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CONDITIONAL BROWNIAN MOTION AND THE BOUNDARY LIMITS
OF HARMONIC FUNCTIONS;

by

J. L. Doos (%).

1. Preliminary remarks. — In the present paper, we shall consider func-
tions and stochastic processes on a Green space R, as defined by Breror and
CHOQUET [ 3], except that the dimensionality 2 is not made exceptional (so that
‘Riemann surfaces are excluded) and that points at o are excluded. Thatis,
in the language of [6], Ris a Green space which is connected and has a posi-
tive boundary. Since a Riemann surface is the conformal image of a Green
space in this sense, the results can be interpreted to be applicable to Riemann
surfaces also.

We shall say that a sequence of points of R converges to = if only finitely
many points of the sequence are in any compact subset of R. The correspond-
ing definition is made for convergence of a curve to co. The boundary R
of R will not however consist in general of a single point o corresponding
to this definition, but will be taken as the Martin boundary. The boundary
of any set 4 will be denoted by 4'.

We shall use repeatedly the fact that, if « is superharmonic and positive
on R, there is a finite measure p. of Borel subsets of RU R’ such that

(1.1) w(n) = K, (2, ) p(d2).
Ry I

Here K is defined as follows. Some point £, at which « is finite is chosen
and then, if g is the Green’s function of R,

g )
. K: (5, n) =22—= R
(1.2) & (& M) 2 ) EER,
=lim K(¢,n ), teR.
& >E
g er

The limit exists, by definition of the Martin boundary.

(1) This research was supported by the United States Air Force through the Air Force
Office of Scientific Research of the Air Research and Development Command.
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According to BreroT [2], the Perron-Wiener-Brelot (PWB) method, when
applied to the solution of the Dirichlet problem on R, yields the conclusion
that all continuous boundary functions are PWB resolutive. Hence there i-
a harmonic measure of subsets of R’ (a measure which is the complet..
measure of a measure of Borel sets) relative to each point of R. The class
of measurable sets, and the class of sets of measure o are independent of the
reference point, so that we shall write ‘¢ measurable” and ‘¢ almost
everywhere ” in discussing harmonic measure without specifying the refe-
rence point.

In particular [2] the function « =1 is given by (1.1) if the measure & is
harmonic measure relative to £, and, more generally, if harmonic functions
are replaced by A-harmonic functions, that is, by the quotients of harmonic
functions divided by a strictly positive harmonic function %, so that the
PWB*” Dirichlet problem solution leads to A-harmonic measure on R, the
measure in (1.1) which yields the function £ is simply the A-harmonic measure
relative to £,.

A minimal harmonic function on R is a strictly positive harmonic function
which is proportional to any smaller positive harmonic function. 'We shall
use the fact that, if {€ R, g(§, .) is a minimal harmonic function for the
Grenn space R-{{}. Using the above notation, for almost all (harmonic
measure) points £ of R, the function K (%, .) is minimal. If K¢ (%, .) is
minimal, £ is called the pole of any strictly positive multiple of K¢ (£, .), and
¢ is called a minimal boundary point. In (1.1), p» can be chosen to assign
measure o to the set of non-minimal points of R/, and is then uniquely deter-
mined by « and £,. If p is so chosen, it is called ‘¢ canonical ”.

Brownian motion on R was defined in [6]. In [7], a procedure of relati-
vizing generalized harmonic functions was discussed in its implications for
the study of the Dirichlet problem by probability methods. The purpose
of the present paper is to apply and carry further the results of [7] to the
present more special situation. This leads to the study of conditional
Brownian motion processes, and leads in a natural way to Naix’s concept [11]
of a fine limit at a point of R'. By means of the probabilistic interpreta-
tion of this fine limit, we are enabled to show that our probabilistic
theorem 9.1 is equivalent to the theorem that, if » is a positive superharmonic

. u . - . .
function on R, - has a finite fine limit at almost every point of R’ (A-harmonic

measure). It is interesting that no non-probabilistic proof of this thorem is
known.

2. Conditional Brownian motion. — Let p be the transition density of
Brownian motion on R. Let 4 be a strictly positive superharmonic function.
The set of infinities of 4 is the intersection of a sequence of open sets, and
has capacity o. Hence this set has zero Lebesgue measure of the dimen-
sionality of R. Moreover, as noted by Hunr [10], % is an excessive function,
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that is, 4 satisfies the inequality
@1 [pttzm iy dnzhe),
R

and the integral on the left defines a monotone finite-valued function of ¢,
increasing to the value on the right when ¢ decreases to o. [The fact that
the left side is finite even if the right side is not can be seen by replacing 4 in
a small sphere of center £ by the Dirichlet solution in the sphere for % on the -
perimeter as boundary function, and applying (2. 1) to the modified function]
Hence, if we define p* by

(2.2) Pt E ) =p(t, 5 m) I;;((‘g))’

except when A (%) and A(n) are both infinite, and with the obvious conven-
tions when only one is infinite, p” satisfies the inequality

(2.3) fph(t, £, m) dnZ1.
R

Moreover it is trivial to verify that p* satisfies the Chapman-Kolmogorov
equation

(2.6) Po+osm=[ P50 L&
R
unless 4 is infinite at both £ and n. If P"is defined by
Ph(s, E, A) ZfPI'(S, &, n)dn,
4

where A is a Borel subset of R, P* satisfies the usual integrated form of the
Chapman-Kolmogorov equation, without any exceptional values of £, and

(2.5) lim Pt (¢, £, R) =1
>0

if £(Z) is finite. Moreover, if B is the set of infinities of 2, B has Lebesgue
measure o, so that P(¢, £, B)—=o. Hence, generalizing trivially some
remarks in [6], a distribution assigning probability o to B, together with the
transition probability P, determines a Markov process with state space R,
and lifetime which may be finite. The superscript 2 will be used to identify
the random variables associated with such a process, except that no super-

script will be used when 2=—1. Thus the process will be denoted by
" {5%(¢), >0}, the lifetime of the process by t*. A point of the measure
space on which the process is defined will be denoted by w, and the absence
of a superscript here should cause no confusion. If the initial distribution
is confined to the single point £, we shall sometimes write z{, 7¢ and so on,
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when the subscript may clarify the work. It will always be supposed that the
process is separable relative to the closed sets. The process paths will be
called A-paths, or Brownian paths if A=1. When the results will have
justified the term, the A-paths will sometimes be called conditional Brownian
paths.

‘We shall prove that almost all A-paths from a point are continuous. If R,
is an open subset of R, and if £ is a point of R,) we shall denote by rg‘(lﬂ)
the minimum of 7} and the first parameter value (or 7 if there is none) at

which an /-path from £ meets the boundary R of R,. We adopt the notation
st (w)]= lim z%(¢, w),
([t @)= Jim <0

when this limit exists, and we denote the random variable so defined by
zg‘ (Té’) The distribution of this random variable is the A-harmonic measure

on R/, relative to £, if & is harmonic (see section T).

3. A-path properties. — It will turn out that the general A-path process
can be reduced to the special case in which 4 is a minimal harmonic function.
Thus we could simplify some of the preliminary work by always imposing
the restriction that 2 be harmonic. Since the simplification is not significant
for our purposes, however, we shall not impose this restriction.

Suppose then that £ is strictly positive and superharmonic on R, and let
be a point at which 4 is finite. Let R, be the space of functions from [o, #]
to R with value £ at o. Let ¢ be a strictly positive number, suppose that
o<t <...<t=t, that 4 is a Borel set of the product space R%, and let ﬁ,

be the set of those functions in ﬁt with
[f(t1)7 LR f(tk)]eA'

Then, according to our. definition of P for A-path processes, and remem-
bering that we have agreed to write z(¢) instead of 5'(¢),

(3.1) REVP| s, 0 ed)= h[ze(2)] dP.

{2 (., w) e}

It follows that the same equation is correct if (keeping ¢ fixed) 4, is now any

subset of &, in the Borel field of sets generated by those just described, as £,
{t;}, A vary. We have thus a way of evaluating A-path probabilities in
terms of Brownian path probabilities.

Using this evaluation, and the separability of the zé‘(t) process, we can
evaluate the probability that rg' (@) > ¢ and that (simultaneously) A-paths are

continuous on the interval [0, ¢]. This amounts to choosing A, properly.
The evaluation (3.1) does not change if we omit the continuity condition,
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because almost all Brownian paths from £ are continuous. Hence almost all
h-paths from § with lifetime > ¢ are continuous on [o, ¢]. Siace ¢ is arbi-
trary, almost all %-paths from [ are continuous throughout their lifetimes.
A similar argument yields the fact that, if A is any subset of R of zero capac-
ity, almost no A-path from { passes through a point of 4. In particular this
means that, if « is superharmonic, « is finite-valued on almost all A-paths.
An important special case we shall use repeatedly is the case u = A : almost
no A-path from % passes through an infinity of 2. Going somewhat further,
and using the fact that Brownian paths have small probability of meeting sets
of small capacity, and Cartan’s theorem that a superharmonic function is
continuous relative to a compact set whose complement has small capacity,
it follows as in [4] that, if « is superharmonic, u is continuous on almost all
h-paths from £.

Let R, be any open subset of R. Then R, is also a Green space, and we
can consider A-paths in R;. Using the same notation as above except for a
prescript 1 when paths relative to R, are involved, we obtain the evaluation

(3.2) P{iz"(.,&))elﬁt}:'[{‘ ( “A}h[ﬂi(tﬂ%
12g (+, ©) €14,

ap
= h t =
‘/{‘zg(-,m)ey?.} L= )]h(e)

The last expression is the probability that an A-path on R from £ coincides

with an element of .4, to time . Thus the h-paths from £ relative to R, are
those relative to R, with lifetime shortened from ré’ to Té‘ (Ry).

We now add the hypothesis that the closure of R, is a compact subset of R,
and use the fact [6] that the h[z(¢)] process, stopped at time 7(R,) is a
lower semimartingale. Let 1x‘f¢ be defined like 4. ¢ except thatin the definition
R is replaced by R, U R}, and let 4 (R,) be any set in the Borel field of sets
generated by the sets Véft for 0 < t<<oo. Then the inequality

3.3) RE)VP{z}(.,0)€A(R)}> k35 (e (R,))] P,
{zg(, 0)€4(R)}

becomes, in view of (3.1), the standard lower semimartingale inequality if
A(R,) is a set ,ff,. Hence the inequality is true for general A(R;). More-
over, if & is harmonic, the inequality becomes an equality, because in that
case the stopped A[z¢(¢)] process is a martingale.

If & is harmonic, (3.3) (with equality) allows us to conclude that almost
no A-path from a point of R has a closure compact relative to R In fact
using the above notation, it is sufficient to prove that almost every A-path
from £ meets R, and this is effected by choosing A(R,) properly, remembering
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that (martingale property)
E{ Az (v (R)]} =A(E)

and that this assertion is true for A =1 [6].

Finally, if 4 is harmonic, we show that almost every A-path from a point
of R approaches o as the path parameter increases to the path lifetime.
This is a slight strengthening of the previous result. To. prove this, let
RiCR,c... be open subsets of R, such that { € R,, that the closure of R,

is a compact subset of R,.,, and that U R,=R. Consider the probability
1

that an A-path from { meets R, after meeting R,. It is sufficient to prove

that this probability p,, approaches o when m— . Now p=1im p,,,, where
: ny>w
DPmn is the probability that an A-path from £ meets R after meeting R, but

before meeting R,. Let A, be the w set corresponding to those Brownian
paths from { which meet R, after meeting R,, but before meeting R, and
let 7., be the first such intersection time. According to our evaluations of
h-path probabilities,

dPp
3. mn = h Ry))] -
(3.6) pmn= [ B RO
By a standard martingale theorem on systems, we then find that

4P
(3.5) Prn= fA L]

< KP{Am}, K= sup h(n).
: nER,

‘When n increases, A, increases to the set A, corresponding to Brownian
paths from { which meet R after meeting R, so that

(3.6) PmL KP {An}.

Finally, when m — oo the right side of this inequality goes to o because
. almost all Brownian paths from £ go to oo (that is, because, according to [ 6],
the result in question is true for A =1). This completes the proof of the
lemma. ‘

If & is continuous, h-path processes are strongly Markov in the sense
of [1], as appropriately modified to apply to processes with finite lifetimes.
In fact, even if % is discontinuous, the statement remains true, and Blumen-
thal’s discussion, somewhat more delicately handled, is applicable.

k. A-harmonic functions. — If % is superharmonic and strictly positive
on R, we shall call a function u' on R h-superharmonic [ A-harmonic] if ik,
considered only on the set where 4 is finite-valued, can be extended to R in
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such a way that the extended function is superharmonic [harmonic]. An
h-subharmonic function is one whose negative is /-superharmonic. Note

that, according to this definition, % defined arbitrarily at the infinities of 4,

is A-harmonic.  An A-harmonic or A-superharmonic function can be changed
arbitrarily at the infinities of 2 without affecting the applicability of the above
definitions. We have already remarked that almost no -path from a point
at which 4 is finite ever passes through an infinity of 4, and this fact illus-
trates the point that the set of infinities of 4 is negligible for many of our
considerations. The function 1 is A-superharmonic for all 4, A-harmonic if
h is harmonic.

We shall use lower semimartingales in many places in this paper, always
accepting as part of the definition that the random variables of such a process
have finite expectations. Our first application of martingale theory yields the
following lemma, to be strengthened later.

LewMA b.1. — Let u and h be strictly positive superharmonic functions.
Let £ be a point of finiteness of k, and define z(t) by
(. 1) z(t, w):(%>[zg(t, W] t<(o),
=o, t> 1t ().

Then the x(t) process is a lower semimartingale for o <t <o, and also
foroLtZw ifu(3) <.

Since almost no k-path from f passes through an infinity of %, and since
the s} (¢) process is Markov, it is sufficient to prove that E{z(¢) } << and
that, if 2(£) < o and if #(£) << w0, then

(k.2) w(o):%élﬁ{w(i)}.

Now it is known [6] that « has a limit on almost every Brownian path from £,
as ¢ 4 ¢, and that, if ©(£) <, and if u[z¢(¢)] is defined as this limit when
t > 1¢, then the u[zg(¢)] process is a lower semimartingale for 0 £ ¢ <.
Hence

(5.3) (@) >E{ulz ()]l u[z¢(¢)]dP.

{"E“‘”>‘}

Moreover the last integral can be written in terms of A-path process integrals,
in the form

) h(E)f{h( R }(%)[zg(t)]dP:h(E)E{x(t)}.
TE(D 12 3N

The inequality (4.3) is thus epuivalent to (¥.2). The inequality (4.2) shows



438 J. L. DOOB.

that BE{z(t)} <o if u(f)<<w. Ifu(f)=o, a direct evaluation of
E{ 2 (¢)} is still possible, and yields a finite number, in view of the remarks
on excessive functions in section 1.

Tueorem b.2. — If u and h are strictly positive superharmonic functions

on R, % has a finite limit along almost every h-path from a point of fi-

niteness of r. If h is minimal harmonic, this limit is Emf <Z> on almost
€r

every such path.

In this and similar theorems, when we write of a limit along a probability
path, without further qualification, we always mean limit at the path lifetime.
Since the z(¢) process of the lemma is a positive lower semimartingale,
which is trivially separable, almost all its sample functions have right and
left hand finite limits at all parameter values. This fact, for the parameter
value rg, gives the theorem. In particular, if / is minimal harmonic, the eval-

uation given is a consequence of the general theory in [7].

5. The case when % is harmonic. — If 4 is harmonic, we have seen that
almost all A-paths from a point of R approach «. Moreover, if u is a posi-
tive and A-superbarmonic function, if £ is the initial point of an A-path
process, and if R, is an open set containing &, with closure a compact subset
of R, then the u[zé‘ ()] process stopped at time T’E‘ (R,), that is, this process
made constant for times at least equal to this stopping time, is a lower semi-mar-
tingale. In fact the stopped process is the lower semimartingale of lemma 4.1
stopped at time 7y (R,). With this much, the apparatus of [7] becomes
available. Let { R,, n2>x1} be a sequence of open subsets of R, with union
R, and such that the closure of R, is a compact subset of R,.,. If Zis a
point of R, and if n is the first integer with £ € R,, the sequence of random
variables

b A ER] H[ E])

defines a system of discrete paths from £ to R'. These are precisely the paths
used in [7], when brought into present context. However we need not
restrict ourselves to z; (¢) for ¢ ranging through o, 7} (R.), ¢ (Rus1), - - -+

In fact, with the background of -paths we have now developed, the theorems
of [7] involving the discrete paths (there called A-paths) go over into the
exactly corresponding ones for continuous /A-paths considered here. The
changes necessary in the proofs, if any, are always obvious. For example,
according to [7], if u is A-superregular (/A-superharmonic in the present
context) and positive, « has a limit along almost all A-paths from a point of
R. (In[7] A was always assumed regular.) According to theorem 4.2 this
is true here, for our continuous A-paths.
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Now consider the Dirichlet problem for A-harmonic functions on R, using
the Martin boundary R', and supposing that % is harmonic. BRerot [2]
has proved that all continuous functions on R'are PWB?” resolutive. Accor-
ding to [T], this fact implies the truth of the following theorem, to be gene-
ralized by theorem 7.1.

Tueorem 5.1. — If h is harmonic and strictly positive, almost every
h-path from a point of R converges to a point of R'. In particular, if h
is minimal, almost all h-paths from a point of R converge to the same
point, the pole of h.

This is of course a much stronger result than that proved earlier, that
almost all 2-paths from a point of R tend to .

For later reference, we extract from [ 7], translated to our present context,
the following theorem, giving the relation between PWB? resolutive boundary
functions and their corresponding Dirichlet solutions, which we shall call
PWB?" solutions.

TueoreM 5.2. — If u is the PWB" solution of the Dirichlet problem for
h-harmonic functions, corresponding to the PWB" resolutive boundary
Sunction f, then u is given by

(5.1) w(®) =E{f[5 ()]}

and u has f as a limit along almost all h paths from any point of R, in the
sense that

(5.2) l;mhzt[z'g(t)]:f[zg‘(ré‘)],
Ty
with probability 1. )

If A is positive and superharmonic on R, and if A c RUR', we define A,
following BRELOT, as the lower envelope of the positive superharmonic func-
tions on R which exceed % near 4. Then, if 4 is a Borel subset of R, and

ha(t)
h(E)
h-path from £ converges to a pointof A. A minor development of this discus-

ha(E)
" h(E)
an /-path from £ either meets a point of AR at a strictly positive parameter

value, or converges to a point of AR. If A is closed, h—,‘: in R-A is the

if £ is harmonic, it was proved in [T7] that is the probability that an

sion shows that, if 4 is a Borel subset of RU R’ is the probability that

PWB?” Dirichlet solution for A-harmonic functions given the boundary func-
tion 1 at the boundary points of R-4 in 4, o at the other boundary points.

6. A simple example. — Let £, be a point of R, and consider A-paths
from a point £ £§,, for h=g(k;, .). Since almost no such path passes
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through £, we can replace R by R,— R-}Z, } without changing the /-paths.
The Martin boundary R) consists of R’ together with the point %,, which is a
minimal point, the pole of 2. According to theorem 5.1, almost every
h-path converges to the point {;. That is, almost every /A-path on R
converges to this point as the parameter value approaches the path lifetime.
If we insert in the equality

(6.1) Pici()> )= [ p(e, 5 mEE D dn

R

g(:,n 6,) ’

the evaluation of g in terms of p in [6]

(6.2) g(i,n)zf p(t, % ) de,

the right side of (6.1) becomes

(6.3) f p(s, & &) ds
g%, &)

so that there is convergence to o when ¢ —>¢ in (6.1). This means that r’é
is almost certainly finite. Note that the quantity (6.3) is symmetric
ing, &

If u is superharmonic, it may not be continuous. If u(Z;) =+ oo,
however, u is continuous at %,, because u is everywhere lower semiconti-
nuous. Hence, trivially, « has the limit «(Z,) along almost all g(&;, .)-
paths to &. If u(f;) is finite, it remains true, but is no Jonger trivial, that
© has the limit « () along almost all g(¢;, .) paths to £;. 'We shall prove
this resultin section 14.

b}

7. h-paths in the general case. — Suppose now that % is an arbitrary
strictly positive superharmonic function on R, with canonical mass
distribution . :

(1.1) h(n)= K, (3, 1) p(de),

RUR
as discussed in section 1. We can write the transition density p* in the
form

(1.) p"(t,z,n)zf KE.;(C»E)H(dC[P(hE’W)Kio(c’ﬂ)].
RUR

h(%) Kz (5, &)

This form can be interpreted as follows. To construct A-paths from a
point § of R at which 4 is finite, first choose a point 5 on RU R’, where the
probability that z lies in A4 is given by

Ke (2, &
(1.3) S HE .
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Then either the value ¢ found for z is a point of R or a point of R. In the
latter case we can and shall assume that { is minimal, for the contrary possi-
bility has probability o. In either case, choose a K¢, (£, . )-path process from .
Almost all paths of the latter process, which is a g(¢, .)-path process
if {eR, go from ; to {. Then the composite process is an A-path process
from £. To justify this interpretation, we must of course (trivially) write

n
I l Pty 6jy &)
1

in a form corresponding to that in (7.2), but we shall forbear to do so.
Another way of stating the same conclusion is given by the following
theorem.

Tueorem 7.1. — Let h be given by the canonical form (7.1). Then
almost all h-paths from a point ¢ at which h is finite converge, at time tf,
to a point of RUR'. The probability that this point, s (t%), lies in the
Borel set A is given by (71.3) The process can be defined in such a way
that the conditional probability distribution of h-paths, given that s} (%)
has the value ¢, is the distribution of K (&,.)-paths.

The reservation ‘¢ The process can be defined in such a way that ” is due
to the following consideration. The decomposition of the process described
suggests a way of constructing it, simply by making the above outline more
precise, and adopting as the basic measure space the space. of functions from
[0, ©) to the union of R with a point J, the functions, being continuous
and having values in R before a value of the parameter depending on the
function, approaching a limit in RUR' from the left, at that value, and
identically d thereafter. Carrying these details through, one obtains what
the theorem states. It is well-known, however that, if the A-path process
is given arbitrarily, the conditional distributions involved may not exist
except in an extended sense.

The structure of an k-path process isnow clear. Forexample, the path life-
time is finite for almost all paths to points of R. If R has the property that
almost all Brownian paths have finite lifetimes, it will follow that, for almost
every (harmonic measure) minimal point { of R’, almost all K¢ (¢, .)-paths
have finite lifetimes.

In view of our analysis, it is not unreasonable to describe A-paths, for A
minimal, as Brownian paths conditioned to converge to the pole of %, and to
describe g (£, .)-paths as Brownian paths conditioned to converge to {. For
general A, h-paths will be called conditional Brownian paths.

8. Fine boundary functions. — We recall that, if % is a strictly positive
harmonic function on R, A-harmonic measure on R’ relative to a specified
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point of R plays the same role for /A-harmonic functions as harmonic
measure for harmonic functions. It is the distribution of the endpoints
of h-paths from the specified point of R.

Let {R,, n>1} be a monotone sequence of open subsets of R, with
union R, whose closures are compact subsets of R. Let A& be a strictly
positive harmonic function on R. Let x be a Baire function defined

on U R;l. Suppose that, for some point £ of R, « has a limit on approach

to R along almost every A-path from &, considering u only on the sequence

of first meetings of the path with R}, R,, .... That is, we suppose that
(8.1) lim u[ s (v} (R,))] = ui
ny»»

exists with probability 1. Then u{ is a random variable. Applying what
we know of the structure of A-paths, we find that, for almost all ¢
(h-harmonic measure) on R', u has a limit along the first meetings of almost
every K¢ (¢, .)-path with R, R,, .... We denote this limit by wu{ (%),
again a random variable, but not defined on the same measure space as u;.

Conversely, if, for almost all {in this sense, the limit u{({) exists as
indicated, then the limit u; must also exist, with probability 1.

The probability that the limit in (8.1) exists defines an /A-harmonic
function of the initial point £, with values between o and 1. Hence, if
the value is 1 at a point, it is identically 1, so that u} is defined with
probability 1 for every & if for any £. If u{ is defined with probability 1,
this very argument applied to 2 = K, (¢, . ) with {€ R’, shows that u{ ({) is
defined with probability 1 for each { and almost every ¢ (/A-harmonic
measure ), and the exceptional £ set does not depend on &.

Now suppose that 4 is a minimal harmonic function, with pole ¢, so that
h-harmonic measure is concentrated at {. Then almost all A-paths that we
are considering approach {. The class of limits { ¢, £ € R} is what we have
called a stochastically ramified boundary function in [6] and [7], and such
functions are identically constant if /4 is minimal, according to [ 7], because
the class of stochastically ramified Dirichlet solutions is the class of constant
functions in that case. That is, if 4 is minimal, there is a constant ¢, inde-
pendent of £, such that uf — ¢ with probability 1, for every  in R.

Going back to the case of general harmonic 4, we see that, in view of the
proceeding paragraphs, if uf exists with probability 1 for a single value
of t, it does for allt, and there is a function f defined on R' with the pro-
perty that, if ¢ is not in some subset of R of h-harmonic measure o,
u (8) =f(Z) with probability 1, for each ¥ in R Moreover, as we now
prove, f is measurable with respect to the h-harmonic measure.

It is no restriction in the proof to suppose that u is bounded, and we
shall do so. To prove measurability, we remark first that, if ¢, is the
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function on R’ defined by

(8.2) <p,,(§):E{u[z€(r‘g(Rn))]}, v =K, (%, .),
then ¢, is a Baire function, and
(8.3) E {u[5¢(cg(Rn)]| 2 (s8) } = ou[ 3£ (2)]

with probability 1, according to our analysis of A-paths. Hence, using our
hypotheses on «,

(8.4) - Imeu[s ()| =Bl | (h) | =¢

exists with probability 1. That is lim ¢,=—=¢ exists almost everywhere
ny o

on R' (h-harmonic measure). In proving the measurability result, we can
and shall assume that the conditional probability distributions of the A-path
process exist as described in theorem 7.1. Actually we only need them for
the sequence

(8.5) {#f[E(Ry)], n1 ).

Then, for fixed s} (t})=1¢, the distribution of ¢* is concentrated at f({).
In other words,

(8.6) B{¢*|st(t)} =/f[st(F)]

with probability 1, so that the quantity on the right is measurable. Now if,
as we can suppose, the basic measure space of the A-path process is a
perfect measure space in the sense of KoLmogorov [9], or even only if we
restrict ourselves to the sequence (8.5) and suppose that this sequence is
defined on a perfect measure space, it follows that f[zf(zf)] cannot be
measurable unless f itself is measurable with respect to A-harmonic
measure, as was to be proved. '

Now let u be a Baire function on R, let 2 be a strictly positive
harmonic function on R, and let f be a function on R'.  We shall say
that « has the function f as its A-fine boundary function if there is a
subset of R', of hA-harmonic measure o, such that, if { is a point of R’ not
in this set, and if £€ R, u has the limit f(Z) along almost all K (%, .)-
paths from £ to {. 'We write simply ¢‘ fine boundary function " if A =1.
According to what we have proved above, f is necessarily measurable with
respect to A-harmonic measure. The adjective ¢¢ fine " will be put into a
topological context in section 1%, by an identification of the boundary limit
concept involved here with Naim’s fine topology limit at the boundary.

We observe that, according to what we have proved above, if u is a Baire
function which has a limit along almost all A-paths to R'from each point
of R, and if u is say right continuous on almost all such paths, so that
there are no measure difficulties in translating all the results obtained above
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for discrete A-paths into the case of the full 4-paths, then u has an A-fine
boundary function.

9. Fatou’s boundary value theorem. — If u is positive and superhar-
monic on R, and if 4 is strictly positive and harmonic on R, % has a finite

limit on almost all A-paths from any point § of Rto R'. This theorem, a
_ special case of theorem 4.2, is a probability version of a generalization of
Fatou’s classical boundary value theorem. It suffers from the unsatisfac-
tory feature that it stresses the paths from £ rather than the path endpoints,
and it is not clear how the limits along paths to the same boundary point are
related. The corresponding advantage is that the theorem does not even
involve a boundary. All it really states in that %
almost all A-paths, at the time t}. Theorem 9.1 does away with the stated

disadvantage, at the price of involving the Martin boundary explicitly.

has a finite limit on

Trorew 9.1. — Let u be a positive superharmonic function on R, and let

"hbea ‘strictly positive harmonic function on R. Then % has an h-fine

boundary function fon R, which is finite almost everywhere (h-harmomc
vmea:are), and

(9.1) | ,, E (/L]

‘The existence of f follows from theorem 4.2 and the last paragraph of
section 8. The inequality (9.1) xs a special case of the general results
ln [7]:

According to theorem 9.1, a positive k-superharmonic function, and
hence any A-superharmonic function greater than the negative of some
other positive A-superharmonic function, have k-fine boundary functions.
-The expectatxon on the right in (9.1) defines an /-harmonic function ¢ of £.
The function ¢ is the PWB Dirichlet solution corresponding to the boun-
dary function f, and has f as A-fine boundary function, according to

Im

theorem 5.2. Thus% is itself a PWB" solution if and only if there is

e_g’paliiy in (9.1).

. TueoreM 9.2. — If his a strictly positive harmonic function, it has an
h-fine boundary function which is strictly positive almost everywhere
(h-harmonic measure) on R'.

If u =1 in theorem 9.1, we see that%has an A-fine boundary function

which is finite almost everywhere (A-harmonic measure), and the theorem
then follows immediately. Note that the fine boundary function of & may
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not be finite-valued, and in fact may be + o almost everywhere (4-harmonic
measure) on R'.

In the language of [6 ] and [7], what we have proved is that every stochas-
tically ramified boundary function in the study of A-superharmonic and
h-harmonic functions is derived from an ordinary boundary function on the
Martin boundary, measurable with respect to A-harmonic measure. Thus
-the use of the Martin boundary makes unnecessary the use of stochastically
ramified boundary functions.

Note that our results relate to the same kind of limit behavior at the
boundary points in question for A-superharmonic functions as for A-har-
monic functions. This is curious in the light of the following fact. If Ris
an /V-dimensional sphere (ball) with V>>1, R' is the ordinary sphere
boundary. If u is positive and superharmonic, it is classical that « has a
limit along almost every radius to the surface R', that is along radii going to
almost every [Lebesgue (/¥ — 1)-dimensional measure on R, or equivalently,
harmonic measure on R'] point of R'. If u is harmonic, but not in the
general superharmonic case, the theorem remains correct if approach to
a boundary point { along the radius to { is replaced by non-tangential
approach, that is, by approach in any cone with vertex { and lying in R near {.

In order to analyze the class of PWB” Dirichlet solutions, wé shall
recall a known definition. Let £ be a point of R, and let { R,, n>x1} be a
monotone sequence of open subsets of R, containing £, with union R, and
such that the closure of each set R, is a compact subset of R. Let p, be
the h-harmonic measure of subsets of R, relative to £. In probability
language, [, is the distribution  induced on R, by z¢[t}(R,)]. H u is a
Baire function on R, it induces on R, along with the measure p,, a
sequence of measurable functions, as n varies. The class D* is the class of
h-harmonic functions u for which this sequence is uniformly integrable.
This class is independent of the choice of § and { R,, n 1} [6], [T]. We
can now summarize our results on A-fine boundary functions as applied to
the Dirichlet problem as follows.

.TueoreM 9.3. — If fis a PWB? resolutive boundary function, the
corresponding Dirichlet solution is in the class Dt. Conversely, if ue D*,
it has an h-fine boundary function f which is PWB? resolutive and has 17
as its PWB" Dirichlet solution.

The direct half of this theorem was proved in [5]. The converse half
follows from the work of this section and theorem 5.2.

We conclude this discussion by noting a few cases in which the A-fine
boundary function is known. If « is the potential of a positive mass
distribution, it is known that « has the limit o on almost all Brownian paths
from each point of R [6], and the proof referred to proves also, with the

obvious changes, that, if A is strictly positive and harmonic on R, ' ~ has the
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limit o on almost all %-paths from each point of R. Hence % has the

h-fine boundary function o, in the sense that, for almost every minimal
boundary point (A-harmonic measure), % has the limit o along almost
every conditional Brownian path from a point of R to the boundary point.
An equivalent result has been obtained by Naiu [11] using non-probabilistic
methods. If x is a minimal harmonic function on R, there are two possibi-
lities, according to [7]. Either u is unbounded (and in fact not even in
the class D'), and in that case « has the fine boundary function o, or u is
bounded, and in that case either u is identically constant or u has a fine
boundary function which (neglecting a subset of R’ of harmonic measure o
in the following) only takes on two values, o and a strictly positive value a.
Moreover {f({) =0}, {f({)=a} are sets of positive harmonic measure,
and the second contains only a single point, the pole of u.

10. Absolute probability systems. — Suppose that, for each strictly
positive number ¢, there is a positive finite-valued Lebesgue measurable
function ¢*(¢, .) on R, satisfying the equation

(10.1) (s + tyn) = f g (s, E) ph (8, &, ) d,
R

e
for strictly positive s, . Then ¢ is continuous, and in fact q/—l is a para-

bolic function of its arguments. Moreover the integral

fq"(t, n) dn
R

defines a monotone non-increasing function of ¢, and we suppose that the
limit of this function when £—o0 is 1. Then we shall say that { ¢*(¢, .),
t> o} is an absolute probability density system for A-paths. By the usual
argument, it is seen that ¢ together with p* determines a stochastic process
{z%(t), t> o} with state space R, separable relative to the compact sets.
This process is an h-path process with no initial probability distribution,
since z%(0) is not defined. It is a Markov process with continuous sample
functions, with transition density p*, and

(10.2) P (z4(2, w)ed ) =£¢(z, £) dE.

It is easily seen that there is no increase in generality if one goes from
density systems to distribution systems. In particular, if ¢* is given by

(10.3) 7" (¢, &) =ph (¢, &, E),

for some point £, it is clear that the z*(z) process is simply an A-path
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process with initial point £,, considered only for stricily positive parameter
values. Another way of looking at this is to say that, with this choice of ¢*,
the sample paths almost all converge to £, when ¢— o, and z%(0) can then
be defined as £, to obtain a process almost all of whose sample functions are
continuous at the parameter value o.

From now on, when we write ‘‘ i-path process ”, we mean a process
{z"(t), t>o0} determined by p"* and some ¢, with z%(0) not defined a
priori unless the definition is specified explicitly. However we shall always
write 2" (o) for tl;m z"(¢) when this limit exists and shall call the value of the

0

limit for a path the initial point of the path. If #,>>o. the process
{s"(ty+¢t), t>o0} is an A-path process with initial distribution that of
z"(¢,), [dividing all probabilities by the probability that z%(¢,) is defined].
Hence it is clear how to apply the theorems of the preceding sections to
the present processes. For most of our theorems the new point of view is
irrelevant. For others the change is a triviality. Our only hope to get
something new is to consider parameter values near o. The first result in
this direction is the following theorem, the dual of theorem 4.2.

TueoreM 10.1. — Let u and h be strictly positive superharmonic func-
tions on the Green space R. Define z(t) by (b.1) for t>o, where
the zé‘(t) process is replaced by a z*(t) process determined by p* and an

absolute probability density system. Then limz (t) exists with probabi-
(>0

Uty 1. If z(o) is defined as this limit, o << x(0) Lo with probability 1,

and

(10,4) lli;r(l)E{x(t)}:E{x(o)}.

If the right hand side of (10.4) is finite, the process { x(t), 0 £t <Zc0 } is
a lower semimartingale.

By a trivial extension of lemma 4.1, if E{x(¢)} <o for all > o,
the process { z(¢), 0 <t <oo}is a lower semimartingale. It follows that,
if we replace z(t) by

Z,(t) =min[z(t), n],

the x,(¢) process is a positive lower semimartingale. This change amounts
to replacing « by min[u, nk(t)]. Hence, by a standard martingale conver-
gence theorem, limx,(¢) exists with probability 1. 'We conclude that

>0

li;nx(t) =x(0) (Low)

exists with probability 1, and, applying Fatou’s theorem,

(10.5) lti;nE{x(t)}éE{x(o)}.
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Here the expectation on the left defines a monotone non-increasing function
of t, because this is true when z(¢) is replaced by z,(¢). HfE{z(¢)|is
finite, the x(¢) process is a lower semimartingale for ¢>» 0 because the
x,(t) process is, and then (10.4) is a consequence of (10.5) and the lower
semimartingale inequality. If E{x(o)}=o, (10.4) is a consequence
of (10.5). If we had allowed infinite-valued integrals in our definition of
lower semimartingales, the x(¢) process would have been a lower semi-
martingale in all cases. Finally, because of the lower semimartingale
properties of the x,(t) process, x(¢) vanishes simultaneously for all ¢ for
almost all A-paths with z(o)=o0. Hence z(0) is strictly positive with
probability 1.
The following theorem is the dual of the theorem 7.1.

Treorem 10.2. — If {z%(t), ¢ > o} is an h-path process, limz"(t) exists
(>0

with probability 1.

We prove the theorem by showing that almost no A-path can have two
limit points in RUR' as t—o. Let B be a denumerable subset of R,
dense in R. Then by theorem 10.1, almost all A-paths of the process in
question have the property that on them g_(t,h,__z has a strictly positive
limit as ¢£—o simultaneously for all £ in B. For a non-exceptional
h-path, let ¢(Z) be this limit, and suppose that this A-path has limit
points %y, & when £-»0. To prove the theorem, we show that,=1{..
If B, is B less the points §;, {, (if either is in B), and if £, £, are points
of B,, then

(10.6) v(E2) = ¢ (£1) K, (81 Ba) =9 (51) K, (8o, En)-
Hence

(10.7) K, (1, B2) = K, (8o, E2)

for £, and £, in By, so that

(108) K’-“.;(Ch‘ .):Kil(C‘z’ ‘)>

which implies that §;—=¢,, as was to be proved.

11. Paths from the boundary. — In the preceding sections we have
stressed /h-paths whose initial points are in R. Itis natural to try to choose £
and ¢* in such a way that the initial points are in R’, and, in view of the
Markov property, this depends on being able to choose % and ¢* to make
almost all A-paths have the same initial point, a point of R'. If A=r1, itis
impossible, in general, to do this, unless the initial point is exceptional. To
see this, suppose that R is an open subset of a Euclidean space, so regular
that the Martin boundary R’ is the relative boundary. Then a Brownian
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z(t) process with z (o) identically a point £ of R’ reduces to an ordinary
Brownian motion process with initial point £, with the property (*) that the
sample paths are initially in R, except for the initial point . The duration
of the process is the time it takes the paths to reach R'. Since the pro-
perty (*) is known [%] to be necessary and sufficient that £ be an irregular
boundary point, we see that we are considering an exceptional situation.
The problem is to choose % so that A-paths near Z will not necessarily go
to R'near {. This suggests using conditional Brownian paths with endpoint
a point of R, that s, choosing & = g (&, .), for some point §, of R. Another,
somewhat less promising choice, is & = K¢, (7, .), where 7 is any boundary
point which is minimal and not {. 'We shall use the first choice in section 12.

It is not known, even with such choices of /&, when ¢* can be chosen to
make z”(0) identically a point of R', except in simple cases (see [8] for
the case when R is a half-space of Euclidean /V-space). However in the
following we shall obtain results almost as useful, without any further
hypotheses on R, and which are applicable whenever the desired processes
exist, not only to those processes, but also to the slightly distorted processes
which we shall show always exist. The key is the following idea. Suppose
that 2 and ¢" are chosen in such a way that almost every initial point of
h-paths is on R'. Let {R,, n > 1} be a monotone sequence of open subsets
of R, with union R, whose closures are compact subsets of R. Let p,(A4)
be the probability that the first meeting of an A-path of the given process
with R}, lies in the subset A of R),. Then 1, is a measure of Borel subsets
of R, and

(M1) pa(R) Z1,  lim p(R,) =1.
nyo

Moreover (M 2) if one considers an A-path process with an initial distribution 1,
on R, [note that this may not be ‘“true” probability if there is strict
inequality in (M 1)], then the distribution of first meetings of paths of this
process with R, for m << n will be p.,,.

Suppose now that there is a positive superharmonic A for which there
is a family of measures {,, n>>1} on the boundaries of the sequence
(R, n>u1} satisfying (M1) and (M2). Then there is what we shall call
an /A-walk on these boundaries. The /A-walk is a stochastic process
{ 5%, n>1} such that 5! has range in R, and has distribution {1,, that the
sequence (note the order)

sk, gt

EER) 1

is a Markov process, with the usual conventions if there is strict inequality
in (M 1), and that the transition probability of going from point £ in R,
into a point of the subset 4 of R, is the probability that an A-path from £ first
meets R, if at all in a point of 4.

With the above definitions, it is trivial that 5% - o when n—co. It is
less trivial that almost all A-walk paths are convergent. This is proved as
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follows. Let u be stricily positive and superharmonic, and consider, for
some fixed n, an A-path process { z(Z), ¢ > o} with initial ¢ distribution ” p,.
[If one dislikes improper distributions, one can replace p, by I*_(&ﬁ—)‘l

n n
Then, applying lemma 4.1, we find that the process

ulz"(t)]
{m’ t=o

is a lower semimartingale, if its random variables are integrable, and if this
quotient is defined as o when z”(¢) is undefined and z"(0) is defined. It
follows that the last » members of the sequence

(23)
7 R(8Y)

form a lower semimartingale, under the same conventions, and hence that
the whole sequence is a lower semimartingale, in the order exhibited. The
proof that almost all paths of an A-path process have initial points now goes
through with unessential changes to prove that the sequence { z%, n>x1} is
convergent with probability 1. The limit, for a given A-walk path, will be
called the initial point of the path.

It is natural to try to fill in an h-path walk with arcs from z,,, t0 3,, n > 1,
and from z, on. This can be done as follows, to have the desired properties
to be discussed below. Let 7, be the interval [ 2—7, 2-7+!), and let ¢, be a
monotone strictly increasing continuous function, taking the interval 7, onto
the interval [0, ). We define a process { Z"(¢), > o}, or rather we
define the joint distributions to be assigned to the random variables of this
process, by the following conventions. The process is to be Markov. The
joint distributions of the sequence

TR

h
1

&
&

(3
(s

~

’

>

Rl

~

Z/t(z—n), Z/z(2—n+1), cee Zh(z—l)

are to be those of the sequence

R L T /8

For tel,, the Z"(t) process random variables are to have the same joint
distributions as the random variables of the process {z%[¢,(¢)], tel,},
where the z%(¢) process is an A-path process with initial distribution p,,
stopped and made constant when the paths meet R, _,, if ever. Finally, for
t> 2!, and Z"(2—') —§ given, the Z"(¢) process is to have the distribution
of an A-path process from £. Then the martingale theorem that, roughly,
e .o .ou

if u is positive and superharmonic, 7 on the Z%(¢) process paths defines a
lower semimartingale, holds just as it did for an ordinary A-path process



CONDITIONAL BROWNIAN MOTION. 451

and for an A-path walk. That is, the analogues of theorem 10.1 and 10.2
hold for the Z%(t) process. 'We omit the trivial adjustments of proofs
already given. Thus almost all Z%(¢) process paths have initial points, in
the usual sense. i

12. An existence theorem. — In this section, we show how to obtain an
h-path walk from any minimal boundary point . This walk can then be
filled in, as described in section 11. The sequence { R,, n>x1}, on whose
boundaries the walk is to be defined, is supposed specified. Let £, be any
point of Ry, and define A—=g(%;,, .). This choice of 42 will be held fast
throughout this section. The walk will have initial point {. The filled in
walk will therefore have initial point ¢, and almost all paths will have
endpoint §,. Let }Z, k>x1} be a sequence of points of R, converging to &,
and with the property that, il p is the distribution of the first point z%; in
which an A-path from ¢ meets R;,, for k so large that {x is not in the closure
of R,, then the sequence of measures { t,;, k>x'1} converges (k— ) in the
usual weak sense. If the limit distribution is y,, then

P‘H(Rln) == P‘ﬂk(R,n) :Iv

and it is clear that the sequence { W,, n>x1| is an absolute probability
system for an A-path walk {z", n>x1}. We prove that almost all paths of
this walk have initial point ¢ as follows.

‘We note first that

y . é’(CIu Y)) — K
(]_2.1) g;nig(ck, E_o)—Kh(C,n)-

g,
g( o .0)
under the conventions of lemma 4.1, the process remains a lower semimar-
tingale if stopped and held fast when the paths meet R, so that, if {; is not
in the closure of R,, the lower semimartingale inequality yields

Secondly, since defines a lower semimartingnale on A-paths from &,

(R
12. 8 1) ( g8Bu n)}.
(12-2) £ ) = & (she B
Hence

A
12.3 K > g—(f—-”—)}
( ) w(c,n)_ {g(zﬁy &0)
‘When n — o here we find
(12.5) Ke, (5, m)E{ K (8 ) ),

k

where {* is the initial point of the A-path walk, a random variable. Now
when n —=§,, the terms in this inequality are both 1, and both terms define
harmonic functions of n. Hence the terms are identical. Since K¢ (g, .)
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is a minimal function, this means that the distribution of {* must be concen-
trated at the point £, as was to be proved.

TueoreM 12.1. — Let u be a strictly positive superharmonic function
u

&(&o -)

liminf u(t) _
ot Bl E) =

on R, and let ;y be a point of R. Then has the strictly positive limit

)
along almost all g(&,, .) paths (as defined above) back to ¢.

The existence and strict positivity of the limit along the given paths is
assured by theorem 10.1. A zero-one law argument can be used to show
that the limit is constant with probability 1, but rather than go on in this
way, we shall wait and reduce the result to one due to Naim, which has a
simple direct proof.

13. The probability of meeting a set. — If 4 is a compact subset of R,
the probability u,(£) that an A-path from £ will pass through a point of 4,
at a strictly positive parameter value, is well-defined. According to the
remarks in section 5, u— %‘ In probability language, if 7¢ is the infimum
of the strictly positive times at which a Brownian path from { meets 4,
h (&) is the expected value of 4 on the Brownian path at this time (taking
the value of 4 involved to be o if there is no meeting at a strictly positive
time). The function A, is called by BReLoT the extremalization of 2 on R-A.

Let%,, £, be points of R, and let 4 be a compact subset of R. Let uz4(E4, £2)
be the probability that a g (£, . )-path from £, meets 4 at a strictly positive
parameter value. Then the evaluation of u, just described becomes

’ _ UaEib)
(13.1) waltn 8) = 2075

Here the numerator on the right is, in the usual language of potential theory,
the value at; of the potential of the mass obtained by sweeping the unit
mass at £ onto 4. If, instead of describing these paths as g(£,, .)-paths,
we describe them as K, (£,, .)-paths, nothing is changed, but this definition
now is applicable, and we adopt it, even if £, is a point of R'.

Finally, if £; is a minimal point of R', and if £, € R, a g(&,, .)-path process
from §; to %, can be defined, by filling in the g(£,, .)-path walk from £,
derived in section 12, and we define u,(E,, £,) as the pobability that a
& (&2, . )-path from {; meets a point of 4. The following theorem will
show, among other things, that u4(%,, ;) as so defined depends only on 4,
E1, &2.  This is by no means obvious, since there was no obvious uniqueness
in our definition of the process from ; to £,. We stress that all results
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obtained for our rather artificial A-path process from a minimal boundary
point to an interior point hold also, with no change in proof, for an ordinary
h-path process from the first to the second point, if there is such a process.

TuroreM 13.1. — If &, € R, and if &, is either a point of R or a minimal
boundary point, then

(13.2) wq(By o) =uy(Be, ).

If £, and §; are in R, it is well-known that U, is a symmetric function of
its variables. From the probability point of view, the symmetry is obvious
from the following evaluation of U,, in this case. Let z() be the location
of a Brownian path from £ at the infimum of the strictly positive times at
which the path meets 4. Then z(£) is undefined if the path never hits 4.
It is easily seen that U, is given by

(13.3) Ug(tr, ) =EBE{g[zs(51), 5(E) ]},

where z () and 3(£,) are obtained from Brownian processes, from £; and &,
respectively, which are independent of each other, and g is interpreted as o
if either argument is undefined, There remains the case when £;=—=¢ is a
minimal boundary point. - 'We shall use the notation introduced in section 12

in discussing the g(&i, .)-paths from . Let n be so large that ACR,.
Then

(13.4) ua(8 81) = | ua(E, &) pa(ds),
R,

and, for large £,
(13.5) Ua(Crs B) = | wa(k, &1) por (dE).

R
When k& — o we find that, since p—> @, weakly,

(13.6) Bim w (G, &) = wa(8, Er)e
A> o

Now we can write u4(Zx, &1) in the form

_ Uk, £1) &(Eky &)
(13.7) wa(Co 8) =2 e 2 (T )

Define A=—K: (¢, .). When A—> o in (13.7), we see from (13.4)
and (13.7) that the limit on the left, w (g, £,), defines, for fixed ¢, an
h-superharmonic function of §;, A-harmonic on R-4A. The function u (3, .)
on R-A has, using (13.4), the boundary limits 1 on 4 and o on R/, along
almost all A-paths from a point of R-4. Since u (., Z) has exactly these
same properties on R-A, these two bounded A-harmonic functions on R-A
are equal, as PWB” Dirichlet solutions with the same A-fine boundary
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function. Thus
(13.8) uA(Cy E):u/!(za C)

if fteR-A. If t€A, let A, be A less a spherical neighborhood of 4 of
diameter —:; Then (13.8) is true if A is replaced by 4,. When n— o we

find that (13.8) is true for all  in R, as was to be proved.

Following Hunt’s application [10] of Choquet’s capacity theory, one sees
immediately that our definitions of u (%) and u (%4, &) are applicable, and
theorem 13.1 is valid, for every analytic subset A of R.

Our method of defining u4(¢, %), for { a minimal boundary point and £,
a point of R has produced the uniquely defined number w4 (,, {) in spite of
the fact that the method seemed to lack uniqueness. The point is that
in (13.6) the right side is now seen to be uniquely defined, regardless of
the choice of sequence {{x, k> 1} on the left. This means that

(13.9) limu (0, &) = 14(Es, 0)-
n>¢

,
Uals %) 1o the right side of (13.9) as its ordi-
&(+s )

nary limit at {. The existence of this limit, which implies the independence
of our final result of the choice of {{x, A1}, is easy to prove directly.

In other words the function

14. The fine topology. — Let £ be a point of R, and let 4 be a subset
of R. Then Brelot’s concept of A being thin (effilé) at £ has been given the
following probabilistic interpretation [&]. If A is closed or the union of a
sequence of closed sets, either almost every or almost no Brownian path
from £ meets A for arbitrarily small strictly positive parameter values. In
the second case, and only in that case, A is thin at . Following Hunt
again, the result remains correct if A is only analytic. The following theorem
generalizes this probabilistic interpretation on the one hand by allowing
more general paths, and on the other hand by allowing 7 to be a minimal
boundary pomt. The definition of thinness at a boundary point is due to
Namu [11].

THEOREM 14.1. — Let A be an analytic subset of R. Let  be a point
of R, and if so let h be any strictly positive superharmonic function on R,
or let ¢ be a minimal boundary point, and if so let h—=g(n, .), for any
nin R.

(@) Either almost every h-path from % meets A at arbitrarily small
strictly positive parameter values or almost none does.

(b) If the second possibility in (a) holds for some choice of h, it holds
Sor every choice, and A is thin at }, if and only if this is true. '

This theorem is slightly unbalanced, because of the greater choice of 2
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when { lies in R than when this point is a minimal boundary point. It
will be clear from the discussion that in the latter case & could also have
been taken as any strictly positive superharmonic function for which there is
an A-path process from £, but the choice described in the theorem is the
only one which we know assures the existence of the desired A-paths, even
though only in the distorted form obtained in section 12.

Before proving theorem 14.1, we state its dual.

Tueorem 14.2. — Let A be an analytic subset of R. Let £ be a point
of R, and if so let h—=g(k, .), or let £ be a minimal boundary point, and
if so let h—= K¢, (%, .).

(a) Either almost every h-path from a point of R or minimal point
of R' meets A arbitrarily near %, or almost none does.

(&) If the second possibility in (a) holds for one choice of h and initial
point of paths, it holds for all choices, and A is thin at} if and only if
this is true.

It is clear that there is no real increase of generality obtainable by allowing
a general initial distribution of A-paths, or, dually, by choosing A to allow
h-paths to have endpoint £ with strictly positive probability less than 1.
In (a), if £ € R, we are only assured of the existence of the indicated A-path
process if the initial point is a point of R other than £, or a minimal boun-
dary point, whereas if { is a minimal boundary point, we are only assured
of the existence of the indicated A-path process if the initial point is a point
of R.

In view of our symmetry theorem, theorem 13.1, and of our analysis of
the structure of A-paths, it will be sufficient to prove only one of the two
preceding theorems, and we shall find it convenient to prove the second.
To prove it, it is sufficient to treat only the case when £ is a minimal boun-
dary point, because if { is a point of R it is a minimal boundary point
of R-{£}. Suppose then that £ is a minimal boundary point, and let ¢,(n)
be the probability that an A-path from n meets A arbitrarily near £,
for A= K¢, (E, .). Thenv, isa bounded A-harmonic function, and, as such,
is a constant function, since % is minimal [7]. Moreover, by familiar reason-
ing, ¢4 has the limit 1 on almost every /A-path (from any point of R) which
meets A arbitrarily near {, the limit o on almost every other /-path from the
point. Hence v, is identically 1 or identically o. Thus theorem 14.2 (a)
and the first part of () are true in the case considered. Finally, according
to Naix [11], A4 is thin at{ if and only if %4 can be made arbitrarily small
at any specified point n by choosing a sufficiently small neighborhood G
of . The theorem follows from the fact that __.h;;(’fl’)’) is the probability that
an h-path from 7 ever meets AG, so that this ratio decreases to v4(n) as G
shrinks to .
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The fine topology on R is defined as the least fine topology in terms of
which superharmonic functions on R are continuous. Equivalently it is the
topology in which the neighborhoods of a point are the complements of the
sets thin at the point.” The latter definition has been used by Naim [11] to
obtain the fine topologyon RU R'. The points of R’ which are fine limit points
of R are the minimal points. If £ is a point of R or a minimal boundary
point, and if G is a fine neighborhood of , there is a smaller fine neigh-
borhood G, of £ which is a closed set in the Martin topology. The set R-G,
is thin at £, so almost every conditional Brownian path from a point of R
to £ lies entirely in G,, and so in G, sufficiently near £, according to
theorem 1%.2. The corresponding statement holds for paths with initial
point £.

If £ is as in the preceding paragraph, we shall say that a function u, defined
on a set having £ as a fine limit point, has the fine limit b at £, written

Flimu(n)=2b, if u has this limit at § in terms of approach to § in the fine
n>§

topology. Naium proved that, with this definition, « has the fine limit & at £
if and only if there is a subset B of the domain of definition of «, such that
the domain less B is thin at £, and that u considered only on B has the
limit b at §, in the usual sense. This fact, combined with the remark in the
preceding paragraph, yields the following theorem.

TueoreM 14.3. — Let £ be a point of R or a minimal boundary point,
and let u be a Baire function defined on a subset of R having [, as a fine
limit point. Then u has the fine limit b at % if and only if it has the
limit b along almost every conditional Brownian path from a point of R

(and if so, from every point of R) to t. (Corresponding statement for
paths fromE.)

Note that, on almost every path indicated, there will be points of the
domain of « arbitrarily near {, and the theorem states the condition that «
approaches b along these points, for almost every path.

According to the criterion of this theorem, a Baire function u, defined
on R, has the function f, defined on R', as k-fine boundary function, in the
sense of section 8, if and only if « has f(£) as a fine limit at £, for almost
every (h-harmonic measure) minimal point £ of R'. This fact explains the
term ‘¢ A-fine boundary function .

15. Some fine limit theorems. — Let A be a positive superharmonic
function, given by a canonical measure p*,

(15.1) h(n)= K, (8, n)ph(dz),  h(&) <.
RUR

Then we have the decomposition A= /;—+ Ay, where /y is the potential
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obtained by replacing p* by its restriction to R and %y is the harmonic func-
tion obtained by replacing u* by its restriction to R'. The function Ay is the
greatest harmonic minorant of 4.

Let u, & be positive and superharmonic on R, with A strictly positive.

u . cn
We shall suppose from now on that 7 s defined, even at an infinity of %
or u, as the fine limit of the ratio at the infinity, if the fine limit exists.
. . . u.
Since u and 4 are both continuous in the fine topology, 7 18 thereby defined

as o at an infinity of A but not of u, o at an infinity of u but not of A.
There remains the set of common infinities. We have already interpreted
theorem 4.2 as a generalized Fatou boundary limit theorem, to mean that,

oy .ou .
if & is harmonic, % has an A-fine boundary function. The exact same reaso-
ning, which there is no need to repeat, now yields the fact that, if « and

h are positive superharmonic functions, with h strictly positive, 7 has

an hy fine boundary function, and % has a finite fine limit at almost all
u
h
on R (u* measure). This is a kind of internal Fatou theorem! Note that,
although almost no A-path from a point of R passes through an infinity of 4,
almost every such path may have an infinity of % as its endpoint. This is
true, for example, if A =g (%, .).

Nain [11] proved that, if u is strictly positive and superharmonic on R,
if £, is an arbitrary point of R, and if » is a minimal boundary point, then

points of R (u* measure). In other words + is defined almost everywhere

5. Fli _uii_)_:]- 'f_l.‘(_g)_.
(13.2) el (3 Bk T

(The quantity on the right is strictly positive but may be infinite.) Accord-
ing to our probabilistic interpretation of fine limits, this result is equivalent
to theorem 12.1 (but we recall that we did not actually evaluate the limit in
the discussion of that theorem).

Theorem 4.2 can be considered a dual form of theorem 12.1. Its inter-
pretation in terms of fine limits has already been discussed. In particular,
when the reference function % is minimal harmonic, the fine limit statement
of the theorem is due to Naim [11].

Our probability approach to potential theory allows the application of a
Fubini theorem argument which has as yet no analogue in non-probabilistic
potential theory. One such application led to the conclusion, not yet
obtained by non-probabilistic methods, that every positive A-superharmonic
function has an Ay-fine boundary function. A second such application leads
to the following theorem.
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TueoreM 15.1. — Let u be a positive superharmonic function on R,
lett, be apoint of R, and let h be a strictly positive superharmonic function

on R. Then :;(E.,, .) has a strictly positive limit (<o) on almost every

h-path from any point of finiteness of h.

If /2 is a minimal harmonic function, this result is equivalent to the exis-
tence of the limit in (15.2). If % is not minimal, the result follows from
our analysis of A-paths. This result is really only speciously more general
for k superharmonic than for 2 harmonic.
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