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A SEMI-CLASSICAL PICTURE OF QUANTUM SCATTERING

BY FRANCIS NIER

ABSTRACT. — This article is devoted to some singularly perturbed semi-classical asymptotics. It corresponds to a
critical case where standard semi-classical techniques do not apply any more. We show how the limiting evolution
keeps trace of quantum effects and provides a picture of quantum scattering very close to physical intuition.

1. Introduction

This paper is concerned with the asymptotics as h —> 0 for Schrodinger equations of
the form

(1.1) ihOtU^ [-^A+[/f^+y(^)1^,
L " \ 1 1 / J

in general dimension d. The case U = 0 is nothing but the well-known semi-classical
asymptotics. In a former article [26], we established the relationship between the case
V = 0 and quantum scattering. Indeed setting t1 = ^ and x ' == ^ makes the asymptotics
h —> 0 equivalent to t' —^ oo and x ' —> oo with \x'\ ~ t\ which is the standard
situation of quantum scattering. The general case combines the semi-classical analysis
for the hamiltonian — / i-Aa.+ V(x) and its geometrical background, with the spectral
properties of -jA,c/ + U^). The matching between the two asymptotics h —^ 0 for
—^Aa. + V{x), describing the evolution on a macroscopic scale, and \x'\ —> oo for
—jAa;/ + U{x'}, associated with the quantum or microscopic scale, is performed after a
second microlocalization around the origin x = 0. In the sequel we do not distinguish any
more the two scales by notations and x denotes the generic position variable in both cases.

Indeed we consider a more general equation than (1.1) with a potential of the form

(1.2) ^u,(x—^}+V{x),
j-eN v /

where XQ = 0 and xj / 0 for j / 0. Adding the potential V^ Uj^3^1^1) makes no difficulty
3^0

in the analysis and is motivated by applications. We assume that Uj, j G N, and V satisfy
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150 F. NIER

HYPOTHESIS 1.1

a) The potentials Uj(x) are uniformly bounded in S({x)~^^ -f—) with IJL > 1.
b) The points x j ^ j C N, are spread so that V^j)"^ < co.

J'CN

c) 77^ potential V(x) belongs to S(l, dx2) and (for convenience) V{0) = 0.
We followed Hormandefs notations in [20]-Chap XVIII. Let us remark that these

assumptions yield the boundedness of the total potential and the essential self adjointness
of the total hamiltonian for a fixed h > 0. The first assumption is nothing but the short-
range condition for the potentials Uj(x). According to [10] [22], it ensures the existence
of the wave-operators

W^,= lim e^-^+^-^e-^-^),
t—>^00t—).=p00

and the asymptotic completeness Ran W-^j = Ran W-j. The wave operators W^j
are unitary from L^IR^) onto Ran W^j and the scattering matrix is defined by
Sj = W^jW-j. By conjugating with the Fourier transform we also define Sj = FSjF~1.

The crucial point in the study of the asymptotics of (1.1) or even with potential (1.2) is
the understanding of what happens close to x = 0. The asymptotics around the points xj,
j / 0, actually follows from the case j == 0 by translational invariance and by possibly
changing the energy origin. We often drop the index o and write simply U, W^, IV-, S
and S instead of Uo, W^+,o. tV-,o. SQ and 5'o while we set

^,h)=^U,(x-^\
j^Q v /

The interesting initial data are the one which concentrate at x = 0 and for which the solution
of (1.1) eventually leaves x = 0. Thus we consider the following initial value problem

(1.3)
\ihQ^= [-^A+^f^+S^p^+V^L71,

k(^o)^o©,
where we forget the bound states of -jA + U(x) by taking UQ e Ran W^. = Ran W-.
By inserting a Fourier transform we write

(1.4) uo = W^F-1^ = Ty_F-^_, ^ e ̂ (R^

which implies ^+ = FW^W^F-1^, = 5^-.
Next we state the main result which expresses the asymptotics as h -^ 0 for the

solution n^) of (1.3) in terms of semi-classical measures. The semi-classical measures
associated with a bounded sequence of trace-class operators {Ph)h^{o,ho) are defined as
the weak* limit-points of /i-V^,^) in M^R^ = (^(r*^)*, where j^(^) is the
Wick-symbol F\ They are characterized by

Tr^a^, hD)] h'^0 f a(x, ̂ d^x, Q, Va G ̂ (r*^),
JT*^
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A SEMI-CLASSICAL PICTURE OF QUANTUM SCATTERING 151

after extracting a subsequence (P^) (see [3], [16], [17], [18], [23]). When the operators
Ph are the orthogonal projections on uniformly bounded Z^-functions H\ this writes

(1.5) (uh\aw(x^hfD)uhf)h^o ( a(x^)d^x^)^ Va G ̂ (T*^).
JT*^

According to [17], we call .A/f(n\ h) or .M(P\ h) the set of all semi-classical measures
associated with a sequence (z^) or Ph. Here and in the sequel, $y(t) denotes the classical
flow in the phase space T*^ associated with the hamiltonian pv(x^) = ||^|2 + V(x).

THEOREM 1.1. - Assume that there exist T+ > 0 and T_ > 0 so that

(1.6) Vt,=H G (0,T±), $y(±t)[{0}supp ^±] H (̂ r;̂ ) = 0.

Then for any t G (-T-,0) U (0,T+), the sequence (^(t)) admits a unique semi-classical
measure as h —> 0

r^M*[(27r)-^=o|^-(012], ^G(-r_,0),
( ) - / t$yM*[(27r)-^=o|^(012], ^ t C (0,T+).

(T/Z6? expression <^=o|'0-(012 ^^ty denotes the measure 6^=0 (g) [^-(Ql2^.)

Remark 1.1. - a) The condition (1.6) only involves the properties of the classical flow
$y(t). If we set {x(t)^{t)) = ^vW(xo^o) then the derivative of the scalar product
x(t).^{t) equals

(1.8) ^W^(t)) = |$(t)|2 - x{t)^V(x{t))^

and -it{x(t).^(t))\^ > 0 when XQ = 0 $o / 0- As a consequence and since \x(t)\ is
estimated by Ct\^o\ for small t, the assumption is satisfied for some T+ > 0 and T- > 0
when ^+ or equivalently ^- is compactly supported in R^ \ {0}. If we forget the Uj and
the corresponding positions Xj, for j / 0, the validity of (1.6) for any ^+,^- G L2^),
essentially depends on the global shape of the potential V. As an example, it is valid
when V(x) < 0 for x ^- 0. In such a case, the result can be extended for general
^+,^_ G ^(R^) by a simple density argument.

b) There is a complete symmetry between t > 0 and t < 0 and we will focus on
the case t > 0.

The outline of the article is as follows : In Section 2, we specify our notations and point
out some aspects of the problem. Semi-classical propagation far away from the quantum
potentials Uj is treated in Section 3. Meanwhile, we separate the incoming and outgoing
flows close to x = 0 by 2-microlocal cut-offs and make use of 2-microlocal measures
presented in the Appendix. The problem then amounts to some quantum propagation
estimate to which the next three sections are devoted. Some canonical transformations
which intertwins the classical hamiltonians pv(x^) = ||^|2 + V{x) and po(x^) = ||^|2

and the corresponding semi-classical Fourier integral operators are introduced in Section 4.
The action of these Fourier integral operators on the quantum scale is analyzed in Section 5.
In Section 6, the preceding results contribute to eliminate the potential V(hx) in the
quantum scale and the problem is reduced to standard propagation estimates of quantum
scattering theory. Applications are developed in Section 7.
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152 F. NIER

2. Preliminaries

Notations

Passing from the quantum scale to the macroscopic scale and reverse are performed by
applying or conjugating with the unitary dilation operators D^ denned by

(A.^)^^),
and its inverse D^1 = D^ = D\/h. Throughout this article, the Schwartz kernel of a
continuous operator K : C^^) —^ P^R^) is denoted by K(x,y). Note the identities

(D^KD^x^y) = ̂ K(-^ and WKD^x^y) = h^^hx^hy).

We set for short Ho = -jA, Hu = -|A + U(x), Hy = -jA + V(hx), H =
-jA + U(x) + T^(x,h) + V{hx\ with the semi-classical equivalents H^ = -^A,
H^ = -^A + (7(f), H^ = -4 A + V{x\ Hh=-bi-A+ U^) + E(f , h) + y(farr).
And the previous remark gives

^,o,£/,y = DhHft^uyD^.

We also write systematically {x), x and (fa instead of (1 + |rr|2)1/2, — and T^J. The
Fourier transform is normalized by taking

(Fu)(^) = ( e-^u^dx and (F^u^x) = ( e^u^)^
jRd J^d

Then (27^)-d/2F is unitary on L2^), F* = (27^)dF-l, while a simple change of
variables yields FD^ = D^F and F^D^ = DhF~1. For a quantity q(a,(3), we write
g(a,/3) = Of^) or g(a,/?) = ^y^) when the ratio ^—^ is bounded or converges to
0 uniformly with respect to a, and q{a^f3) = Oc^/^) or q(a^/3) = Oc^/^) when the
estimates depend on the value of a. We say that a subset G of a Frechet space F is
bounded when every element of a complete family of semi-norms on F is bounded on G.
Bounded subsets of C^°(Q,) are sets of functions supported in a fixed compact subset of
0 and satisfying uniform C°° estimates. Finally, we say that symbols belong to or are
uniformly bounded in S(m~°°^g) when it is true for any S^m^,^), k G R.

Along this article we always consider the exact pseudo-differential calculus as presented
in [20]-Chap XVIII or its semi-classical version, with symbols belonging to - or h-
dependent symbols uniformly bounded in - some symbol class S(m^g) (g a-temperate
and m cr-^-temperate). The metrics involved in this problem, primarily go = dx2 + d^2 and
g^ = ^— + c^2, are all splitted so that the Weyl-, the (1,0)- and the (0,1)-calculus
are equivalent with explicit correspondances. As a consequence we call OpS{m^g)
the space of pseudo-differential (h = 1) operators with symbols in S(m^g) without
specifying the calculus. When necessary the three quantizations will be distinguished
by writing them respectively (^(x^hD) = Oj^y[a], a^^^x^hD) = Op^ gJa] and
a^051^, hD) = Op^ iJa], where the superscript h is obmitted when h = 1. Our analysis
relies on the two following remarks.
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Phase-space properties of wave operators

Under Hypothesis 1.1 a), the wave operator IV+ (resp. W-) is a pseudo-differential
operator in outgoing (resp. incoming) regions of the phase-space.

LEMMA 2.1. - Let x ^ ^((O^oo)) andp±{x^) € 5(1,pi) be such that

(2.1) supp (j?±) C {(^) G T*!!̂  A.^ ̂  cr±} mt/i - 1 < a± < 1.

Vl̂  have

(2.2) ^(^^)x(^)W± -^(^P)x(^) C OpS{(^-oo{x}l-^g,)^

and

(2.3) H^xW))^(^) -xWp^(x^D) e 0^((0-00^)1-^^).

Pwo/. - We refer to the book of J. Derezinski and C. Gerard [10]-Section 4.13, where
they prove

p^^D)x{Hu)W^-p^(x^D)x{Hu)J± e OpS{(x)-00^)-00^,)^

and
W^Wp^(x^D) - J±xWp^(x^D) e OpS{(x)-00^)-00^,).

The operator J± is a modifier with kernel

J±{x,y)= [ e^^-v^a^x^)^
J^

The symbol a± belongs to 5(1, ̂ i) and satisfies condition (2.1) for some cr± while $±
solves the Hamilton-Jacobi equation pu{x, 9^±{x, ̂ )) = j?o(0 on supp a±. The estimates

|̂ f(<M^) -^)1 < ̂ <n;)l-^-lal,
are derived in [30] from Hypothesis 1.1 a) and yield (2.2) (2.3). D

Matching between the two scales

The relationship between the metrics go and pi, respectively natural for semi-
classical analysis and quantum scattering, is well known in the framework of second
microlocalization around To*^ [4] [6]. Here it takes the following obvious form.

LEMMA 2.2. - a) The dilation Dh correponds to the metaplectic mapping: (x, h^) -^
(hx^) and we have

(2.4) D^Op^[a(x^)]Dh = D^aw{x^D)DH = aw(hx^D) = Op^[a(hx^)}.

b) The h-dependent symbol a(hx^ ̂  h) is uniformly bounded in 'S'^)"00, pi) as soon as
a(h) is uniformly bounded in Co^T*^).
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154 F. NIER

3. Elimination of U(^) in the semi-classical scale

According to Remark 1.1, our aim is to determine the semi-classical measure set
M^^^h) foru^t) = e-^(IW+^-1^), t 6 (0,T+) and ^+ G ^(R^UO}). In
order to get rid of the potential £7(^), we need the following variation of the intertwinning
relation e'^^Wj^ = W+e"^0, of which the proof is deferred to Section 6.

PROPOSITION 3.1. - For any '0+ G (^(R^ \ {0}), there exists a positive constant e^^
so that for e e (0,£^)

(3.1) e-^HW+F-l^ - W+e-^^F-^ = 0^(e) in L2^).

Proof of Theorem 1.1. - We establish (1.7) in four steps : a) construction of ^-dependent
cut-offs in the phase-space, b) semi-classical propagation out of U T^ .R^, c) quantum

j'eN 3

scale analysis based on Proposition 3.1, d) sharp estimates for the elements of M^^t}, h).
In a), b) and c) the real numbers e G (0, ̂ i), with ^i < e^ small enough, and t € (0, T+)
are supposed to be fixed.

a) For s G (0,T+), we set Kg = ^y(5)[{0}supp ^+] and we deduce from the defini-
tion (1.6) of T+ that (U^tl Ks) and ( U T* R^) do not intersect. Since ( U Ks) isj'eN J se[e,t]
compact and U T^ .R^ is closed by Hypothesis 1.1 b), there exists a positive constant
C^f so that

dist( |j A^T;^) > 2C^(x,}, Vj G N.
s€[e,t]

Note that the factor (xj) is due to finite speed propagation corresponding to the boundedness
of supp '0+. By (1.8) and the regularity of the flow $y, we can take e^ small enough so that

^/ c {(^) e r*R^ ̂  > o and 2 < 1!^2 < c^}, V6' e (0^1),
I ^^ 2 2 J

where the positive constant (7^ is taken large enough and only depends on supp ?/?+. As
a consequence, we can find an open neighbourhood ^s,t of KQ, f^ compact, so that

(3.2) dist( U <S>v(s)^~t^Rd)>C^(x,)^ Vj € N,
se[e,t]

and

(3.3) $y(^,t C f(x^) G ̂ R^ .z;.̂  > 0 and —— < 1^2 < C^l.
I G^+ 2 J

In connection with (3.2), we introduce a cut-off function ;^,t € ^(R^) so that 0 < Xet
< 1, ̂  ̂  1 on U ^v(s)nTt and ^,t = 0 on U {x G R^, |a: - a:J < c-l(^•)}. For

se[£,t] j'EN J i — 2 \ J / J
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A SEMI-CLASSICAL PICTURE OF QUANTUM SCATTERING 155

any a G C^(^v(f}^e,t\ we define for s G [e,t] a{s) = ̂ {t- s)a = ao^y(t- s). Then
the symbols a(s), s G [e^t], are uniformly bounded in ^(T^R^ and satisfy

(3.4)

(3.5)

and

(3.6)

SUpp a(s) CC $y(<5)?2e,t,

Osa{s)=-(^\2^V{x)^{s)\

^,t(x)a{x,^s) =. a{x^',s).

b) For a given a € C^^vW^e^), we consider the function of s G [e,t],
fh(s) = (^(s^a^^/LD; 5)^(5)), of which the derivative equals

( r 1 iw \
(/^(,) =(^(,), ^[H\aw(x^hD^)}-^\2+V(x)^(8)}> ^hD)^^))

( ri ily \
=(^(.), ^[ff^a^^^^-^l^+y^)^^)^ (^^)j^(.))

+ E(^)- ̂  b f^1) -aw^h^ ̂ uh^rb | \ Hi / |j€N L \ / J

By semi-classical calculus in fi^^)2,^2 + ^7), the first term of the right-hand side is
Oa,e,tW, while (3.6) imply

i L. ( x - xA ^ 1
h[J\-^)-a ^^^j

X cZ' i= ^ uA—^L^^^hD^^eA^
X — X j

-X^^^hD^^eA^UA————— + Oa,s,t(/l°°),
\ a / J

in ^(L^R^)) for all ^ G N. By the uniform boundedness of Uj in S({x)~^,g^) and the
support conditions on ;^i, we have

Xe^Wj
Jb JL j

^^.dis t (rc^supp ^e,t)
cw

/ /^y / \ \ —^t

^( ^e^j) \ ^ni /r-\-^h^
-^\ 0^ / — £,*\ ^ / •\ Z/Z /

By referring again to Hypothesis 1.1 b), we conclude with

(3.7) f\t) = f\e} + O^fa111^-1}).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



156 F. NIER

c) Next we estimate the value of fh(£) by studying the evolution on the quantum scale.
We conjugate with the dilations D^ the expression of fh{e) and refer to (2.4),

f\e) = (e-^^HW^F-l^,aw(hx,D^)e-^^HW^F-l^).

By applying semi-classical Garding's inequality, bw {x^ hD) > Ob(h) for b > 0 G S(l^go)
(see [18]), to ||a(£)||2^ - aw(hx,D',eYaw(hx,D^) we get

Ha^/^^ll^) = ||a^(^,^;£)||^2) < \\a(e)\\^ +Oa(.)W,

where the right-hand side equals ||$y(^ — £)*a||L00 + Oa(e)(^) = ll^k00 + Oa,e,t(^)-
Hence we infer from Proposition 3.1

f\e) = (e-^^VF-l^+,^a^(^^;^)ly+e-^^VF-l^+)+||a||^ooO(^+0^(/l)

where the complete hamiltonian has been replaced by Hy. The above identity also writes

(3.8) f^e) = (e-^HVF-l^,aw(hx,D^)e-^^HVF-l^)
+ (e-^^F-1^, (^a^(^,£);£)iy+ - aw(hx,D•,e))e~i^HV F~1^)
+||a||LocO(£)+0,^(/i).

By standard semi-classical arguments (see [16], [28]) the sequence (e~^^HV DhF'1'^^.)^
has a unique semi-classical measure

(3.9) M{e-^D^F-^^ h) = {$v(^.[(27r)-^=o|^+(0|2]}.

As a consequence, the first term of (3.8) equals, after conjugating with dilations D^ and
recalling a(e) = $y(^ — ^)*a,

/ a(^,0d($y(t)*[(27^)-d^o|^(0|2]) + Oa,.,t(ft°).
Jr^R^

The above identification (3.9) combined with Proposition B.2 yields e~^^HVF~1^^ -^° 0
in £2(RC^). Thus the second term of (3.8) is an Oa,£,t(^°) correction term as soon as
W^aw(hx,D•,£)W^ - aw(hx,D•, e) is uniformly compact.

We next prove that this difference may be decomposed as a finite sum of terms KAh or
A^^C, where K is a fixed compact operator and Ah is uniformly bounded with respect to
h G (0,fao) on L^R^). According to Lemma 2.2 b), the symbol a(hx^-,e) is uniformly
bounded in 6r(^)-oo^l) while (3.3) (3.4) imply

supp a{hx,^e) C {(r^) G r*R^^ > 0 and —— < 1^2 < C^}.
I °^+ z J
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A SEMI-CLASSICAL PICTURE OP QUANTUM SCATTERING 157

Thus we can find x^+ G ^((O, oo)) and p+(^0 = X+(^0 ^ ^(l^i) satisfying
condition (2.1) so that X^+( j l ^ l 2 ) = 1 andj?+ EE 1 on supp a{hx,^e), for all /i G (0,/io).
Pseudo-differential calculus in the metric g\ and relation (A. 15) now lead to

(3.10) (^{hx, P; e) =x^ (W<(^ D^a^hx, D; £)<(^ D)x^ (Hu)
^R(a,e,h)K^

where K^ denotes the operator (x)s^-l-l-^{D)-l G OpS^x)^-1-1-^^)-1^^),
compact on £2(Rd) and \\R(a,e, h)\\ uniformly bounded in C{L2). Note that the inverse
K^ = {D}(x}-su^-l-l-^ belongs to OpS^}-2^-1-1-^^}^^. Identity (2.2) may
be written and

pw(^P)x^(^)w+=<(^^)x^(^)+^^,

with J? e ^(^(R^)) and we obtain

W^aw{hx,D',£)W^
= W^ {HuYp^^x, DYa{hx, P; e^^x, D)x^ {Hu)W^

+W^R{a^^h)K^
= [K;R^ + x^ {HuTp^^, DY] a(hx^ D; e) [p^^x, D)x^ (Hu)

+J?^] + W^R{a, e, h)K^W+.

Expanding the nght-hand side while referring again to (3.10) provides at once the expected
form for the difference W^\hx,D',e}W^ - aw(hx,D',e).

d) We gather the results of b) and c) and we get for all a G C^^vW^^t), t e (0, T+),
£ G (0,£i), the estimate

(3.11) {uh(t)^w{x^hD)uh(t))= ( a^O^yM^^Tr)-^^!^^)!2])
JT^Rd

+||a||^o(£)+o^(/i°).

Let t e (0,T+) be fixed and let fi(t) belong to .A/((z^(t)^). By possibly extracting a
subsequence (u^f(^))/^/, we have

lim ̂ '^^{x^D^'^ = I b(x^)d^x.^t)^ V& G ^(T*^).
h'^O JT^Rd

Next we take b G Co)o(^*Rd), & > 0. For any e G (0,£i), we consider a cut-off
function ^ G Co)o(^y(^)^£,t) with 0 < \e ^ 1 and ^ ^ 1 on a neighbourhood of
Kf = supp (^y(^)*[(27r)-^L==o|^+(0|2]). Estimate (3.11) applies to a = Xeb and taking
the limit as /i' ^ 0 yields

/ (^&)(.r,0^(.r^;^)
JT*!^

= / 6(^,0d(^(t)4(27^)-d^o|^+(0|2]) + \\Xeb\\L-0(e).
JT^IR^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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The cut-off ^g was chosen so that b > ̂ b and ||x^||i/00 < II^IL- and we obtain for
e G (0,£i)

/ b{x^ 0 ,̂ ̂ ) > / (^)(;r, Od^ ̂  t)
JT*^ ./T*^

> / 6(.r,0d($v(^)4(27r)-^=o|^+(0|2]) + |H|L-O(^).
JT*Rd

The limiting inequality as e —> 0 holds for any b e Co'o(^*Rd), 6 > 0, and we conclude

(3.12) ^) > ^(^)4(27r)-^=o|^+(0|2].

Finally, we recall that the total mass of ^i(t) is estimated by lim ||i^' \\2^ = 1 and the
h'—>0

sequence of inequalities

1 > / d^X^^t) > [ d($y(^),[(27T)-^=o|^+(0|2]) = 1,
JT*^ JT*Rd

transforms (3.12) into an equality. D

4. Canonical transformations leaving ^R^ invariant

In view of proving Proposition 3.1, we construct in this section some canonical
transformations which intertwin the classical hamiltonians po{x^) = 1/2|^|2 and
pv{x,^) = j|^|2 + V(x) while being equal to identity on the fiber T^R'1 conormal to the
origin. Such transformations are parametrized at least locally by a phase (^(rr, rj) — y.rj
where ip{x,rj) solves an eikonal equation (see [I], [13], [14]). For any positive constant
E > 1, B^{E) and S^(E) will denote the open sets

B,(E) ={rje R^ \ri\ < E} and S,{E) = L e R^ ^ < \rf\ < E\.

LEMMA 4.1. - For any E > 1 and a G (0,1), one can find an open ball B^,E,a C R^,
centered at x = 0, and a function y(x,rj) e C°°(Bx,E,a x K^) satisfying estimates (A.5)
so that

rji^^^p+y^^ju2,
(4.1) < 9^(0, r]) = rj, on B^E,a x S^E),

Wx.rj=0 = 0,

and

(4.2) |^(^) - Id\ < a, V(^^) G B^a x R<

Moreover the ball B^,E,a can be taken small enough so that

<4-3' {iS)::;!!̂ '. ^^.^
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Proof. - For any fixed rf G R^ \ {0}, the eikonal equation

(4.4)
jia^W+nr^H2,
9x^W = ̂
^ri\x.ri=0 = 0,

admits a unique solution in a neighbourhood of re = 0. If we set {x(t)^(t)) =
^y(^)(^o,^o) with a;o close to 0 such that XQ.TJ = 0 and ^o = \/H2 - ̂ (^-^p
then (rco,^) defines a coordinates system in a neighbourhood of rr = 0. Existence : One
considers the dynamical system x = Q^pv{x^\ i = -Qxpv(x^\ u = $.9^y(^,0 with
initial data rc(0) = XQ, ^(0) = ^o, ^(0) = 0 and one checks that ^(.r) = ^rco^o)
solves (4.4). Uniqueness : If (^ is a solution, one considers the initial value problem
x = Q^pv{x,9^r](x}) with a;(0) == XQ and one checks that the quantities x{t\
^(t) = 9^{x(t,xo)) and u(t) = y?(rr(t^o)) have to solve the above system. By the
regularity of the flow <i>y, the neighbourhood of x = 0 can be chosen independent of
rj e V^ where V^ is a small neighbourhood of y^p / 0, and ^rj(x) is a C°°-function of 77.
By taking a finite covering of the compact set S^(2E), we construct a global solution
ipi{x,rf) of (4.1) on B^ x S^(2£), where B;̂  is a small ball around x = 0.

Let XE e ^^((O^cx))) be such that 0 < XE < 1, XE = 1 on [^r, ̂ ] and XE == 0
on (0, 2(2^] U[^, oo). We set

(^(^) =X£;(.1^12)^l(^^)+ ( l -X£; ( .1^1 2 ) )^^\zl / \ v^ / /
Then (^ e C°°(5.,^ x R^) solves (4.1) on (B,,^) x ^(£) and satisfies (A.5) with

<^(o^)-ld, v^e^,

because ^(^1(0,77) = 77 and ^^1(0,77) = Id for 77 € S^{2E). Further we have for
any x G -83.̂

Q^{x, 77) - 77 =^£; ( -|77|2 ) [Q^i(x, 77) - ^y?i(0,77)],
V2 /

9^(^77)-Id=x^flH2)[^^l(^^-^^l(0^)]v^ /
+^fx^flH2))[^l(^^)-^l(0^)].\ v^ / /

By the continuity of <9^i and Q^^i on Srj{2E) x Ba.^ and the compactness of S^(2E\
the ball Ba;,^ can be reduced to Bx,E,a so that (4.2) and the second estimate of (4.3) hold.
Finally, the first estimate of (4.3) is a direct outcome of (^(0,77) = 0 and (4.2) since

f1Q^{x, 77) - x = 9^(0,77) + / x. [92 y(tx, 77) - I d ] dt.
Jo

D
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Remark 4.2. - a) The phase function y? cannot be extended to the whole phase-space
while preserving estimate (4.2) because we do not control the size of the ball Bx,E,a for
general potentials V(x).

b) The above estimate (4.2) implies that the phase y? also satisfies condition (A.6).
For a G C^^B^^^a x S^(E)), the transport equation

M ^ f9tb + O^Q^b + |Tr[a^]6 = 0,
{ ) \b\i=o = a,

admits a unique solution b(t), t € [0,£E,a,a]. uniformly bounded in Cg°(Bx,E,a x S^(E))
provided that £E,a,a is small enough. The next proposition asserts that the /i-Fourier
integral operators J^^),^), defined as in (A.4), transform modulo an 0(h) error term
the quantum evolution associated with the fa-dependent hamiltonian H^ into the one
associated with H^r.

PROPOSITION 4.3. - Let b(t), t G [0,£^,aL be the symbols defined by (4.5). Then the
estimate

(4.6) e-^J^a^) - J^bW^^e-^^ = O^aW,

holds in /^(L^R^)) uniformly with respect to t G [0, £E,a,a}'

Proof. - The result is standard (see a.e. [28]) up to the fact that the phase function
(p is not defined everywhere. We have to introduce cut-offs ^i G Cg°(Bx,E,a x ^d) and
X2 e C^^T^) so that

(4.7) ^(x,0^(x,r]))=El and ^{Q^{x,r]),r]) = 1,

on supp 6(^), for all t e [0,€£;^,a]- Proposition A.2 gives

(4.8) ^(6(t), y.) - ̂ Or, hD^J^bW^ ̂  = 0^(fa2),

and

(4.9) ^(6%, ̂ ) - J\b(t^ ̂ x^°\^. hD) = O^^2),

in £(£2(jRd)) (Indeed the remainder is 0£;,a,a(^°°)). By semi-classical calculus in
S((^,dx2 + ̂ ) the operator H^°\x, hD) (resp. ^°\x,hD}H^) is the sum
of p^\x,hD;h) [resp. p^\x,hD',h}} and an OE,a,a{h2) remainder in £(L2(Rd)),
with pv,2{h) (resp. po^h)) uniformly bounded in C§°(B^^E,a x R^) (resp. (^(7^)).
Condition (4.7) on the cut-offs implies that pv^(x, 9x^{x, 77); h) and po^(9^^p(x, rj), y/; /i)
both coincide with pv(x,9^(x,r])) = pQ(9^(x,r]),rf) on supp 6(t), ^ G [0,££;,a,a],
where the last equality is nothing but the eikonal equation (4.1), By referring again to
Proposition A.2, the left-hand side of (4.6) equals

- { e-^t—Hhv\Jh{atb^^^.^^+lTT[^2^]b^^^^ +OE^W^
Jo L \ z ) \

and the first term vanishes by (4.5). D
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5. Action of J^(a,(^) in the quantum scale

Let ^ be the phase function defined in Lemma 4.1 for a given choice of (E, a). With
the parameter a we control how the canonical transformation associated with (p is close
to the identity. In this section we take advantage of this and give sharp estimates for
the dilated form

(5.1) Gh(a^)=D^Jh(a)D^

of the Fourier integral operators J^(a,y?).

PROPOSITION 5.1. - Let K be a compact subset ofS^(E) and let a G C^{B^^^ x ^(-E))
be such that a = 1 on {0} x K. Then the estimate

(5.2) G^a, (^)G\a, ̂ )*(F-^) = (F-^) + o^a,a^°),

holds for any ^ G L2^) supported in K.

Proof. - According to (A.7) (A. 8), we have

^(0^)^(0^)* = Op^[\a\\x^{x^))\deia^(x^(x^))\)} + 0 ,̂(/i),

in £(£2), where rj{x^) is the inverse mapping of 77 -^ ^(x.rj) = 9^{x,r]}. After
conjugating with dilations D^ we get by (2.4)

G^a^G^a,^)* - Op^pal2^^^^))^^^^^^^))!)] + Oj^aW.

Like in the proof of Proposition B.2 we use

s- limG^a^G^a^)* = lal^O^^^ldet^^O^^jD))!,
h,—^0

and we conclude by noting that rj{0, Q = $ and 9^^(0, Q = Jd for all $ G 5^(£). D

PROPOSITION 5.2. - By taking 0 < a < ao, o^o < 1 -w^ enough, the following properties
hold for any bounded subset B ofC^{B^^,a x S^(E)).

a) For any N G R, we have

(5.3) IÎ G ,̂ ̂ (.r)-^!!^^) = 0^,^(ft°), Va G B.

fc) // p+,p- € S'(l,^i) ^r^ condition (2.1) H^/Z or_ < o-+ + 21og(l - a) r/^n w^
/iflv^ ^^ estimate

(5.4) IK^^^^^^G^a^)?^^,!?)!!^^) = 0^-,^,a,0,N(^°), Va G B.

In order to establish this Proposition, we need a technical lemma of which the proof
is adapted from [10] and [21]. For \ e C^^B^^^a) and a G S^^^.g^) we define
the operator

(5.5) 1^(0, x^M- I e^^^-^'x^)^^)^.
JR^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



162 F. NIER

For the sake of conciseness we introduce the following notion of support: For a symbol
c(h) e ̂ ((^^i) and a set F11 C T^ possibly depending on h e (0, ho), we write

(5.6) g, - supp c(h) C71 F\

if, for any TV' (E R, we have ̂  = ^/(fa) +r^v/(/i) with supp ^/(fa) C F71 while the semi-
norms of C N ' ( h ) (resp. r^/(ft)) are estimated in S^x)1^^^) (resp. S^x)^^^)) by the
semi-norms of c(fa) in S^x)^^^^) uniformly with respect to h e (0, ho). As a consequence
of pseudo-differential calculus in the metric ^i, the product c{x, D, h)c'{x, D, h), whatever
the quantization is, is uniformly bounded in OpS{(x)~°°,g-i) when c(h) and c'{K) are
uniformly bounded in some S^x^\g^_) with

^i - supp c{h) C^ F\ ^i - supp c\h) C11 F^ and F11 H F771 = 0.

LEMMA 5.3. - The following properties hold as soon as the parameter a satisfies
0 < a < 0:0 for some fixed ao « 1.

a) The operator ^ / l(a(fa),^, ̂ )^ / l(6(/l),^,^)* is uniformly bounded in
OpS'^rK)^4'^ ,^i) when a(h) and b(h) respectively describe bounded subsets
of 5'((a;)^,^i) and S^x)1^' ,^i). Moreover if rj{x^) is the inverse mapping of
T] —> ^{x,rj) = Q^{x^\ its (l,0)-symbol c(h) satisfies

î - supp c(/i) ̂  {(^ 0 G r*R^ ̂  G B^ ,̂ and (^, ̂ (te, Q) G A'1 H B71},

w/i^n
^i - supp a(h) C'1 A71 and ^i - supp 6(fa) C71 J?71.

^ For a(/i) and b(h), h € (0, ho) uniformly bounded in S ( { x ) N , g ^ ) and C S^x}^^^)
there exists c{h) C S^x)1^'^1^'^^) uniformly bounded so that

^h(a^^)b^o\x^D)=^h{c(h)^^).

with

gi - supp c(K) C71 {(x^) G A71, ^ C B^^^ and (h^Q^hx^)^) e B'1},

y
^i - supp a(fa) C'1 A^ and ^i - supp b{h) C71 B71.

Pw^/1 - a) The proof is basically the same as for Proposition A.2 a). We write

r^aw^.^r^bw^^r
= y e^—>r? ^ y 1 r 1 x(hx)a{x,ri',h)b(y,n',h)^{hy)dr]

J^
I i(x—yY \ 9sc<^(th-x-}-(l—t)hy.'n)dt /i \ / 7 \T/ T \ /i \ -»-= e J o X{hx)a{x,r]',h)b{y,rj',h)x{hy)drf

J^

= { e^-y^c{x^y^'M.
J^
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r 1

We used the change of variable ^ —> r](u^ v, ̂ ) reverse to rj —^ ^(i6, V^T]) = \ Q^{iu +
^0

(1 — t)v^rj)dt and we set

c{x, y, ̂  h) = \{hx}a{x, r]{hx, hy, $); h)b{y, r](hx, hy, ̂ ); h)^(hy).

This symbol c(h) is uniformly bounded in S{{x}N(y)N\ ̂ —+ ̂ - + d^2) and the result
comes at once from Lemma A.I b).

b) The kernel of r^a^),;^)^1'0^^;^) writes

[ ei^ll~x•11x{hx)a(x, ̂  hy^'-^-^x', ̂  K)Sr]dx1^
JR3d

= [ e-^^-y^^hx^x^^h)^
JRd

with
c(x, ̂  h) = \ ^^^^-^^-^^{hx^x, ̂ {x', ̂ dx',

JR^

and
/ e Co°°(B.,£;,a), X' = 1 on supp x '

We set r(u,^rf) = [Q^9^(su, (1 - ̂  + ^) - Id}dsdt so that ^[(^(^,77) -
Jo Jo

ip(hx^)} = {x + r{hx,^rj)x).{rf - $) while estimate (A.5) yields |<9^<9j(9^r| < C7^6 and
(4.3) gives |r| < a. We point out the identy

(5.7) 9^[{x-}-r(hx^,r])x\(r]- ^)] = 9^{hx,r]} = x + r {hx , r j , r ] ) x ,

and introduce the notations r^ = r{hx^^r]\ r^ = r{hx^r]^r]}. Let ^a ^ ^(R^) obey
Xa = 1 for |^| < ^ and ^^ = 0 for \u\ > 2a. The symbol c(rc,^; h) is the sum

c-(^;/i)+c+(^;fa)= / e^^^-^-^-^d-^^^^;^^'
JR2d

+ I e^-^^-^d^x.x'^^hWx1,
JR2d

with ^
d. (x^ x\ ̂  ̂  h) = (1 - Xa) ( ̂ ^^^ ) ̂ {hx}a(x^ rj)b(x\ Q,

\ \a;/ ' ^ / /
and

d^x, x ' , $, ̂  h) = x. (^f^T^f) X^^)^^, ̂ b{x' + r,x, 0.

Owing to (5.7) we have

(x + r^x - x1) ^_^_^).(^) _ i^^-x).^-^
i . .^.U^C- — c;
\x + r^x — x'Y
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Integrations by part with this vector field and some integrations by parts with respect to
x ' in order to make the integral converge, ensure

^c^x^'M^C^x}^.

The second term writes

c+(^;/i) = e^-^d^x.x^^^h)

Hence by referring to Lemma A.I, the proof is done as soon as

(5.8) \Q^Q^d^x^x\^^h)\ ^ C^^-l^)^-171.

Indeed one easily checks

^Q^d^x^x'^^h)\(5.9) \a^a^d^x^x^^^h)\
< C^s Sup (x)N-^k{xf + r^-H-^.

o<fc<|/3|+H

On the support of ;̂ , we know \x + r^x — x ' — r^x\ < 2a({x) + {x' + r^x)). By taking
into account |r| < a we obtain

\x\ — \x' + r^x\ < \x — x' — r^x\ < 3a({x) + {x' + ̂ ^))?

so that (1 — 3a)|a;| < (1 + 3a){x' + r^x) allows to replace the right-hand side of (5.9)
by Cft^^{x)N~^{xf -^r^x)Nf~^. We now assume |rr|, \x'\ > 1, which is the only
interesting case and we use again |r| < a,

|(1 — 2a)|:r| — |a/|| < \x + r^x — x' — r^x\

< 4.a(\x\ + \x'\ -\-a\x\).

Thus, by taking ao small enough and 0 < a < ao, we have C~l{x) < ( x ' ) < C(x) on
the support of \a and (5.8) becomes a consequence of (5.9). D

Proof of Proposition 5.2. - We first notice that Gh(a^(p) = ^(a^rr,^),^, y?) when
a G CS°(B^E,a x S^(E)) and x € ^(-B,.^), x = 1 on supp a.

a) We remark that {x)N = Op^1'0^^)^] and the previous lemma implies the uniform
boundedness of (Gh(a^){x)N)(Gh(a^){x)NY in Op^)2^). As a consequence
the operators ({x)-NGh(a^){x)N)((x)-NGh(a^)(x)NY and {x)-NGh(a^){x)N are
uniformly bounded on ^(R^).

b) Owing to part a) we can replace p^^x^ D) by p^ {x^ D). Indeed the equivalence of
Weyl- and (1,0)- calculus gives p^^x^ D) = p ' ' . ' ' { x ^ D) with g\ —supp p ' ̂  C^ supp p+.
Lemma 5.5 b), gives Gh(a^)pYO\x^D) = r^c^),;^,^) where c{h) is bounded in
5(l^i) with

^i - supp c(/i) C'1 {(.r,0 G TR^ ^ G B.,̂ ^ h-^^hx^)^ > a+}.

4e SERIE - TOME 29 - 1996 - N° 2



A SEMI-CLASSICAL PICTURE OF QUANTUM SCATTERING 165

For u -^ 0 we calculate Qu{u).6u = (u)~l{6u — ^-^ru)^ from which we conclude that
the inequality \u — v\ < a\u\ implies

(5.10) \v - u\ < ( 1 b"^ dt < f ^-dt = -log(l - a).
Jo \u^-t(v-u}\ Jo 1-at

Thus we deduce g^ - supp c{h) C'1 {x.^ > a+ + log(l - a)} from estimate (4.3). By
Lemma 5.5 a), the operator

(G^a, (^1'0)(^ P))(C?\a, ̂ l'o)(r^, D)Y = r^ft), ̂  ̂ \c{h^ ̂  ̂ *

is uniformly bounded in Op5'(l,^i) and the ^i-support of its (l,0)-symbol
is fc-included in {x.rj(hx^) > cr+ + log(l - a)}. We refer again to (4.3),
\rj{hx^) - ^| < a|?7(/irr,^)|, and we conclude from (5.10) that the (l,0)-symbol of
(^(a, ̂ p^\x, ̂ (G^a, ̂ p^°\x, D)Y satisfies

^i - supp d{h) ̂  {x.( > cr+ + 21og(l - a) > a_}.

As a consequence the operator

(j^ D}G\a^ ^p^°\x^ D))^^ D)Gh^ ̂ p^°\x^ D))\

is uniformly bounded in OpS^rr)"00,^!), which yields the result. D

6. Elimination of V{hx) in the quantum scale

Proposition 3.1 is a triviality when V = 0 (and S = 0). Here we get rid of the semi-
classical potential V with the help of the Fourier integral operators Jh(a^) studied in
the two previous sections. For a data '0+ G (^(R^ \ {0}), we take the constant E > 1 so
that supp -0+ C Srj(E). We fix cr+, a- and a so that -1 < cr_ < a+ < 1, 0 < a < ao
and a- < a+ + 21og(l - a). Note that in Proposition 4.1, the ball Bx,E,a can also be
chosen small enough so that

(6.1) dist (2B^a,Xj) > Co(x,), Vj G N, j ^ 0,

for some positive constant Co. This condition will help in the treatment of S..For
a G Cg°{Bx,E,a x Srf{E)) such that a = 1 on {0}supp ^+, we consider the solution b(s)
of (4.5) for s G [O^E,a,a]' All this choices of E, a, a and £E,a,a essentially depend on
-0+ and the constant e^^ of Proposition 3.1 is nothing but CE,a,a-

Proof of Proposition 3.1. - The boundedness of W+, e~^'11 and e~^HV and
Proposition 5.1 imply

(e~^HW^ - TV+e-^^^F-1^)

=(e-^HW^-W^e-^HV)G\a^)Gh(a^Y(F-l^)^o^ho).
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By differentiating with respect to e and applying the intertwining property HuW^. = W^.HQ
we get

(e-^W+ - W+e-^^W-1^-)

=-i [ e~^^Hh~l(^x•,h)W++[V(hx),W^})e~^HVGh{a^)
Jo

Gh(a^y(F-l•^)ds +o^(/i°).

Since ^+ G ^(F^), (a;)^^-1^ belongs to ^(R^) for No > 0. Owing to
Proposition 5.2 a) the operator (x)NOGh(a^)(x)~NO is bounded and it suffices to find
an No > 0 so that

(6.2) /r^SQr; fa)W+ + [^(^), W^}e-^HVGh(a, ̂ {x)-^,

is bounded on L^R^) uniformly with respect to s G [0,6^;^^] and ft G (0,/^o)- Before
going further, we must note that estimates (4.8) (4.9) can be easily extended to any
X i ? X 2 ^ S(l^go) which satisfy condition (4.7) (simply insert cut-offs with the proper
support conditions like we did for py and po). Especially, if ^a. G C^°(2Bx,E,a) with
^ = 1 on (1 + O)B^E^ and ^ G C^((0,oo)) with ̂  = 1 on [0^, 20^7]' then

we get after conjugating with dilations

Gh(a, ̂  = x.(^)^(a, ̂  + 0^ (^2) = G\a^ ̂ )x.(hx) + 0^ (fa2)
= ̂ (ffo)^(a^) + 0^(fa2) = G\a^^W + O^(^)

in >C(L2(RC?)). Therefore we can always insert a cut-off Xx(hx) or ^(ffo) just before or
after a factor (^(a, y?) without changing the final estimates. We replace G^(a, (^(a;)"^ by
^^(a, (p)^(Ho)(x)~^° and by conjugating (4.6) with dilations we transform the operator
(6.2) into

h-\^ h)W^ + [V(hx\ W^G^b^ ̂ e-^x^H^x)-^ + 0^(1).

Next we consider the cut-offs ^+,x- € C^°([-l,l]) with ^+ = 1 on I0^11,!]
and ^+ = 0 on [—1,<7+] while \- '= 1 on [—l,^-3^0^] and ^_ = 0 on [cr_,l]
and we set p-^(x^) = x+(^-0. P- = 1 - P+. P-C^O = X-(^-0 and ^+ =
1 — j9_. Standard microlocal propagation estimate given in [10]-Section 4.12 imply
(x)^?^^, D}e~^^HO\^HQ}{x}~NO = 0^ (1) and we are lead to check the boundedness
of

h-1^ h)W^ + [V(hx), W+])G/l(^), ̂ (x)-^,
and

h-\^h}W+ + [V(hx),W+})Gh(b(s),<p)pw(x,D).
The symbols b(s), p+ and p_ satisfy the assumptions of Proposition 5.2 so that the operator
{x)NOGh(b(s),lf){x}~NO and the factor { . . . } of the decomposition

G'l(b(s),v)pw{x,D)=x^Ho)(p++p.)Gh(b(s),v)pw(x,D)+0^(h2)
=^)-A^O{^)NO^(^o){.r)-A^t)}{MJVOp_G/l(&(s),y)pw^,I5)}

+^{Ho)p+{Gh(b(s),v)pw(x,D)}+0^(h^

4" SfiRIE - TOME 29 - 1996 - N° 2



A SEMI-CLASSICAL PICTURE OF QUANTUM SCATTERING 167

are uniformly bounded operators. Hence the problem amounts to the uniform boundedness
of

(6.3) /rl(S(^)w+ + [y^wy)^)-^,
and

(6.4) h-1^ h)W^ + [V(hx\ W^xdW^^x, D)xx(hx).

We have

(6.5) l^y^X.r)-^ < ( I 9,V(thx)dt\—— < C,
\Jo / W

while Peetre's inequality gives

(6.6) \h-1^ h){x)-^\ < Ch-1 Y/x - x-\ (x)-^
3^ \ " /

<Ch-lY/x-^\ \Ch^-\
~ ^—X h / ~j^o x /

The smoothness of the wave operator, that (x)NW^(x)~N~6 for 8 > 0 (see [10]-
Section 4.6), and the above estimates yield the uniform boundedness of (6.3) in /^(^(R^))
as soon as No > p,.

Next we prove the boundedness of (6.4). By (2.3), we know that W^^H^p^^x.D}
belongs to Op5'(l,^i). We introduce a cut-off ^ G C^(2B^^,a) so that ^ = 1 on
supp^a.. Pseudo-differential calculus in S(l,g^) yields the boundedness of

Axx{hx) - ̂ {hx)Axx{hx),

in Op5«a:)-°°^i) for A = X^WP^^.D) or A = W^WP^^^D). Then by
referring again to (6.5) (6.6) the problem is reduced to estimating

h-^{xM^hx\

and
[h-^x'VW^xdW^^^DUhx)}

- W^ [h-^x'V^hx)^ xdW^^x^ D)x(hx)}.
For the first operator we have

^/o^) ^ c^i^Y^ < c^i^y^ c^-\'ZX)

j^O \ •" / •" j^Qli l i ^n \ l v I .^n \ /

where we used condition (6.1). By noting the uniform boundedness of /^(^y)^) in
5'((a:),<7i), the estimate of the second term comes again from pseudo-differential calculus.
This ensures that the /^(^(R^-norm of (6.4) is also an 0^(1) and the proof is
complete. D
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7. Applications

Our results are not realy satisfactory from one point of view: The asymptotic evolution
described in Theorem 1.1 is not well posed in terms of semi-classical measures, even
after a second microlocalisation if we refer to Proposition B.2 c). We recall that the

/le

commutation relation SHo = HoS yields the natural decomposition S = \ S{\)d\
»/(0,oo)

where 5'(A) belongs to C^L2^'1)). Under the short range assumption Hypothesis 1.1 a),
5 (A) is continuous with respect to A. If we follow the normalization of [22], it writes
Id - 27r%(2A)^T(A) with T(A) compact. Thus the relation -0+ = 5^_ gives

^-(0 = ̂ -(0 - 2m\^d-2 [ rf^^^^-dei^)^.
Jsd-i \ 2 )

As an example if we multiply '0_ by a phase and set V^(^) = e^^^-(^) with g real-
valued, we do not change the modulus ^(Ol = |'0-(0| and the incoming semi-classical
measures are the same. Meanwhile, for ̂  = 5^'_, we generally obtain l^^)! ̂  |^+(^)|
even in dimension d = 1. Hence the outgoing semi-classical measure cannot be expressed as
a function of the incoming one. We shall see in the first paragraph that this problem is solved
by introducing another asymptotics in which the scattering cross sections proportional to
|r(^-, a;, ̂ Ql2 anse as Ae only significant parameters. This provides a dynamical approach
to the scattering into cones problem already studied by several authors ([2], [12], [29]) via
stationary theory. In the second paragraph, we reformulate our results in dimension d = 1
and give sketch of a link with linear Boltzmann equations.

In this section we consider semi-classical measures associated with bounded sequences
of trace-class operators which are mixed states constructed as projection-valued Bochner
integrals. If (M, g) is a measured space, we call Z/^M, Ji) the space of Bochner integrable
J/i-valued functions. Since J\ is a separable Banach space, a function P(m) is Bochner
integrable if and only if it is weakly measurable and ||-P(yn)||^i G L^M) (see [31]). For
.A/f^r*!!^), the situation is different because it is neither separable as a Banach space
nor a Banach space when endowed with its weak* topology. We say that an .A/t^r*^)-
valued function /^(m), m G M, is weak* integrable if it is weak* measurable, that is
/ a{x^)dii{x,^m} is measurable for any a G ^(T*^), and ||^(m)||^^ G ^(M).

JT^R^
Then we can define the weak* integral / ^(m)d^(m) in A^T*!^) by

JM

r \ r 1 r r r "]
/ a(x^)d \ ii{m)dQ(m) \{x^) = \ \ a(x^)dp.{x,^m)\dg(m),

JT^R0' \_JM J JM UT*^ ]

Va e CoCri^),
for the right-hand side is defined for any a E CoCr*!^) and estimated by

/ \\l^{rn}\\^dQ(m) ||a||L°o.
UM ]
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Note that a function /^(m) is weak* measurable if and only if / a{x, ̂ )d{jL(x, ̂  m) is
JT^Rd

measurable for any a G C^^T^) because C^T*!^) is sequentially dense in (^(r*^).
Moreover the integral of a weak* integrable function is completely defined by its values
on ^(T*^).

LEMMA 7.1. - Let (P(m;/i))/ie(o,/io) be a sequence in L^M^Ji) so that, for Q-almost
every m, \\P(m',h)\\j^ < g{m) and M(P(m',h),h) = {^(rn)}, with g (E L^M).

Then the sequence of trace-class operators ( / P(m; h)dm ) admits as unique
\JM ^/iG(o,/io)

semi-classical measure / ^(m)dm,
J M

.A/u / P(m;h)dm,fa) ={ ^(m)dmf.
\JM ) [JM J

Pwo/: - For a e (^(T*^), we have

/ a{x^)d^x,^m) = lim Tr[P(m; fa)a^(^/^D)],
JT*^ 'l-^0

for ^-almost every m while ||^(m)||^i^ < lim ||P(m; fa)||^ < ^/(m). Thus /^(m) is weak*
integrable. Moreover for h > 0, the operator a^^x.hD) belongs to ^(L^R^)) = Ji*
and we have

T r f f / P{m',h)dm\aw(x,hD)\ = ( Tr[P(m; h^^x, hD)]dm.
\_\JM ) \ JM

We conclude by Lebesgue's Theorem.

7.1. Scattering into cones

In this paragraph we forget the positions xj and the potentials Uj for j / 0 and
we consider the d-dimensional case, d > 1. Further we need a stronger version of
Hypothesis 1.1 a)

HYPOTHESIS 8.1. - IJL > d,
which ensures according to [22] the continuity of the kernel r(A,cx;,o/) with respect to
(A,o;V), A ^ 0.

We follow the idea of Thirring in [29] who considers instead of a pure state a properly
chosen mixed state which describes a beam of particles with a momentum distribution
concentrated around a fixed ^o / 0 and widely spread orthogonally to ^o in the quantum
scale. We focus the momentum around ^o by introducing another small parameter e
while replacing ^_ by a function of the form ^r^(^), with ^ G ^(R^ \ {0}),
[|^[|^2 = (27^)d/2. The mixed state is constructed by superposing projections on broadly
translated copies of this wave function. We take

P(^)= / x{m)P{m^)dm
^l-o}±'Uo}^
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where P(m\e} is the orthogonal projection on TV-F"1^""12^1^^^^^-)] and where
X ̂  ^({^o}"1')^ X = 1 m a neighbourhood of m = 0. In order to keep a state from the
C*-algebras point of view (see [7], [11]), we may assume ^ > 0 and / \(m)dm = 1.

^Uo}^
By conjugating with dilations, we define

P{e, h) = DhP(e)D^ = f ^(m)^P(m; e)D^m,
JW±

where D^P(m\ e}D^ is the orthogonal projection on

^-^-^-(yQ].
Since ̂  is compactly supported in R^O}, the assumptions of Theorem 1.1 are satisfied for
all the concerned pure states, for some T+ and T_ which essentially depend on the trajectory
passing through (0,^o). By Lemma 7.1, we can calculate for t G (-T_,0) U (0,T+) and
for any fixed e > 0 the semi-classical measure of

P(^; £, h) = e-^P^e, hV^ = ( ^(m)e-^^^P(m; e)Dy^Hhdm.
Jw^

It is equal to the weak* integral

(7.1) ^,e)= / ^(m)^v(*)J (2^-^=0^ ^(——^
^_Co'
£l/2

=<M<)J(27T)-^0^(^

dm

when t G (-T_,0) and to

^e) = f xM^M*^)-^^!^^;^^)!2]^
JW^

when t e (0, T+), with ^+(m, £) = ^[e"'^ ̂ 7T^(^i^-)]. Since the transformation $y is
smooth with jacobian 1, its action on bounded measures commutes with weak* integration
and we get

(7.2) ^ e) = $y(^ [ / ^(m) [(27r)-^=o|^+(e; m^ e)\2] dm], ^ e (0, T+).
^Uo}^ J

The next proposition details the asymptotic behaviour of fi(t^ e) in the weak* topology
as e —^ 0.

PROPOSITION 7.2. - For any t € (-r_,0) U (0,T+), the semi-classical measure p.(t,e)
satisfies

(7.3) w* - vlmQ^l(t^) = ̂ v{t)^[8x=0^=^} = ̂ ^(0,^o;t)-
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More precisely, if 7^ denotes the compact phase-space trajectory [^ <l>v(0,^o^)
t€[-T_,T+]

and if a G (^(r*^) H^/Z supp a H 7^ = 0 r/^n

(7.4) / adjL6(t,£) = Oa,t(, £ ) =0a^ ),
JT^

.00^ Vte(-T-,o),

and

(7.5) /
Jr*r*Rd

.d-1

ad/^(t, e)

=ed-l I ad <^)J^o^
Jr^ I Isi

i^+i /M i ioV/Y^-M
^ 2 ' ^? \^\) ^ 2 2

+oa,i(^-1), We(o,T+).

Remark 7.3. - a) The limit (7.3) corresponds to the fact well-known by physicists
that scattering cannot be observed along the trajectory of the incident beam. Scattering
phenomena are marginal effects only detectable in the other directions, which is the
meaning of (7.4) (7.5). Detailed description of scattering experiments may be found in
[8] [24]. In the stationary approach, this aspect is contained in the compactness of the
T-matrix [10] [22] or in the decay at infinity of the spherical waves in the Sommerfeld's
decomposition of scattered plane waves (see [27]).

b) As this was done in [26], equality (7.5) allows to derive the expression of scattering
cross section from their exact physical definition. The ^-1 factor cancels with the
incident current density = O^"1). The exact value of the scattering cross section is
then (27^)d+l|^-3|^(M:2-,a;V)|2 in agreement with [24].

Proof. - The results for t < 0 are straightforward consequences of the compact support
of ^. For t > 0, it actually suffices to study the weak* limit of p,(0^,e) - /^(0~ ,e) or
as an equivalent of its projection on R^,

(7.6)
r r
/ ^(m) |^+(^m^)|2
JW1- [

.d/2 9\
^-^

.1/2 dm.

The function ^^.(m^e} is given by

^m^=e~i^^(^-'
o... /• ^1. r /|^|2 $ ^ \ _^ i ^-^oWI^I2 \^\,,,-^L^'M'Mr ° ̂ ^rhr"^'
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and its modulus satisfies

(7.7) |^(^,^-^(^J°)2

2RJ 2 -̂ / T/^l2 c ^
^T^^'^MJ

xe--^^vI/^^Wi^^V^ - ̂ V/1
^/2-1^ ^1/2 ̂  ^1/2 ̂  2 2 ^ ^ J

+4^ / iY^ ^ i^W^ ^ ̂+47r L/^ 2 ' i^ i ' ie ly 1 2 'i^mj
^^^J_y(^0,\^(^^\

e^'-{ ei/2 ^y^ gi/2 )

c/icf l^l2^.;/lrl2 i^i2^—/^^--^-^^-^-J^^-
Next we calculate the action of the measure (7.6) on a test function / G (^(R^), which
may be supposed compactly supported. The validity of the next calculations relies on
Fubini's Theorem for compactly supported distributions. The first term of (7.7) provides
the real part of

|2 t ti \ 1 / ti4_, f J . (€-^\^(\^ ^ €\ 1 ̂ -^W^-^iL:̂
R2. -\ ——— \ £

/A-

-^A^^l^r^'M'Mj^^l^^rl^,(a.Ki)/«)^,
where Tr^^ is the orthogonal projection on {^o}"1- After the change of variables u = ^—^,
v = i^(^ - ^o), we get

A • f -( ^^o+^-^/2|2 ^o+s1/2^-^^ ^+^/^+^/2-
~ 47r% L X{^U}T{—————2—————- I^V2.-^ l^+^.+^l.

^(v + £l/2u/2)^(v - £l/2u/2)ed6(£u.(£l/2v + ̂ o))

f^o + e1/2^ - eu/2)du(tv.

Since the T-matrix is continuous by Hypothesis 8.1 and since / X^du = (27^)d~l

^Uo}-1

the first term of (7.6) equals
(7 ^ ^-12(2^)^ /|^o|2 ^o ^o \ .^ x ^^-i^
(/•0^ £ i^ i imi I ~7~?l7"rT^"l P^o^+ 0 /^ )•ISo | \ ^ |So| |So|/
The second term is derived from the second term of (7.7) and equals after the change of
variables u = ̂ ^, v = i^(^^ - ^o),

4^2 / vf. ^r(^2 ^ ^o+^+^/2^ ̂ (\a\2 H ^o4-^^-^/2\
47r L x(7^^^n)T^? ̂ 5 l^o + .V2. + -/2| JT^5 ̂ - l^o + .V2. - -/2| J

^(v + £l/2n/2)^^ - £l/2^/2)£^(^.(£l/2^ + ̂ o))

^|&..v^-^l'.^^^^
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We refer again to the continuity of the T-matrix and get

(79} e^ [ (27r)d+l T^0!2 ^ ^\\(^ l^l2
^ ' L~^^T[^W\^\) ^"T"^"
(,„ ^l (^rrM.,^)2,^-^)^,^-)

^ 1^01 \ ^ 1 ^ 1 1 ^ 0 1 / \ ^ ^ /

By adding (7.8) and (7.9), we check that

w* - lim^(0+,£) -^(0~,£) = 0,
£—>-0

which yields (7.3) for t > 0. If we take a test function /(^) such that ^o ^ supp /, then
the contribution of ^(0"~,£) and of (7.8) vanishes while (7.9) leads to (7.5). D

7.2. Towards a linear Boltzmann equation

In dimension d = 1, the T-matrix written as (T(^),T(^, -^ is continuous with
respect to $ G R \ {0} under Hypothesis 1.1 a). The relation ^+ = S^- reads

^) = ̂ _(Q - ̂ -[T^ 0^-(0 + T($, -0^-(-0]

= (i - ̂ T(^O^-(O - ̂ r(^-o^-(-o.

By taking into account the unitarity relation -27r%(T - T*) + 47^2^^* = 0 and by
introducing like in [9] [26] the reflection coefficient Ji($) = -^T(-^$), we obtain

hMOl2 =(i - ̂ (onhMOl2 + ̂ (-OFhM-OI2

+2Ref(i-^r(^0)^r(^-o^-(0^(-o].

The outgoing semi-classical measure cannot generally be expressed in terms of the incoming
one. Nevertheless if ^_ is supported in $ > 0 or in ^ < 0, we get the physically relevant
expression

|^(0|2 = (i -1^)!2)!^)!2 + ̂ (-on^-Ol2.
Now we consider the case with at most countable positions xj and quantum potentials

Uj, j G Z, which satisfy Hypothesis 1.1 a). We may assume xj < a:j+i and the finite
case is described by taking Xj = ±00 and Uj = 0 for j $ ±A^±, for some N± G N.
With every Uj, j G Z, we associate the T-matrix Tj and the reflection coefficients -Rj(0.
For every position xj, j G Z, we introduce the "flow" $^, derived from <I>y by changing
the sign of the velocity each time that the trajectory crosses T^ .R. We also define the
functions Tj and ^ on T^R^ by

r,(x^) = Sup{t e (-oo,0], <S>v{x^'^t) G T^.R},

and
(Xj^j{x^)) = ̂ v(x,^Tj(x^)),

with the conventions rj(x,^) = -oo and ^j(^,<0 = 0 when {t G (-00,0], $y(rr,$;^) G
T^ .R} is empty. The next Proposition shows that for some fa-dependent mixed states P\
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the semi-classical measure of the sequence {e~^^H Phe^^H ) solves an evolution equation
which looks like a linear Boltzmann equation.

PROPOSITION 7.4. - Let g G L^T^R), g > 0, be such that

^y(t - s) [$y(5)supp g n r^R] n (|j r^.R) - 0,
jez

V% G Z, Vt,5G[0,r], t > s .
(7.10)

Then there exists a bounded sequence of trace-class operators {Ph)he(o,ho} so tnat

M^e-^P^^^h) = {/(t)}, W e [0,T),

(7>11) f(t) = <M^ + E ̂ -^o)^) [|^(-^)12^M^ - \R^)\^vW.g].
j'ez

Moreover if g is continuous on T*R, the function f(t) is piecewise continuous and solves
in 2y(T*R) the equation

(7.12)

pj+$.aj-a,y.^/

-E^^) /[^(^o^^^)
.̂  ^Rj'ez

/|^|2 1 ( - | 2 \

-^a^)/7^^ ^-— ^\ z z /

/i=o = g,

where f^-^t) = lim f(x^^t) and a,(f,0 = 4^1^ (^)|2.
( a;, 77 ) —»• ( a; j , ̂  )

( x - X j ) . r j < 0

Proof. - We split the initial data g into several parts. For j e Z, we set ̂  = ^|^._i<a;<^.
and we define

r,,+=supp^n( |j <M-^*,R),
s€(0,T)

r , - = s u p p ^ n ( U $y(-^.^R),
sC(0,T)

and
^,+ = ̂  lr , ,+, 93- = 9j |r,,-, ^-,0 = ̂  - ̂ ,+ - fc-.

With gjft we associate the fa-dependent trace-class operator 7^0 defined for h > 0 as the

Bochner integral 7^0 = \ Qj.o^^^^^dxd^ where TT^ ^ is the orthogonal projection
JT*R

on some ^-dependent wave function with semi-classical measure 8x=xo^=^o' For almost
every (rc,^) G supp ^^o the trajectory M $y(a;,^;^) remains at a finite distance of

te[o,r]
NT^R while the semi-classical measure of TT^ equals ^(a;^). By the same argument
j'ez
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as in the proof of Theorem 1.1 part b), one checks that the semi-classical measure of
e~i^Hh7^^^ei'kHh, t G [0,T) is <I>y(t)^(a.,o for almost every (rr,^) G supp g^o. We refer
to Lemma 7.1 and get

M^e-^^e^^h) = {<M^,o}, W e [0,T).

On supp ^+ C T*R we take the coordinates (s^rj) G (0,T) x (0,+oo) given by
(x^) = <i>y(5)(n^,77). The jacobian of the transformation (.§,77) —^ {x^) equals

QsxQ^ - Qs^x = 9^pv9^ + QxPv9^x = ̂ py = ̂ .

If we set gj^{x,^) = ̂ +(5,77) then ^+ G ^^(O^r) x (0, +00), rjdsdr]) with the same
L^normas^+.BynotingL^^^^x^^+oo),^^) = ^((O^),^^^,^-^),^)),
we define for almost every s G (0,T) and k G Z the L2 -functions

^+,-(^;5,fe) = l^,2^+i](0^/27r^+(5^),

and / - \
<^(^;., fe) = h-^(W,,F-1^.) ——^ .

\ n /

If 7r^+(5,fc) denotes the projection on e^^u^s.k), then TT^ G ^.^(O^r) x Z,Ji)
where the measure on (0, T) x Z is the product of Lebesgue measure ds with the discrete
measure 6k. Indeed TT^ is weakly measurable while we have

ll^+^^ll^i ^ l|l[2^2^+i](^)Wj,+(5^)||Li((0,+oo)).

Thus the Bochner integral 7^4. = \ 7r^(s,k)ds8k defines a bounded sequence of
J(0,T)xZ

trace-class operators. For almost every (5,fe), Theorem 1.1 applies by taking T_ == s and
T+ = T — s and we have

^(e-^\^A;)e^\fa) = {/.^(^^fe)}, V t G [0,T),

with

{^y(^- 5)4^=.r,l[2^2fc+i](^)Wj,+(5^)], ^ ^ < 5,

^+(t; ̂  k) = $y(t - 5)4^=^l[2^2^i](^)^[(l - l̂ )!2)^^ ̂ )

+l^•(-^)12fe+(^-^)]], ^ t>^

Note that ^^_(0;s,fc) writes ^/=sl[2fc,2 fc+ l](?7)^',+(5577) m me coordinates (5', 77). Thus
by Lemma 7.1, ^j,+(^, 0 = iT^^', 77) is the semi-classical measure of 7^. For a general
t G [0,T), the sequence {e~^^H 7^6^^ ) admits as unique semi-classical measure

ch^)*^+ + ic-^)^)!!^^-^)!2^^)*^^ - l^-)!2^)*^]-
The treatment of p^_ is completely symmetric and we finally take Ph = ^> 7^0 + 7^+ +

jez
7^_. The expression (7.11) comes at once by linearity and ^-estimates. For (7.12), we first
notice that the function f{x^'^t) defined by (7.11) solves the classical Liouville equation
out of N T^IR. The right-hand side is directly related to the discontinuity on T^R. D

jez
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A. Pseudo-differential calculus

Pseudo-differential operators often appear with a kernel-symbol depending both on
x and y. Estimates on the (re, ̂ -symbol can be generally derived for some class of
splitted cr-temperate metrics. This is the object of the next lemma which has, as usual,
a semi-classical counterpart.

LEMMA A.I. - a) Let the a-temperate metric g be splitted, gx^(^x-> —^) = 9x^(txi^^\
and let the weight m^ be g-o-temperate. Then the symbol

(A.I) e^-^^,^) _ = ̂  ̂ ^ b{x^x^^) + RN^X^^
^ k<N K '

belongs to S(m^m'z^g) and the remainder RN(V) G Sf^^2 ,^) is a continuous function
of b G S{m-^ 0 m-^^g 0 g).

b) Assume further that the metric g writes gx^(txit^} = ax(tx} + 0x^{t^) and take the
weights m-i{x) and 7712 (re, ^) so that m^ and m\m^ are g-o-temperate. Then the operator
with kernel

A{x^y)= f e^-y^b(x^^)d^
J^

belongs to OpS{m^m^,g) when b G S^m^x^m^y^^g'), with g^y^x^y^^} =
^x(tx) + ̂ (^y) + A/,$(^)' Moreover the (l^ff)-symbol a{x^) of A admits the expansion

(A.2) a{x^)=eiDy•D^y^)\y^

= E ̂ ^^^^o+^^^o,
k<N

where RNW G S^^2 ,p) is a continuous function ofb G S{m^{x)m'z{y^\g1).

Proof. - a) The symbol (A.I) equals c(rr, rr, ̂  ^) with c(x^ y^ ̂  rj) = e^Dy•D71b{x^ y^ ̂  77).
If t^ " ^ ^x^ ^ T^T^ with ^,^(4^) < 1 for i = 1... k and if b^ denotes the fc-th
derivative of b with respect to (x, ̂ ), then the symbol m^x, ̂ )~lbw(x,., ̂ .) • t^^ " ' t ^
is bounded in S{m^^ g) uniformly with respect to (re, ^), i\ ̂  . . . , t^ ^. Then, the splitting
of the metric g ensures the uniform boundedness of mi(rc, ̂ )~lc"(x^., ̂ ,.) • i\ ̂  • ' ' t^ ^ in
S{m'z^g). Hence c(x^y^^rf) e S(m^m'z^g^g) which yields c{x^ x^ ^$) G S(m^m'z^g).
We conclude by referring to the usual expansion and estimates for e^Dy•D(i valid when
the metric g is splitted.

b) The (l,0)-symbol a{x,^) of A can be calculated as

a{x^) = / e~i^sA(x,x-s)ds= / e-^-'b^x.x 4- s,^ + r])dsarj,
Jn^ J^d

and equals c(x,x,^^) with c{x,y,^rj) = e^v •^6(^,^,77). The assumptions on b and
the metric imply b(x, y , r]) G S{m^ 0 m^, g 9 g) and part a) applies. D
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Throughout this paper we use semi-classical Fourier integral operators

(A.4) J\a^}{x^}^ I eW^-^a^^.Jpd ri

with ^(rr,77) only denned on G, x C^ C T^, C^ and C^ open convex subsets of R^,
and a{x,r]) C ^(l^o), supp a C C^ x C^. We further assume y? G C°°{C^ x C^) and

(A.5) \Q^{x,r]}\ < C^ VCr,77) G C, x C^ \a\ + |/3| > 2,

(A.6) |detM| > Q) > 0, VM G ch{Q^{x, r ] } , {x, r j ) G 0, x C^}

where c/i denotes the convex hull.

PROPOSITION A.2. - ̂  For any pair of symbols, di(h), i = 1,2, h G (0, fao), uniformly
bounded in S{l,go) with supp a^(fa) C C .̂ x C^, the product ^{a^h)^)^^^), (^)*
^ an h-pseudo-dijferential operator. It equals

(A.7) J^M/i), ̂ )J/l(a2(^), ̂ )* = a^(a;, /iP; fa) + /ir^ ̂ p; fa).

vv/z^r^

(A.8) ao(x, ̂  h) = a^x, r]{x, Q; h)a^[x, r]{x, Q; h)\det9^^{x, rf(x, 0)|-1,

^ _, rj{x, 0 ̂  ̂  inverse mapping of 7] -> ^{x, r]) = Q^{x, r]) and r{x, $; h) is uniformly
bounded in S{l,go). As a consequence, J^a^fa),^), i = 1,2, are uniformly bounded
operators on L2^).

b) Assume that the symbols a{h) and b{h) are uniformly bounded in S{l,go) with
supp a{h) C C^ x C^ and supp b{h) C C^ x R< Then the equality

(A.9) ^l'o)(^^-D;fa)J/l(a(fa)^) = J\c{h)^},

holds for some c(h) uniformly bounded in S(l,go) with supp c(h) C Cy, x C^. Moreover
c{h) equals co{h) + hc^{h) + /l2r(fa) where

(A.10) co(^ y?; h) =b{x, 9^{x, 77); h)a{x, 77; /i),

(A.ll) ci(rr, ̂  /i) =-9^(a-, 9^(x, ̂ ); h)9^a(x, 77; fa)
%

+ ̂ Tr^a;, 0,,y(a;,»?); h}Q^(x, rj)}a(x, T?; fa),
^z

and r{h) is uniformly bounded in 5'(l,^o)-
c ) Assume that the symbols a{h) and b(h) are uniformly bounded in 5(1, go) with

supp a(H) C C^ x C^ and supp b{h) C R^ x C^. Then the equality

(A.12) J\a{h), ̂ b^°\x^ hD'^ h) = J\d(h}, ̂ ),
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holds for some d(K) uniformly bounded in 5(1, go) with supp d(h) C Cj, x C^. Moreover
d(h) equals do(h) + hd-^(h) + h2r(h) where

(A.13) do(x, 77; h) =a(x, 77; h)b(9^(p(x, 77), 77; ft),

(A.14) di(rr, 77; h) =-9^a(x, 77; h)9^b(9^(x, 77), 77; ft)

+ --a(rc, 77; h)Tr[9^b(9^(x, 77), 77; h)9^(x, 77)],

an^ r(/i) ;5' uniformly bounded in S(l^go).

Proof. - a) The kernel of Jh(a]_(h)^)Jh(aez(h)^(py equals

K(^h)= t -^-^-^-^-/-.-.-^, . f ^(x,n)-y(y,n) dr]
K(x,y,h)= e1 ^ ^i(^^; h)a^(y,r]', h ) - .

J^ 'lJ^

= I e^-y^b^^^h)^,
J^ n

with
b(x, y , ̂  h) = ai(rr, 77^, y , ̂ ); h)a^(y, rf(x, y , ̂ ); h)\det9^r](x, y , ̂ )|.

By (A.6) the mapping: 77 G C^ -^ £,{x,y,r]) = / (9a^(^ + (1 - t)y,r])dt, x,y G C^,
Jo

is a diffeomorphism and r)(x,y^) actually denotes its inverse. We conclude by applying
the semi-classical version of Lemma A.I.

b) The kernel of b^°\x, hD', /^(a^), (^),

^(rr,./;/.)= / e^——)•4(^,$;^)6^^/^-^)a(rrY77;/.)^d^,
J|^3d /I

is the same as the one of J^^/i), (p) with c(/i) given by

. -^(^_.,).(^_ ^ ^^(t.r+ (l-t)x',r])dt)^
c(rc,77;/i)= / 6(.r,^; fa)a(a;/,77;/i)e Jo w^'

jR2d /I"

/ r1 \
=eihDZ•D^b^x^-}- 9^(x+(l-t)z^)dt',h)a(x+z,^h) ^.

\ JO / ^=o

The first right-hand side shows that the support of c(fa) is contained in Ca. x C^. Meanwhile
the estimates in 5'(l,^o) and expansions are derived from the last line by referring again
to Lemma A.I.

c) Conjugating with D^F and taking the adjoint interchanges the x and ^ variables and
this part is reduced to the former one.

Finally we need some functional calculus.

LEMMA A.3. - If the potential U belongs to S^x)-1^, ̂ —), N > 0, and x C ̂ ((0, oo)),
then \{Hu) belongs to OpS'^)""00,^!) and we have

(A.15) x(Hu) - xW G OpS^)-oo(x}-N^,).
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Proof. - Let us first prove that x{Hu) - x(Ho) <E OpS({^-^{x)~N ,^i). By Helffer-
Sjostrand functional calculus formula [ ] [ ] [ ] we have

x(Hu) - xW = ̂  f ^ Q.xW^^W-^UA^zr^D^dz A dz^

where Atu(z) is the operator (D}'2^ — H o — tU) and x is a compactly supported almost
analytic extension of x' We know Atu{z) G Op5'(l,^i) with uniform estimates when
z G supp x m(^ we want to check that the k^ semi-norm in 5'(l,^i) of Atu(z)~1 is
an Ok(\tv^LZ\~N('k')) for some N(k). We shall use Beals criterion [5] and estimate the
multi-commutators

(x)^ad^ad^Atu{z)~1 = (x)^ ^ C^Atu^ad^ad^Atu^z)
(ai , /3i)+. . .+(a; , /3;)=(a, /3)

|(ai,/3i) |^0

(A.16) A^)-l...ad>^A^)A^)-l.

By taking /? = 0 one readily gets ^ad^Atu^^^^L2} = Oadlm^l^^^) from standard
n

resolvent estimates. We notice the identity x^. = V^ C^ad^.)^71"^ and we obtain
p=o

IK.r)^^^)-1^)-71!!^^) < CJIm^l^),

which inserted in (A.16) provides the general estimate

lla^a^A^)-1!]^) < C^lmz^^.

Finally we improve the power of (^) by writing

x(Hu) - xW = [x(Hu) - xm}x\Hu) + xW[x\Hu) - X'TOL

for some x' ^ ̂ ((^ oc))' X' = 1 on ^PP X' D

B. 2-microlocal measures

Throughout this paragraph, we identify the manifold X = (^R^r^R^U^R^r*^),
endowed with its natural blow-up topology, with [0, +00) x S'̂ "1 x Rd by (x == r0^) ̂
M,0.

LEMMA B.I. - Out of any bounded sequence (uh) in Z/^R^), one can extract a
subsequence (^/l/) such that D^u^ converges weakly in L2(Rd), D^u^ ^ v, and find
a non-negative measure p, G M^^X) so that

lim^o^ - DH.V, a^ h'D}^' - D^v)} = [ a(r, 0, ̂ )d^r, Q, Q,
[ B ' 1 ) J x

VaeC^W.
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Notation

The set of all 2-microlocal measures, /^(r,0,^), associated with the sequence (z^) will
be denoted by J^l^^^h).

These 2-microlocal measures have also been introduced in another framework by
C. Fermanian-Kammerer in [15] to which we refer the reader for additional information.

Proof. - We only consider real-valued symbols, the result for complex-valued symbols
being deduced by linearity. Let (p G (^(R^) be a cut-off so that ^ = 1 in a neighbourhood
of x = 0. We write for any a G Cg°(X)

(^{x.hD) = DhOp^(x)a(hx^)]D^ +^0p^[(l - y(x))a(hx^)}D^

where the first term is a Hilbert-Schmidt operator and the ^(I^R^-convergence of the
symbol gives

(5.2) liiri0p^(rr)a(/^0] = Op^(x)a{0^)] in J^
h—>u

while the second term is uniformly bounded OpS({^)~°°,g-i). If the symbol a(h) is
uniformly bounded in 5(1, -^p- + -j^-) with a(x,^ h) - a(hx^) > 0, pseudo-differential
calculus and Garding inequality lead to

(B.3) Op^[a(x,^h) - (1 - y{x))a(hx^)} = Ah + KB\

where Ah is a bounded non-negative operator, Bh is uniformly bounded on L^R^) and
I? == (a;)"^!))"1 is compact.

Since, ||.D^||^2 < (7, we can consider a subsequence (i^) so that D^u^ h-:lov. By
taking a(x,^h) = \\a\\L^ in (B.3) we obtain

(^/ - ̂ /^, [||a||^o - a^^, ̂ D)]^ - Dh'v))
> (D^ - v.Op^Whx^^D^ - v)) + (D^ - v^B^D^ - v)).

Hence the compactness of K and of the limit (B.2) give

(BA) limO/1' -D^v,aw(x,hfD)(uhf - Dh'v)) < C^a^.

Now let D be a countable set of elements of Cg°(X) dense in Co(X). For any fixed a e D
we can find a subsequence (^ /Q) so that (i^ - Dh^v,aw(x,hfaD)(uh'a - D^^v))
has a limit /^ G C. By a diagonal extraction process, we can make the subsequence u^
independent of a G D so that the mapping a —^ /^ defines a linear form /^ on the vector
space Span D. Owing to estimate (B.4), this linear form is continuous for the topology
induced on Span D by the Co (X) -topology. By the density of D or Span D, this linear
form extends uniquely as a bounded measure /^. The convergence for any a G Cg°(X) is
again a consequence of (B.4). The positivity of the measure p, is easily checked by taking
a G Co^X), a > 0, and a(x,^ h) = 2a{hx^) in (B.3). D
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PROPOSITION B.2. - a) Iffji G M-z^.h) where the sequence (z^) satisfies ||^||L2 = 1
and D^^v in Lt2{Rd), then

(5.5) l-IHIi2 > / d^MO.
Jx

b) If 11 e M2{uh,h) and D^ hzl0 v, then the measure // defined on T^ by

^=7r*M+^o0|(^)(012^

mr/i 7r(r, 0, ̂ ) = (r0, $), belongs to the semi-classical measures set M{uh, h).
c) If the semi-classical measures set .A/((z^,fa) is reduced to one element ji such that
supp ^ n TO*^ = 0 and \ dfi{x^) = 1 while we assume H^HL 2 = 1. ^^

JT*^
M2(uh,h) = {^} anJ D^^O.

Proof. - These three properties essentially rely on s - lim a^\x, D\ h) = aly(^, P) on/i—»^o
^(R^), for any sequence a(fa) uniformly bounded in S{l,go) converging to a C S'(l,po)
in the C°° topology (see [20]-Theorem 18.6.2).

a) Let \ G C^°{X) be such that 0 < \ < 1 and ^ = 1 on a neighbourhood of r = 0.
Then \ € C^r*^) and we have

(B.6) (^ - D^v, xw^, hD)^ - D^v)) = {u\ xw^. hD)^}
00^/7^*. .h ^Wfi.^ T^\/..\ i //.. ^y^(v.^ n^/.,^- 2Re(D^\ x^(^, D)v) + (2;, x^(^, -D)^).

The first term of the right-hand side is bounded by 1 while the rest converges to -IHI^.
b) is obtained by identifying Co^r*!^) as a subspace of C^{X).
c) Assume M^.h) = {^}. We consider a subsequence {u^) such that D^ -^ v

in L2^) and M^'.h'} = {^/}. We take x € ^^(r*^ \ T^) and we have
s - lim ^(/^.D) = 0 on L^R^). Therefore, the characterization of semi-classical
measures (1.5) and (B.6) lead to

/ xd^ = lim (^/ - DH.V, ̂ w^, h'D}^' - D^v)) = / A
Jx /l/-+o JT-'R'^

From this and supp p, H T^R^ = 0, we conclude // > /^. But part a) gives
1 - |Hli2 > / dp! > \ dp. = 1, which yields v == 0 and /^/ = fi. By uniqueness, it

J x JT^^
is true for the whole sequence. D
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