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HOLOMORPHIC FUNCTIONS
ON FULLY NUCLEAR SPACES

BY

PHILIP J. BOLAND and SEAN DINEEN
[University College, Dublin]

RESUME. — Un espace localement convexe E est dit pleinement nucleaire si E et £p sont
des espaces nucleaires complets et reflexifs. Soient E un espace pleinement nucleaire
admettant une base de Schauder, et U un polydisque ouvert de E; alors H(U) designe
1'espace des fonctions holomorphes sur U. On montre et applique que les monomes z"1

forment une base absolue dans H(U) pour la topologie To de la convergence compacte
et pour la topologie Ta de L. NACHBIN.

ABSTRACT. — A locally convex space E is fully nuclear if both E and £p are complete
reflexive nuclear spaces. If E is a fully nuclear space with a Schauder basis, and U is an
open polydisc in E, then H(U) is the space of holomorphic functions on U. We show
and apply the result that the monomials z"1 form an absolute basis in H (U) for the topology
To of uniform convergence on compact subsets and for the L. NACHBIN topology r<a.

If U <= C" is a Reinhardt domain (i. e. a connected open set such that
z = (zi, . . . , z^) e U if and only if (e191 z^ . . . . e1^ z^) e U for all
(GI, . . . , Qn) e R") containing 0, and/is a holomorphic function on U, then
/(z) = SweA'n ^m zm where the coefficients are uniquely determined and the
series converges normally in H ( U). Since H ( U), the set of all holomorphic
functions on U, is a Frechet nuclear space when endowed with the topology
of compact convergence To this says that the monomials (z "^ejv" form an
absolute basis for (H(U), To).

In this article, we introduce the class of fully nuclear locally convex spaces,
and show that a result similar to the above holds for certain subsets of fully
nuclear locally convex spaces with an equicontinuous basis. Using this
result, we characterize (H(U), To)' algebraically as a space of holomorpbic
germs and topologically as an inductive limit of Banach spaces. This
characterization allows us to compare different topologies on H(U), and
in this way, we partially answer a question of BIERSTEDT and MEISE [4]. In
the final section, we investigate entire functions on a fully nuclear space,
and prove in particular that To = T^ on H ( E ) for any Frechet nuclear or
dual of Frechet nuclear space E.
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^ PH. J. BOLAND AND S. DINEEN

We refer to [15] and [19] for the general theory of locally convex spaces,
to [16] and [23] for the theory of nuclear spaces, to ([I], [10], [II], [20],
[21], [22]) for the theory ofholomorphic functions on locally convex spaces,
and to ([6], [7], [9]) for the theory of holomorphic functions on nuclear
spaces.

1. Fully nuclear spaces

In this section, we develop the linear properties of locally convex spaces
that we shall use in the remaining sections. All locally convex spaces are
over the field of complex numbers.

DEFINITION 1. - A sequence of elements, (^)^i, in a locally convex
space E, is called a basis if, for each x e E, there is a unique sequence of
scalars, (x^i, such that

;c=lim^^;^x^.

The correspondence x—^x^ defines a linear functional on E, e^, and if each e'
is continuous, we call (e^i a Schauder basis. The basis is said to te
equicontinuous if the corresponding sequence of finite dimensional projections
W^i (S^ (x) = ̂ ^i x^ e^) belongs to ^ (E, E) and is equicontinuous.
A basis, (^)^i, is called an absolute basis if, for each absolutely convex
neighbourhood U of 0 in E, there exists an absolutely convex neighbour-
hood V of 0 such that

En°= 11 e'n (x) | pu ((?„) ̂  pv (x) for all x in E,

where py and py denote the usual Minkowski semi-norms associated with
U and V.

Remark. — An absolute basis is an equicontinuous basis. Every Schauder
basis in a barrelled locally convex space is an equicontinuous basis and
every equicontinuous basis in a nuclear space is an absolute basis [23].

DEFINITION 2 [19]. - Let P be a col'ection of sequences, (a^i of non
negative real numbers such that, for each r e N, there exists a = (o^)00, i e P
such that a,. > 0.

The sequence space A (P) is the set of all sequences of complex numbers,
C^Li, such that

Zn°°= 11 ̂  I ̂  < oo for all a = (a^ i eP.
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HOLOMORPHIC FUNCTIONS 313

We endow A(P) with the topology defined by the semi-norms p^
a =(o0^ieP, where

(*) Aj(^)^)=E^aJxJ.

We shall assume that P is complete in the following sense; if a = (o^)^i
is any sequence of non-negative real numbers such that

A^ (^J^i-^En^iaJxJ

is continuous, then a e P. A (P ) is a complete locally convex space. We
state the following basic result concerning nuclear sequence spaces ([19], [14]).

THEOREM 3. — The locally convex space A (P) is nuclear if, and only if,
for each (oc^ieR there exists (u^^el^ and (a;,)^eP such that
O^n ^ \Un\^nfor al1 n'

Using this result, we obtain another representation of nuclear sequence
spaces. If A ( P ) is nuclear then

A (P) = {(x^ i; sup^ | xj ̂  < 0), for all (oc^ i e P }

= {(̂ )n°°=i; N o^O as n ̂  a) for all a = (a^^eP}.

Furthermore the topology of A (P ) is also generated by all seminorms of
the form

HO^i |L)^ = supjx^aj,

where a = (a^)^i ranges over P.
Any complete nuclear space E, with an equicontinuous basis, can be

identified with a complete nuclear sequence space A (P). To see this, let
(^)^i be an equicontinuous and hence absolute basis for E. Then if
p = {(/?(/(^))^°= i; U an absolutely convex neighbourhood of zero }, we
have E ^ A(P).

We now define fully nuclear spaces.

DEFINITION 4. — A locally convex space E is a fully nuclear space if both
E and £p (the strong dual of E) are complete reflexive nuclear spaces. A
locally convex space E is a fully nuclear space with a basis if it is fully nuclear
and has a Schauder (and hence equicontinuous and absolute) basis.

Remarks.
1° A quasi-complete nuclear space is always semi-reflexive and hence it

is reflexive if, and only if, it is infrabarrelled.
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314 PH. J. BOLAND AND S. DINEEN

2° If E is a complete nuclear space with a Schauder basis, then £n also
has a Schauder basis. Hence the strong dual of a fully nuclear space with
a basis is a fully nuclear space with a basis.

3° Any Frechet nuclear or DFN (strong dual of a Frechet nuclear space)
space is fully nuclear. The space of distributions 2 of Schwartz is fully
nuclear. If E is a Frechet nuclear space or a DFN space with a Schauder
basis, then E is a fully nuclear space with a basis.

4° IfEis fully nuclear with a basis, we fix, once and for all, a representation
of E and £p as sequence spaces A (P ) and A (P') and denote the duality
between E and £p as follows:

co(z) = <co, z > = <(co,)^,, (z^, > = S^i co^

where z e £' and co e £p.
5° We prove most of our results for holomorplr'c functions defined on

open subsets of fully nuclear spaces with bases. This provides a framework
for a reasonably clear presentation and avoids technical discussions. We
could however, weaken our hypothesis on a number of occasions but the
resulting gain in generality does not appear to lead to any significant new
examples.

PROPOSITION 5. — Let U be a neighbourhood of zero in the nuclear space
A (P ). Then there exists an absolutely convex neighbourhood V of zero and
a sequence 5 = (5^i where 5^ > 1 for all n and 1/5 = ̂ i 1/5^ < + oo,

0^= {(W^i; MLie 7, ̂ x^eA(P)} c U.

Proof. — Without loss of generality, we may assume that

U = {(x^ i; sup^ | ̂  ̂  | < s } where (a^ i e P.

Now let (O^i e P and (^)^i e /i be such that a^ > ̂  for all ^ and
^ ^ | ̂  | ̂  for all n. Let F = { (x^\; supj ̂  ̂  [ < e } and Ie
^ = ^/^ it ̂  ^ 0, and 5^ = 2" otherwise. Clearly §„ > 1 for all n and

Zoo 1 ^ Voo 1- iV°° I I ^ ̂
n=l^^Ln=l^+Ln=l\Un\ < 00.

°n z

Furthermore, if (^)^L i e ,̂ then

SUPn | 8»^^ I ^ SUp^ ] ̂ < I < S

and hence 8 V c U.
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HOLOMORPHIC FUNCTIONS 315

DEFINITION 6. — Let E = A (P) denote a sequence space, and let A denote
a subset of E.

(a) A is said to be Reinhardt if whenever z = (̂ n)̂ °= i e A and

(e^ieJ^, then (^"z^eA.

(b) A is said to be modularly decreasing if (z/,)^L i e ̂  then

(} )̂̂ °= i e A whenever | y^ \ ̂  | z^ | for all n.

The Reinhardt hull and the modularly decreasing hull of arbitrary subsets
of A (P ) are defined in an obvious way.

If E is a complete nuclear space with an equicontinuous basis then we
say a subset A of£'is Reinhardt (resp. modularly decreasing) if A is Reinhardt
(resp. modularly decreasing) when identified with a subset of A (P ) as
previously described. We refer to [17] for further information concerning
Reinhardt domains in the theory of infinite dimensional holomorphy.

PROPOSITION 7. — Let A (P) be a reflexive nuclear space and let
U c (A (P ))g be an open modularly decreasing set. Then ifB is a compact
subset of U there exists a § = (§n)^°=i where §„ > 1 for all n and
^ i !/§„ < + 0) such that 8B == { (8, z^ i; z = (z^ i e B } is a relati-
vely compact subset of U.

Proof. — Without loss of generality, B is a modularly decreasing set.
Since A (P) is infrabarrelled, every bounded subset of (A (P))p is equi-

continuous and hence we can find a sequence (o^)^, i in P such that

B c {(z,);̂ ; E î |^ocJ ̂  1}° = {((0^1; K| < ̂  for all n}.

Now choose (a^)^ i e P and (u^ i e /i such that ^n^\un\a['n for a11 ̂  and

B4£{(zX=i;E^i |^^ |^ l}°c=[/ .

Hence ^' = ^+s { (co^i; | co,, | < | a^ [ } is a relatively compact subset
of £/.

Let
2" if ^=0,

^ i^-^" if oc^O.
O^n

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



316 PH. J. BOLAND AND S. DINEEN

Then 8^ > 1 for all n and

YOO 1 <yoo 1 ,y 1
Lin=l~ ̂  Ltn=l~, I" Z^n^O

8, 2" ———l+(ea»/a,,)

^1+S^o^sa,

^l+E^o-^'^+oo.
e

Moreover, i f o = (co^)^i e .8 then | co/, §„ | ̂  | co^ [ +£a^ and hence SB c: 2?'.
This completes the proof.

Subsets of A (P ), a nuclear sequence space, which have either of the
following forms

A = {(zX=ieA(P); supjz^l < 1 }
or

B == {(z^ieA(P); supj^aj ̂  l},

where a^e (0, +00) for all n and a. (+00) =+oo if a > 0, are called
polydiscs.

It is immediate that the polydisc A is open if and only if (a^)^ i e P, and
the polydisc 2? is always closed. We note that A (P) is an open polydisc,
and 0 is a compact polydisc. Since every fully nuclear space w^th a basis
is a nuclear sequence space, this defines polydiscs in fully nuclear spaces
with a basis.

DEFINITION 8. — If£'isa fully nuclear space with a basis and A c: £, we
define AM (the multiplicative polar of A) as

AM = {(co^i e^p; sup,, | co^ | ^ 1 for all z = (z^i eA }.

It is immediate that A^ is a closed modularly decreasing subset of £?, and

^MM ̂  (^M)M ̂  {(^)^e£; sup|o)^| ̂  1 for all M^eAM}

is a closed subset of E which contains A.

LEMMA 9. — Let U be an open polydisc in a fully nuclear space with a
basis, E. Then UM is a compact polydisc in E'^. Moreover U contains a
undamental system of compact sets consisting of compact polydiscs, and the
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HOLOMORPHIC FUNCTIONS 317

open polydiscs containing 1UM form a fundamental neighbourhood system
for UM. If K (U) denotes the set of compact polydiscs in U, then the mapping

K e K (U) -> Interior (K^)

defines a (1 — ̂ -correspondence between the compact polydiscs in U and the
open polydiscs containing (/M.

Proof. - Let U= { (z^ i e E; sup | z^ a^ | < 1 } for some a =(0^ i e P,
and let V = { (z^i e £:; ̂ , | z» aj < 1 }. Then

^ = 7° = {((D^eEp; |coJ ̂  for all n}.

Since E is complete and dual nuclear, it follows that U^ is a compact
polydiscs in £p.

Now let ^ denote a neighbourhood of (/M in £p. Thus we can choose
(a^ieP' such that

FF=) [/^{(o^ieEp : sup|^<| < 1}

={((o„)„aLle£p:sup|(o„PJ<l},
where

0 if a,=0,
Pn = \ 1 if o^O.

an+(l/^)

Since (Pn)^L i e P\ it follows that (7^ has a fundamental neighbourhood
system consisting of open polydiscs. With the above notation we see that
WM c: { (Zn)^Li e E, | z^ [ ^ ?„ for all ^ }, a compact polydisc in E. Since
U1^ is a compact subset of W we can choose K > 1 such that ^ (/M c F .̂
Hence WM <= (l/?i) (^^^ = (J/X) £7, and therefore ^M c Interior U == U.
Thus WM is a compact subset of U.

Now suppose A" is a compact subset of U. We may assume without loss
of generality that K is modularly decreasing. Since K° c ^M, it follows
that KM is a neighbourhood of 0 in £p. We choose ?i > 1 such that
K K c £/. Then (^ 7^ == (l/^) KM => UM, and hence

j^M ̂  l^+fl-^^ =3 ^+^1- ̂ i^.x V :̂  V ^/
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^1^ PH. J. BOLAND AND S. DINEEN

Since (1 -(l/?i)) f^ is a neighbourhood of 0 in E^ K1^ is a neighbourhood
of (/M. From the above K c (A:̂  and since (K^ is a compact
polydisc in U, U contains a fundamental system of compact polydiscs.

Now a compact K c= <7 is a polydisc if, and only if, K = K^, and a
neighbourhood W of ^M is an open polydisc if, and only if,
W = Interior (W^. From this it follows that the mapping

KeK ([/)-> Interior^).

defines a one to one correspondence between the compact polydiscs of U
and the open polydiscs which contain l/^.

2. Holomorphic functions on nuclear spaces

If Uis an open subset of a locally convex space £, then H(U) will denote
the space of holomorphic functions from U to C, i. e. H ( U) ={/';/: U—>C,
/continuous and/is G-holomorphic }. H^ (U) will denote the space of
hypoanalytic functions from U to C, i. e./e J^y (£7) if/is (7-holomorphic
and continuous on the compact subsets of U. To will denote the topology
of compact convergence on H(U) and ^y(£Q, and T^ will denote the
topology on H(U) generated by all seminorms ported by the compact
subsets of U, ( p a semi-norm on H(U) is ported by the compact subset
K of U if for all open V, K c V c: U, there exists Cy > 0 such that

P(D^Cv\\f\\v forall feH(U)\

DEFINITION 10. - LetA^ = { (wi, m^ ...,); w^ 0, andw.is eventually
zero }. If w e ̂ w and z = (z^ e A (P), we let zm = f^i z^ where
m = (wi, W2, ...). ^ is called a monomial for each m e ̂ w.

THEOREM 11. - Z^ E ^ A(P) te a reflexive nuclear space and let
U <= (A (P ))p &e- a modularly decreasing open set. Then the monomials
form an absolute basis for the complete nuclear space (H^y (U), To).

Proof. - Let /e Hyy (U). If b e U, we let

[fc], = {(z^°°=ie£' |zJ ^ | b,\ for 1 < i < r, and z; = 0 for i > r}.

[&]y is a finite dimensional polydisc in £".
Now let K be any modularly decreasing compact subset of U. By

proposition 7, there exists S = (8^i where 8^ > 1 for all n, ̂ i 1/5^ < o&
and oK is a relatively compact subset of (7.

TOME 106 — 1978 — N° 3



HOLOMORPHIC FUNCTIONS 319

Now if i; = (^°=i e ^T, we have, by using the finite dimensional Cauchy
integral formula

/^)=E.eN.^^ for all ze^],,
where

_J__f f f(j\i^2. ...,r|,,0,0, . . . )
am== (2my] '"]r———nr1...^1———^•••'11r)

T= {?1; |^|=|^| for z=l, ...,r},

and m = (Wi, ..., m^ e N1'.
Hence

|a,|^ ^il^ ^ II/'11^ forallmeN1'.1 1 i^r.-.i^r 1 ^ 1
Applying this result to SK, we get

l^ l^ l^- 1 ! 5^ for all meN'.I -I |(8^|

Therefore:

S l ^"* i^-V II ^HSK _ 1 1 f 1 1 v 1
meNWi^mS | ̂  Z^meN(^)——_„—— — ||J ||8Js:2^meN(^) _

6 6
/ i \ j— 1 1 f 1 1 n^ v00 / \-||J ||8X1L==1 Z^j=0l — j
VSn/

'" '̂""•"- '̂̂ ""/("•--•O-O)-
Since ^^Li 1/8,, < oo, this means

Sm e N(^> SUP^ e K | ^m ̂ w | < C 11 / ] ISK ^ SOUie COUStant C.

Hence f(z) = ^eN(^) ^w zm defines a hypoanalytic function on U. Since
/and/agree on a dense subset of £/, it follows that/ =/. The coefficients
a^ m e ̂ (AO, are obviously uniquely determined by /.

Let e > 0 be arbitrary. Choose J a finite subset of ^(N) such that

||/||6JS:SmeNW/J_<£.
6

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



320 PH. J. BOLAND AND S. DINEEN

Then if J ' is any finite subset of N m which contains J, we have

||/-Sr^^||^||/|kS.e^)/.^£.

Thus
S. e N^ ̂ zm=f in (HHY (17), To).

Finally, since

l l / l l jC^EmeNwI^mMl^llx^ZmeiVW -„ )-||/||5^
\ ° 7

it follows that the monomials form an absolute basis for (Hyy (U), To).
Since the uniform limit of continuous functions on compact sets is

continuous on compact sets, (Hyy (U), To) is complete.
Thus (Hfjy (U), To) is isomorphic to the sequence space A (0 where:

Q-={(\\^\\K)meN^K^U}.

Since

IMI^.JI^Ik and Ln.N^)_<00,
6 6

it follows that (H^y (U), To) is nuclear. This completes the proof.

COROLLARY 12. — The monomials form an absolute basis for the nuclear
space (H(U), To).

Proof. — Since the monomials are continuous and (H(U),^o) is a
(topological) subspace of (J^y (£/), To), this follows immediately from
theorem 11.

COROLLARY 13. — The completion of (H (£/), To) is (^y(£/),To).

COROLLARY 14. — A G-holomorphic function f on U is hypoanalytic if
and only if it is bounded on compact sets and

/OO •-= Lneiv^m^ for all z in U,

Remark. — A more general result concerning nuclearity is to be found
in [8] and [23]: ifJS'is a quasi-complete locally convex space whose strong
dual is nuclear, then (H(U), To) is nuclear for any open subset U of E.

THEOREM 15. — Let E ^ A (P) denote a fully nuclear space with a basis,
and let U c= (A (P)) be a modularly decreasing open set. Then the mono-
mials form an absolute basis for (H(U), ^^).

TOME 106 - 1978 - N° 3
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Proof, — Let p denote a T(Q continuous semi-norm on H(U) ported by
the compact set K. Without loss of generality, K is modularly decreasing.
LeifeH(U), and let V be a modularly decreasing neighbourhood of K
such that K <= V c: U and ||/]|y < oo. By propositions 5 and 7, we can
find a modularly decreasing neighbourhood of 0, W, and 8 = (8^)^ i where
§„ > 1 and ̂ i 1/8,, < + oo, such that 8 (K+ W) c K

Now if z e A:+ ̂  and me N^\ then:

| m | ^ ||./N8(g+^)
\a^z I ^————§m————9

where a^ is defined as in theorem 11.
Let CK+W denote a constant such that

p(g)^C^w\\§\\K+w forallge^(l7).

If J is any finite subset of N^, then

P(f-^m.J^Zm)^C^W\\f-'Lm.Jan,Zm\\K+W

^ ^K+W\\LmeN(N)\JantZm\\K+W

^ ^je+yrll/||5(JC+}r)2-fOT6N<w)\J -„.•
6

Since ^eN^ 1/8'" < oo, it follows that

lim,p(/-Z.e.^^)=0.

Therefore, asj? was arbitrary, the monomials form a basis for (H(U), rj.
Now let W denote an arbitrary modularly decreasing neighbourhood

of K. By propositions 5 and 7,, we can find a modularly decreasing neigh-
bourhood ofO, V, and 8' = (8;,)̂  such that 8^ > 1 all n, ̂ i 1/8;, < oo
and 8'(^+r) c TT.

Hence:

?'(/) s ZmeJVW^C^m2"1) ̂  EmeNW ^X+F' || ^m ̂ w ||jC+^

^ CJ<:+y/EmelVW)||/||8/(^+F-) -^n

^^X+F-EmeJVW .___; ||/|]^

=C||/||^,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 21



322 PH. J. BOLAND AND S. DINEEN

where C^+v was chosen so that

P^^CK+V^S^K+V- for all geH(U)..

Thus the semi-norm^' is T^-continuous and the monomials form an absolute
basis for (H(U), rj. This completes the proof.

In [4], the authors show that (H(U), rj is nuclear when Uis a balanced
open subset of a metrizable nuclear space. Using the preceding theorem
we obtain a further criterion for the nuclearity of (H(U), rj.

PROPOSITION 16. — Let E denote a fully nuclear space with a basis,
E ^ A (P). If there exists a sequence 8 = (5»)^ i where §„ > 1 for all n
and Z^=i l/sn < o°, such that (S^a^iG? whenever (a^^eP, then
(H(U), T^) is nuclear for any modularly decreasing open subset U of E.

Proof. — We have already seen that (H(U),^) is isomorphic to a
subspace of a sequence space with weights

Q = {(P^^meNw; par^-continuous semi-norm^on H(U)}.

Now suppose p is ported by the compact subset K of U.
By proposition 7, we can choose §' == (§,,)̂  i such that 5^ ^ 5^ > 1 for

all ^, ̂ 1 1/5;, < oo, and K' = §' §' ̂  is a relatively compact subset
of U. Our hypothesis implies that (8' V)yeir is a fundamental system of
neighbourhoods of 0 in 27 whenever V is a fundamental system of neigh-
bourhoods of 0 in E.

Let

P'a)^^)^!^^) forall f=T.meN^^zmeH(U).

Then
P'aXZm.N^S^I^I.IIz-H^C^+V)

^ C(X+ V^N^—^a^^^K^^v
6

<c(x+r)fo^<.)—,^||/||s,,,^,^.

Hence 7?' is a T^-Goutinuous semi-norm on H(U) ported by 8' 5' K, and
^""P^^^eQ.

TOME 106 — 1978 — N° 3
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Since
p^) 1 , V-. 1

and L m e N W — — — — < 0 0 .
(bTpW (§T (§T

this shows that (H(U), T^) is nuclear.

Remark. — If £= ̂  C x ]"]̂  C, then £' satisfies the conditions of propo-
sition 16. Therefore H(U), T,,(^ (H(U), To)) is nuclear for any modu-
larly decreasing open subset U of E.

If £/is a connected Reinhardt domain containing 0 in E^, where E ^ A (P)
is a reflexive nuclear space, we let

U = {(z^i e£p; there exists o) = (co^i e I/,

|zJ ^ jcoj for all n].

U is a modularly decreasing open subset of £"p and is the Reinhardt hull of
U. For/e^y(C/), we can define the "Taylor series" coefficients of/,
(A^meNw? as in theorem 11, and we obtain by the finite dimensional theory
of Reinhardt domains, the following results:

1° If K is a compact subset of U then ^neNw || ^m 0)OT ||x < °°^
2° If in addition/e H(U), then whenever ^is a compact subset of U, there

exists a neighbourhood Fof K, V c: (7, such that ]^ejvw || ^m o)w ||r < °°-
Hence each/e H^y ((7) can be extended in a unique fashion to/e Hyy ( ̂ 0

and each/e H(U) can be extended in a unique fashion to/e H(U).
For this reason, we have worked with modularly decreasing domains and

not with Reinhardt domains.

3. Duality for spaces of holomorphic functions

If K is a compact subset of a locally convex space, H ( K ) will denote the
space of holomorphic germs on K. We endow H (K) with the inductive
limit topology

H(K) = indlim^(J^(7), || \\y),

where V ranges over all open neighbourhoods of K and

H^V)=[f;feH<iV), \\f\\y < oo }.
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(^oo (F)? || 1 1 v) is a Banach space. Similarly, Hyy (K) is the space of
hypoanalytic germs about K endowed with the inductive limit topology

HHY^K) = indlim^(^y(n To),

where V ranges over all neighbourhoods of K.

THEOREM 17. — Let U denote an open poly disc in the fully nuclear space
with a basis E. Then the strong dual of (H(U), To) is algebraically iso-
morphic to the space H((/M) of holomorphic germs on the compact
polydisc UM.

Proof. - We will define a mapping P : (H(U), Toy-^C^) which is
an algebraic isomorphism.

Let U == { (z^i e E; sup | z^ aj < 1 for some a == (a^ e P }.
Now suppose Te (H(U), To)'. Then there exist C > 0 and K = K^,

a compact subset of U, such that | T(/) | < C ||/||^ for all/e H(U). By
proposition 7, we can choose 8^ = (8n)̂ °= i such that §„ > 1 for all n,
£?=i V§n < °° and SK K is relatively compact in U. For each m e N^,
let b^ = TCz"*). Now (5^ K)^ is a neighbourhood of UM in £'? and

li^^lkx^^ciiz"1^!!^,^^
c c^ ^ ( I m-,m|| ^ ^

<^.||^ ^0 II^XM^.
°K OK

Hence

2jmeN(^)|| ^m^lKSio^^ ̂  ^'•IjmeN(^)^ < + 00.
^X

Therefore ^neNw^m0^" represents an element of H^ (Interior (5^ ̂  )Af)
which we call ^r.

We define P T to be the germ of this function on UM. It is clear that P
is well defined and linear., Since the monomials form a basis for (H (U), To),
P is injective.

We now show that P is surjective. Let geH^U^. There exists an
open polydisc in £p, V, which contains UM and a g e H^ (F) whose germ
on \JM is g such that

i (») == Em e NW ^n ̂ w for all co e V
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and
^NW\\b^Oft\\v=C<CO.

Let F= {(o)^e^; supj®,aj < 1 }. If m = (w^i e^W, then
7 .̂ == 0 for all except a finite number of i.

If me N^^ and m, ̂  0 => a,.^ 0, then:

ll^o^H^^l and l^l^—^^cllz"1!!^.
l l ^ Ik

If w, =^ 0 and a,' = 0 for some i, then b^ = 0 and | Z^| ^ C || z"* ||̂  also
in this case.

We now define Tg on H(U) by

T^ (/) == Tg (̂  g jv(^) 0^ Z"*) == E,n e NW ^m ^m •

^M = K is a compact subset of U.
Now

IjmeJVw] ^m^ml ̂  ^SmeNC^) | ̂ ^IK ̂  ̂  | \f \\SK xZ/m e N<^) _„ •
OK

Hence Tg is well defined and To-continuous on H(U). Since P (Tg) = g
this shows that P is surjective and completes the proof.

THEOREM 18. — Let U denote an open poly disc in the fully nuclear space
with a basis E. Then (H (U), T^)/ is algebraically isomorphic to the space
^y(^).

Proof. — We extend the mapping P of theorem 17 to prove this result.
Let U = {(z^ e ̂ ; sup^ | z, ocj < 1 } where a = (oc^i e P.

Let Te (H (U), rJ'.We can find A: compact in U, K = K^, such that,
if Fis any neighbourhood of K, K cz V c U, then | T(f) \ ^ C(V) \\f\\y
for all/e H (U) and the constant C (V) is independent of/. Let b^ = T (z"*)
for all me N^ and let gj. (co) = Smeivw b^of1. To show that gr
defines an element of H^y (Interior ^M), it suffices to show th^t
T^meNw || Am (Dm HL < 00 ^or eac^ compact subset L of Interior (A^). By
lemma 9, it suffices to show ^meNw || ^m^"* HVM < 0° for each neigh-
bourhood V of K. Using propositions 5 and 7, we can find a sequence
§ = (5^1 such that §„ > 1 for all n and ̂ i 1/8^ < oo, and W a neigh-
bourhood of 0 in E such that oK is a relatively compact subset of U and
8(^+^) = 5^+S^c: K
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Hence

£»sNw||^»m||^<Z..lV^C(K+^)||zm||K^||cOffi||^

^C(K+W)^^-\\z"'\\,^^\\a'"\\^
6

^C(K+ W^^-^z'"®'"}^^
b

^C(,K+W)^^w-<^
b

We define P T to be the germ of gr on ^M. Hence P TeH^^U^
Clearly P is linear and since the monomials form a basis for (H(U), T^,) it
foUows that P is an injective mapping.

We now show that P is surjective. Let g (o) = ̂  g ̂ (N) b^ of1 e H^y ((7^).
By lemma 9 and theorem 11, there exists a function

i(o>) = E^o^e^yCInterior^) 1

where AT is a compact subset of U, K = KMM, and

Em6Nw|&m| |i^w||L<+00

for every compact subset L of Interior KM, such that ^ is the germ of g
on UM.

Now let F denote a neighbourhood of AT which lies in U. By proposi-
tions 5 and 7, we can find a sequence 5 == (8^)^i where §„ > 1 for all n,
^^L i l/§n < + oo, and W a neighbourhood of zero such that SK is a relati-
vely compact subset of U, K c: SK+SW c: V and (A:+ ̂ )MM = K+ W.
If meN^, then:

|| z"* ||^+^ is finite if and only if || ̂ w ||x+^ || ̂ m ||(K+^)M = 1

(and hence 1/|| co"* ||(K+?F)M = ||^w||x+^ while ||^OT||2s:+^ = o° if, and
only if, l l ^ l j ^+^M =0.

Since (K+ W)M is a compact subset of interior of ^M,

EmeNw||^m(DW|i(^+^)^ = C < 00.

If
/e^(£7), /^Zme^)^^
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then:

\LmeNWambm\ ̂  XweNW \ambm\

c
^ 2^neNW. || o"1 \\(.K+W)M>O \ am

0) IKK+TD^

+XweN(^),ll(omjl(K+TnM=o|am| ̂ '||zm||x+^

^ CEm€Nw||^mzm||x+^

<cfr,^)^V||/||3(^^C'||/||^

Now let 7^(/) ^meNw^m^m- ^e above shows that Tg is well
defined and is T<o continuous (being ported by K).

Since P (7? = g this shows that P is surjective and this completes the
proof.

LEMMA 19. - H ( K ) === ind limy^ H^ (Y) = ind lim^^^ (.H(V\ T^).

Proo/. — It suffices to show that the two inductive limits define the same
topology. Since the injection H^ (V) -> (H ( F), rj is continuous, it follows
thet the identity mapping ind lim^ ̂  je: JYoo (F) ~> ind limy =,x (^f(F), rj is
continuous.

Let/? denote a continuous semi-norm on ind limy=,K ^oo (^)? ^d let W
denote an open neighbourhood of K. For each U open, K ^ U <=. W
there exists C(U) > 0 such that

B={/eff(X);pa)<l}=3f/e^(l7);|i/|]^——^l.

Hence i?^ {/eJW); ||/||y ^ 1/C(£7) } and thus/? (/) ^ C (U) ||/||y
for all/e ̂  (W ). It thus follows that p \n ̂ ) defines a T^-continuous semi-
norm which is ported by K.

Hence p is a continuous semi-norm on ind limy =^(Jy(F), TJ. This
completes the proof.

THEOREM 20. — Let E denote a fully nuclear space with a basis, and let U
denote an open polydisc in E. Then (H(U), To)p ^ H(U^.

Proof. - We have already seen that there exists a linear bijection
from (H(U), Vp onto H^). Now (H(U), To)p = Wiy (U), To)p and
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(HHY (U), To) is a complete nuclear space, hence (H(U), To)p has the Mackey
topology. Since HfJJ^ is an inductive limit of Banach spaces it also has
the Mackey topology. To complete the proof it thus suffices to show

(HW^Y^H^y.
Since (HEY^),^) is a complete nuclear space (H(U), To)" ^ ^Hr(^)-
Now TelKjJ^y if and only if for every neighbourhood V of (/M,
T (a (^ e (^ (V), rj' (lemma 19). Hence if a^ = T (o)"*), then

EmeNW^m^^ffrCInterior 7^

for all open V containing UM. As V ranges over all neighbourhoods of
UM, VM ranges over all compact polydiscs of U. Thus

^m^a^eHHYW.

This completes the proof.
Remark. - In [9], the author shows that (H(E), To)p ^ H(0) where E

is the strong dual of a Frechet nuclear space, and H (0) is the space of germs
at Oe£'p.

We now apply these results.

PROPOSITION 21. -- Let E denote a fully nuclear space with a basis. The
following are equivalent:

(a) To and^y, are compatible topologies on H(U) (i. e. they define the same
dual) for any open polydisc U in E;

(b) (H(V), To) is complete for any open set Vin E'^;
(c) H(V) = Hay (Y)for any open set Vin E^;
( d ) (H(V), To) is semi-reflexive for any open set Vin £p.
Proof. — We have already noted that (b), (c) and (d) are equivalent for

open polydiscs V, and it easily follows that they are equivalent for arbitrary
open V.

If (c) is true then H ( K ) = Hyy (K) for any compact set in £p. Since
H^) = (H(U), To)' and Hy^U^) = (H (U), xj we see that (c)^(a).

If (c) is not true then there exists a compact polydisc K = U^ in £p such
that H ( K ) ^ HHY(K). It then follows that (H(U), To)' ^ (H(U), rj'
and hence (a) => (c). This completes the proof.
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PROPOSITION 22. — Let E denote a fully nuclear space with a basis. The
following are equivalent:

(a) (H(U), To) = (H(U), rj/or any open poly disc U in E;
(b) If V is any open set in £? and B c: (H (F), To) is bounded, then for each

xe V there exists a neighbourhood V^ ofx such that sup^-g^ ||/||̂  < °o-
Proof. — We first suppose that (A) holds. By theorem 11 and proposi-

tion 21, this implies that TO and T^ are compatible topologies on H(U).
Since T^ ^ TO in all cases we only need show that any r^-neighbourhood
of zero, W, contains a To-neighbourhood of zero.

Without loss of generality we may assume W = {/e H (U);p(f) ^ 1 }
where p is a To-continuous semi-norm ported by K = KMM, and W = W°°.

Hence for each neighbourhood V of K c: V c: U, there exists a positive
real number C(V) such that

{/ : P(f) ̂  1} ̂  U^J/e^O/); ||/||^ ^ ,—1.
I ^ ( y ) )

Thus:

^° ̂  H K ^ { Te(^(l7), T,)'; | T(/)| ^ C(V)\\f\\y for all feH(U)}.

By the proof of theorem 18,

H x < = v { re(^(l7), T,)'; | TOO | ̂  C{V)\\f\\y for all feH(U)}

may be identified with a set of functions in Hay (Interior K^ which are
uniformly bounded on compact subsets of Interior f^. By condition (b)^

D x < = v { Te(H(U\ rj; | T(/)| ^ C(V)\\f\\y for all feH(U)}

^{geH(r);\\g\\y^C}

for some neighbourhood V ' of l^ and some positive number C.
Hence:

W= W00 ̂  [ g e H ( r ) ; \\g\\y. ̂  C}0 =) {/eJf(l7); ||/||s(^ < C'}

for C / > 0, and some 8 = (5J^i where 8 (V^ is a compact subset of £/
by theorem 17. Hence (^(£/), To) = (H(U), rj when (b) is satisfied.

If (Z?) is not satisfied then there exists a compact polydisc U3^ in jEn, Fan
open polydisc neighbourhood of C/^ and I? a bounded subset of(77(F), To)
which is not uniformly bounded in any neighbourhood of U1^. The set B^
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as above, may be identified with an equicontinuous subset of (H(U), T^)'
but is not an equicontinuous subset of (H(U\ To)'. Hence TO ^ T^ if (b)
is not satisfied. Thus (a) ^> (6). This completes the proof.

Remarks. — In [I], J. A. BARROSO shows that

wn^i o, To) = wn^i o. TJ
and this result has recently been extended to arbitarry open subsets of
11̂ =1 ̂  ^y KARROSO and NACHBIN [3], and M. SCHOTTENLOHER [24].

Condition (b) of propositions 21 and 22 are frequently easy to verify.
Every /:-space, [18], satisfies (b) of proposition 21, (and indeed in [13] a
space with property (b) of proposition 21 is called a fc space.) ]~[̂  C, A
uncountable, is an example of a space which has property (b) of proposi-
tion 21, but which is not a ^-space. By corollary 13, every fully nuclear
space with a basis which satisfies (&) of proposition 22 also satisfies (b) of
proposition 21. ][ î ^><n^=i ^ ls an example of a fully nuclear space
with a basis which does not satisfy (b) of proposition 21 {the function

/^iCxn^iC-^c,
(^^ixCco^^E^i^^r

is hypoanalytic but not holomorphic).
All our examples of fully nuclear spaces with a basis which satisfy (6)

of proposition 21 also satisfy (b) of proposition 22.

Co (A) = proj lim^ ̂  Co (A7),

A uncountable and A' ranges over all countable subsets of A, is an example
of a space which satisfies property (b) of proposition 22, but which does
not satisfy the corresponding property (b) of proposition 21. (see [10] for
further details).

Spaces which satisfy (b) of proposition 22 for Banach valued holomorphic
functions are studied in [2], where they are called holomorphically infra-
barrelled locally convex spaces. Results concerning such spaces are also
given in [10] where it is shown that for any completely regular Hausdorff
space X, C{X) is holomorphically infrabarrelled (and hence satisfies
property (b) of proposition 22) if and only if C (X) is infrabarrelled.

It is also possible to generate spaces with properties (b) of propositions 21
and 22 by means of surjective limits [10].
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THEOREM 23. — Let E denote a fully nuclear space with a basis. The
following are equivalent

(a) (H(U\ Tjp = HHY (^M) == ind lim^M (H^y (Y\ To) for any open
polydisc U in E;

(b) IfB is a bounded subset of(H(U), T^), U an open polydisc in E, then for
each xe U there exists a neighbourhood Vy ofx such that supy g B 11 /11 rjc < °° •

Proof. - Since (T^y (F), To)' = (H(V\ To)' = H^V^ for any polydisc
V, it follows that Hyy (U^ = H (Interior (JV^M ^M)) = H ( £/). Hence
the two topologies coincide if and only if the T(,, bounded subsets of H ((7)
coincide with the equi-continuous subsets of (H^y (^M))'.

Now ^F, a convex balanced set, is a neighbourhood of zero in Hyy ( ̂ M)
if and only if for each Fopen, V => (/M, there exists ̂ , a compact subset
of V and C (Ky) > 0 such that

W^ {/;/e^y(7), ||/||^ < CCM}.

Hence F^' is an equicontinuous subset of (fZ^y (C/^))' if and only if for
each compact subset K of U there exists a neighbourhood F of AT and
C(A:, V) > 0 such that

(̂ ) ^'cnx^{/;/eJf(£7)J|/||^C(K, ^)}.

This implies that W is bounded in (H(U), T<o) and the strong topology on
(H(U)^ T^)' is always finer than the inductive limit topology. The converse
will be true if and only if every T^ bounded subset of H (U) is contained
in a set which has the form (*\ i. e. if, and only if, condition (b) is satisfied.
This completes the proof.

Remarks. — Since T^ ^ TO it follows that if E is a fully nuclear space
with a basis which satisfies (b) of proposition 22, then £? satisfies (b) of
theorem 23. ^^=i C^n^i ^ ls an sample of a fully nuclear space
which satisfies (b) of theorem 23 ([II], proposition 16). Further examples
may be constructed using results in [10] and [11]. We also note that any
fully nuclear Frechet space with a basis or its dual satisfy (b) of proposi-
tion 21, 22 and theorem 23. Therefore in particulier, TO = T^ on H(E)
for any Frechet nuclear or dual Frechet nuclear space with a basis E.

To complete the duality between To and T(O, we conjecture that (H (£/), T(,,)
is semi-reflexive for any open polydisc U in the fully nuclear space with a
basis £ifand only if (77 ((7), T(J is quasi-complete.
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We have the following partial answer to" this question.

PROPOSITION 24. — Let E denote a fully nuclear space with a basis, anp
let U denote an open polydisc in E. If(H(U), rj is quasi-complete then it
is semi-reflexive if either of the following conditions hold;

(i) (H(U)^^) is nuclear;
(ii) E satisfies condition (b) of theorem 23.

4. Entire functions on fully nuclear spaces

In this section, we discuss entire functions on a fully nuclear space. A
fully nuclear space need not possess an equi-continuous basis and there
exist Frechet nuclear spaces without bases (see [16]). When a fully nuclear
space does not possess a (equi-continuous) basis, we do not have a basis for
spaces of entire functions, and hence we cannot use the techniques of the
preceding sections. IfEis a fully nuclear space without a (equi-continuous)
basis, we have no analogue of open polydiscs as in the case of with a basis.
For this reason, we confine our study to entire functions.

PROPOSITION 25. —• Let E denote a fully nuclear space. Then there exists
an (algebraic) isomorphism P between (H(E), To)7 and the space of holo-
morphic germs at 0 in E^. Moreover, under this isomorphism P, the equi-
continuous subsets of(H(E), To)' correspond with sets of germs which are
defined and uniformly bounded on a neighbourhood ofO in £p.

Proof, — We note that if E is a fully nuclear space and n is a positive
integer, then the mapping ?„ : (?("£'), To)' —> P ("E") defined by

Pn(T)(d>)==W) for <De£',

is an (algebraic) isomorphism onto. (see for example [6]).
Now suppose T e (H (E), To)', and we will define P T. As T e (H (E), To)'

there exist C > 0 and K a compact set in E such that | T(f) \ ^ C ||/HK
for all/e H (E ). For each n e N, let T^ = T \p ̂ y Then ?„ T» e P ("E/),
and

Q
1] P« ^| |l/2(XO) = S^Poef, | | 0 | lK^ l /2 T^") ̂  y •

Now K° is a neighbourhood of 0 in E ' , and hence gj = ^°=o Pn ^n ls

holomorphic and bounded by C on 1/2 (A:0). We define P T to be the
germ of g-p at 0.
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It is clear that P is linear, and since ?„ is an isomorphism for each n, it
follows that P is 1—1. From the above definition, it is clear that the image
via P of an equi-continuous subset of (H(E), To)' is uniformly bounded in
some neighbourhood of 0 e E'''.

Next suppose that B a H^ (V) is a family of holomorphic functions on
the neighbourhood V of 0 in E'^ which are uniformly bounded on V. Then
there exists a compact set K in E and C > 0 such that 11 d" g (0)/n! | |^o ^ C
for all g e B and all n. For each g e B and n ̂  0, let 7^ „ = ?;•1 (J" ̂  (0)//z!)
By proposition 1.3 of [6], Tg^ is a well defined element of (?("£'), To)',
and there exists a compact set K^ in £' (depending only on K and C) such
that

\UP)\^\\P\\K, forallpePCE), get?, and all n == 0, 1, ...

For g e B, let 7^ e (H(E), To)' be defined by

rrn-T00 r (̂°^T,U)-Ln=oT^—^-j for feH(E\
n\

Then 7^ e (H(E\ To)' and P (7^) is the germ of g at 0 in E ' (and hence P
is surjective). Moreover:

fd"f(QyTOl^r,^)

^c'S^

^,"1

^/(O)
n!

^ n!

Ki

<c' I \2K,

for all/e Jf(£') and g e B . Hence the set { p~1 g; g e B } = { 7^; ̂  e B }
is an equi-continuous subset of (H(E), To)', and this completes the proof.

The following lemmas will be used in the proofs of proposition 28 and
theorem 29.

LEMMA 26. — Let E be a fully nuclear space. Then Pf ("^E), the space
ofm homogeneous continuous polynomials of finite type, is dense in (P ̂ E), T^).

Proof. — Suppose q e P {^E), p is a T^-continuous semi-norm on P (OT^),
and c > 0 is arbitrary. By [6], [7], there exists a sequence of continuous
linear forms ($,)^ i on E and a neighbourhood V of 0 in E such that

^O^E^i^OO fora l lzeE and ^i H^HT- < oo.
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Asp is T^-continuous, there exists a C (V) > 0 such that? (r) ̂  C(V)\\r\\y
for all polynomials r e P ̂ E). Let Nbe such that^^+i || 07 |l^<e/C(F).
Then

^^-£?=i^)^c(7)|[^-Er^or|iv=c(7)||Er=N+i^n^£.
This shows that P .̂ (^E ) is dense in P ̂ E) for T<o.

LEMMA 27. — Z.̂  £' &^ a fully nuclear space, wz^ £/ 6^ <?p^z w E. Iff
is a G-holomorphic function on U which is bounded on the compact subsets
of U, then fGH^(U).

Proof. — Since E is fully nuclear and hence Montel, / must be bounded
on the complete bounded subsets of U. Therefore/is .s-holomorphic, i. e.
/e Hs (U) (see [II], p. 459). As JEp is a reflexive nuclear space (therefore
an infrabarrelled Schwartz space), and E ^ C^p)?? lt follows by proposi-
tion 3.5 ([II], p. 459), that/e^(£/) = H^W.

PROPOSITION 28. — Let E be a fully nuclear space. Then TO and T^, are
compatible topologies on H ( E ) if H(U) = H^y (U)for all open subsets U
of E'^ (in particular, if E^ is a k-space).

Proof. — Since ^ 5?TO, it suffices to show every Te(H(E), T^)' is
continuous for the XQ-topology. If Te(H(E\ rj', then T is ported by
some absolutely convex compact set K in E. Now let T^ = T/P ("E ) for
each n. Then T = ̂ Lo T^. Moreover if V is open and V => K, there
exists Cy > 0 such that | T^ (<D") [ ^ Cy || 0" ||r for all 0 e E ' and all n.
Hence if 7^ : 0 ->• T^ (O"), then 7^ e P^ (^/) = P^E'). Moreover if
gT = S f^ then

1 1 ST 1 1 t/2(V°) ̂  ^n=0 || î 1 1 1 / 2 (F0) ^ ̂ 'V

As sets of the form 1/2 (V°) (where Vis a neighbourhood of Km E) form a
fundamental system of compact subsets of interior ((1/2) K°), it follows by
lemma 27 that gr e H^ (Interior (1/2) K°) = H (Interior (1/2) ^°). From
the construction of the isomorphism P in proposition 25 and lemma 26, it
follows that Te (H(E), To)', and this completes the proof.

THEOREM 29. - If E is fully nuclear, then ( H ( E ) , To) = (H(E), rj ;/
bounded subsets of(Hfjy (U), To) are locally bounded for every open subset U
of Eo. In particular, TQ = ̂  on H (E) if E is a Frechet nuclear or dual
Frechet nuclear space.

Proof. — As in the proof of proposition 22, it follows that every equi-
continuous subset of (H(E\ T^)' may be identified with a set of germs
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which are defined and uniformly bounded in a neighbourhood of 0 in En.
It follows from proposition 25 that the equi-continuous subsets of(H (E), To)'
and (H(E), T^)' are the same, and hence To = T^.

The following has been pointed out to us by K. D. BIERSTEDT and R. MEISE.
If U is an open subset of a locally convex space then

(H (U), T^) = projlimH(iC), withK <= (7, K compact,

where each H ( K ) has the inductive limit topology as given in section 3
([4], [20]). TO is a sheaf topology and thus we have shown that
(H(U), To) = (H(U), T^) for any open subset U of a Frechet nuclear
space with a basis. In particular, we have (H(U), To) = (H(U), T^) for
any balanced open subset of a Frechet nuclear space with a basis
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