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ABSTRACT. — Let k be a field. We compute the set [Pl, Pl] N of naive homotopy classes of pointed
k-scheme endomorphisms of the projective line P. Our result compares well with Morel’s computa-

1
tion in [1 1] of the group [P*, P'] A" of A'-homotopy classes of pointed endomorphisms of P': the set

1
[P, P'] N admits an a priori monoid structure such that the canonical map [P, P] N [P, P'] A

is a group completion.

RESUME. — Soit k un corps. Nous déterminons I'ensemble [P*, P*] N des classes d’homotopie naive
d’endomorphismes pointés de k-schémas de la droite projective P*. Notre résultat se compare bien avec
le calcul de Morel [11] du groupe [Pl, Pl] Al des classes d’A'-homotopie d’endomorphismes pointés
de P': I’ensemble [Pl, Pl]N admet a priori une structure de monoide pour laquelle I’application

1
canonique [Pl, Pl]N — [Pl, Pl]A est une complétion en groupe.

1. Introduction

The work of Fabien Morel and Vladimir Voevodsky on A'-homotopy theory [9, 12] pro-
vides a convenient framework to do algebraic topology in the setting of algebraic geome-
try. More precisely, for a fixed field &, Morel and Voevodsky defined an appropriate category
of spaces, say Sp, containing the category of smooth algebraic k-varieties as a full subcate-
gory, which they endowed with a suitable model structure, in the sense of Quillen’s homo-
topical algebra [13]. Thus, given two spaces X and Y in 8p (resp. two pointed spaces), the set
{X, Y}A1 (resp. the set [ X, Y]Al) of A'-homotopy classes of unpointed morphisms (resp. of
pointed morphisms) from X to Y is well defined and has all the properties an algebraic topo-
logist can expect. However, for concrete X and Y, these sets are in general hard to compute.

At the starting point of A'-homotopy theory is the notion of naive homotopy") between
two morphisms in 8p. First introduced by Karoubi and Villamayor [6], this notion mimics

This research was partially supported by the project ANR blanc BLANO0S-2_338236, HGRT.
(D In [12], the authors use the terminology “elementary homotopy”.
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512 C. CAZANAVE

the usual one of homotopy between topological maps, replacing the unit interval [0, 1] by its
algebraic analogue, the affine line A'.

DEFINITION 1.1. — Let X and Y be two spaces in 8p. A naive homotopy is a morphism
in 8p
F: X xA!' -V
The restriction o(F) := Fxx{oy is the source of the homotopy and 7(F) := Fixxq} is
its target. When X and Y have base points, say xg and yo, we say that F' is pointed if its
restriction to {zo} x Al is constant equal to ypo.

With this notion, one defines the set {X, Y }N (resp. the set [X, Y]N) of unpointed (resp.
of pointed) naive homotopy classes of morphisms from X to Y as the quotient of the set of
unpointed (resp. of pointed) morphisms by the equivalence relation generated by unpointed
(resp. by pointed) naive homotopies. These sets are sometimes easier to compute than their
A analogues, but they are not very well behaved. There is a canonical comparison map

X, YN — X, YA

which in general is far from being a bijection. In this article, we study a particular situation
where this map has a noteworthy behavior.

Let k& be a base field. We focus on the set of pointed homotopy classes of k-scheme
endomorphisms of the projective line P! with base point oo := [1 : 0]. The set [P*, P!] Al
computed by Fabien Morel in [11]. Note that, as the source space P! is homotopy equivalent
in 8p to a suspension (see Lemma 3.20), the set [Pl, Pl] Al is endowed with a natural group
structure, whose law is denoted by &4 .

On the other hand, by interpreting endomorphisms of P! as rational functions, we define
amonoid law @~ on [Pl, Pl] N Using this additional structure and a classical construction
due to Bézout, we can give an explicit description of [Pl, Pl] N Morel’s computation com-
bined with ours then leads to the following striking result.

THEOREM 1.2. — The canonical map
([P e — ([PLP" &)
is a group completion.

Overview of the paper

Section 2 reviews the classical correspondence between scheme endomorphisms of the
projective line and rational functions. This leads to a description of [Pl, Pl] N as a set of
algebraic homotopy classes of rational functions with coefficients in the field k.

Section 3 is the core of the article. In §3.1, we define a monoid structure on the scheme & of
pointed rational functions. Through the correspondence of Section 2, it induces the monoid
law @N which appears in Theorem 1.2. Then §3.2 reviews a classical construction due to
Bézout, which associates to any rational function a non-degenerate symmetric k-bilinear
form. We use it to define a homotopy invariant of rational functions taking values in some set
of equivalence classes of symmetric k-bilinear forms. Our main result, stated in §3.3, shows
that this invariant distinguishes exactly all the homotopy classes of rational functions. The
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ALGEBRAIC HOMOTOPY CLASSES OF RATIONAL FUNCTIONS 513

proof is given in §3.4. Finally, §3.5 compares our result to the actual A'-homotopy classes
of Morel, as in Theorem 1.2.

Section 4 discusses natural extensions of the previous computation. We first give a similar
description of the set of unpointed naive homotopy classes of endomorphisms of P! in §4.1.
Next, in §4.2, we study the composition of endomorphisms of P! in terms of our description
of [P, PI]N. Finally, in §4.3, we compute the set [P1, P‘i]N of pointed naive homotopy
classes of morphisms from P! to P? for every integer d > 2. Not surprisingly, this case is
easier than the case d = 1. The result still compares well with Morel’s computation of the
actual A'-homotopy classes.

The article ends on an appendix proving the compatibility of the law e~ on [P!,P!] N
with that @' on [P, P1]*
of Morel.

. This is a crucial part of the comparison of our results to those

Acknowledgements

The material presented here constitutes the first part of my PhD thesis [3]. The main result
was first announced in the note [2] when char(k) # 2. I am very much indebted to Jean
Lannes for his precious and generous help. [ am also grateful to the topology group of Bonn
Universitit for its hospitality while this article was written.

2. Rational functions and naive homotopies

We review the classical correspondence between pointed k-scheme endomorphisms of the
projective line (P, co) and pointed rational functions with coefficients in k. Similarly, naive
homotopies have a description in terms of pointed rational functions with coefficients in the
ring k[T].

DEerINITION 2.1. — For an integer n > 1, the scheme &, of pointed degree n rational
functions is the open subscheme of the affine space A?™ = Spec k[ag, ..., @n_1,b0,-- -, bn_1]
complementary to the hypersurface of equation®

resp, o (X" + A1 X" Pt ag, by XV bp) = 0.
By convention, ¥ := Speck.

REMARK 2.2. — Let R be a k-algebra and n a non-negative integer. By the very definition,
an R-point of &, is a pair of polynomials (A4, B) € R[X]?, where

— A is monic of degree n,

— Bis of degree strictly less than n,

— the scalar res,, ,,(A, B) is invertible in R.
Such an element is denoted by % and is called a pointed degree n rational function with
coefficients in R. In the sequel, it is useful to remark that given A and B as above, the

@ The notation resy (A, B) stands for the resultant of the polynomials A and B with conventions as in
[1, §6, n° 6, TV].
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514 C. CAZANAVE

condition res,, (A, B) € R* is equivalent to the existence of a (necessarily unique) Bézout
relation
AU+ BV =1
with U and V polynomials in R[X] such that degV < n — 1 (and degU < n — 2if n # 0).
Pointed k-scheme morphisms P! — P! and pointed naive homotopies F : P! x Al =
P}C[T] — P! are then described in terms of rational functions as follows.

PROPOSITION 2.3. — Let R = k or R = k[T]. The datum of a pointed k-scheme morphism
f : PL — P is equivalent to the datum of a non-negative integer n and of an element
% € Fn(R). The integer n is called the degree of f and is denoted deg(f), the scalar

resp (A, B) € R* = k> is called the resultant of f and is denoted res(f).

Proof. — This follows from the usual description of morphisms to a projective space

(using the fact that the ring R is a UFD). O
ExaMPLE 2.4. — Let n be a positive integer and by be a unit in k.
1. A polynomial Xn+“"‘1)§:_1+”'+a° is homotopic to its leading term )If—;
2. Let B be a polynomial of degree < n — 1 such that B(0) = by. Then %L R ),f—on

In general, given a random rational function, it is not a priori easy to find non-trivial
homotopies. In Remark 3.2(2), we will indicate a way of producing some such homotopies.

DEFINITION 2.5. — Let f and g be two pointed rational functions over k. We say that f
and g are in the same pointed naive homotopy class, and we write f & g, if there exists a
finite sequence of pointed homotopies, say (F;) with 0 < 7 < N, such that

- o(Fp) = fand7(Fn)=g;

— forevery 0 < i < N — 1, we have 7(F;) = o(Fiy1).

The set of pointed naive homotopy classes [Pl, Pl] Nis thus the quotient set nI;IO g n(k)/}\)} .

Note that Proposition 2.3 implies that two pointed rational functions which are in the
same pointed naive homotopy class have same degree (and also same resultant). In particular,
the set [Pl, Pl] N splits into the disjoint union of its degreewise components

1 p1N _ 1 p17N
PLP" =[] PP, .
n=0

REMARK 2.6. — It is convenient to reformulate the preceding discussion in terms of the
“naive connected components” of the scheme of pointed rational functions.

For G : Alg, — e a functor from the category of k-algebras to that of sets, recall
that 70'@ : Alg, — et is the functor which assigns to a k-algebra R the coequalizer of

the double-arrow G(R[T]) = Y(R) given by evaluation at ' = 0 and T" = 1. For every
non-negative integer n, Proposition 2.3 gives a bijection

[PLPY o (a T (k).

Note that by functoriality a k-scheme morphism ¢ : &,, — % induces a homotopy inva-
riant w (§)(k) : (T T) (k) — () %) (k).
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ALGEBRAIC HOMOTOPY CLASSES OF RATIONAL FUNCTIONS 515

3. Homotopy classes of rational functions

3.1. Additions of rational functions

An important feature in our results is the existence a priori of a monoid structure on the set
of naive homotopy classes [Pl, Pl] N Tt comes as a byproduct of a graded monoid structure

on the disjoint union scheme & := [[ .
n=0

Such a structure on & consists of a family of morphisms &,,, X ¥,,, — Fp,+n,, indexed
by pairs (n1,n2) of non-negative integers and subject to an associativity condition. Given a
pair of non-negative integers (n1, ns), the above structural morphism is more easily described
on the level of functors of points, that is as a natural transformation of functors from Alg,,
to Jet:

gnl(_) X gnz(_) - gnlJrTLQ(_)'

Let R be a k-algebra. Two rational functions g—j € I, (R), for i = 1,2, uniquely define two
pairs (U;, V;) of polynomials of R[X| with deg U; < n; —2 and deg V; < n; —1 and satisfying
Bézout identities A;U; + B;V; = 1 (see Remark 2.2). Define polynomials A3z, Bs, Uz and V3
by setting:

As V5] a4 -w] (4, -v
Bs Us | |By Uy By Us |
A =V Ay —V; Az —V;
As|7' ' and [ 2 belong to SL2(k[T]), this is also the case for l ° 3],which
Bl U1 Bz U2 B3 3

gives a Bézout relation for A3z and B3. Moreover, observe that Az is monic of degree ny + no
and that deg(B3) < n1 + n2. So g—z is an R-point of &y, n,. We write

A onA2 A5
B, ° By B

The associativity of matrix multiplication implies that of the law ®N.

ProrosITION 3.1. — The above morphisms define a graded monoid structure on

I =11 Fn.
n>=0
REMARK 3.2. — 1. The above monoid structure on & induces a graded monoid
structure on its connected components (7)) (k) := [[ (7Y Fn)(k), and thus

n>=0
on [P, P!] N The monoid law on these sets is again denoted by @V,
2. The ®N-sum of “trivial” homotopies is usually a “non trivial” homotopy.
3. Although we use an additive notation @~ for the monoid law on &, we stress that it is
non commutative. However, Corollary 3.7 shows that the monoid ([P?, Pl]N ,ON) is
abelian.

3 The dot in the right-hand term stands for the usual matrix multiplication.
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ExAMPLE 3.3. — Let R be a k-algebra, P € R[X] be a monic polynomial, by € R* be a
unit and % € Y (R) be a pointed rational function. Then one has:

P@NA_AP—g_P 1

bo B bA by b4’
In particular, for rational functions with coefficients in the field k, the law @~ is easily
described in terms of “twisted” continued fraction expansions as follows.

A pointed rational fraction f € ¥, (k) admits a unique “twisted” expansion of the fol-

lowing form:
Py 1

oo (B -wts)

for monic polynomials P; € k[X] of positive degrees and scalars b; € k*. (Such expansions
always end, as the sum of the degrees of the P; equals the degree of f.) The twisted continued
fraction expansion of a sum f @~ g is then the concatenation of the expansions of f and g.

f=

Note that every f € &, (k) is tautologically the ®N-sum of the polynomials appearing in
its twisted continued fraction expansion:

P,
7@N...@Nb7_

3.2. The Bézout form

In the 18th century, Bézout described a way to associate to every rational function a non-
degenerate symmetric matrix®. In modern terminology, Bézout described, for every positive
integer n, a scheme morphism

Béz, : S, — ,,,
where ¢, is the scheme of non-degenerate (n x n) symmetric matrices. The associated

7T(1)\I Béz,,

homotopy invariants (75 7,,) (k) (7)d,,) (k) are central in our study.

DEerFINITION 3.4. — Let R be a ring, n be a positive integer and f = % be an element
of ¥, (R).
The polynomial A(X)B(Y) — A(Y)B(X) € R[X,Y] is divisible by X — Y. Let
AX)B(Y) — A(Y)B(X)

bap(X,Y):= < v =1 Y g XPTlYeTh

1<p,qsn
Observe that the coefficients of 64, g(X,Y’) are symmetric in the sense that one has
Cp,g = Cq,p Vi<pg<n

The Bézout form of f is the symmetric bilinear form over R™ whose Gram matrix is the
(n x n)-symmetric matrix [c, o] We denote it Béz,, (A, B) or Béz, (f) and Bézout’s
formula:

1<p,g<n’

n(n—1)

det Béz,(f) = (1)~ = res(f)

shows that this form is non-degenerate.

) This construction is sometimes called the “Bezoutian”, but we prefer the terminology “Bézout form”.
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The above construction describes for every positive integer a natural transformation of
functors ¥, (=) — J,,(—) and thus a morphism of schemes

Béz, : S — .

REMARK 3.5. — A more conceptual definition of the Bézout form in terms of Serre dual-
ity can be found in [5, Example 111.4.8]

3.3. The main theorem

The Bézout invariants distinguish exactly all the naive homotopy classes of rational func-
tions. More precisely, we have the following.

THEOREM 3.6. — The following map is an isomorphism of graded monoids:

LI =0 Béz,
([T w),e") = (T, ).

The proof of Theorem 3.6 is postponed until §3.4.
COROLLARY 3.7. — The monoid ( [] (n0'd,)(k),®) is abelian, and thus so is
n>=0
([P, P1] 0N,

To make Theorem 3.6 more explicit, we precise the sets of value (75, ) (k) of the invari-
ants.

DEerINITION 3.8. — 1. The Witt monoid of the field & is the monoid, for the orthogonal
sum @, of isomorphism classes of non-degenerate symmetric k-bilinear forms. We
denote it MW (k).

2. Let MW?®(k) be the monoid of stable isomorphism classes of non-degenerate symmet-
ric k-bilinear forms. By definition, this is the quotient of MW (k) where two forms b
and b’ are to be identified if there exists a form " such that b ® b” ~ b/ @ b”. It comes
with a natural grading induced by the rank, and for every positive integer n, we denote
by MW? (k) the degree n component of MW?(k). (Note that when char(k) # 2 then
MW?3(k) = MW (k).)

3. The Grothendieck-Witt group GW (k) is the Grothendieck group of the monoid
MW? (k).

PROPOSITION 3.9. — Let n be a positive integer.

1. The canonical quotient map gy, : J,,(k) — MW?3, (k) factors through (v ,))(k):

I (k)

dn

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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2. Let MW, (k) x k> denote the canonical fibre product where MW3, (k) — kx/kxz

k X
/X2
is the discriminant map . Then the map

11 g, xdet

(L= sk, @) = (TIMWi) x #.2)

n=0 n=0 /k><2

is a monoid isomorphism. (Above, the right-hand term is endowed with the canonical
monoid structure induced by the orthogonal sum in MW?® (k) and the product in k™ ).

Proof. — Thisis certainly well-known to specialists (at least when char(k) # 2). We would
like to advertise a proof due to Gerstein, based on a very elegant use of Hermite inequality
for symmetric k[T]-bilinear forms. The reader is referred to the very clear exposition in
[7, §VIL.3] (see in particular Remark VII.3.14 when char(k) = 2). O

Theorem 3.6 and Proposition 3.9 together give the following explicit description
of [P, P1]".

COROLLARY 3.10. — There is a canonical isomorphism of graded monoids.

([Pl,Pl]N,@N) ~ (]_[ MW (F) kX,ea).

n>0 /k><2
ExamMPLE 3.11. — 1. When k is algebraically closed, we have an isomorphism of
monoids
[P, P —=— N x k¥
deg X res

The Bézout invariants reduce to the resultant and degree invariants.

2. When k is the field of real numbers R, we have an isomorphism of monoids:

[P, P]Y —=  (NxN)xRX,

(signoBéz) x res

sign denoting the signature of a real symmetric bilinear form. In this case, the Bézout
invariant is sharper than the resultant and the degree invariants.

3.4. Proof of Theorem 3.6

Three things are to be proved: injectivity, surjectivity and compatibility with the monoid
structures of the Bézout map. Each one has an elementary proof. In §3.4.1, we start by prov-
ing the surjectivity and the compatibility condition, both at the same time. We then remark
in §3.4.2 that injectivity reduces to that of Bézs. We conclude in §3.4.3 by an independent
analysis of the scheme &5 and of the map Béz,.
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3.4.1. Surjectivity and compatibility with sums. — We adopt the following conventions.

DEerINITION 3.12. — Let n be a positive integer. For a sequence of scalars wuy,...,uy,
in k%, let

- (u1,...,uy) denote the diagonal symmetric bilinear form (u;) & - - - & (u,,) € J,, (k).

— [u1, ..., u,] denote the pointed rational function X &N --- &N X € 7, (k).

The following lemma shows that, up to naive homotopy, any symmetric bilinear form and
any rational function is of the preceding form.

LeEmMA 3.13. — Let n be a positive integer. Then:

1. For any symmetric bilinear form S € 4, (k) there exist units uy, ..., u, € k> such that
S is homotopic to the diagonal form (uy, ..., uy,).
2. For any pointed rational function f € & (k) there exist units uy, . .., u, € k* such that
we have
f R [ula"'vun]'
Proof. — 1. Suppose first that char(k) # 2. Then every symmetric matrix S € J,,(k)

is congruent by an element P € SL,, (k) to a diagonal matrix. Decomposing P into a
product of elementary matrices yields a homotopy, i.e., an element of J,, (k[T]), to a
diagonal matrix.

When char(k) = 2, then S is congruent by an element P € SL, (k) to a block

. . . . 01 . T1
diagonal matrix, with possible L O] terms. One can use homotopies of the form [1 0]

to link S to a diagonalizable matrix and then repeat the preceding argument.
2. We prove this point by induction on the degree n of f.

As noted in Example 3.3, a rational function f € &,(k) is tautologically the
@®N-sum of some polynomials, say f = P, @~ --- @N P,. It is thus enough to treat
the case when f is a polynomial. We can even assume that f is a monomial XTn
(with u € k*) as any polynomial is homotopic to its leading term. The element
TXffi_nlJru € 9,(k[T]) defines a homotopy between X7n and X")—(izl—i-u But this last

rational function decomposes as X @~ g for some g € &,,_1(k). One concludes by
using the inductive hypothesis on g. O

The monoids (7)) (k),®) and (=) F)(k), ®Y) are generated by their degree 1 com-
ponents. Since the map 7 Béz; : (7)) 71)(k) — (7)¢;)(k) is a bijection, the following
lemma shows that the Bézout form of a rational function of the form [uq,...,u,] € Ty (k)
is homotopic to the diagonal form (uy, ..., u,).

LEmMA 3.14. — Let % € Fn(k) and uw € k*. Then the Bézout form of% oN % is

congruent by an element in SLy,1(k) (and is thus also homotopic) to the block diagonal form
(u) & Béz, (A, B).
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_B . . . .
Proof. — By definition, one has % oN % = X'z -+ Using the notations introduced in

Definition 3.4, we have

Oxa-84,a(X,Y) = uA(X)A(Y) +64,5(X,Y).

In the basis (1, X, ..., X"~ 1, A(X)), the matrix of the Bézout form is diagonal as announced.
O

This proves that the Bézout map induces a surjective morphism of monoids.

3.4.2. Injectivity. — Let n be a positive integer. To prove the injectivity of the map 7' Béz,,,
we prove the injectivity of the composite

Tl'gI Béz,, q,, xdet

(Mo ) (k) ——— MW, (k) x k™.
k /k><2

(70 Fn) (k)

Because up to homotopy any rational function is a @N-sum of degree 1 monomials (cf.
Lemma 3.13), the injectivity of the previous map can be reformulated as follows.

ProrosITION 3.15. — Let uy,...,Up,v1,...,0, be a list of units in k*. If the classes
in MW3, (k) X k* of the diagonal forms (uy,...,u,) and (vi,...,v,) are equal, then
kx/kx2
(U, ... un] R [v1,...,v,] holds in F (k).

Proof. — We introduce some ad hoc terminology. Two diagonal forms (uq, ..., u,) and
(v1,...,v,) are said to be equivalent through an elementary SLo(k)-transformation if there
exists an integer 1 < ¢ < n — 1 such that:

— the 2-forms (u;, u;4+1) and (v;, v;11) are SLa(k)-equivalent;
— forall j # 4,4 + 1, we have u; = v;.

The next lemma is a slight reformulation of [8, Lemma III.5.6], which gives a presentation
of the Witt group W (k) by generators and relations.

LEmMMA 3.16. — Let (uq,...,uy) and (vy,...,vy,) be two diagonal forms in 4, (k). Their
images in MW3, (k) x k> are equal if and only if one can “pass from one to the other” by a
k)(
/kX2
finite sequence of elementary SLq(k)-transformations.

Therefore, in order to prove Proposition 3.15, it is enough to deal with the case n = 2.
This case is analyzed independently in the next paragraph.
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3.4.3. Rational functions of degree 2. — Let G, be the “additive group”, that is to say the
affine line A seen as a group scheme. For every positive integer n, G, acts freely on &, by
translations, i.e., by the formula

A A+hB

hE B ,

on the level of points. The following lemma shows that the G,-torsor &, splits.

LemMA 3.17. — Let R be a ring and % be an element of & ,(R). There exists a unique
pair of polynomials (U1, V1) of R[X] with deg(U1) = n — 1, deg(V1) < n — 1 and such that
AU, + BV, = X271 Let ¢, (%) be the opposite of the coefficient of X" 1 in Vy. Then the
associated scheme morphism ¢,, ©+ T — Al is Ga-equivariant. In particular, I, splits as
the product ¢,,1(0) x Al.

Proof. — Let A, B,U; and V;j be as above. If one changes (A, B) to (A + hB, B), then
(U1, V1) is changed to (Uy, Vi — hU4). The claim follows since Uy is monic. O

Moreover, observe that the morphism Béz,, : ¥, — ¢, is by construction G,-equi-
variant when ¢, is endowed with the trivial action. In dimension 2, the morphism Béz,
induces an isomorphism between ¢, (0) and ¢J,.

ProprosSITION 3.18. — The morphism

BéZ2 X (Z)z

Fa gJ2XA1

is a G,-equivariant isomorphism of schemes.

COROLLARY 3.19. — The following map is injective:

0P () o) (k) XN MWy (R) xR

k /k><2

(mo 2)(k)

Corollary 3.19 concludes the proof of Proposition 3.15.

Proof of Proposition 3.15. — One can write down the inverse morphism ¢ : J, — é5*(0)
by solving a system of two equations with two unknowns. The formula is:

(o] (12
o[ - X4 20X 4 T -
By X+ 5
The proof of Theorem 3.6 is now complete. O
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3.5. Comparing naive and motivic homotopy classes

For any space X € Sp, let 3,X be its “suspension with respect to the simplicial circle”,
that is to say

t t
31:X := hocolim <p \ /p ) .
X

LemMA 3.20. — There is a canonical homotopy equivalence:

Pl ~ 3, (A" - {0}).

Proof. — This is a consequence of P! being covered by the two contractible open sub-
schemes P! — {0} and P! — {0}, intersecting along P! — {00,0} ~ A — {0}. O

1
The preceding lemma endows the set [P?, Pl]A with a group structure, whose law is

. Al o
denoted by & . The canonical map [P, P] N, [P!,P!]™ isthusnota bijection: it can
reach only elements of non-negative degrees. However, Morel’s result shows that the error in
the naive computation is as small as possible.

THEOREM 3.21 (Morel, [11], Theorem 6.36). — There is a group isomorphism

(3.21) ([PL,PUY @A)~ (GW(k) x K @).
kX
/kxz

In particular, this implies that the group ( [P, P?] A ,®A") is abstractly isomorphic to
the group completion of the monoid ( [Pl, Pl] N , ®N). We show next that, as one can expect,
the group completion is induced by the canonical map from the naive to the A'-homotopy
classes.

THEOREM 3.22. — The canonical map ([Pl,Pl]N ;oY) — ([Pl,Pl]Al @A) is a
group completion.

Proof. — The main point is to prove the compatibility between the monoid law &N
on [P!,P?] N and the group law A" on [P!,P1] A" Namely, we have the following:

PROPOSITION 3.23. — The canonical map ( [Pl,Pl]N o) — ( [Pl,Pl]Al

a monoid morphism.

,@Al) is

A detailed proof of Proposition 3.23 is postponed until the appendix because it would be
too digressive here.

By universal property, the canonical map [P?, Pl]N — [P, PI]A1 factors through the
group completion of [P, P1] N say Gr( [P!, P ™). Since Morel’s Theorem 3.21 indicates
that Gr([P!, P!] N and [P, P!] A are abstractly isomorphic groups, we have to check that

the degree 1 generators in Gr([P!, P!] ™) are sent to the degree 1 generators in [P, P1] A
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Leta € k* be a unit, let f be the rational function £ and let 7(f) denote the image
of f in [P?, Pl]Al. Morel’s isomorphism (3.21) is described in [11, p. 225-226]. With the
following identifications:

QW (k) = K™ (k) ~ End(K}™)
and H' (P) ~ HY (2,Gm) ~ AY (Gr) = KMV
the component of 7(f) in GW (k) is given by its “degree” H‘fl( f) € End(K}W). ]?ut the

morphism f is homotopy equivalent to the suspension X, f of the morphism f : G X, Gm,
whose degree H" (f) is checked®) to be the generator (1) in GW (k) . O

4. Related computations

The previous computation has natural extensions which we consider now.

— In §4.1, we compute the set of free homotopy classes of endomorphisms of P!.

- In §4.2, we make explicit the monoid structure induced on [P1, P!] N by the composi-
tion of endomorphisms of P*.

— Finally, in §4.3, we compute the set of naive homotopy classes of pointed morphisms
from P! to P? for every d > 2.

4.1. Free homotopy classes of rational functions

We compute here the set {Pl, P! }N of naive homotopy classes of free (i.e., unpointed)
endomorphisms of P!. The result is mostly a consequence of the previous computation
1 p11N
of [P, P1]".
The description of free endomorphisms of P! in terms of rational functions is the follow-
ing.

DerINITION 4.1. — For every non-negative integer n, the scheme %, of unpointed degree
n rational functions is the open subscheme of P?"*! := Proj(klag,...,an,bo,---,bn])
complementary to the hypersurface of equation

resp n(anX™ 4+ -+ 4+ a9, b, X" + -+ -+ by) = 0.
ProrosSITION 4.2. — Let R = k or R = Kk[T|. The datum of a k-scheme morphism

f : Py — P is equivalent to the datum of a non-negative integer n (its degree) and of
an element in %, (R).

We denote by ~ the equivalence relation generated by unpointed naive homotopies and
by {P1, PI}N the set of unpointed naive homotopy classes of endomorphisms of P!. As

before, the degree is a naive homotopy invariant and the set {Pl, P! }N splits degree wise:
RS I R 0
n=0

() Be careful that the morphism f is unpointed.
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Let n be a positive integer. Note that a k-point in %, gives a pair of coprime polynomials
(A, B) only up to the multiplication by a unit of k. Thus the Bézout form of an unpointed
endomorphism of P! is defined only up to multiplication by the square of a unit of k. We are
going to prove that the class of the Bézout form is an invariant that distinguishes exactly the
homotopy classes:

THEOREM 4.3. — The canonical map of graded sets:

PLPYY = PP — [T MWi() xR
n>0 n n>0 ></ )
kX

(4] — [Béz(A, B), det Béz(A, B)]

is a bijection.

Proof of Theorem 4.3. — This is a consequence of Corollary 3.10 and of the following

lemma. O
LEMMA 4.4. — 1. Any free rational function is naively homotopic to a pointed rational
Sfunction.

2. Let f and g be two pointed rational functions. Then one has the relation f ~ g if and
only if there exists a non-zero element A € k* with f X X2g.

Proof. — 1. Let f = % represent a rational function and let «; be a matrix in SLo (k)
such that a; - co = f(00), for the usual action of SLy(k) on P!(k). Let o(T) be an
algebraic path in SLy(k[T]) linking the identity to «. (Again, this can be obtained
using a decomposition of a7 as a product of elementary matrices). The column vector

A
a(T)~t- B is a k[T]-point of %, and thus yields a homotopy between f and the

pointed rational function a; * - %.

2. Suppose first that we have two rational functions f, g such that f ~ g and let us show
that there exists a unit A € &> such that f 2 A2g.

Let
F=do wiiny ey w Sy NI

be a sequence of elementary homotopies between f and g. Let o(T) be a matrix
in SLy(k[T]) such that we have Fy(T,00) = «(T) - oo and a(0) = id. The path
a(T)~t - Fy(T) yields a pointed homotopy between the pointed rational functions f
and a(1)7!- f1. Moreover, for N > 1, we then have a sequence of N —1 free homotopies

1 -1 . ~ ~ ~ = q.
W N imen P e S YT

Thus the result will follow by induction from the case N = 1.
1Thu

01 ~a(T)~t - Fy(T) gives

A
When N = 1, a(1)~! is of the form [O )\L_Ll] . So,

a pointed homotopy between fo and A2 f;.
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We now show the converse. For every A € k*, a path in SLo(k[T]) between the

. . A0 ) . .
identity matrix and [0 )\_1] yields a free homotopy between any rational function g

and A\2g. The result follows. O

4.2. Composition of rational functions

The set [Pl,Pl]N admits a second monoid structure induced by composition of
morphisms. We make explicit this new structure in terms of our previous description
1 p11N
of [P1,P!]".

DEFINITION 4.5. — Define a new composition law, say o, on [[ MW} (k) x k> by
n>0 k*
z /k><2

(bl7 )\1) o (b2’ )\2) = (bl ® b, >\<liimb2>\gdimb1)2).
This law is associative and endows [[ MW? (k) X k> with a monoid structure.

n>=0 k /kxz

THEOREM 4.6. — The following map induces an isomorphism of graded “bi-monoids”

(PP eM,0) — (n]EIOMWi(k)kXZXZkX’@,o>

f — [Béz(f),res(f)]

REMARK 4.7. — Warning: the triple ([P1, P?] N @N, o) isnot a semi-ring. In general, one
has distributivity of o over @~ only on the left-hand side: in general for a triple (f, g1, g2) of
pointed rational functions, (g1 &~ g2) o f and (g1 o f) ®N (g2 0 f) are not equal in [P, P] N

Proof of Theorem 4.6. — Since any pointed rational function is up to homotopy a
@N-sum of degree 1 rational functions, Theorem 4.6 is a consequence of the following
lemma.

LEMMA 4.8. — Let a € k* be a unit, m and n be positive integers, and f = % € Im(k)
and g = $ € T, (k) be two pointed rational functions. Then

I. Wehave%Of: %f
2. In the stable Witt monoid MWY,,, . 1), (k), we have:

Béz(m+l)n ((X Ch f)o g) = Béz,(9) o Bézyn(f © g).

3. det Béz(y11ym (X ®N f) 0 g) = det Béz,,(9)*™ ™ - det Béznm (f 0 g).
Proof. — 1. This s true by definition.
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2. Let % be the pointed rational function representing f o g. By definition, one has:
AX) =) a,C(X)'D(X)"™* and B(X) =) bC(X)'D(X)"".
i=0 =1

Since we have X @Y 4 = X — & the endomorphism (X @V f) o g is represented by
the rational function ~ _ _

C B CA-DB

D A DA
Moreover, using the notations of Definition 3.4, we have the identity

Sci-ppiX,Y) = AX)A(Y)é0,0(X,Y) + D(X)D(Y)s 4 5(X,Y).
Observing the congruence A = C™ mod D, we deduce
res(A, D) = res(C™, D) = res(C, D)™ € k*.
Thus (D(X), X -D(X),...,X™ 1.D(X),A(X), X -A(X),..., X" 1A(X)) gives a
basis of the k-vector space of polynomials of degree < (n+ 1)m — 1. And in this basis,
the matrix of the form Béz(, 1) (X &N f) 0 g) is
Bézmn (A, B) 0
0 Béz,,,(C,D)|

3. This point follows from the proof of the previous one. Indeed, we have just proved the
following matrix identity

- L ~ Bézymn (A, B) -
Béz(ni1)ym(CA — DB, DA) = 'Syl(A, D mnA Syl(A, D),
(n+1) ( ) yI( ) 0 Béz, (C, D) yi( )
where Syl is the Sylvester matrix (see [1, §6, n°6, IV]). The result now follows from the
relation det Syl(A, D) = res(A, D) = res(C, D)™. O
This completes the proof of Theorem 4.6. O

4.3. Naive homotopy classes of morphisms to higher dimensional projective spaces

Let d > 2 be an integer. We compute now the naive homotopy classes of k-scheme
morphisms from P! to P?. The group of A'-homotopy classes of morphisms from P! to P4
is also determined in [1 1] and we can again compare our result to it. Not surprisingly, the
computation is much easier than the previous one for d = 1.

For brevity, we treat only the case of pointed morphisms. The base point in P¢ is taken
atoo := [1:0:...: 0]. Pointed scheme morphisms from P! to P? and naive homotopies
between them admit the following concrete description, analogous to that of Proposition 2.3.

DEFINITION 4.9. — For every non-negative integer n, let & Z(—) be the functor from the
category of k-algebras to the category of sets which maps any k-algebra R to the set of pairs
(A, B), where A is a monic polynomial of R[X] of degree n, and B := (Bi,...,Bq) isa
d-tuple of polynomials, each of degree strictly less than n and such that the ideal generated
by the family {A, By, ..., Bq} is R[X]. These functors 7% (—) are representable by smooth
schemes, which we denote by & Z again.
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PROPOSITION 4.10. — Let R = k or R = k[T). The datum of a pointed k-scheme morphism
f: PL — P% s equivalent to the datum of a non-negative integer n (its degree) and of an
element in 7% (R).

REMARK 4.11. — Let R be a ring and A be a monic polynomial in R[X]. The datum of
a B such that (A, B) is an R-point of &' Z is equivalent to the datum of an element

(Br,.... Ba) € (A" — {o}) (BIX) ).
This point of view leads to the definition of Atiyah—Hitchin schemes, see [4, 3].

As in Definition 2.5, we denote by X the equivalence relation generated by pointed naive
homotopies of morphisms from P! to P and by [Pl, Pd]N the corresponding set of naive
homotopy classes. The degree of morphisms is again invariant through naive homotopies;
we are going to prove that this is the only invariant.

]N

THEOREM 4.12. — For every d > 2, the degree map deg : [Pl, P =5 N is a bijection.

Proof. — Fix a non-negative integer n. We are going to prove that the set (7} & fb) (k) con-
tains only one element. More precisely, we are going to link any element (A, By,...,By) €
g Z(k) to (X™,1,...,1) by a sequence of pointed naive homotopies.

Note first that it is enough to link (A, By, ..., Bg) to (A4,1,...,1) since the pointed homo-
topy (1 = T)A+TX™1,...,1) € F2(k[T]) will then link (4,1,...,1) to (X", 1,...,1).

To do so, decompose the polynomial A as a product of irreducible factors:

{1
i=1

As noticed in Remark 4.11, the set of k-points of 7% with first coordinate equal to A is in
bijection with (A¢—{0}) (k (X ]/( A)) . The Chinese remainder theorem identifies this set with

[T’ = o0 (¥ ey,

i=1
It is therefore enough to treat the case when A is a power of an irreducible polynomial,
say A = P7. In this case, the ring R := k[X]/(Pr) is local. A d-tuple (By,...,By) € R®
represents an element of (A — {0}) (k[X ]/( Pr)) if and only if one of the B; is a unit of R.

Up to reordering, we can assume that B; is such a unit. The element
(A,B1,(1 = T)By + T,...,(1 = T)Bg + T) € F%(k[T)) then yields a pointed homo-
topy linking (A, By, Bs,...,Bg) to (A,B,1,...,1). One concludes using the pointed
homotopy (4, (1 - T)B; +T,1,...,1) from (A, B1,1,...,1) to (4,1,1,...,1). O

1
As in §3.5, [Pl, Pd]A has a natural group law denoted by @A Morel’s result is the
following.

THEOREM 4.13 (Morel, [11], Theorem 6.13). — For every integer d > 2, the degree map
([P, P% @) =5 (7,+)

induces a group isomorphism.
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It follows from Theorem 4.12 that the set [P, P?] N'is a fortiori endowed with a monoid
structure, pulled back from that of (N, +). We denote again its law by ®N. Naive and

A'-homotopy classes compare again very well.

COROLLARY 4.14. — For every integer d > 2, the canonical map
([P P, 0%) — ([PL,P]" o)

is a group completion.

Appendix

Additions of rational functions

The goal of this appendix is to compare the two addition laws on homotopy classes of
endomorphisms of P!: the naive law denoted by @ defined in §3.1 and the A! law, coming
from P! being a suspension. More precisely, we are going to prove Proposition 3.23, that is:

ProrosITION A.1. — The canonical map
([P1P1]Y.e) — ([PLP]" e
is a monoid morphism.

Whereas the @ law is very concrete, the A" law is somehow more delicate to make
explicit, since writing the coproduct V : P! — P! v P! involves inverting several weak
homotopy equivalences in Sp. Therefore, our first step is to give a workable model for this
coproduct.

DEFINITION A.2. — Let P! [] P? be the cofiber of the map S° = {0} [[{cc} — P[P

0~0o0
(Equivalently, P! J] P! is the union of two copies of P! with the point 0 in the first copy
O~ o0
identified with the point oo in the second one). The base point is taken at co in the first copy.
The following map V : P — P! [[ P! isa “model” for the unreduced coproduct of P':

0~ oo
~ Pl Pl Pl ~
(A2) V:P'—" p1_ (0,00} = /Pl {OO}*]:[* AP0y Ployoop1

corresponding to the following picture:

<D<P
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The definition of V requires an explanation. The first and the third maps in (A.2) are the
natural projection maps, whereas * is a generic notation for the canonical point in a quotient.
The (abusive) equal sign “=" in the middle of (A.2) refers to a canonical isomorphism of
spaces (not just a homotopy equivalence). Indeed, we will use the following fact several times.

LEMMA A.3 (Compare with Lemma 2.1.13 in [10]). — Let X be a smooth scheme and Z,
Zy be two disjoint closed subschemes. Then there is a canonical isomorphism of spaces in Sp:

_X X
@ ][2)= VX -2V VX -2y

Finally, note that the map V is compatible with the reduced coproduct V, in the sense
where the following diagram of pointed spaces homotopy commutes:

2T

[P —==P 0 (1} VP' =——P!VP.
Owoo
Proof of Proposition A.1. — Let g; and g5 be two pointed rational functions. We need to
1
prove that the image of the rational function g; ®N g, in [Pl, Pl] A equal to g; oA’ go.

Since the monoid [Pl, Pl] N of naive homotopy classes of rational functions is generated by
its elements of degree 1 (¢f. Lemma 3.13), it is enough to deal with the case when g; is of
degree 1. Up to a canonical homotopy, one can even assume that g; is of the form % for
some a € k*. For g; of this form, the formula for the @N-sum is

X v X 11
— @ gp=—-—=5—.
a a a?go
LEMMA A.4. — Let g : P — P! be a pointed rational function and let f be the pointed
rational function f = % — %. One has f~1(c0) = {00} [1g71(0) and we denote by f the
induced map between the cofibers:

*_Pl Pl
f~ /Pl_({w}Hg—l(O))—) /Pl_{oo}

Then the following diagram of pointed spaces in Sp homotopy commutes.

Pl Pl
\1 f
PUp ({00} 11a71(0) /P!~ {oo}
¢ H
(P e {oo})JJ*( P _g(0)) o
/

P! [] P! p!

0t NI
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( The two diagonal arrows are projection maps and the equal sign refers to Lemma A.3.)

Proof. — To check commutativity of the trapezoid on the left-hand side one has to
“separate” oo and g~—1(0) inside P!. This can be done by inverting the homotopy equiva-
lence of pointed spaces P* <= A J[ P (the base point in this latter space is 1 € A').

O~co
The main point is then to prove that the following two diagrams:

ol

1 P! l)Pl
/P foo} T /P = ({oo} 1071 (0) /P!~ {c0}
and
p! i p!
Pl Pl LPI
R U SR (CH 1 PR )) Rl SR T

homotopy commute. The proof is similar in both cases, so we detail only the second one.

Since g=1(0) N {oo} = @, the canonical map of pairs (A, Al — g=1(0)) — (P, P! — g=1(0))
. . . Al _ pt .
mdu.ces an isomorphism /.Al _ 971.(0) =" /p!_ 9= 1(0) (c¢f Lemma A.3). But there is
a naive homotopy of morphisms of pairs:

(Al,A1 — g_l(O)) x Al — (Pl,P1 — {oo})
X 1
(X, T) — T; —_ m

between fia1,a1—g-1(0)) and (_é)“Al,Al_g—l(O)), which implies the homotopy commuta-
tivity of the diagram. ]

Lemma A .4 reduces the proof of Proposition A.1 to expressing the composite map

S0 -

0~oc0

Q=

Pl 6;P1HP1 Pl

O~ oo

1
as a sum in the group [Pl, Pl] A" The result is given in the next lemma, which is stated in
the following context:

— Let Y be the unreduced suspension of a pointed space (Y, yo), that is to say
Y := hocolim (pt «— ¥ — pt).
The space Y has two distinguished points, denoted by co and 0, linked by the canonical
path hocolim (pt «— {yo} — pt). The base point in Y is taken at oco.

— Let (Z; 29) be an A'-connected pointed space.
— Let g1,92 : Y — Z be two maps such that g;(0) = go(c0). We assume that gy is
pointed, that is to say that g; (c0) = 2.
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— Let f be the pointed map (g1 ][] g2) oV :Y — Z.
O~ oo

— Let H:Y x A' — Z be a naive homotopy from g, to a pointed map, say g3 : ¥ — Z.

— Leta: A — Z be the path T — H (0o, T) in Z from g3(00) to 2.

— Let3: A — Z be the image through g; of the canonical path in Y from oo to 0; 3 is
thus a path in Z from z to g1 (0) = g2(o0).

— Let v be the concatenation of the paths 8 and «; «y is thus a loop in Z at z.

LEMMA A.5. — In the group [Y, Z|*", one has the identity:
1
v-f=0-g)e® g

Above here, the dots “” denote the action of an element 0f7rf‘1 (Z;z0) on [Y, Z]Al.

Proof. — It is a consequence of the following facts:

— Up to homotopy, Y can be replaced by A! [ Y, pointed at 1 € A!. The element - f
O~ oo

is represented by the map

~+ I 7
AlHY 0~ o0 7

A; \7Z
o

g1 H g2
— Up to homotopy, Y [] Y can be replaced by Y J[TA [ Y, themapV [[ ¥ —=2— Z is

. O~o0 0~0 1~o00 0~o0
then homotopic to the map

— The restriction of the map

v eI 6
AlHYHAlHY O~oco 0~0 1~oo 7

O~oco 0~0 l~oo
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to A J] At J] A (the A! in the middle is the domain of 3) is the concatenation of y~*
0~0 1m0
and v and is thus null-homotopic. So, up to homotopy, the map v [[ f [T o I g3
0

~oo 0~0 1~oo

factors through the cofiber (Alol_looYoIL[oAlll‘IooY)/(Al 1 A1]] A1)~ vy
— The following composite map 0~0 1m0
d [[ v
Y = Al TLY 0~00 ATIY TTY

~

~ 1 1
Y\/Y<N—(A YA HY)/ 1 1 1y =— At Y A! Y
O~oo 0~0  1moo 7 (A 0I;[OA 1]:[oA ) oIN_Ioo 0]:[() 1]~_[oo

is homotopic to the coproduct Y Y yvy. O

In our situation, there is a “universal” homotopy between —% and g, which is given by

composition at the target of g with a naive homotopy between between — % and X. One can
choose
(-T?+27)X — (T3 - 372+ T +1)
(-T+1)X+ (-T%+2T)
as an example of such a homotopy.

LEMMA A.6. — Leta: Al — PlbethepathT — [-T?+2T : =T +1], 3: Al — P!
be the path T — [1 — T : aT)] and ~y be the loop given by concatenation of o and (3. Then for
any pointed rational function f : P1 — P, one has a canonical homotopy between v - f and

a’f.
Proof. — We can lift the paths o and 8 in SLs and use the product in SLy to compose

them. More precisely, let 3 : A! — SL, be a lift of 8 such that /3’(0) = 1id and let
& : A! — SL, be a lift of « such that &(0) = 8(1). Then a lift 4 of the loop 7 is

’7 : 141 — SL2
T = B(T) )" &(T).

Let coo : A1 — P! be the constant path at co € P1. The action of SLy on P! can be used
to define a naive homotopy between v [[ f and ¢ [ (&(1) - f), namely®

O~ oo 0~ o0
1

N Y(IH(T-1)(1-H))
0

7.
é /;H)-f

®) Below, H € Al is the parameter of the homotopy and T' € A belongs to the domain of 4.
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a(-T?+2T) (—2+ H)T?+ (4 - )T -1

Explicitly, one can take &(T) = and

a(-T+1) (—2+ )T +2
By = |M7T T | sos(1) = a() = |“ 27 @ | The result follows since 5(1) - £
= . So =a(l) = . The result follows since f =
ol 1+T ! 0o I !
a®f + 2 — 1 is canonically homotopic to a*f. O
Lemma A.5 and Lemma A.6 together imply Proposition A.1. Indeed, for every a € k*
1
and for every pointed rational function g one has the identity in [P!, P?] A
2 X 1 1
aX@NgzaX—a—za2<——f)=aX@A g. O
g a g

REMARK A.7. — Our proof of Proposition A.l produces a homotopy between % aNg

and % oA’ g which is uniformin a € k* and g € &,,. Therefore for every positive integer n
the following diagram of spaces homotopy commutes:

®N

glxgn gn-‘,—l

1

QP'P! x OP'P! T~ P} P,

Above, QP P! is the (derived) space of pointed endomorphisms of P!. This space splits
degree wise and we denote by Q}ij1 its degree k£ component (which naturally contains Fy,
as a subspace).
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