3 x S3 x [0, it/2] --- S3

-J ^/F

^xlO,!!/!]

the obvious way. We may take F to be smooth with F, ( j = 1 for all

9 in [0, n/6], Fe (^^"(f'a)12?"^!-24^!-24 for all e in [it/3, it/2].
\0/
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If escos"1)^) in [0,7C/2] we have a global section of P^ whose last
column is:

w, =(fl5)al2|fl|-2(L^...L<,)L-lFe(^\

W2 =-fll2(L^...L9)L-lF,

H^W^Ial-2^ . . . L^L^F, (a

\b.

A diffeomorphism €>: S7 x S3 -^ P^ will then be:

•((:)*)-• {{>
"a -fr|fc|2L~ l 0 ... 0 Wih"
b fcobL-1 0 . . . 0 w^h

0 (a^^aL^1 (a^aL^ . . . a w^h

From paragraph 3 we have that the free action of S3 on P^ with
quotient 1.^ is conjugation by q(^^q^q) on the entries of each column,
except the last, and multiplication ((o»—^co) on the entries of the last
column.

Therefore, a free action of S3 on S7 x S3, with quotient S7^ is:

((̂ -(-(M//o\ \ , / - /Y0'„* ' • • I - 1 — A-I

{{W\ fW\_ /a\.^((^.^U^ W-
where 9= cos"1 |a| in [0, w/2].

To obtain the other S^s that are obtainable this way, according to
paragraph 3, we have to consider the homotopy F between 1 and
a1211 (bo)1211?211 for the appropriate values of k.
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