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CONTROL OF JUMP PROCESSES AND APPLICATIONS

by
JEAN-MICHEL BISMUT (1)

[Universite Paris-Sud, Orsay]

RESUME. — L'objet de cet article est d'etendre les methodes developpees par Fauteur
pour Ie controle des diffusions a des processus de sauts, et particulierement aux diffusions
a sauts. On etudie egalement des jeux a somme nulle et des techniques d "approximation.

ABSTRACT. — The purpose of this paper is to extend the methods developped by the
author for the control of diffusions to jump processes, and especially to jumping dif-
fusions. Zero-sum games are solved, and approximation techniques are indicated.

0. Introduction

The purpose of this paper is to extend the methods which we have
developed in [1] for the control of diffusions to more general processes,
and especially for diffusion processes with jumps.

In the case of diffusions, we controlled in [1] a process governed by
an equation of type

\dx = b(t, -x, u(t, x))dt-}-a(t, x).d^,
x, == x,(0.1)

and we minimized

(0.2) e^E f 4 V^LO, ̂ , u(t, x,))dt.

We then used certain fundamental features of the diffusion processes,
in the general framework developed by STROOCK and VARADHAN in [20].

When u varies in the set of Borel functions on R+xRd:
— all the measures on the space of the continuous functions defined

by (0.1) stay equivalent on each M^, Mf being the a-field ^ (Xy; s < u ̂  t);
— the processes defined by (0.1) are strong Feller processes;

(1) The author is indebted to Professor M. METIVIER for very helpful comments and
suggestions.
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26 J.-M. BISMUT

- there is a common reference measure [i for these processes (i. e. for
a Borel set to have a negligible potential, it is necessary and sufficient
that it is ^-negligible);
- it is possible to represent the "pay-off" criteria process by means

of square integrable additive functional martingales.
These methods are applied, in this paper, to cases which are simpler

or more complicated.
In the first two sections, we treat the case of jump processes on Z^,

and their control.
We handle this relatively simple case with powerful probability theory

methods, in order to apply them later to far more general cases, especially
to diffusion with jumps.

In Section I, we start with a given ,,basic" jump process on Z^, for
instance a Poisson process, and we modify this process by a measure
transformation, which will be equivalent to a modification of the speed
rate of each possible jump.

If the initial process has a Levy system N (x, dy) on Z^, we build all
all the processes which have as Levy system (1+5 (t, x, y) N (x, dy).
We follow here the approach of JACOD in [11] for the definition of jump
processes. The new measure will then have a density relative to the
initial measure, with an explicit density given by Doleans-Nade formula
in [9].

It is then possible to prove the weak continuity of the density as a function
of b relative to a weak topology on the set where b is taken.

At this point, the reader should be aware that the new processes are not
necessarily equivalent to the initial one. In particular, if b does not depend
on time, and if b {x, y) == -1 for x ^ y, the possible connection from x
to y is "closed" in the new process.

In Section II, we solve various problems of the control of jump processes.
In particular, if we assume that % is of the form b (t, x, y, u), and if the cost
of connection between x and y is N (x, dy) L (t, x, y, u), we minimize

(0.3) 7(^(5, x) = e^Ef^ S^e^dt

x N (x,, dy) L (t, x,, y , u (t, x,, y)) dt.
Jz«

where u is the control variable, and depends on (t, x, y).

TOME 106 — 1978 — N° 1



JUMP PROCESSES 27

When b and L depend only on (t, x, u), we minimize

(° •4) .̂ F) ̂  x) = (?ps < )̂ f + w 6?-ptL (^ ̂  u ̂  ̂ ))^

where u depends on (t, x).
To prove existence of an optimal control, we use methods formally

identical to the methods already developed by the author in [1]. In parti-
cular, convexity is an intermediary step, but is not necessary for getting
an existence result.

A basic probabilistic difficulty comes from the fact that we must be
able to represent the process K^ ^ (t, Xt) for any of the measures (f .
The measures (f not necessarily being equivalent, this representation
is not as "easy" as in the case of diffusions. However, the problem is
solved very easily by going back to the resolvent equations.

Non purely probabilistic methods obviously work for this case, but the
technique used here is generalized later to other processes where the
resolvent equation is no longer manageable.

Similar techniques are used by BOEL and VARAIYA in [6] for the definition
of jump processes in the general non anticipating case. The existence
of an optimal control is obtained by different methods than here, essen-
tially by representing the cost function of the problem as a semi-
martingale for each of the attainable processes, and deriving indirectly
an optimal control. The proof proceeds here in the inverse order: an
existence result is first derived very simply under a convexity assumption,
and generalized to the non convex case. This method is directly adapted
to the Markov case, and is generalizable to all the Markov optimization
problem studied in [I], as to the control problem of Section V, where
the techniques of Sections I and II and of [1] are combined. The strong
Feller property and the existence of a common reference measure are the
essential tools which allow us in all cases to derive the existence of an optimal
Markov control.

In Section III, some applications are given. In particular, the optimal
stopping time problem is treated very easily as an optimal control problem.
An approximation scheme, very similar to the technique already found
for diffusions in [3], is given. This approximation technique is then
applied to the optimal stopping time problem.

We define an algorithm which gives a decreasing sequence of sets whose
intersection is an optimal stopping set.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



28 j.-M. BISMUT

In Section IV, zero-sum games are introduced, and are solved by
techniques very similar to the techniques of [2],

Finally, in Section V, we give the main outline of the argument for the
control of jumping diffusions with a "continuous" set of possible jumps
in the framework developed by STROOCK in [22].

I. — Jump processes and densities

The purpose of this chapter is to define some of the basic properties
of jump processes. We start from a fixed process with integer jumps
and with a given Levy system, and we consider processes whose Levy
system is absolutely continuous with respect to the initial one. Following
JACOD [II], we prove that the new processes can be defined in a unique
way, and have a probability density relative to the initial process. Finally,
we study the dependence of the densities on the coefficients of the Levy
measure.

1. The martingale problem

0 is the space D (^+; Z^) of functions defined on R+ with values in Z4,
which are right continuous and have left-hand limits. 0. is endowed
with the Skorokhod metric.

M^ is the G-algebra of 0, defined by M^ = ̂  (Xy; s ^ u ^ t).
N ( t , x , .) is a family of positive kernels defined on Z^, such that:
(a) N (t, x, Z^) is uniformly bounded;
(V) N ( t , x , { x } ) =0;
(c) for any A <= Z4, N (t, x, A) is a Borel function on R+ xZ^ with

values in R+.
We now define a simple martingale problem:

DEFINITION I.I. — A measure P(^ ̂  on Q. is said to be a solution of the
martingale problem relative to (s, x, N), if:

(a) P(s,^(x, == x) = 1;
(b) for any function /, defined on R + x Z d x Z d , Borel measurable

and bounded, if Sf is the process

(Ll) sfts:= Es^r.^-^/O^ ^u- . ̂ u)
then, the process S 0 / , defined by

(L2) ST = Sf/- (\Nf)(u, x^du
is a martingale.

TOME 106 — 1978 — N° 1



JUMP PROCESSES 29

2. Existence and Uniqueness of the solution to the martingale problem

We assume from now on that N(x, .) is a family of time homogeneous
kernels which satisfy the previous assumptions. We then make the
following fundamental assumption:

for any x e Z d, a solution P^ to the martingale problem relative to (x, N)
exists.

Example. — Let X-i, . . . , X^ be finite positive measures on Z such that

?4(0) --=. . . =UO)=0.

For h defined on Z^ with values in R, uniformly bounded, we define Nby

(1.3) Nh(x)=(^®^2® . . . ®^)*^(x)

(* is the convolution). Then, it is a well known result (see, for instance,
[5], I, T-2.18) that the measure -P^, relative to the independent increment
Poisson process which starts at x at time 0, is a solution of the problem.

N will now be fixed for the rest of the paper. M will be an upper bound
for N ( x , Z d ) .

b is a Borel function, defined on ^+ xZ^xZ^ , with values in R, which
is supposed to be bounded and ^ — 1.

We will consider the kernel N (x, dy) (1 + b (t, x, y)). Let A be the kernel

(1.4) A(x, dy) = N(x, dy)-N(x, Z^G^dy)

and Ab the kernel

(1.5) A^t, x, dy) = N(x,dy)(l+b(t, x, y))

-f N(x,dz)(l+b<it,x,z))^dy).
Jz«

We will often write

(1.6) N ( x , d y ) = n ( x , y ) d y .

We then have the following fundamental result.
THEOREM I.I. — For any (s, x), the martingale problem relative to

(N (1 +b), s, x) has one and only one solution, Q\s,x)' V ^(s,x) ls tne
fW IV

unique solution of the problem relative to (N, s, x), Q^ ^ has a density
relative to P(s,x) on M? (s ̂  t < +00) gi^en by

~ ( ^ \
(1.7) Z?=exp - (Nb)(u,x^du ^.u-^u,^^(l+^(^ ^u-, ^)).

\ J s }

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



30 J.-M. BISMUT

Moreover, if \\ b \\ is the norm of b in L^ (R+ xZdxZd\ then

(1.8) E^^izfl^expMilSli2^-^).

The process defined by the measure g^ ̂  is a strong Feller process'
If b and V are equal, dt (x) dx 00 dy a. e., the Q13 and Q^ are equal.

Proof. - Uniqueness of the measure Q\s,x) follows from a result of
JACOD [11] (Theorem 3.4). The measure P^,x) exists, because it is asso-
ciated to the process P^ starting at time s.

By [11 ] (Theorem 4.5), z] is the density of Q^ ̂  on Mf if E^' -> zf= 1.
By the result of DOLEANS-DADE [9], Z^ is the unique solution of

^ Uz^Z-dS^b, t^s,
[ ^s === I?

where S ^ b is the sum S " b , calculated for the process P(s,x)'
We now prove that Z^ is a square integrable martingale. Let T^ be the

stopping time.

(1.10) T»=mf{^5 ;Z^ ^n}.

Then, by (1.9),

(1.11) ^x)Z^^=l+£^x)^ATn |Z,-|2d<5COS,5COS>,

where < S00 b, S^ b > is the quadratic variation of S^b.

But, we have

(1.12) d < 5'° S, S c o b y = N b 2 (u, xj du.

Then,

(1.13) ^"IZ^rJ^l+^-^r^Mll^^Z^M.

By GronwalFs lemma,

(1.14) E ^ ' ^ I Z ^ ^ j ^ e x p M i i ^ l i 2 ^ - ^ .

This implies that Z^ is a square integrable martingale. For T ^ s,
Zy ^P(,^ ^) is then a probability measure on M^.

If ^ = %', dt ® dx (x) dy a. e., we may write

(1.15) E^ -> I ̂ S;- ̂ ^S;5!2 = £^ -> [t N(b- b')2 du = 0.

TOME 106 - 1978 - N° 1



JUMP PROCESSES 31

This implies that S c o b = S c o b f , and then by (1.9) that zj = zf.
The measures Q\s,x) an(! Q\s,x) are necessarily equal. Moreover P(s,x)
is a continuous function of (s, x) e R^ xZd.<%'««

6?s,jc) ls t^en a measurable function of (s, x). Let us now prove the
strong Markov property of g6. If T is a stopping time for g^ ^, let g^
be the regular conditional probability measure of Q\s,x) relative to M^.
It is then easily proved that the probability measure which is equal to Q^ ^
on M^, and whose conditional distribution relative to M^ is Q^^rY ls a^0

a solution to the martingale problem. By the uniqueness result, this
IV M

implies that Q^ = Q(T,XT)'
Finally, let L be a bounded ^ 0 Borel function defined on R+ x Z d

with values in R. We then consider the "differential equation":

(1.16) \^+A'V=-L' (s$r'
( F(T)==0.

If we look at (1.16) as a differential equation in the Banach space L^ (Z^),
we find one, and only one, solution for (1.16) which is uniformly bounded.
V is then continuous on R+ x Z d . We may write that, Q\s,x) a- s-? we

have;

(1.17) U T, XT) = 7(0, x) + P ̂ (t, x,) dt
Jo St

+E^-^x,;o^^r(n-S ̂ )- V(s, x,-)).

If / is the function, defined by

(1.18) /(5,x,3;)= 7(s,}0- 7(5, x),

the sum in (1.17) is nothing but Sf. By (1.2), we then know that S^f
(which is Scf{oT the measure Q^s.x)) ls a martingale for 0^ ^. This
implies

(1.19) 0 = 7(5, x)+£ ^ fY^+A^^O, x,)dt,

or equivalently

(1.20) 7(5, x) == E^'x) [ L (f, x,) dt.

The potential of l^j-Z/ for Q^ is a continuous function on R+ x Z d ,
Q13 is then strongly Feller.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



32 j.-M. BISMUT

Remark I.I. - In contrast to the case of diffusions, the processes Q^
are not mutually absolutely continuous. In particular, if, for a couple
(x, y ) e Z4 with x ^ y, b (x, y) == -1, the "bridge" from x to y is "closed"
for g^, whereas it may not be closed for P.

COROLLARY. — The measure dt 00 dx on R+ xR'1 is a reference measure
for any (f, i. e., a set A in R+ xZ^ has a null potential for Q^ if, and only
if, A is (dt 00 dx)-negligible.

Proof. — A (dt (x) ^-negligible set is obviously of null potential.
tW

Moreover, for any Q\s,^ the process ^ remains a non-null time at x.
A set which has a null potential is then, necessarily, (dt 00 ^-negligible.

3. Weak dependences

In this part, we prove results comparable to Proposition IV. 4 and
Theorem IV. 3 of [I], which give the weak dependences of the density
on the coefficient b.

First, we have the following result.

PROPOSITION I .I .- For any (s, x) in R+ x Z\ if { L^ } c L^ (R~^ x Z^)

converges weakly to LeL^(R+xZd), then L^(u,x^du converges
^ ^

to L (u, x^) du in L^ (Q), when Q. is endowed with measure P ( s , x ) '

Proof. — If dy is the counting measure on Z^, P (s, x, t, y) can be
defined as the probability of transition to y at time /.

If the function V^ is defined by

(1.21) \\ (s, x) == E^- -> r ̂  (u, x«) du,

we have

(1.22) V, (s, x) = | I L, (u, y)P(s, x, u, y ) du dy.
J z d J s

This implies that V^ —> V. Moreover,
fr |2

(1.23) ^(L^-L^u.x^du
r pr pr -)

= 2 ^ (L^L)(u,x,)du\ (L^L)(t,x,)dt[.
Us Ju )
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JUMP PROCESSES 33

By the Markov property, we then necessarily have.

(1.24) £^-) [\L^L)(u,x^du2

J s

^lE^^^L^-D^-V^x^du.

This will imply that the left hand side of (1.24) converges to 0. The
result is proved.

We then have the fundamental result.

THEOREM 1 .2 .— Let bn be a sequence of elements of L^ (R+ x Z d x Z d)
such that Z ^ ^ - l , converges weakly to beLy, {R^ x Z d x Z d ) .

Then, if Z^ is the density of Q^^ relative to P^x) on M^, Z^f converges
weakly to Z^for the weak topology o- (L^ (Q), L^ (D)) where 0 is endowed
with measure P(s,x)'

Proof. - It is sufficient to prove that for any sequence { n^ } on N, it is
possible to find a subsequence n^ such that Z^ converges weakly to Z,f.
By changing the indices, we come back to the sequence n. The sequence
{ bn} stays uniformly bounded.

By (1.8), the sequence { Z^1 } is weakly relatively compact in L^ (Q),fw
when Q is endowed with measure P (s, x). Let Z be a weak limit of a
subsequence { Z^ }. Then Z^ 0, and Z dP^^ defines a probability
measure on M^..

We know that, for/ Borel measurable and bounded on R+ x Z d x Z d ,

(1.25) Sfnff = sf,- r(N(l+^)/)(M, x,)du^ ft5 = S f, -\ (N (1 + £„) /) (M, x,) du
j s

is a martingale for the measure Z^" dP^^y
Let us prove that

(1.26) X, 0, x) = \ N (x, dy) (1 + ̂  0, x, y)) f (t, x, y)
Jz«

converges weakly in L^ (R+ xZ^) to

(1.27) X ( t , x) = | N(x, dy)(l+b(t, x, };))/(f, x, 3;).
Jz^

We notice first that these functions are uniformly bounded in R+xZd.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 3



34 j.-M. BISMUT

Let (peLi (^+ xZ^), then

(1.28) <(p, Z^> = | (p(f, ̂ n(^ y)(l+b,(t, x, y))
JR+ xzdxzd

x f ( t , x , y ) d t d x d y .
But, now

(1.29) (pn/eL^xZ'xZ').

This yields

(1-30) <(P ,^>-^<(P ,^> .

Let ^ be a M^-measurable set in Q, with t such that ^ ^ t ^ T. Then,
by the martingale property (1.2), we have

(^l) E^^fz^Sff- ̂ X^u, x^du\l^

= E^^fz^Sff- [x^ x^du\l\
\ \ J s / /

We must then pass to the limit in (1.31). We know that:

Z^c-^Z weakly in I^Q);
pr pr

X^(u,x^du->^ X(u,Xu)du strongly m L^(Q)\

Sf^is in 1.2(0) for any t, because we have

(1.32) E^'-^S^f^^E^^ ['(N/2)^, x^du,

(1-33) ||5/.S|L^<||SCO/;||^^

+P(—)^ r^/)^, x^YT2.
We then see that

(1.34) E^^(z(sf^-[1X(u, x^du\l^

^E^^tzisf?- p ,̂ x^du)l\
\ \ Js / /

This implies that

(1.35) Sf^ S ' N ^ l + b ) / ) ^ , x^du

is a martingale for s ^ r ^ T relative to the measure Z dP, .
(S, X ) '

TOME 106 — 1978 — N° 1



JUMP PROCESSES 35

fwM
By the uniqueness of the measure Q\s,x) on eac^ ^^ we have necessarily

(1.36) Z=Z^,

and Z^ converges then necessarily to Z^.

II. — The problems of control
1. The problems

In this part, we define the problems of control. Uis a metrizable compact
space, p is a strictly positive constant.

We define a first problem of control:
(b (t, x, y, u), L (t, x, y, u)) is a function defined on R+ x Z d x Z d x U

with values in (—1, +oo(x7?, uniformly bounded, measurable in
(t, x, y), and continuous in u.

For u Borel on R + x Z d x Z d , (b^, L^) is the function
(b (t, x, y, u (7, x, y)), L (t, x, y, u (t, x, y))).

DEFINITION 11.1. — The problem of control (^) consists of the search
for UQ Borel on R + x Z d x Z d minimizing

(11.1) e^E^^ ] \ -^(NZJO, x,)dt,

simultaneously for all (s, x) in R+ xZ^.
Next, we define a second problem of control:
(b (/, x, u), L (t, x, u)) is a function defined on R+ x Z d x U with values

in (—1, +oo(x7?, uniformly bounded, measurable in (/, x), and conti-
nuous in M.

DEFINITION II. 2. — The problem of control ( ^ ' ) consists in the search
for u Borel on R+ xZd minimizing

(II. 2) ^ £5^ x ) ] + 00 e-^ L, (t, x,) dt,

simultaneously for all (s, x) in R+ xZd.
We then have the fundamental results.
THEOREM 11.1. — Problem (ffi) has a solution,
THEOREM 11.2. — Problem (^/) has a solution.
We devote the next sections to the proof of Theorems II. 1 and II. 2,

concentrating mostly on the proof of Theorem 11.1. At an essential
step of the proof, we will use a maximum principle adapted to this problem.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



36 J.-M. BISMUT

2. A new definition for the problem

As in [I], IV. 1, we change problem (^) in a standard way. Let K be
a Borel set valued mapping, defined on R + x Z d x Z d , with values in
(—1, +oo(x^, nonempty, compact, and uniformly bounded.

DEFINITION 11.3. — ^ is the set of equivalence classes of the Borel
selections of K, defined on R + x Z d x Z d , with values in (—1, +oo(x^
for the measure dt (x) dx ® dy.

For c = (b, L) e J^f, we define ^ by

(11.3) V,(5, x) = ̂ E51'^ [ ^ N L 0, x,)^.

DEFINITION II. 4. — The problem of control (^) consists of the search
for CQ e ^ minimizing c —> V^ (s, x) on ^ for all (s, x) simultaneously.

Another problem (^/) is defined similarly, with K, defined on R'^' x Z d ,
with values in (-1, +oo(x.R, and a functional

P+oo

(11.4) 7;(5, x) = ̂ E6^ ^-^LO, x,)A.

3. The convex case
We assume in this part only that K has convex values. ^ is then

compact in the weak topology of L^ (^+ x Z d x Z^). Let ^ be a proba-
bility measure on R+xZd.

THEOREM 11.3. — The functional

(II .5) c -. ̂  (c) = 7, (s, x) ̂  (5, x)
•/

to a minimum in o^f.
Proo/. — By Proposition I .I and Theorem 1.2.

(II .6) c -^ E ^ ' x ) \ e-^ N L (f, x,) dt

is continuous on J^f. By a uniform convergence argument, c —> V^ (.s, x)
will be continuous on J^f.

/ is then continuous on ^. ^ being compact, the result follows.
We will now represent the process V^ (^, x^). Since the measures Qf°

may not necessarily be equivalent, the "simple" argument, given in [I],
to represent this process for diffusions does not work so easily.

Let ^ be the function
(11.7) r^x)=e~ptV^x}.

TOME 106 - 1978 - N° 1



JUMP PROCESSES 37

We know by reasoning as in (1.16)-(1.20) that
/7^ ^

(11.8) ——+Ab-^=^e'ptNL
dt

Then, P a. s. (i. e. P^ a. s. for all initial measure \JL on R+ xZ^), we have
^ [ dir \(ii.9) ^ x,)-r(5, x) = — +A-r)(M, xj^+y0^
J s \ dt )

with

(ii. 10) h a x, y) = -r o, ^) - r o, x).
The functional S^ h is a square integrable additive martingale in the

sense of [17] and is equally defined P^SL. s. because, by the corollary
of Theorem I . I , dt (X) dx is a reference measure for (f.

If fc is defined by

(n. ii) /cO ̂  y) = Vc(t, y)- v^i, x),
we will have P a. s.

(11.12) V,(t,x^V^s,x,)
rv f d^ \\

= [pV^e^ — + A ^ (^x,)+5c%
JA \ ^ //

We now have the following result.

PROPOSITION II. 1. — A sufficient condition for c = (b, L) to be optimal
for le-ps^ is that dt ® dx 00 dy a. e.

(II .13) n (x, y) (L Q, x, ^) + ( 7, 0, ^) - 7, (f, x)) S (^, x, 3.))
=min^^,)^^^^n(x, ^)(L'+(7,a, ^)- V,(t, x))V).

Proof. — 0^,^) is absolutely continuous to P^,x) on each M^. We then
have Q^ a. s.

(II. 14) e^ V, (t, x,) - e-^ V, (5, x,)

=- e'^NL^, X,)JM+ [^-^(N^-S)/,)^, X,)JM

+^^^-pu^^

(we recall that S ^ ' h is the sum ^/z calculated for g^).
Then

(II. 15) E^ ' x ) (S^e^^f^ = 0.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



38 J.-M. BISMUT

If (11.13) holds then necessarily

(11.16) \e~l'SV,(s,x)d^^(s,x)

= EQ'''-p'ftr?e-I"IN(L+(b-b') /,)(«, x^du

W f + 00

^^--n e~ptt(NLf)(u,x,)du

= (e-PSV^s,x)d^x).

We then have the fundamental auxiliary result.

THEOREM 11.4. - If\ji is a probability measure equivalent to dt ® dx
on R+ x Zd, then a necessary and sufficient condition/or ce ^ tobe minimal
for 4-p^ is that (II. 13) holds dt ® dx (x) dy a. e.

Proof. — We prove that condition (11.13) is also necessary. If this
condition is not verified, it is possible to find c = (&', Z/) e ^ such that:

(II .17) n (x, 3;) (I/ 0, x, y) + f, (t, x, y) V (f, x, y))
^ n(x, y)(L(t, x, y)+f^t, x, y)b(t, x, y))

with strict inequality on a dt ® dx (x) dy non-negligible set.
By the Corollary of Theorem I.I, a dt ® dx non-negligible set has a

non-null potential for any Q13. For any g^ the measure € ~ P u Vb defined
by

(11.18) e-^ V\^ = Se-^ V^(s, x)d^(s, x)

is a reference measure. From (11.14) and (11.17), this will imply:

CII.19) ^e-PSV^s,x)d^s,x)

=i<-^ f 4 " } e-^N^L^b-b')^)^ x^du

> £^~^ I e-^NL^u, x,)du = [^-ps V^(s, x)d[i(s, x)

(11.19) is a contradiction to the optimality of c.
We now prove the existence of a solution for problem (^).
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Proof. — By Theorem 11.3, I^-p^ has a minimum. When [i is equivalent
to dt (x) rfx, by Theorem 11.4, (II. 13) holds dt 00 dx 00 ̂  a. e. By Propo-
sition 11.1, applied to \JL = 8(,̂ , it follows

(11.20) V,(s,x)^ 7,,(5,x).
The result is proved.
Let us now define q by

(11.21) q = ' ^ c ' ^ V ^ .
Then
(11.22) q=v^

Remark II. 1. - For problem (^'), the condition corresponding to (II. 13)
would have been

(II. 23) L 0 x) + (A 7,) 0, x) S (f, x)
=min(^^^^L'+A7^,x)S'A®dx a.e.

4. The general case

We now assume that K (t, x, y) does not necessarily have convex values.
/\ y^

We consider its closed convex hull K(t, x, y). K is then Borel measu-
rable by Corollary 3.3 of [19].

.A. /\.

The problem ^ associated to K has an optimal solution, and for c to
be an optimal solution in J^, it is necessary and sufficient that (11.13)
holds.

K (t, x, y) and K (t, x, y) having the same extremal points, it is possible
to choose the optimal solution in o^f.

This completes the proof of Theorems 11.1 and 11.2.
Remark 11.2. — When the problem is time-homogeneous, the control

can be taken time-homogeneous by using the methods of [I], V.2.

ffl. — APPLICATIONS

1. Processes killed on a Borel set
Let A be a Borel subset of R^ x Z d , and be T^ is the stopping time

(111.1) T ,=mf{f>5 ;0 ,x , ) eA} .
We will consider the functional

(111.2) e^E^^ rV^NL)^ x,)dt.

The problem of minimizing (III. 2) can be solved by the methods of [I], V
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In the homogeneous case where N, A, L, A do not depend on time, an
optimal solution can be taken time-homogeneous by the method given
in [I], V.2. Moreover, in this case, the problem can be looked at as
the minimization of

^+00
(III.3) ^^(l+b)-1 e-^b^NL^dt,

Jo
where V is 1 on CA and 0 on A.

We come back to a problem of the type which we have already solved
in Section II.

2. Processes with controlled death
The criterion is

FTA / ri \
(III. 4) e^ E^ x) exp - \ N m (M, xj du (N L) (t, x,) dt,

Js \ Js /

where m is also a control > p > 0. The method is identical to that in [I],
Chapter VI.

3. The optimal stopping time problem
The optimal stopping time problem can be changed into a standard

control problem for time homogeneous processes. Let g be a function
defined on Z^ with values in R, which is uniformly bounded. We want
to find A in Z^ minimizing for all x:

(111.5) Epxe~PTAg(xT^
For a general discussion of this problem, we refer to [10], [14] and [4],
(III. 5) may be written as

(111.6) g(x)+£^ r'e^^Ag-pgWdt.
J o

We then want to minimize

(111.7) E^ r^-^(Ag-pg)(x,)A.
Jo

Let K (x) be defined by
(111.8) TO ={0,1} .
The problem is equivalent to finding a measurable selection V of K
minimizing:

(111.9) E^-1 f+VP"&'(Ag-pg)(x,)^.
Jo

This problem has a homogeneous solution by Theorem 11.2.
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Let q be the function

(111.10) q(x) = inf,£^-^g(x^).

By [14], — q is the leasts-excessive function ^ —g.
Then, on the optimal A, we obviously have

(111.11) q(x)=g(x).

A characterization of the optimal V is

(111.12) [bt(Ag-pg)+bfA(q-g)](x) ̂  [b(Ag-pg)+bA(q-g)](x)

when b e { 0, 1 }, or

(III .13) b\Aq- pg) (x) ̂  b (A q - pg) (x).

This implies

(III. 14) [ f c ' ( x ) = 0 if Aq-pgX),
t f c / ( x ) = l if Aq-pg<0.

The region y4 ^—/?g = 0 is indifferent.
By noticing that

(III. 15) btAq=pq+pg(br-l),

we find that by defining

j A ° ^ { x , A q - p g > 0 } ,

J B° = fr'. An-n(r <-()}.(III.16) B° ={x;Aq-pg<0},( •" —— (̂  ̂  9 -(A l! ^to ^ w J 3

C° ={x;Aq-pg=0}.
We have
^ ̂  {AouCO={x;q(x)=g<ix)],

[ B°={x,q(x)<g(x)}.

Then, any set A, containing A°, and included in A° u C°, is a solution
for the optimal stopping time problem. This is a special case of a general
result of BISMUT-SKALLI [4].

4. An approximation

By reasoning as in [3], it is possible to define an approximation method
for solving problems (^) and (^'). We shall give one word of the proof
for problem (^). We start from c^ = (b^ L^) e ̂ .
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Let c^ an element of ^f, such that, dt 00 dv (x) ̂  a. e.:

(III .18) n (x, }Q (L, 0, x, ^) + ̂  0, x, y ) ( ̂  (r, }Q - 7,, (t, x)))
= min(^^,^^n(x, }0(I/+S'(7^, y)- V^(t, x)));

€3 . . . < ; „ are determined in the same way.

THEOREM III.l. - The sequence 7^ decreases to q. Any weak limit c
of c^ is such that:

(III. 19) V^q.

Proof. — We will assume that K has convex values, p. is taken as
in Theorem 11.4. Either

(IIL^) ^+i)<W
or

(III.21) J,(c,) = min^J/c) and J,(c^i) = 1^).

Let n^ be a subsequence of TV such that

(III. 22) J^ ^ce^
[c^^e'e^.

Then, by (III. 20) and (III. 21),
(in-23) ^(,)=j^(^

Moreover, we have, at (x) <^c (g) rf)/ a. e.:

(III. 24) n (x, 3;) ( L^ ̂  x, j.) + b^, (t, x, y) ( V^ (t, y) - V^ (f, x)))
^ n(x, };)(L+&(^0, ^)~ ̂ (^ x))),

when (b, L) e ^:(r, x, ^).
Then, knowing that

(III .25) V^V^

if c' = (2;', L'), A ® dx 00 ̂  a. e., for (b, L) e K(t, x, y\ we have

(III. 26) n (x, y) (L' (r, x, }Q + b1 (t, x, jQ ( V, (t, y) - 7, (f, x)))
^ n(x, ;0(L+b(y,a, y)^ 7,0, x))).

In particular, at ® ^x ® fi^ a. e.:

(III. 27) n (x, }Q (L7 0, x, j0 + S7 0, x, ;0 ( 7,0, j0 ~ 7, (r, x)))
^ n(x, ^)(L^, x, y)+b(t, x, ̂ )(7,0, ^) - 7,0, x))).
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If this inequality held strictly on a dt ® dx 00 Jy nonnegligible set, we
would have

(III.28) W<J,(c).

By comparison with (III. 23), we find that there is equality in (III. 27).
By (III.26), dt (x) dx ® dy a. e., if (b, L) e K( t , x, y):

(III. 29) n (x, y) (L (f, x, ^) + b 0, x, }Q (V, (t, y ) - V, (r, x)))
^ n(x, y)(L+b(V^t, y)- V,(t, x))),

and we then find that

(III. 30) V,=q.
The result follows.

5. Approximation of the optimal stopping time problem

We will now apply the previous results to the optimal stopping time
problem. We start with a set AQ, for instance AQ = Z^ (i. e., Z?o == 0
everywhere). A^ is defined as

(111.31) A, = { x ; (Ag-pg)(x) > 0}.

If ^i = ^o? ^o ls optimal. If not, we define g^ by

(111.32) giM=^-^g(x^).

Then ^i ^ ^ and ^i is strictly less than g at some points.
If &i is 0 on A^, and 1 on CA^, we have

(111.33) b,Ag^pg,+pg<ib,-l).
Then

(111.34) { x ; g , ( x ) = g ( x ) } = A , u { x ; A g i - ^ = 0 } ,
(111.35) { x ' , g , W < g ( x ) ] c z [ A g , - p g , = Q } .

A 2 is defined as

(111.36) A^=[x;Ag,-pg>Q}.

A^ is then obviously included in A^, because g ^ g^.
g^ is defined as

(111.37) g,(x) = E^^-^^g^^),

^3 ,^4 , . . . , ^ . . . are defined similarly. The sequence of sets A^
decreases.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



44 J.-M. BISMUT

Moreover, by Theorem III.l, we know that any weak limit of &„ is
optimum for the "convexified" problem, f)^ A^ is then an optimal
region for the optimal stopping time problem.

IV. - Games

In this chapter, we shall define the zero-sum games which are the natural
extensions of problems (^) and (^/).

K and K ' are two set value mappings defined on R+ x Z ^ x Z 4 with
valued subsets of (-1, +oo(x7? which are non empty, compact, and
uniformly bounded.

50 and 5C1 are defined as in Definition 11.3.

DEFINITION IV. 1. - Problem (G) is defined as the search for
Co = (bo, Lo) e ̂  and CQ = (b^ L^) e ^ ' such that, if for all (c, c ' ) e ̂  x ̂ \

(Ivtl) ^o+c^ y^c^ Vc^
A problem (G') corresponding to problem ( '̂) may be defined as well.
We then have the following theorem.

THEOREM IV. 1. - Problem (G) and (G') have solutions.
We shall give only a brief outline of the proof since it is very similar

to the proof given in [2] for diffusions.

1. The convex case
Let H be the same measure as in Theorem 11.4. We will assume that K

and K ' have convex values.
For cej^f (resp. c' e J^'), we define F, (resp. r,0:

(IV.2) r^ = {(/ejT; V?e^', V^ ^ 7,^},
(IV.2Q (resp.r,/ = {ce^ f ; V?eJ^, P^ ^ 7^}).

PROPOSITION IV. 1. - r .̂ (r^/?. r^) /?a,y non-empty compact convex
values in ^ ' (resp. J^f).

Proof. - The non-emptyness ofr^. (resp. F^) follows from Theorem II. 1.
Moreover, Theorem 11.4 proves that T^ (resp. F^) is convex, because K
and A^' have convex values.

PROPOSITION IV. 2. - The set valued mapping defined on ^ x ^ ' with
values in ^ x 50' by
(IV. 3) (c.c')-^xr;
is upper semicontinuous.
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Proof. — This follows from the continuity of V^ on J^f.
THEOREM IV. 2. - Problem (G) has a solution.
Proof. — (c, c ' ) —> r^ x r^. has non-empty compact convex values

and is upper semicontinuous. It has a fixed point by Kakutani's theorem.
Such a fixed point is a solution of the game.

We now proceeed as in [2]. The game has, in this case, a value q,
and if (Co, c'o) is a solution of the game, then

(IV-4) V^=q.

YCO+CQ ls ^len a fi^d function.
As in [2], Theorem 3.2, it is possible to prove that for CQ = (bo, Lo)

and CQ = (bo, Lo) to be solutions of the game, it is necessary and suffi-
cient that dt (x) dx (x) rfy a. e.:

(IV. 5) n (x, ;0 ( Lo 0, x, )Q + bo (i, x, y ) (q {t, y) - q (t, x)))
= min^ T^K(t,x, y)" (^ }0 (^+ b (q (t, y)-q (t, x))),

(IV. 5') (resp. n (x, y) (Lo (t, x, y) + So 0 x, y) (q (t, y)-q (t, x)))
=maX(^),^^n(x, ^(L'+S'^O, jO-^O, x))).

We now extend the above result to the general case.

2. The general case
We will give only a brief outline of the proof. We convexity and close K

and K ' . The convexified problem has a solution. By the necessary
and sufficient conditions given in (IV. 5) and (IV. 5') a solution can be
found in the J^x^f'. The argument is developped more fully in [2].

Remark IV. 1. — The proof of the existence of a solution for problem (G')
proceeds in exactly the same way.

Remark IV. 2. — All the previous results may be extended to control
problems analogous to those treated in Section III.

V. — Control of jumping diffusions

In this chapter, we shall give the basic steps of the proof for the control
of the jumping diffusions considered by STROOCK in [22].

1. The martingale problem
Let 0 be the space D (^+; ^d), and Mf be the o-field ^ (x^ \ s ^ u ^ t\

a is a function defined on 7?4' x ̂ d, with positive definite values in R'1 (X) Rd^
which is bounded, continuous and uniformly elliptic.
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Let M(t, x, .) be a > 0 o-finite measure on Rd/[Q } such that for
any Fe ̂  (^/{ 0 }):
(v.i) J^M(̂ )

is bounded and continuous on R+xRd.
DEFINITION V.I. — Let L^ be the operator

(V.2) LJ(x) -Ea,,a x)/^(x)

+ f (f(x+y)-f(x)- <y9 ̂ ^W, x, dy).
J^\ l+\y\ )

A measure P on Q is said to be a solution of the martingale problem
for (s, x)eR+ XR1 if:

(a) P(x, =x) = 1;
(A) for any /e C? (̂ !),

(V.3) /(^)- L^f(xjdu is a martingale.

We then have the result of STROOCK in [22].
THEOREM V.I . — The martingale problem has a unique solution P(s,x)

which defines a strong Markov process P. P is strong Feller.
Proof. - This is Theorem 4.3 and Remark 4.1 of [22].

COROLLARY. — P has a reference measure 'k ([5], V, (1.1)) on R+ x 7 .̂
Proof. — From theorem V.I , the /7-excessive functions will be 1. s. c.

The result follows from [5], V, (1.3).
This last result is fundamental for control theory.

2. Densities
Let b be a bounded Borel function on R+ xR1 with values in Rd, and

let & be a bounded Borel function defined on (7?4' x R d x R d / [ 0 }) with
values in (—1, +oo( such that (b (t, x,y))/\y\ is a bounded function.

DEFINITION V.2. — Let L[ be the operator

(V.4) L\f(x) = J L,̂ ,0, x)f^.(x)+^b,(t, x)f^x)

+f (f^-fW-^^}J^\ i+M2 )
x ( t + b ( t , x , y ) ) M ( t , x , d y ) .
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A measure Q on Q is a solution of the martingale problem relative
to (s, x)eR+xRd if:

(a) Q(x,=x) =1;
(b) for/eCo0^),

(V-5) /(^)- ^f(x^)du is a martingale.

We now prove, by using results of STROOCK [22], DOLEANS-DADE [9]
and JACOD-MEMIN [13], that the previous martingale problem has on
unique solution, which may be defined by its density relative to the measure
P(S,X) on each a-field M^. Finally, we prove that the processes Q^^
have a common reference measure, and define the same fine topology.

THEOREM V.2. - The martingale problem has a unique solution 0^;^,
which defines a strong Markov process Q ^ ' ^ ^ Q ^ ' ^ is strongly Feller.
Moreover Q^'^ and P have a common reference measure ^ on R+ xR1

and define the same fine topology.
On each a-field M^ Q[^ has a density Z^ relative to P(, ^ given

by

(V.6) Z^ = exp{ r<fc"(M, x,), a-^u, x,)^>
C J s

-^[(b^a^b^^x^du}
2Js J

xexpS^010^5

X ^^M^r ;^ -^Xu{( l +S( M » ^-, ^U-^K-))

xexp-b(u, x^-, x^-x^-)},
where:

• 6' ==b-Mby/(l+\y\2);
• y is the purely continuous part of x defined in Corollary (1.3.2)

of [22];
• 5'c(o»o) b^ is the martingale associated to the function b(t, x , y - x )

for the measure P(,^) by [17] (p. 154) (2).
Moreover, E^9^ \Z\bfb)\2 stays bounded when (b,b,b/\y\)) stay

in a bounded set.

(2) There is a notational discrepancy between [17] and [22] for Levy systems. In the
first chapter, we have adopted the notation of [17]. Here we take the notation of [22],
but we keep the notation of [17] for the definition of the sums S and S0.
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Proof. — Existence and uniqueness of Q^^ follow from [22], Theorem 4.3
and Remark 4.3.

We need only to prove that (V.6) defines a measure solution of the
problem.

By Corollary (1.3.4) in [22], there is a brownian motion P° for P(s,x)
such that

(V.7) dy=a(t,x,)d^,

where a is the positive square root of a. Moreover, S^09^ bf is a square
integrable martingale, because

(V.8) <.)['[ M^^^ISO^jOl^+oo
J s j R d

by (V.I) and the assumptions of 6. Finally &' is uniformly bounded.
We then consider the equation

( dZ, = Z,- « a-1 (^ ^) &' (M, x,), d^ > + ̂ c (0> 0) ̂ ), i0 s,

( ^ = 1.

By [9], (V.9) has a unique solution given by (V.6).
As in Part I, it is easily checked that Z defines a square integrable mar-

tingale, and that .fi^5'-'0 [ Z^ [2 stays bounded under the stated conditions.
We now check that the measure defined by (V.6) is a solution of the

problem. For /e C^° (J^), we have P a. e.

(V.10) A^) = /(x,)+ F LJ(x,)du

+(\/.(xj, a(u, x^d^+S^010^^

where S^0'^ fis the square integrable additive martingale S0 g defined
in [17] (p. 154) with

(V.ll) g^y)=f(y)^f(x).

This follows from Corollary (1.3.2) in [22], from (V.l), from the fact
that g is bounded, and from the inequality

(V.12) \g(x,x+y)\^k\y\.

Moreover,

(V. 13) d < P?, Z \ = Z, (a-x (u, x,) &' (M, x,)), du,
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(V.14) d^^/.Z),

^Z,du\ M(u, x,, ̂ ) ̂ (M, x,, ^) (/ (x, + y) - f (x,))
J^

(V.10), (V.13) and (V.14) will imply that

(V.15) Z,/(x,)- Z^^f(x^)du is a martingale for P(^).

The density Z^ is then a solution of the problem. We refer to JACOD
and MEMIN for an extension of this method to a more general class of
problems [13].

Uniqueness and the strong Feller property follow from Remarks 4.1
and 4.3 of [22], p. 232-233 (it should be noted that once existence has
been established, uniqueness follows from the argument of Section 4 in [22],
and the strong Feller property from Theorem Al in [22] and the techniques
of Section 7 of [20]).

Let £ > 0 be such that [ b (t, x, y) | < 1/2 when [ y | < e. We define

I+SQ = IM<:B, 1+Sl = l |y |<e( l+fc) ,

(V.16) _ fM^l|, |^ fMl|,|^(l+l)

J^^l ' J 1+1.|2 •
By (V.6), the measures Q^0'^ and Q^1/^ are equivalent on M^.

Let L be a bounded positive Borel function on R+ xR'1, and let p be
a strictly positive constant. Let V and V be the functions

*+ooi - r^F(s, x) = e^E^'^ e-^Ld, x,)dt,
} J s(V.17)
^ V\s, x) = e^E^ F00^!^, x,)dt.

If T is the stopping time

(V.18) T==inf{ i^s ; |x,-x,-| ^s}.
We have

(V.19) 7(s, x) = ̂ E^'^ ( e'^L^t, x^dt+e'^ 7(T, Xr)).

By Corollary (3.1.1) of [22], we may write

^o'w-*-00 f / r M(V.20) ^5,x)=^£^-) exp^ - ^+ MI|,,^^ ^
Js I \ Js / J

x(L+Ml,,i^7)0,x,)A.
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Similary, we have
-(b,,^)f+oo (- n -)

(V.21) V^^e^E^^ exp\-pt+ \ M(l+b)L,^du\
Js C J s J

x(L+M(l+fc)l|, |^r(.,.+^))0,x,)^.

Since Q^^ and g^'^) have the same negligible sets, it will obviously
suffice to prove that Q^^ and Q^^ have the same negligible sets. If L
has a zero potential for Q^'^, its potential for g^*^) is also null. Let
us prove the converse.

By (V.21), if L has a zero potential for Q^^\ then

^,^)r+°° f / r' \1
(V.22) r(5,x)=^£^^ exp^ -{pt+ M(l+fc)l,,i^ ^

Js I \ Js / J

x(M(i+6)i,,,^r)(^)A.
But, by (V.I), M(l+%) l | y | ^ g is now uniformly bounded by a positive
constant k. If ^' = ^P(s,x)eR+xRd V 1 (s,x), this implies that by (V.22),

(V.23) fe'^fe'JL.
p+k

and necessarily A:' = 0. L has a zero potential for Q^9 fc).
Finally g(fro•?o) and Q^19^ define the same fine topology, because

they are equivalent on each M^. But by Corollary (3.1.1) of [22], g^;^
and Q^y are identical on Mf-. Since T is > 0, the fine topologies
of g^'^ and Q^1^ are the same. Similarly, P and g^0) define the
same fine topology. The theorem is now completely proved.

3. Weak dependences
We now give one word of the proofs of weak continuous dependences

which are needed to develop a good control theory. The results we give
are not the most general that it is possible to obtain, but they are sufficient
for handling intricate control problems.

Let 'k be a reference probability measure on R+ xR'1 for P = g^'0^
L^^xR^ will be the space L^^xR^ where R+xRd has the

measure d"k.
We then have the following result.

PROPOSITION V.I. — Proposition I.I holds for P(s,xy
Proof. — Same as Proposition I . I .
We now study the weak dependence of Z^'^ on (b,b).
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First, we note that by the continuity of(V. 1), all the measures M (s, x, dy)
are absolutely continuous relative to a fixed probability measure \i on R1.
We can then define L^ (R+ x R1 x R'1) to be the space L^ (^+ x ̂  x R1),
for the measure d ' k (g) d \i. For

(fc, b)e It (^+ x R') x L^O^ xR^ J^),

it is then possible to define Q^'^ unambiguously, as any of the Q ^ ' ' ^ ,
with (b\ V) Borel and (b\ b') e (b, b), because under the assumptions
of Theorem V.2, S ^ ' ^ b ' depends only on b; by (V.9) Q^'^ is then
well defined.

To avoid unnecessary complications, we make the following assumption
on b'. there is a function (p $? 0 on Rd with:

on H ^ L | (P00| ^ M,
on |^|^1, | (p00|=l,

such that

(V.24) b(t,x,y)=bf^x,y)^>(y),

where b' is a bounded Borel function on R+xRdxRd, with values
in (—1, +oo(. We then have the following theorem.

THEOREM V.3. — If (b^, b^) is a sequence of elements of
L\ (^+ x R1) x L^C^ x ̂  x R^

such that b^ ^ — 1, ;/ (&„, b^) —> (b, b') weakly and, if b^ = b^ (p, then the< % > < % > (%»
density Z^ of ^8^n^") relative to P(s,x) on ̂ s converges to the density Z^
of Q^^ in the topology a (L^ (Q), L^ (Q)) when Q ^ endowed with
measure P(s,x)-

Proof. - Theorem V.2 proves that the E^5'^ \ Z? |2 stay bounded
in L^. The proof proceeds as in Theorem 1.2, using definition V.2.

Remark V.I . — By using Theorem Al in [22] and proceeding as in [I],
Theorems V.I , V.2 and V.3 may be proved even if a is elliptic (i. e. non
uniformly).

4. Martingales

In [I], an important step of the proof of existence of for an optimal
control is the representation of square integrable additive martingales.

We will assume that ^/|.y| is a bounded function, g^^ is then
Hunt.
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Let p^'^ be the Brownian motion associated to g^^ as in Corol-
lary (1.3.4) of [22].

We then have the following result.

THEOREM V.4. — Any square integrable additive functional martingale
for Q^'^ may be written as

(V.25) l\(u, x^d^+S-^^

where:
• H is a BOY el function such that

(V.26) :̂§ 1 | H ( ^ , x^du < +o);

• g is a Bo r el function on R+xRdxRd, such that

(V.27) E^:l}\ du\ M ^ x ^ d y )
J s ^ J R ^

x(l +£(M, x^ y)) | g(x^ x^y) |2 < + oo;
• S ^ ' ^ g is the square integrable additive functional martingale asso-

ciated to g by [17] (p. 154).
Proof. — This result has been proved in a more general case by

JACOD [12]. We give here a short proof based on the Markov property of
the considered process under consideration inspired by an argument
of DELLACHERIE in [8].

Let us assume that M is a continuous martingale orthogonal to any
martingale (V.25). By stopping M conveniently, we may assume
\M\ ^ a < +00. Let Q' be the measure

(V.28) ^fi^fl+^W^.
\ 2a/

Then, we know by (V.10) applied to Q^^ that, if /e C^ (7^),

(V.29) /W-/(^)-|^u/(^)

can be written as (V.25). It will then be a martingale for Q'. Because
of the uniqueness of the solution of the martingale problem, Q1 = Q^'^
and M = 0.

By Theorem 5 of [17] (p. 156), any square integrable additive functional<%/
martingale which is a compensated sum of jumps may be written as S 0 ^ ' b ) g,
with g satisfying (V.27).
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By decomposing a square integrable additive functional martingale
into the sum of its continuous part and of its jump part, Theorem V.4
follows.

Remark V.2. — The interested reader can compare this proof with
Annexes 1 and 3 of [1].

5. Representation of processes and measure transformations

An important step in [1] for the proof of existence results for control
problems is to represent a square integrable additive functional martingale
for a given Q^^ as a local martingale on Q^'^, where |i is a probability
measure on ^+ x 7 .̂

THEOREM V.5. — Let N be a square integrable additive functional mar'
tingale for Q^9^ written as (V.25). Then if \+b' ^ k(\+b\ N, may
be represented Q^'9^ a. e. as

(V.30) N,-N, = l\(u, x^.d^^

+ p < H (M, x,), a-1 (V - b) (», x,) > du

- [ I H { U , x,), a-lM(b~b^y\u, x^du\
^ \ v+m / /

^.Sc(^)^ ^M(S/-&)g(x„ x,+.)du,

rt ^ ^
where H (u, x,). d ̂ bf f bf) and S ^ ' ' ^ g are in M?,, (3) for Q^'^.

Proof. - For Q^9^, we have

(V.31) x,-^= (\^ x^du+ [^(u, x^.d^

+{SC(b)r)l^.^^(y-x)+Sl^^^y-x)}s,

+ -— ,—^^\y\<6y\y\2-^\y^sy)(.u, x^du
J s 1+1^1

(3) Mfoc is the space of local martingales such that there is an increasing sequence
of stopping times Tn -* + oo such that M( A Tn are square-integrable martingales.
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and a similar relation holds for Q^'^. Then, we have

(V.32) 5c<6 '^(ll,_,,„(3;-x))?=5c<&/>^(l,,_„^(^-x)V

+^M((b^b)l^^y)(u,x,)du.

To prove (V.32), it is sufficient to apply Corollary 1.3.1 of [22] by
approximating 11 y ) < 5 .V by lg ^ ( y | < 5 .y when £ —> 0, and using the fact
that [ b'-b | ̂  k\y\. Then, necessarily,

(V.33) ^(b- -^V^ x^du+ [a(u, x,).dp^
Js\ 1+H2/ Js

equals the corresponding expression for (V, &'). The relation between
^(b)b) and p^'^ is then found and the first part of (V.30) is justified.

We now justify the second part. Let T^ be the stopping time

f (tt 1
(V.34) T , = i n n f > 5 ; M\g\\l+b)(u, x^du ̂  n ̂

(. Js )

Then for Q^^'\ S ^ ' 9 ^ (l^^rl^5 is a square integrable mar-
tingale and (V.30) will hold until time 7^. In particular, the last term of
(V.30) is finite because:

(V.35) [ {M(br-b)g}(u,x,)du
J s a t (^ u\i V / 2 / ^ \172

^ M————du} (W^^du}
s (1+^) / \Js )

fw tw

Because Q^'^) is absolutely continuous relative to <2^'^, when n —> + oo,
Tn—> +00 (%/^ a. s. The theorem is proved.

6. Representation of potentials

The measures (%^ not being necessarily equivalent on My5, we will
have the same difficulty representing the potentials of one of the processes
relative to another process as in Section II.

We give however a simple and straightforward result which will allow
us to do the same manipulations as in Section II.

PROPOSITION V. 2. — Ifb/\ y [2 is bounded, ifL is a bounded Bore! function,
and ifp is a strictly positive constant, if function V is defined by

(V.36) V\s, x) = e^E^ F^^LO, x,)dt
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we then have

(-V.37) V(s, x) = e^E5^'0' f+°oe-ptL'((, x,)dt

with

(V.38) Mbyb =b-
1+M2 '

55

(,V. 39) L'(t,x)=L (t, x) + \ M ((, x, dy) T) (t, x, y) (V{t, x + y) - V ((, x)).
JR"

Proof. — Let s be chosen as in the proof of Theorem V.2. We define
then

Ml|,|^(l+b)
°Q ~ ° ————-——-——-^————,i+H2

&0=l|y |<.( l+&)-l ,^V.40)
by _MI|J, |^J>^ =b-Mi + l ^ i 2 i+M2 '

^1 = — l |y |?e•

Then, by (V.21), we have

(V.41) V^ = e^E^0'^ f+a)exp-L(+ ['(M(\+T>)1^^)\
Js (. Js J

x(L+M(l+&)l|,|^7(.,.+3;))((,^)A.

This implies that g<'"''»») a. s.

(V.42) V(t, x,)- V(s, x,) = - J(L+M(I+S)I|,,]^ V(.,. +y)

- VM(l+^)l^^-pV)(u, x,)du

+ H(u, x„).dp^o•?o)+SC<I'°•^°) V.

But now (l+^i) ^ 2 (l+Z»o). Therefore we can apply Theorem V.5.
We see then that g^1'1") a. s.
(.V.43) V(t, x,)- V(s, x,)

=-(\L+M(l+b)l^^V(.,.+y)

-VM(l+^)l^-pV+M^l^V(.,.+y)
— 7Af^l|y|<e)(u, x,u)du

+ JJ(M,x„)dp(i'l•'61)+S<'<l>l•^ V
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or equivalently

(V.44) v(t,x,)-V(s,x,)

==- (L+Mb V(.,.+y)-VMb-pV

+^IM^ U.,. +y)- VMl^^)(u, x,)
p

+ 7if(M, jc^rfp^'^+S^i' ̂  7.

Let 7^ be the stopping time

(V.45) T^mfit^s; [W^x^du^n}
I Js J

r ^ -)
Ainri^5; MO+fciXy^x.+^-F^^^^^n^.

I Js J

We see then that

(V.46) e-^V^x,)
^1^1) f / r^ \i

=£^-> exp^- (pT^\ Ml^^du}\
I \ Js /J

^(b,,^)xn^x^+E^^
r" f / r" \1x ^P{-[pu+\ Ml^^da Y
J5 I \ Js / J

x(L'+Mli^7(.,.+}0)(M,x^

6/|^ |2 being bounded, L' is a bounded function. We may pass to the
limit in (V.46), and write

^r^i) r'^00 f / r" \)
(V.47) V(s,x)=epsEQ^X^ exp^ - pu+ Ml|,i^rfa)^

Js I \ Js /J

X(L'+MI(^ 7(.,.+^))(u, x^.

But by (V.21), the function defined in (V.37) verifies the same identify.
The equality of (V.37) and (V.47) follows then from the uniqueness of
the fixed point in the transformation associated to the right hand member
of (V.47): this uniqueness is obtained by the same argument as in (V.23).

7. Control problems
We now define a control problem for jumping diffusions, corresponding

to problem (^) of Section II. Another problem ( '̂) can be defined
similarly, and the existence of an optimal control can also be derived.
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K is a Borel set valued mapping defined on R+ xRd with values in
RdxRx[—\, +oo(, with non empty, compact, uniformly bounded
values.

Let «$f be the set of classes for the reference measure 'k of Borel selections
of K.

Let (p now be a function of Rd, such that | (p (y) \ < | y P on | y \ s$ 1
and (p (y) = 1 on | ^ | > 1.

For c = (6, L, &) e J^f, we define P ,̂ by

(V. 48) 7, (s, x) = ̂  E^'' ̂ [+w e ' ^ L (f, x,) dt.

DEFINITION V.3. - Problem (P) is the search for c e ^ such that for
any c 'eJ^f:
(V.49) 7^7;.

THEOREM V.6. — Problem (P) has a solution.

Proof. — We will not give full details of the proof, which is closely
related to the proof of [1] for the control of diffusions and to Part II for
the control of jumps. However, we do have the same basic elements
as in [1] to prove the existence result:

• the processes are all strongly Feller;
• there is a common reference probability measure A/, by Theorem V.2;
• the fine topology is the same for all the processes g^'^);
• Vc depends continuously on c, by Proposition V. 1 and Theorem V.3;
• by (V.37), we have

(V. 50) V, (s, x) = e^ £5^ f + °° e-^ U (u, x,) du.

It is then possible to write on (0, fi^).

(V.51) V^x^V^x,)

=- (\L^p V,) (M, x,)du+ (\(M, x ^ d ^ ' ^ +5^°^,

where He and gc are such that

(V.52) £5^ r\H(u, x^du <+oo,

(V. 53) £5^ FM | g, j2 (u, x,) du < + oo.
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In fact, we have

(V.54) g,(f, x, y) == F,0, };)- F^O, x),

and ^ is a bounded function.
But now all the measures g^*^6*) are absolutely continued relative to

Q^y on eac^ ̂ 5 ̂ d w^ are in the situation described in Theorem V.2,
which allows us to represent (V.48) on any S^*^^;
• when K has convex values, necessary and sufficient conditions are

derived in the following way: for c to minimize

C' -> 4(C') == j P^(5, X)^^(5, X)

it is necessary and sufficient that if Vc (t, x^) is represented by (V.51)
then X a. e.:

(V.55) ^L+ /^, a-^fc-S^3-^ +&M<pg^a x)

^m^^e.^^L'^^a-^-S'^^

+S'M<p^K^^);

• (V.55) will imply that when c minimizes I g - p s ^ , for any c'e^f,
Vc ^ V^
• in the non-convex case, (V.55) is used to prove the existence result.

8. Extensions

All extensions to games, approximations, etc., are possible. The methods
are the same as in [1] and in Parts III and IV.

In particular, if, instead of considering a criterion from time s to infinity,
we stop the process at the hitting time 7^ of a Borel set A of R+ xR'1,
equality (5.29) in [1] is no longer true because there are inaccessible
stopping times. In this case, it may easily be proved that in [1] (5.29),
C^TA

dA is the dual predictable projection of \^TA ^c (^ XTA) anc^ ls

equal to .^^
(Ml.^eA^(.,.+^))(^Xj^

The proof continues then as in [I], V.
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