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BIFURCATION DIAGRAMS AND FOMENKO’S
SURGERY ON LIOUVILLE TORI OF THE KOLOSSOFF
POTENTIAL U=p+(1/p)—k cos ¢

By LiusoMiR GAVRILOV, MoHaAMMED OUAZZANI-JAMIL anp Recis CABOZ

ABSTRACT. — By making use of the rich algebraic structure of the problem and Fomenko’s theory of surgery
on (bifurcations of) Liouville tori, we give a complete description of the topology and bifurcations of the
invariant level sets of the Kolossoff system corresponding to the integrable potential U= p+ (1/p)—kcos ¢.

I. Introduction
Consider the motion of a particle of unit mass on the plane (x, y) in a potential field

U=ap+é+ccosq>+dsin(p, a,b,c,deR
p

where x=pcos @, y=psin ¢. Without loss of generality one may suppose (after a rotation
and R-linear change of p and U) that

Ux, y)=+p+ I —kcosp,keR
p

The corresponding Hamiltonian function is:
1 2 2
H= 5(px +py)+U(x, J’)

and the energy level sets { H=h} =R* are compact if U=p+(1/p)—kcos ¢. The Hamil-
tonian system

4 ‘il{ ’ dI{
oy T,
(1) px (I)=_
( y’=@ p’:—ﬁ dt

dpy’ Y dy
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546 L. GAVRILOV, M. OUAZZANI-JAMIL AND R. CABOZ

where

1
H=5(p§+p§)+p+1—kcos<p
p

is integrable and the second integral of motion reads:
2k(x—k)(kx—1)

/x,z+y2

The integrability of the system (1) was discovered by Kolossoff [8] who used it to linearize
the celebrated Kovalevskaya top.

F=—(k*+y*)p2+2y(x—k)p,p,—p (x—k)*—

In the present paper we give a complete description of the topology of the level sets

Ag={(x, y, p,, p,)eR*:H=h, F=f}cR*.

For doing that we find first the bifurcation diagram B of the problem (1), i.e. the set of
critical values of the energy-momentum mapping

(%, , P> py) — (F, H).

It turns out (like in Hénon-Heiles system [5], Gorjatchev-Tchaplygin [4] and Kovalev-
skaya top [9], [10]) that B is exactly the discriminant locus of a certain polynomial whose
coefficients are functions in f, A, k. The latter is closely related to the algebraic structure
of the complexified system (1). This structure is studied in section 2 where we prove that
the complexified generic level set { H=h, F=f} is an affine part of an Abelian variety
(Theorem 1). Contrary to the most of the known examples [1], the Hamiltonian flows
corresponding to H and F do not linearize on this Abelian variety. Thus the system (1)
is not algebraically completely integrable in the sense of Adler and van Moerbeke [1].
For non-critical values of F and H the level set Ay is, according to Liouville theorem, a
finite union of two-dimensional tori. Their number is related to the number of ovals
of an associated genus two Riemann surface and could be calculated by making
use of the results of chapter 2 (see Theorem 2 of section 3).At last, in section 4,
we describe the structure of singular level sets Ag. According to Fomenko’s theory
of surgery on (bifurcations of) Liouville tori they turn out to be homeomorphic to a
finite list of two-dimensional complexes. To “guess” exactly which bifurcation takes
place we use once again the reach algebraic structure of the problem. Namely, each
bifurcation of Liouville tori is related to a bifurcation of ovals on a Riemann sur-
face (the last being easily studied). Thus we find all generic bifurcations of Liouville
tori as f and h pass through the bifurcation diagram B (Theorem 3 and Theorem 4 of
section 4).
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KOLOSSOFF POTENTIAL 547

II. Algebraic structure

Denote by A¢ the complex affine algebraic variety:

AC={(x9 y, px, Py’ Z)ECS:H=ha F=f, X2+y2=22, Z#O}Ccs,

where
_1 o5, 1 x
H(x,yspx’py’z)—5(px+py)+2+———k—,
z z

2k(x—k)(kx—1)

z

F(x, y, P> Py 2)= — (K2 +y») p2+2y (x—k) p,p,— p? (x—k)* —

The variety A is invariant under the (complex) flow of the (complexified) system (1).
Consider also the polynomial

¥) ew)=-2w-hl+(1—-k>u—fJ2)
and the corresponding hyperelliptic curve

3) K: {w=0*-kHo)}.

Remark. — K is precisely the curve used by Kovalevskaya [11] to integrate the
Kovalevskaya top.

THEOREM 1. — If the polynomial (u®>—k*) @ (u) has no double roots then the affine
algebraic variety A¢ is a smooth complex manifold which is biholomorphically equivalent
to the complex manifold A;\ D, where A is a complex algebraic torus (Abelian variety)
and 9D is a divisor. A is a two-sheeted unramified covering of the Jacobi variety Jac (K) of
the genus algebraic two curve K. The trajectories of the Hamiltonian flow generated by H
on A are straight lines on which, however, the motion is non-linear. The trajectories of the
Hamiltonian flows generated by H+sF, s#0 on A are not straight lines.

Theorem 1 will be proved later in this section. We recall that the Hamilton-Jacobi
equation corresponding to (1) separates in the following (A, p) coordinates (see [8] for
details):

x=%+k
Q)

1 2 2 2 A
V(G SICETTY)
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548 L. GAVRILOV, M. OUAZZANI-JAMIL AND R. CABOZ

The canonical variables (p,, p,, A, p) on T*R? are given by
AW —k)pp,— W —kHAp,
k(2 —p?)
_JA =) E =) p—npy)
P k2= p2)

px=
&)

In these new variables the integrals of motion take the form
A=k~ (02— k) p2+2 (1= k) (A=) +2 (M~ )
20—
_ W) (W k) pr =2 e+ 2R - D) (A )
(2 —p?)

H=

2

F

and hence on each level set A¢ holds

A
(6) D=, /%a Pu= u(zp—(—ulzz’

For a further use we note also the relation

0 F=p2(W2—k%)+2p3 -2 2 H+2p(1—k?).

Denote by d/dt, the time derivative along the Hamltonian flow of the function
H,=H+sF. By making use of the equations

dt, op,  dt, op,
and (6) one obtains
d\ 4 dp
JOM M=KD Jow) (W —k%)
A2 d\ 24
Z Z + e L2l Z =dt3
JOBM A=K Jow) (W -k

=—2sdlt,
®)

The system (8) can be also written in the following equivalent form

/8 + dp _
JOBO A =E) o)W -k
Adh pdu 1-2sAp
+ = dt,
JOOR =K JowW -k  Atp

—2sdt,

)

The flow of Kolossoff system (1) corresponds to s=0, and obviously #|,_o=¢ The
system (9) implies, roughly speaking, that our initial system linearizes on an Jacobian
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KOLOSSOFF POTENTIAL 549
variety after using a “new time”

dt
10 dt= — .
(10) v rn

The time t will play an important role and it is exactly the “Kovalevskaya time” (see [8]
for details).

Define now the Abel-Jacobi map

Py P Py Py
{:S8*K - Jac(K):(P,, P2)—>< o, + o, C°z+f 032)
Py Py Po Py

where

du udu
m1=—__ —

Joww@— 7 @

P,, P,,eK P, is the “infinite” point on K and S*K is the second symetric product
of K.

Solving the Jacobi inversion problem (9), we obtain the explicit solutions of our initial
problem (1) [2]. Thus x, y, p,, p,, z=_/x*+y* can be expressed in terms of genus two
theta functions living on the Jacobi variety Jac (K). These functions however are not
single-valued as it can be seen from (4). Indeed to each point on the symetric product
S2K of the curve K (which is birational to Jac(K) according to Jacobi theorem)
correspond two values of (x, y, p,, p,). On the other hand these functions do not have
branch points on Jac(K) and hence they are root functions (Wurzelfunktionen [14]) on
Jac (K).

Consider the Abelian variety A.=C?/Z {ey, e, €3, 2, } where
Jac(K)=C?/Z{e,, e,, €3, €, }.

If the basis (e,, e,, €5, e,) of the period lattice is chosen in a proper way then the function
X, s Px» Dy Z become single-valued on A. Let us fix such a basis. The natural projection

(11 m: KC — Jac (K)
corresponds to the involution

(12) (% Y5 Pa> Py» 2) = (X, =, Pr> ~Py» 2)
on A.. Consider the mapping

i:CS_’CP7:(X’ s Z; Px» py)""[anfl’ . "f7]

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



550 L. GAVRILOV, M. OUAZZANI-JAMIL AND R. CABOZ

where
fo=1
fi=x
2=y
a13) fo=z
Ja=xp, = yp,
fs=f i
Je=13 (f4—k17y)
f1=PE=P)y=2p.pyx—21>fs
LeMMA 1. — The functions f;, i=0,1..., 7 considered as single-valued meromorphic

functions on A provide a smooth embedding of A into CP”.

Proof of theorem 1 assuming the above lemma. — As the functions f,, f;, . . ., f; provide
an embedding of A. into CP’ (Lemma 1) then the closure 7(A¢) of i(A¢) in CP7 is
biholormophically equivalent to A¢. Consider the divisors 2, and 2', ., defined by

M) =2C(P)+L(K)=22,
and
(@o=A+Wo=%%,

Obviously 2',,~29. It is easily seen that A. is biholormopyically equivalent to
i(AJ\{ 2, U P}, }. Indeed i is a biholomorphic mapping between some neighbour-
hood V,_ of A¢c in C\{z#0} and i(V,))=CP’. To check that it suffice to note that
if (x, y, p,» P,» 2) €A then

det(a(flaf29f3’f49f6)>=kyz
0(X, ¥, Px> Py> 2)

det(a(fl’fz’fs’fs,ﬁ)
(X, ¥, Ps> Py 2)

>= —4p, (p.x*y+p,y*—p,x*—p,xy?)

and hence rank (i)=35 (otherwise the equality y=p, =0 implies disc ((k*>—u?) @ (w))=0).
As i(Ad=Ac\Z,, is a smooth complex manifold, it is concluded that A. is also a
smooth complex manifold. A

Proof of Lemma 1. — For an arbitrary divisor 2 = A; we denote
£ (2)={ f meromorphiconA, (/)= -2}

As £ (K) defines (1, 1) polarization on Jac (K) then 2 =n"! < {(K) defines (1, 2) polariza-
tion on A¢. Thus 29, defines (2, 4) polarization on A¢ and dim % (29 )=2x4=8, [7].
To prove lemma 1, it is enough to check that the functions f;, fi, . . ., f, provide a basis
of £(29,). First of all let us note that f; blow up only along & . Indeed in A, p
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KOLOSSOFF POTENTIAL 551
coordinates we have
fi=1

A
f1=?”+k

fo= e SR
fi=rtp
f4=ai_m{\/(kz—u"’)\/(p(x)—\/(xz—kz)\/—m(u)}
fs=1i
f6=ﬁ{uJ(kz—pz)\/(p(X)—?»\/(p(?»)—\/(lz—kz)\/_‘P(H)}

fr= ﬁ{z(xu—k% SO /o~ /A= E =1 (@) + 0 W)} 2/ /s

To prove that f,e & (22,) we shall find, following [1], the asymptotic expansions of x,
¥, z as functions of the time t (10) in a neighbourhood of a generic point t°€ 2.
Formulae (4) imply that A+p=_/x?+y? and hence the changing of time in the system
(1) is equivalent to multiplying each equation by z. According to (9) and (4) the variables
X, y, z are meromorphic in T and the corresponding Laurent series are:

e o] e}
= Jj—2 = j—1
X Z xj‘t 3 px prjt
j=0

ji=0
[ o] o)
(14) y=Y v py=Y p,v!
j=0 j=0

0
z=Y z;v72
j=0

(here 7t stays for t—1,). After substituting the above series in the Kolossoff system (1)
one obtains a recurrent system of linear equations for the coefficients x;, y;, z;. The
general solution (14) depends effectively upon three free parameters a, v, &:

O et L)

+ot+. ..
12 4B
) B (kap+4y) ad
15 LA L AL T
15) Y= 2 Bt
S
2 B
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where a2+ B2=4 (for details about the general procedure of finding the series (15) we
refer the reader to [1] or [6, 15]). After substituting (15) in (14), we obtain

fo=1
ﬁ=%+”.
f2=g+...
ﬁ=—%+g.
09 PRI
fEEL
f6=%2§+...
L

The complex constants « (or B such that a®+ p>=4), v,  parametrize the pole divisor
9. Indeed substituting (15) in {H=h, F=f, z2=x*+y*} we obtain the genus three
curve

_2hB—kop
Y _—-16 s
an 5= %(k3 o +8Kk2 yB2 — 2k (1+Kk2) aB— 32 k2 y— 2P),
o> +p2=4

2. is a double unramified covering of the genus two curve

,_(@=4 5 22 2
(18) 5 =W(k o +2hk* o +4k(1 -k a+4f)

and obviously this curve (18) coincides with (3) after making the substitution
2u w
o— — - —.

3k

’

k

Equations (16) and (18) imply that f;, fi, . . ., f, are linearly independent on A which
completes the proof of lemma 1. A

4° SERIE — TOME26 — 1993 — N° 5
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III. Topology of Regular Level Sets

In this section we shall describe the topological type of Ay for all generic constants f,
h, keR. The system (1) will be considered as a real system of differential equations.

According to Theorem 1 Ay is a smooth real manifold if the polynomial (k2 —u?) ¢ (1)
has no double roots. Define the bifurcation set

(19) B={(f, h, k)eR®: disc (u®—k?) ¢ (w))=0}.

It is clear that the topological type of Ag may change only as (f, h, k) passes through
B. Thus in each connected component of the set R*\ B the level set Ag has the same
topological type. Note that the bifurcation set B&R*{ f, h, k} is invariant under the
involution

(fs b, &)= (f, h, — k)

and the topological type of the level set Ay is one and the same at the points (f, A, k)
and (f, h, —k). Thus it is enough to consider k£ =0.

THEOREM 2. — The set {R3\B} N {k=0} consists of 12 connected components. The
sections of these components with the plane {k=const.} are shown on figure 1. If
(f, h, k)eR3\B the level set Ay is (diffeomorphic to) a torus, to a disjoint union of two
tori, or it is the empty set as it is shown in table L.

Remark. — The notation 2T in table I means a disjoint union of 2 two-dimensional
tori.
Proof of Theorem 2. — The complex conjugation

(20) %, ¥, 2, Py P) = (X, ¥, Z, Pss Dy)

acts as an antiholomorphic involution on A.. The set of its fixed points is the real part
R(Ao) of Ac and Ag=R(A) N {z>0}. Consider also the natural antiholomorphic
involution 7 of the Kovalevskaya curve (3) given in (w, ) coordinates by:

Tt (w, w) > (W, w.

It induces an antiholomorphic involution on the symetric product S>K and hence on
Jac(K) and A.. Formulae (4), (5), (6) imply that this involution coincides with the
complex conjugation (20) on A.. The upshot is that in order to describe Ay it is enough
to study the projection

n: Ac—Jac(K)
and the pair (K, 7).

Remark. — The pair (K, 1) where K is a Riemann surface and 7 is an antiholomorphic
involution on K is called Klein surface. For the theory of Klein surfaces we refer the
reader to [12].

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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|
|
|
|

|
12<k<1

Fig. 1.3

O0<k<l1/2

Fig. 1.5 Fig. 1.6

Fig. 1. — The set BN {k=const. } for k>0.
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TABLE I

Topological type of Ay and real roots of the polynomial (u® —k2) ¢ (u)
Jor (f, h, k)eR3\B (see fig. 1).

Domain Roots Topological

type
| S —k<uy<uy,<k<u, T
| u < —k<u,<uz<k (%}
2 . —k<uy<k<u,<u, T
2 u <u,< —k<us<k (%)
3. u < —k<k<u,<u, 2T
3o U << —k<k<u, (%)
4 ... u, < —k<k %)
4 .. —k<k<u, %)
5 oo —k<u, <k (%
6 ........ —k<uy<uy<uz<k (%)
T oo —k<k<uy<u,<u, %)
7o U <u,<uz< —k<k [%)

DEeFINITION. — A connected component of the set of fixed points of t on K is called
an oval.

To determine the ovals of K it suffices to study the real roots of the polynomial
(u? — k?) @ (u) for different values of f, h and k. These roots are shown on table I. Using
the formulae (4), (5), (6) and the condition (x, y, z, p,, py)eR5 we obtain that Ag# J
only if (f, h, k) belongs to domain 1, 2 or 3. There we find exactly two “admissible”

TasBLE 11
Domain 1 2 3
Projection of the “admissible” (A, =[uy, u,] Ay =[u,, k] A=[~k k]
ovals on z-plane ......... A, =Tk, us] A, =[uy, us] Ay =[uy, us]

ovals whose projections on the z-plane are given by the intervals A; and A, (see table II).
The product of the “admissible” ovals in S2K [and hence in Jac(K)] gives a Liouville
torus. Thus we proved that m(Ag) consists of a torus T. There are two possibilities for
Ag=7n"1(T) (recall that A is a double covering of Jac(K)\Z and the projection is
given by the map (11)):

— Ay is a disjoint union of two copies of T;

— Ay is homeomorphic to a torus two times “longer” than T.

To determine which case arises it suffices to note that when A (respectively ) makes
one turn around the interval A; (respectively A,) in a complex domain then the function
y does not change in the first case, whereas in the second case it changes the sign [we
recall that the projection m corresponds to the involution (20)]. Thus we find that in
domain 1 and 2 Ay is a torus and in domain 3 it is a disjoint union of two tori. A

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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At last we shall find the topological type of the regular energy-level surface { H=h}
LEMMA 2. — The bifurcation set T of the family of surfaces

2+ 2
Qh’k={p———"2p” +p+ 1—kcoscp=h}
p

is given by the union of two lines E={h=2+k} U {h=2—k}cR?*{h, k}. The set R*\Z
consists of 4 components shown on figure 2. The topological type of Q, , in each of these
domains is given in table 3.

e e rm e e = — = = = —

——— = me= 4

Fig. 2. — The set Z.

Remarks. — We note that the three dimensional constant-energy surfaces most often
met in mathematical physics and theoretical mechanics are: S* (the sphere), RP? (the
projective space), T* (the torus) and S% x S! (the direct product), see [13] for details.

TABLE III

Topological type of the energy level set
Q, ={H="h} for (h, k)eR*\Z (see fig. 2).

Domain 1 2 3 4

Topological type . ....... g s? S2x St S3

Proof of Lemma 2. — The function H has exactly two critical points p,=p, =0,
y=0, x==1, for k#0 and a critical variety {p,=p,=0, x*+y*=1} for k=0 with
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corresponding critical values h=2+k (k#0) and h=2 (k=0). Let us compute the topolog-
ical type of Q, . If k=0 then

2 2 —1)\2
Ho PR L (D)

+2>2
2 P

and hence for h<2 we have Q, ,= . This implies that in domain 1 Q, ,=J. Suppose
now that k=0. On the surface H=2+¢ where ¢ is small and positive, p—1 is small
together with €. As.

2 2
{p"+p” +p+l=2+8}
2 p

can be written as

2 2 . 2 2 2
petpy, (=D _ | M+(p_1)2—(p—1)3+...=s}~SZ
2 (p—1+1) 2

Then Q, ., o is topologically equivalent to S*> x S* and hence in domain 3 the topological
type of Q, , is 2 x S'. Consider at last Q, ,, for & small and positive

=gCOoS .
2 P ¢}

2 2 —1)\2
Qm:{m+m+fp1)
The set Q, ,MN{@=const.} is topologically equivalent to S* for ¢e((—m/2), (n/2))
and to a point for ¢= *(n/2). Hence Q, , is topologically equivalent to S*. This implies
that in domain 2 (and 4 by a symmetry) the topological type of Q, , is S®. A

IV. Topology of Singular Level Sets and Surgery on Liouville Tori

In this section we shall find the topological type of the level set Ag for generic values
(f, h, k)eB and thus we shall describe all generic bifurcations of Liouville tori (the non-
generic ones are easily found by continuity). For doing that we shall use the Fomenko’s
classification theorem of bifurcations of (surgery on) Liouville tori [3].

In section 3 we found the topological type of level set Ay far from the bifurcation
diagram. Suppose now that the constants f, 4, k are changed in such a way, that (f, A, k)
passes through the bifurcation diagram B. Then the topological type of Az may change

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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and bifurcations of (surgery on) Liouville tori takes place. Consider the following three
types of bifurcations (see fig. 3).

Fig. 3. — Bifurcations of two-dimensional invariant Liouville tori
and the corresponding graphs.

1) A (two-dimensional) torus T? is contracted to the axial circle S! and then vanishes.
Denote this surgery as T — S — (.

2) A torus T splits into two tori by passing through the complex S* x {S' AS' } where
St A St is a union of two circles having exactly one common point. Denote this bifurcation
as T—-2T.

3) A torus T becomes twice ‘“‘shorter” as it spirals twice round a torus. The last
complex is homeomorphic to a non-trivial section of the bundle S! AS! - S!, and the
corresponding bifurcation will be denoted as T — T.

Following Fomenko [3] we present each of the above bifurcations by a graph shown
on figure 3. An ordinary point denotes a non-singular Liouville torus. A black circle
stands for a circle and a “branching” point (see fig. 3) stands for {S' AS!} x S, At last
asterisk denotes a set homeomorphic to a non-trivial section of the bundle S A St — S,

For fixed constants 4 and k let us consider the energy level surface Q, ,={H=h}. As
f varies the Liouville tori contained in the level set { F=f} |o, , may change its topological
type. Denote by I'(Q, ,, F) the graph describing the corresponding sequence of bifurca-
tions of Liouville tori. The main result of this section is the following

4° SERIE — TOME 26 — 1993 — N° 5
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@O

TS o

Y

@‘@“@

=

@ @-=

Fig. 4. — The set 2 and the graphs I'(Q, ,, F).

TueoreM 3. — If (h, k) belongs to one and the same connected component of the set
D={h#2+k}N {h;é :l:(k+ %{)}:RZ {h, Kk}

then the graph T (Q, ,, F) is the same and it is shown on figure 4.

Theorem 3 also implies a description of all generic bifurcation of Liouville tori of our
initial system (1). Namely, consider a parametrized smooth curve

Y($):s = (f (), h(s), k() <R*{ f, h, k}
intersecting the bifurcation diagram B at s=s,.

DEerFINITION. — A bifurcation of Liouville tori contained in the level set
AREQh(s),k(s) N {F=f(s)}

as s passes through s, is called generic, provided that B is smooth in a neighbourhood
of (f (o), h(so), k(se)) and y (s) intersects B transversally.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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THEOREM 4. — All generic bifurcations of Liouville tori of the system (1) are given in
table IV

TABLE IV
Generic bifurcations of the level set Ag.
1-2 1-6 1 -4 2-3 255 34
T->T T-g T->g T->2T T->-g T-> g
T- &

Before proving Theorem 3 and Theorem 4 we shall formulate Fomenko’s theorem [3]
(adapted to our case).

DEerFINITION. — A smooth function F on a manifold Q is a Bott function, provided
that its critical points form nondegenerate critical smooth submanifolds. A critical
submanifold of a smooth function F on a manifold Q is called nondegenerated, provided
that the Hessian matrix d* F is nondegenerate in normal planes to the submanifold.

Now we may state the Fomenko’s classification theorem of bifurcations of two-
dimentional Liouville tori.

THeoreM (Fomenko [3]. — Let F be a Bott integral on a non-singular constant energy
surface Q3 of an integrable two-degrees of freedom Hamiltonian system. Suppose that each
critical manifold of F on Q3 is a union of circles. Then each bifurcation of Liouville tori
contained in the level set {F=f}, as f varies, is a composition of the three bifurcations
To>S'> &, T—>2T, and T - T described above.

Remark. — The condition that each critical manifold of F is a union of circles does
not seem to be very restrictive. To our knowledge all studied integrable mechanical
systems fall into this case (it may be a conjecture).

In order to apply Fomenko’s theorem we need to check that F is a Bott function
when restricted on an energy level surface Q, ;.

LemMMA 3. — The second integral F is a Bott function on the non-singular energy level
surface Q, ,={H=h} provided that h# + (k+ (1/2k).

Proof of Lemma 3. — Suppose that Q, , is a non-singular compact manifold, i.e.
h#2+tk (Lemma 2). If F has a critical value f on Q, , then the corresponding level
surface Ag={H=h, F=/} is degenerated and hence the polynomial (u*>—k?)¢ (1) has
multiple zeros. The condition h# +(k+(1/2k)) means that (u*>—k?) ¢ (4) has no triple
zeros on the boundary of the domains 1, 2 and 3 on figure 1, as the h-coordinates of the
points A, B, C’ are 2+k, k+(1/2k), 2—k for k>0 and 2—k, —k(1/2k), 2+k for k<O0.
So let us suppose that the level set Ay is degenerated and consider a degenerated
connected component of it. Such a component is parametrized locally by (A, p), formulae
(5), (6) and (7), at least for A#p. If in addition A and p are far from a double root of
(u?—k?) @ (u) then the equations (8) imply that the Hamiltonian flows of H and H+sF
are linearly independent and hence dH and dF are linearly independent at such point.
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Thus critical points of FIQ;. . correspond only to (A, p) such that A (or p) is a double
root of (u?—k?) ¢ (u). This is an one-dimensional analytical set and hence it is a disjoint
union of circles. The last follows from the fact that the flow of H on Q, , has no
stationary points and the critical set of F on Q, , is invariant under the action of this
flow.

Ai - - 4, A, 4, By — L 4,
U‘ uz u‘.=.u,' lll Ui
T —» T
— A“— A‘ A‘ t.",. Al
o — D ——
U‘ u U1.=_Ul o
T—e s — o 1"4
—_— - Al\ Al AA Al <__>AA A‘L
° .
l.l1 ua‘ “i=ul “,_ ut
T — 27

Fig. 5. — Correspondence between bifurcation of roots of the polynomial (42 —k2) (13 —hu?+(1—k*) u—f/2)
and bifurcations of invariant Liouville tori.

At last let us prove that the hessian matrix of F IQ;. , is non-degenerated of the normal
planes to these circles. Let p=p, be a double root of (u*—k?) ¢ (1). According to (7) we
have

FIQ;.,;,":(NZ“kz)Pﬁ+2u3“2u2h+2u(1 -k?»

and a critical circle of the level set {F|q, , }=fis given by p=p,, p,=0. The normal
directions to this circle are given by derivations with respect to p and p,. We have

0*F =(2(u(2,—k2) 0 )
oudp, 0 — 0" (1o)

and as p,# +k then rank (d*(F|q, ))Z2. On the other hand the Hessian d*(F o, ) is
degenerated on tangent lines to the critical circle and hence rank (d* (F|q, ,)=2 which
completes the proof of lemma 3. A

Proof of Theorem 3. — Let us fix a regular energy level set Q, , with a Bott
integral F on it, and let us consider the corresponding line h=const. on figure 1
(plane k=const., h=const. in the space R*{ f, h, k}). As f vary the topological type of
Ag={Q,} N{F=f} may change. Using Theorem 2 and the Fomenko’s classification
theorem we identify several possible bifurcations. For example passing from domain 3
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(where Ag~2T) to domain 2 where (Ag~T) on figure 1 we may have the following
surgeries: 2T — T, or composition of T —» T and T — . To make the difference between
the two possibilities it suffices to look at the bifurcations of roots of the polynomial
(u* — k?) @ (u), and more specifically the four ends of the “admissible” ovals A, and A,.
The correspondence between bifurcation of roots and tori is shown on figure 5. As the
bifurcations of real roots of the polynomial (u?>—k?) ¢ (1) are easely decribed on table 1
then we obtain a description of the bifurcations of invariant Liouville tori of our initial
system (1). By making use of figure 1 we note that if (k, k) is fixed and belongs to one
and the same connected component of the set

a=(he2kp {2 1)

then changing f the same bifurcations of roots of the polynomial (#*—k?)¢@ (u) take
place. This implies that if (h, k) belongs to one and the same connected component of
the set & the corresponding Fomenko’s graph I'(Q, ,, F) is the same and it is shown
on figure 4. This completes the proof of theorem 3. A

DeriNiTION. — The straight line /cR3{ f, h, k} is generic provided that it intersects
B transversally.

To prove Theorem 4 we note that instead of a generic smooth curve /cR3 { foh k}
it suffice to consider a generic straight line

{eih+e,f+e3=0, k=const. }cR*{ f, h, k}.
Then Theorem 4 follows from the following

LemMMA 4. — Let {c;h+c,f+c;=0,k=const.} be a generic straight line in
R3{f, h,k}. Then {c;H+c,F+c;=0}<R*{x, y, p,, p,} is a smooth surface, and F is
a Bott integral on it.

Indeed, instead of H we may take for a Hamiltonian of (1) the function ¢, H+¢,F.
The same arguments as in the proof of Theorem 3 imply the desirable result (table IV).

To the end of the paper we shall prove Lemma 4 (wich generalizes Lemma 2 and
Lemma 3). .

Let k=k, be fixed, (fo, ho, ko) €B be a generic point (i.e. in a neighbourhood of it B
is a smooth manifold), and let g=(x° y°, p2, p%) be a point on the level set
{H=h,, F=f, }. We shall prove that if

21y ¢, grad (H) |, + ¢, grad (F)|,=0

then the straight line {¢; h+c,f+c;=0} is tangent to B (and hence it is not generic).
As the equation of a straight line tangent to B at the point (fy, A, ko) is given by

(=i + (1= k) uo—f12=0}<R*{ £, h}

where u, is the double root of the polynomial P ()= (u*>—k?) ¢ () then it is enough to
prove that ¢,/c,=2ud. In (A, p, p,, p,) coordinates defined by (4), (5) we have the identity

4° SERIE — TOME 26 — 1993 — N° 5



KOLOSSOFF POTENTIAL 563

@)
F=pZ(*—k»+2p3—2p?H+2p(1-k?).

Then, at least far from the locus we have

(22) {A=p}U{A - W —-k»)=0}
oF oH
= =2up’:—0o’ —2u2==
o Koy — 0 (W—2p o
—a—li=2(u2—k2)p.,—2uza—H
ap ap

(23) 13 13

oF ,0H
or oA
opy, op,

As grad (H) and grad (F) are colinear according to (21), then

2(W*~k*)p,=0
24 B
@) {Zupﬁ—cp’(u)=0

and hence p,=0, ¢’ (1) =0. Now (6) implies that ¢ (4)=¢’ (1) =0 and hence p is a double
root of the polynomial («*>—k?) ¢ (n). Suppose now that A°, u°, p?, p°) belongs to the
locus (22) and let (A, p, p,, p,) tends to (A°, u°, p?. p?). The vectors grad (H) and grad (F)
tend to some vectors grad (H)? and grad (F)° and let us suppose that these vectors are
colinear. Using (6), (23) and (24) we conclude that

uczpfulzz —0'(W—-0

W-k)eW—0 and 2u

and hence p° is a double root of the polynomial (u*>—k?) @ (u). The upshot is that if
¢, grad (H)+ ¢, grad (F)=0 then c,/c,=2u3, where p, is the double root of the polyno-
mial (u?—k?2) @ (1), and hence the straight line

{cyh+c,f+c3=0, k=const. }

is tangent to B. This completes the proof of Lemma 4. A
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