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A CLASSIFICATION OF MONGE-AMPERE
EQUATIONS

BY V. V. LYCHAGIN, V. N. RUBTSOV AND I. V. CHEKALOV

ABSTRACT. - A classical problem of a local classification of non-linear equation arising in S. Lie works is
studied for the most natural class of Monge-Ampere equations (M.A.E.) on a smooth manifold M".

We solve this problem for a generic classical (n = 2) case and give full proofs of S. Lie classical classification
theorems.

For multidimensional generalizations of M.A.E. we reduce the problem to a problem in invariant theory
which we solve for n=3 and give a partial description for n^4. C00-classification is obtained for n=3.

Our approach is based on the deep relations between M.A.E. on M" and contact geometry of J1 M"-the
first jets space of M". This approach provides a possibility to apply symplectic and contact geometry methods
in classical invariant theory and for calculation Spencer cohomologies as well.

In 1B74 Sophus Lie raised the following problem: find the classes of local equivalence
of non-linear 2nd order differential equations with respect to the group of contact
diffeomorphisms. He formulated theorems on reducing the Monge-Ampere type differ-
ential equations to quasilinear and linear form [11]. As far as we know, a complete
proof of this theorem had never been published.

The class of Monge-Ampere equations is a natural setting for a classification activity
since the problem of local classification of arbitrary non-linear 2nd order equations
contains as a subproblem the classification with respect to fractionally-linear transforma-
tions of all submanifolds in the space of quadrics.

In 1979 Morimoto [17] announced a number of statements on classification of Monge-
Ampere equations of a special form based on the theory of G-structures.

Our approach to the classification problem is based on a relation between the differen-
tial forms on the manifold J1M of 1-jets of smooth functions and Monge-Ampere
equations [10]. We rely much upon [10].

Note also that the classification problem is in close connection with certain problems
of the classical invariant theory which are, in our opinion, of an independent
interest. One of them is the problem of description of orbits of the natural action of
the symplectic group in the space of exterior forms. Notice that the analogy with
differential equations enables us to understand better certain problems of the invariant
theory for this group. In particular, this concerns the description of Sp-orbits of
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282 V. V. LYCHAGIN €t dl.

3-forms on the 6-dimensional real symplectic space and also certain orbits of 4-forms on
the 8-dimensional space.

The text consists of 6 sections (S).
In Section 0 we introduce basic concepts and constructions used below. The main

source of definitions and ideas is paper [14].
In S. 1 we consider the classical two-dimensional problem of S. Lie on local classifica-

tion of Monge-Ampere equations. We start with the algebraic model of our problem
and study a symplectic equivalence of 2-forms in 2 ̂ -dimensional space. The normal
forms are listed.

The non-degenerate two-dimensional Monge-Ampere equation determines an addi-
tional geometric structure on 4-dimensional symplectic manifold. The elliptic equations
define an almost-complex structure and hyperbolic—an almost-product structure. The
Newlander-Nirenberg theorem (in the elliptic case) and Frobenius theorem in a hyperbolic
one give necessary and sufficient conditions of equivalence of our Monge-Ampere to a
constant coefficients equation.

At the end of the section we prove two classic S. Lie theorems on the reduction of
non-linear Monge-Ampere to a quazilinear one and on the normal forms of Monge-
Ampere admitting an intermediate integral.

Sections 2-5 are devoted to the algebraic problems arising in a high-dimensional (n ̂  3)
classification.

In S.2 we solve the problem of symplectic classification of effective 3-forms on
6-dimensional real space. We list normal forms and indicate that even in the 3-dimen-
sional case the Monge-Ampere equations corresponding to generic orbits are not lineariza-
ble even at a point.

Theorem 2.6 generalizes the corresponding results ofJ.-I. Igusa [8] and V. Popov [19]
in the case of an algebraically non-closed field. Moreover we directly built an invariant
of the classification problem.

In the next section (S. 3) we give a short outline of the description procedure for
normal forms in the dimension greater than 3 (Theorem 3.4). In theorem 3.5 the
normal forms of effective 4-forms on 8-dimensional symplectic space are listed (under
some natural conditions).

We establish a relation between the set of all transvections admitted by a given form
and the symplectic classification of effective forms. After that the stabilizers of effective
/2-forms are described. We also calculate the stationary subalgebras of the most import-
ant types of effective forms.

In S. 4 we make an algebraic digression and study the finiteness conditions on type of
effective forms stabilizers. First we classify reductive subalgebras / in EndV with non-
trivial first Cartan prolongation. If the representation / -> EndV is irreducible the
results are known (Theorem 4.2.1). Theorem 4.3.1 solves this problem for reducible
representations. Then we study stabilizers. Theorem 4.4.1 states the general result on
finiteness of the stationary subalgebra of a regular element. We also give several
reformulations and corollaries of this theorem for stabilizers of effective forms under a
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MONGE-AMPERE EQUATIONS 283

symplectic action. At the end of the section we explicitly calculate Cartan prolongations
of the stabilizers of several important types of effective forms.

In S. 5 we study involutiveness of the stabilizers of effective forms. The importance
of these questions to the classification problem is explained in 6 where we identify the
symbol of a Monge-Ampere equation corresponding to the homology equation of the
classification problem with the stabilizer of the corresponding form. The involutiveness
of the symbol is one of the conditions of the criterion for formal integrability.

S. 6 is the central one from the classification problem viewpoint. Theorem 6.4.1
gives conditions for reducibility of an equation with analytic coefficients by an analytic
symplectic diffeomorphism to an equation with constant coefficients in R".

The finiteness of stabilizer condition enables us to strengthen this theorem and general-
ize it to C°°-setting (Theorem 6.6.1).

At the end of the section Theorem 6.6.1 is applied to the classification of effective
forms and the corresponding Monge-Ampere equations on the 3-dimensional
manifolds. The main results were published in [5, 15, 16].

0. Formulation of the problem

0.1. Let (V, Q) be a symplectic space over R with the structure form OeA^V*)
and dim V =2n. Denote by r:V-^V* the isomorphism determined by the structure
form 0 i. e. V (X) = ;x (0) and by F,: A8 (V) -^ A5 (V*) its exterior powers, F, = A5 (F). For
every coeA^V*) denote by z^eA^V) the s- vector corresponding to co, i.e. r,(z;J=©.

In the algebra of exterior forms A*(V*)= © A^V*) introduce two operators
s^o

T^CV*)-^^2^*), the operator of exterior multiplication by the structure form Q
T(O))=CO A Q, and 1 ̂ (V*)-^"2^*), the operator of inner multiplication by the
canonical bi vector v^, -L (o)) = ̂  (co).

An exterior form coeA^V*), k^n will be called effective if -Lco=0 or, equivalently,
coeA^V*) is effective if and only ifT^o)=0 for s=n-k, T^O/^T5 [14].

0.2. Let M be a smooth manifold, J1 (M) the manifold of 1-jets of smooth functions
on M, UeA^^M) the universal 1-form on 31M which determines the contact
structure [12]. At each point x e J1 M the restriction of dV^ onto C (x) = Ker U^ determi-
nes a symplectic structure and therefore the operators ^A^C*^))-^^2^*^)) and
^A^C*^))-^"2^*^)). The tangent space T^M) splits into the direct sum
T^.^lV^CC^OIRXi where Xi is the contact vector field with the generating
function 1 [12]. Therefore, if A^C*) the space of differential .y-forms on J1 M degener-
ated along Xi, (A^C*))^ is naturally identified with A^C*^)) and, besides, we have

A5 (J1 M) = A5 (C*) © A5-1 (C*).

We will say that (oeA^C*) is an effective form on J1 M if 10=0. Denote by A^ the
set of all the effective ^-forms.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



284 V. V. LYCHAGIN €t al.

0.3. For every differential n-form (oeA^.PM) determine a non-linear differential
operator ̂  acting via the formula A^ (h) =7\ (h)* (co), A^: C00 (M) -> A" (M) where j\ (h)
is the section determined by a function AeC°°(M). Two differential forms (D^,
0)3 € A" (J1 M) determine the same operator if and only if co^ — o)^ € V^ where 1^ is the w-th
homogeneous component of the ideal 1̂  <= A* (J1 M) formed by the elements of the form
®i A U + ©2 A d\J. Since A^ (J1 M) ̂  A5 (J1 M)/I^ then Aco is determined by the effective
part of the projection ofo) onto A^C*). In what follows we will assume that Ao is
given by an effective form o). We will call the operators A^:C°°(M) ^A"(M) the
Monge-Ampere operators.

0.4. Determine the action of the group Ct(J1 M) of contact transformations of J1 M
onto the Monge-Ampere operators setting a(AJA^) for aeCt(J1 M). Similarly define
the action of the Lie algebra ct^M) of contact vector fields on J^M setting
X^A^J^LX^CO); here Lx is the Lie derivative along X and Xy is a contact vector field
with a generating function/eC00 (J1 M) [12].

0.5. We will be interested in the problem of local classification of Monge-Ampere
operators (equations) with respect to the group Ct(m) of the germs of contact diffeomor-
phisms preserving a point w.

Hereafter we will assume that in a neighbourhood ofw there exists an infinitesimal
contact symmetry Xp where f(m) 7^0, ofA^. Then there exists a local contact diffeo-
morphism sending Xy to X^ so that we may assume that L^ (co)=0. This means that co
can be considered as a form on T*M and the classification problem for operators
(equations) given by such forms as a classification problem of differential ^-forms on
T* M with respect to the group of symplectic diffeomorphisms.

1. Classification of Monge-Ampere equations
on 2-dimensional manifolds* S. Lie^s theorems

1.1. Let (V, Q) be a symplectic space over a field k= R or C, dimV=2^.
For any coeA^V*) define its Pfaffian Pf(o))e^ from the formula (D^Pf^ft".
The coefficients P^(co) of the characteristic polynomial P^(X)=Pf(o)—XQ) are invari-

ants of the natural Sp (V)-action on A2 (V*) and P^ (X) = ^ P .̂ X-7, i. e. these invariants
O^j^n

completely determine generic orbits. Making use of the symplectic structure we may
associate with any 2-form G) a linear operator A^: V -> V, where o) (X, Y) = 0 (A^ X, Y)
for any X, Y e V. Since (o is antisymmetric, then A^ is symmetric with respect to the
structure form, L e,

n(A^X,Y)=Q(X,A<,Y) for X, YeV.

Remark. — X and A^ X are skew orthogonal, i. e. Q (X, A^ X) = co (X, X) = 0
for any XeV. There is a relation among A^, its characteristic polyno-
mial PA (^)=det|[A^-XE|| and P^; namely, [Pf^^detA^, in particular
[PJ^P^).
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MONGE-AMPERE EQUATIONS 285

1.2. Let us establish a normal form of a 2-form (Q e A2 (V*) with respect to the Sp (V)-
action similarly to the case of symmetric forms for k=C. Let X^, ̂  be two roots of
p^(7,)==0 and K(^), K^) the subspaces ofV formed by the vectors annihilated by a
power ofA^-^-i or A^-^» respectively.

LEMMA 1.2.1. - Let ^i ̂  ^2- r^ ̂  (^-i) ̂ ^ ^c (^2) are ̂ w orthogonal.

Proof. - Let C(X) be the subspace of eigenvectors of A^ corresponding to the
eigenvalue ^, C (K) c K (^). First let us show that C (^4) and C (^2) are skeworthogonal;
ifXeC(Xi), YeC^) then (1.1) implies that (Xi-^WX, Y)==0 hence Q(X, Y)=0.

Hence, the lemma is valid for a semi-simple operator. As for an arbitrary symmetric
operator A^ its semi-simple part is symmetric too.

LEMMA 1.2.2. - Let coeA^V*) be such that A^ is nilpotent. Then there exists a
basis /^.../;^,...,^, ; = 1 , 2 , . . . in V, where f\, g\. . . is a basis in KerA^ such
that

A<,.A=/;Li, A^=gJ[_i, Q(/;, ̂ )==8^.8,+^.-n.

Proo/. - Let/^ be a vector of maximal height with respect to A,, i.e. A^/^=0,
A^i-V^O. Set/^A^-^ and select a vector g^ so that Q(/i,^)==l. Then
^^ is also a vector of height n, since 0(/^, A^- lg^)=Q(/l, ̂ ,)^0. Let
^=A^~m^^. Let us show that we can modify g^ . . . ,g^ somewhat so as to preserve
A^=^_/but with Q(/^,g,)=0 for 3^2. For this replace g^ by g^gz-a^g^
where ̂  ls selected so as t2(/^, i^^C/ni' ^2)~f l2Q(/Hl. ^i). L^ ^^^(/ni. ^2)'

Suppose that g^ . . .,g^ with this property are already constructed and set
im=^m-^m-l- • • • -^mgl provided gm-1= §m-1-^Sm-2- • . • -^m-l^l- The

coefficient a^ is uniquely determined by the equation Q (/^, gj = 0 provided ^2. • • • ̂ m-1
are determined; in other words

^=ft(/^, gm)-^(fn^ gm-l)- ' . . -^-1 "(/m. ^2)

Assuming that g^, . . .,gi is a set of vectors such that Q(/^, ^)=8^ i for arbitrary s, I,
we get

^(/^ §s)=6l+s,n^+l

Denote by F or G the subspace spanned by /i,.. . ,/ni or g i ^ ' - ^ S n ^
respectively. Thanks to Remark 1.1 F and G are isotropic subspaces. In fact, the
vectors X and A^X are skeworthogonal. Let us show that moreover Q(X, A^X)=0 for
all Q/T^O. If m=2l then Q(X, A^X)-Q(A^X, A^X)=0 and if w = 2 / + l then
Q (X, A^ +1 X) = Q (Y, A^ Y) = 0, where Y = A^ X. Therefore V represents in the form
V=V / ©(F©G) where V is invariant with respect to A^ and n[V is
nondegenerate. The induction in 1/2 dim V finishes the proof.

These lemmas imply the following

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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THEOREM 1.2.3. — The exterior 2-forms over 1R or C are Sp (V)-equivalent if and only
ifA^ and A^ are equivalent with respect to GL(V).

1.3. This theorem directly implies the list of normal forms of Sp (V)-action on A2 (V*).

THEOREM 1.3.1. — For any coeA^V*) over R there exists a decomposition of\ into
the skew orthogonal with respect to Q, direct sum of subspaces V= © V^(X,, X) where ^ runs

3,^

the roots of P^(k) and 1^/^1/2 dim K(^) so that (o=^G)^j and o^yeA^V,) in the
symplectic basis (e^, . . .,^,/i. . .,/,.) of\\(^, ^) is of the following form:

(1) \ is real, dimV^(5i, X) is even, then

(D=^ ^ e*A/*+ S ^*A/*^
l ^ i ^ r l^ i^r-1

(2) X=CT+;T , dimV^ ^ a multiple of 4 then

^•=^ E ^A / *+T(^ ^,A/^,_,- E ^.-HA/!^2)+ S ^A/*_2
l^i^r 2i^r 2i+2^r 2^i^r

COROLLARY 1. — If all the roots of the characteristic equation P^(X)==0, ^, ^-2, . . ., ̂
ar^ r^/ ^^rf different then co= ^ ^^* A /* ̂  ^ symplectic basis.

l^i^r

COROLLARY 2. — y4^ effective form coeA^ (V^) o/z a ^-dimensional symplectic space ¥4
c^ be transformed by a symplectic transformation to one of the following forms

(1) (D-M/TA^-^A^)

(2) o=M/rA^-/2A^)

(3) O)=/?A^

COROLLARY 3. — ^4^ effective form coeA^V^) wz ^ ^-dimensional symplectic space
can be transformed by a symplectic transformation to one of the following forms

(1) 0)=^ A/f+X,^ A/2+^^ A/^, ?4+^+^3=0

(2) ©==2^^ A/f-^Ce? A/$+^ A/^)+V(^ A/2-^ A/?)

(3) 0)=2?l^ A/*-)l(^ A/2+^ A/^)+^ A/^

(4) (0=^A/T+^A/2

1.4. Let us return to the 2-dimensional case. For the effective forms coeA^V^) we
have P^(X,)=Pf(co)+^2 and its Sp(4)-orbit is completely determined by the values of
the Pfaffian.

An effective form co e A^ )V4) is called
elliptic ifPf(co)>0,
hyperbolic if Pf(co)<0,
parabolic if Pf(co) = 0.

4^^ - TOME 26 - 1993 - N° 3
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The Monge-Ampere equation ̂  on a two-dimensional manifold M determined by an
effective form coeA2^1 M) will be called elliptic, hyperbolic or parabolic at weJ1 M, if
so is the exterior form co^ on KerU^ ^.

THEOREM 1.5. — The Monge-Ampere equation determined by a form (DeA^T*]^),
dim M=2, in a neighbourhood o/meT*M where Pf(o)^)^0, is symplectic equivalent to
a Monge-Ampere equation with constant coefficients with respect to a symplectic coordinate
system if and only if

(1.5) do == 1/2 ̂ ln/Pf((D) | A co

Proof. - Necessity. Let ©o e A2 (T* M) be an effective 2-form with constant coeffici-
ents with respect to a canonical coordinate system and IP^cOo)^!- Let also
F: T* M -^ T* M be a symplectic diffeomorphism such that F* (0)0) = ̂ o for a function
?ieC°°(T*M), X^O. Then Pf(F*(co))=F*(Pf((o))=?i2 and therefore
o)o = F* (| Pf(co) | -1/2 (D) hence d(\ Pf(co) | -1/2 co) = 0 implying (1.5).

Sufficiency. First consider an elliptic case, Pf(co)>0 normalizing the form
co-^Pnco))"1^ assume that coeA^CP'M) is an effective form such that
<Ao=0. Consider the family of operators A^: T^ (T* M) -> T^ (T* M) dual to® with
respect to the symplectic structure: A^=A^. The operators A^ satisfy the characteristic
equation P^(A^)=0, therefore A 2 +1=0 and the field x->A^ determines an almost
complex structure on T* M. Since co is closed, this structure is integrable.

Prove this statement. Remind that an almost complex structure determined by the
field of operators A = (A^) is integrable if and only if the vector field

Z=[X, Y]+A[X, AY]+A[AX, Y]-[AX, AY]

vanishes for arbitrary vector fields X, Y.
The relations i^^^x. M and ^x=ixd~{~dix imply that on the closed forms the

following relation holds:

hx, Y] = ̂ X ̂ Y - h ̂ X + ̂ X h

To prove that Z = 0 it suffices to show that i^ Q = 0 we have

i\x, Y] ̂  = x̂ ̂ Y ̂  — ^Y ̂ x ̂ -~d0. (X, Y),

- ^A [X, AY] Q = hx, AY] G) = ^X ^AY G) - ̂ AY ^X co

- do (X, AY) = - ;x ̂ Y Q - ̂ AY ̂ x o + ̂  (X, Y).

^A [AX, Y] ̂  = ̂ AX ̂ Y 0) + ̂ Y ̂ X ̂  + d^ (x' ̂ )-

/[AX, AY] ̂  = ̂ AX ̂ AY ̂  - ̂ AY ̂ AX ̂  - ̂ ° (AX, AY) = ̂ X ̂ Y » - ̂ AY ̂ X ̂  + ̂ 0 (X, Y).

implying the desired.
Therefore by Newlander-Nirenberg's theorem A determines a complex structure

on T* M.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



288 v. v. LYCHAGIN et al.

On T*M consider the complex-valued closed form 9==Q-fo). Then making use
of (1.2) we get 9 (A,,, v,, ̂ )=9(^ A^)=fe(z;i, ^) for all ̂ , v^eT^^M).

Therefore by Darboux theorem 6=dz^ A dz^ in a local complex coordinate
system. Set z^=q^-iq^ z^p^ipz for some functions q^ q ^ p ^ p z on T*M which
form a local coordinate system. Separating the real and imaginary parts in the relation
Q=dz^ A dz^we get

Q,=dq^ A dp^+dp^ A ^? 0=^1 A dq^—dp^ A rf^.

Therefore (^, /?) is a canonical coordinate system in which ̂  is the Laplace equation.
Now consider the hyperbolic case assuming as above that Pf(co)= -1, <Ao==0. Then

o)2_pQ2^o and since CD is effective, then (co+Q)2^ and (co-Q)2^.
Therefore (O+Q and O)—Q are primitive 2-forms. Let E+ and E_ be distributions

determined by these forms. Let us show that E^ are completely integrable. In fact,
the annihilator of, say E+, is formed by the 1-forms yeA^T*]^) such that
y A (O)+Q)=O but then dy A (o)+Q)=0. Select the integrals/i, f^ and g^ g^ o fE+
and E_, respectively, so that G)+O=^ A df^ co—Q=^^ A dg^ in a neighbourhood of
m e T* M. Then Q. = 1/2 (df^ A df^ + dg^ A rf^) 0) = 1/2 (^ A ^2 - ̂ i A ^2) an(l there-
fore in the canonical coordinate system ^i=l/2/i, ^2 =1/2^, ^i==/2, Pz^g^ ^^ is the
wave equation.

THEOREM (S. Lie) 1 . 6 . — Z^ M be an analytic manifold^ dim M=2 and €y, a Monge-
Ampere equation with analytic coefficients where Pf(G))^0, (joeA^.^M). Then ̂  is
locally equivalent to a quasilinear equation in a neighbourhood ^/weJ^M.

The quasilinearity of<^ is equivalent to the fact that the fibers of^i o: J1 (M) -> J° (M)
are integral manifolds. By Cauchy-Kovalevsky theorem there exists a 3-parameter
analytic family of solutions h, which defines a foliation in a neighbourhood of
we^M. By Weinstein's theorem [13] there exists a canonical transformation preserving
m and sending this foliation into ^f/o W. •^J1 (M). Then F* (co) defines a quasilinear
equation.

1.7. We say that/, g6C°°(T*M) define an intermediate integral for A^ if
(o=='k^df A dg-^-'k^Sl, X^€CO O(M). Since we are interested in normal forms of equations
we may assume that o)==df A dg-^-'kQ,, ^eC^^M).

THEOREM. — (S. Lie) Suppose a Monge-Ampere equation €^ co e A2 (T'1'M) admits an
intermediate integral (/, g) for which the subspace / c: C°° (T* M) generated by /, g, 1
over R forms a Lie algebra with respect to the Poisson bracket. Then ̂  reduces to the
one of the following normal forms:

(1) hyperbolic type: w==\/2(dp^ A dq^—dp^ A dq^)
(2) parabolic type: w=dp^ A dq^.

Proof. — Consider / , then 1 belongs to the center of / and therefore it suffices to
define {/, g}. Let {/, g}=C^-^-C^f^-C^ g, Qe(R then up to isomorphism the 3 cases
are possible:

(a) {/ ,^}=1; (b){f,g}=0; (c){f,g}=f.

4eSERIE - TOME 26 - 1993 - N° 3



MONGE-AMPERE EQUATIONS 289

By a contact diffeomorphism/, g can be transformed into p^ q^ in case (a), into p^ q^
in case (b) and in case (c), replacing g by g/f, we have {/, ^//} = 1 and therefore are in
case (a).

2. Symplectic classification of exterior effective
3-forms on 6-dimensional space

In this section we describe the Sp(V)-orbits in the space of effective forms A^(V^)
for n==3.

2.1. Let V be a 6-dimensional real symplectic space with the structure form Q and
co e A3 (V*) an effective form. Set (Ox == ix °>e A2 (V*), Ex = Ker cox for all X e V. Let us
construct an invariant of Sp-action, the quadratic form q^ on V associated with an
effective (o. Notice that ©x A ft =9 since the effectiveness of (0, (0 A 0=9, implies that
(Ox A Q=(O A 9^ where 9x=?x0 ^d therefore cox A Q2=(o A 9^ A n=co A 0 A 9x=9.
Therefore the characteristic polynomial of ©x is of the form (up to the volume form ft3):

((Ox-^^-^Q^^COxAQ,

with (Ox3"0 since "x is degenerate. Therefore the roots of P^(^) are ^ i==0 and

^ 3= ± /-1/412 (Ox. In fact, for a non-zero root ^ we have ^O^ ~3Tco^ and
since 13: A6 (V*) -> R is an isomorphism, then fk21^Q3==-31^ To)x. But
l3To)x=l2®i l303=6 and therefore ̂  - 1/412 (Ox.

Making use of these remarks we define an Sp (V)-invariant, the quadratic form
^eS^V*):

(2.1) ^(X)——!^!2^

If ©2 = F* ((Oi), F e Sp (V) then q^ == F* (q^). Notice also that if q^ (X) ̂  0 then (o^ 9
and since co^=9, then (Ox is a form of rank 4 and dim Ex =2.

PROPOSITION 2.2. - Let X, YeV be such that Ye Ex. Then CO==COY A 9x-o)x A 9y ^
n(X, Y)=l W(0x A 9x=coY A 9y ;/Q(X, Y)=9.

Proo/. - The effectiveness of co implies

;x((o A Q)=o)x A Q-(O A 9x=9

yielding

^^(^ A n)=^Y(o)x A ^)-^Y((0 A 9x)=OY(ox) A n

+(0x A 9Y-COY A 9x+(0.9x(Y)=CO.Q(X, Y)-(OY A 9x+0)x A QY-

PROPOSITION 2.3. - If q^(x)^0 and Ex c V ^ ^ isotropic space then
0)=^ A ̂  A e^ in a canonical basis o/V.
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Proof. - Thanks to the above remark, dim Ex =2 and 0)^=0 by
hypotheses. Therefore, C0x A 9y=(0x A 9y A 9x=9 and, similarly, ©y A 9x A 9y=9
implying co A 9x A 9y=9. In fact, the intersection of every 5-dimensional subspace
W c: V with Ex contains at least one generic vector of the form aX+bY and therefore
co A 9x A 9y[^=9. ^ follows, there exists a vector ZeV such that co=92 A 9x A 9y.

Since co is effective, then

0=lco=l(ez A 9x A 9y)=9z A l(9x A 9y)-;z(9x A OY)=^(Y, Z)9x-Q(X, Z)9y

since 1 (9x A 9y) = 0. Thus X, Y, Z are in involution with respect to Q and therefore
can be completed up to a canonical basis.

PROPOSITION 2.4. — If q ̂ =0 but 0)7^9 then in a canonical basis co=^f A e^ A e^.

Proof. - Since ^(X)=9 for all XeV, then ^((Ox A o)y)=9 for all X, YeV or,
equivalently, T3 l^^x A ^=9 for all X, YeV or, equivalently,
T (c0x A coy) = 0 A c0x A coy = 9. Since co is effective, then CD A Q, = 9 and
9x A co + 0 A C0x = 9. Therefore, multiplying this identity by coy we get 9x A CD A coy = 9
for all X, YeV yielding co A C0y=9 and C0y=9. Therefore, coy is simple for all
YeV. Select YeV so that o)y^9. Then (Dy=a A P, a, (3^9 and
co A C0y=o) A a A P=9. Therefore c o = a A p A Y i s simple and making use of the effec-
tiveness of co as in 2.3 we get the desired decomposition.

2.5. Now consider the case when Ex is a non-isotropic subspace in V. Select Ye Ex
so that 0 (X, Y) = 1. Then by Proposition 2.2 we have

(2.2) co = coy A 9x — Ox A QY

Set Ex=Ker9xnKer9y, X, YeV. We have V=ExCEx, dim Ex =4 and Ex is
symplectic with respect to the restriction of 0. Let prime denote the restriction of a
form onto Ex.

PROPOSITION. — (1) (Ox, coy are effective on Ex; (2) vectors XeV, Ye Ex can be selected
so that C0x is non-degenerate and C0x A C0y = 9.

Proof. — (1) Since Q A co=9, then ( O x A O — c o A 9 x = 9 , c O y A Q — o ) A 9 y = 9 and
therefore ©x A Q' = ©x A Q l^1 = co A 9x je1 = 9 since E^ = Ker 9x 0 Ker 9y. Similarly,
COyAQ^.

(2) Select X so that ^(X)^9. Then the equation ^(X,Z+^X)=9, ZeEx with
respect to t always has a solution and therefore a vector Ye Ex can be selected
so that ^(X, Y)= — l/4l2(c0x A o)y). This is equivalent in turn to the fact
T 1^ (cox A coy) = 1^ (T (Ox A o)y) = 9 but 1^: A6 (V*) -> A2 (V*) is a monomorphism and
therefore Tcox A o)y=9 or Q A (DX A C0y=9. Substituting X into the identity obtained
we get

1^(0. A (Ox A COy)=COx A COy A 9x = 9

and similarly ©x A o)y A 9x=9 implying (Ox A c0y=9. Note that C0x is non-degenerate:
if Z e E^ belongs to its kernel then ^ ©x = 9 i. e. Z e Ex yielding Z = 9.
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2.6. Let us return to normal forms. Select XeV, Ye Ex according to
Proposition 2.5. Then taking o)x for the symplectic form on Ex select a basis
e^e^^J^ in Ex so that

(2.3) COx=^A7T+^A^

Then (Dy can be, due to 1.3, either hyperbolic, or elliptic, or parabolic.
(a) o)y is hyperbolic. Then a canonical basis e^, e^,J^,J^ in Ex can be selected so

that

(2.4) COY^M^ATT-^Aj5?)

where ^eIR, ̂ 0.
Since (Ox and coy are effective with respect to 0.' then ^ (^Ox + coy) A ft7 = 0 and

therefore e\ /\]\ A Q^O. Similarly, ̂  A^ A Q'=0.
Further, Q' is effective with respect to cox, the forms e\ A e^,J^ /\J^, e\ AJ^, e^ A 7^,

^T A./^—^ A 7^, constitute a basis in the space of effective with respect to ©x 2-forms
on Ex, where dim E^ = 4, therefore

(2.5) Q7^? A (^+^)-7T A (^-^)

where ps-qr^O since Q'2 7^ 0.
Consider an operator A which acts identically on the plane (^i,/i) and arbitrarily on

the plane (e^f^\ i.e. A = 1 C B where Ex=(^,7i)©(^72) then if BeSL(2, R) i.e.
preserves e^ /\J^, then A preserves ©x and (Oy thanks to (2.1) and (2.2) and linearly
permutes the second factors in (2.3). Select B so as

B*(^+^)=^ B*(^-^)=±n^, ^0.

Thus we may select a basis e^ e^, 7i» 7i m Ex so as ©x, coy were of the form (2.1), (2.2)
and

(2.6) "^^TAJU^ATT)

Now select a canonical basis e^ e^ e^ /i, f^ f^ in V so as X=e^ Y=/i and the
restrictions of e^, ^, f^, /^ onto Ex would coincide with ^ ?;', ± [i e^, J^, 7?,
respectively. Then by Proposition 2.2

(2.7) (0=1/^T A ̂  A/ldb^f A ̂  A/^+V^ A/? A ^±V^ A/? A ^)

(&) (OY is elliptic. In a canonical basis ^f, ^,./?,./^ we have

(2.8) COY=M^A^+7?A^).

The condition Q' A coy = ̂  A ©x = 0 implies that

(2.9) ^=pe* A ^+^? A7$+r(^ A^-J? A ^)+^(?!c ATT-^ A^)
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Consider the 1-parameter transformation groups whose elements are of the form

A,=

1 0 0 t

0 1 / 0
0 0 1 0 '
0 0 0 1

B,-

1 0 t 0'
0 1 0 -t
0 0 1 0
0 0 0 1

in the basis e,, e,, ]•„ /,. It is not difficult to see that these transformations preserve
Ox and o)y and their action on 0' is given by the following formulas

(2.10) J Al'•(P.^r,s)->(J)-qt2+2st,q,r,s-tq),
\ B»:(A q, r, s}->(p-qt2-^st, q, r+tq, s),

w^ ?' q' [' s) are the coordinates of "' according to (2.9). Applying transformations
ot the form A,, B, consequently we see that 0' can be transformed as follows:

(p, q, r, s) -^ (0, q, r, s) -^ (q, 0, r, s) -^ (0, 0, r, s) -^ (0, 0, 0, s)

and therefore reduced to the form

(2-11) "'=^(eT AJT-^ A^).

sd? m v a caDonicalbasis ̂  ̂ ,/i,/2, ̂ ,/3 so as e^X,f^Y and the restrictions
ot e^f,, e3,/3 onto E^ would coincide with se^,^, -se^J^ respectively; then by 2 2
(0 is of the form '

(2.12) w=l/s(e* A ̂  A/$-e? A ̂  A/^+X^ A/? A/?-V^ A ̂  A eT).

(c) (Oy is parabolic. Then <o'y=ef A 7^ and

(2.13) Q'=^ A e$+^f A^+^ A^+,(i-? A7»-^ A^).

Consider two one-parameter groups ofsymplectic transformations preserving coy whose
elements in the basis ̂ , e^, J^ are of the form

A,=

1 0 0 0
0 1 0 0
/ 0 1 0 '
0 0 0 1

B.=

e~1 O 0 0
0 e~' 0 0
0 0 e' 0
0 0 0 e'

Representing ft' as above in coordinates (p, q, r, s), where pr+s^O since (Q')^O
we express the action of these groups on ft' in the form

A, •• (p, q, r, s) \-> (p, q + 2 tr, r, s),

^t'-(P, q, r, s)l-».(e~2tp, q, e2'^ s).
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Therefore Q.' reduces to the form

(2.14) W=s(e^ A 7^^ A^), r^O

or to the form

(2.15) Q'=?fA^-^7?A^, r^O

Respectively we get two normal forms for o:

(2.16) w=s-1^ A e! A/2-^T A ef A/^-^ A/^ A/?),

(2.17) O)^-1^ A ̂  A/3)+/2 A/3 A e,-n A/3? A ̂ .

(d) cOySEO. In this case there are two normal forms corresponding to the cases.
(1) Q' is elliptic, then

(2.18) (O-^-^/r A/l A ̂ -/f A^ A ^).

(2) Q.' is hyperbolic then

(2.19) co= -a2/^ A ̂  A ^+/^ A e\ A ̂

THEOREM. - ̂ ^ effective form (oeA^Vg) ^ Sp(6; ̂ -equivalent to one of those listed
in Table 1. (&w e^ e^ e^f^f^f^ is a canonical basis in V.)

TABLE 1. - Normal forms of effective 3-forms on Vg

N° The normal form The invariant

1. e\ A ̂  A ^+VT A/? A/?, ?^o 2^=X(^/T+^/?+^/?);
2. /T A ̂  A ^^ +/? A e\ A ̂  2 ̂  = (^)2 - (^?)2 - (e^)2

+/? A ̂  A ^+V2/T A/? A/?, V^O +V2[(/T)2-(/?)2-(/?)2];
3. /T A ef A ̂  +/5 A ̂  A ̂  +ff A ̂  A ̂  2 ̂  = (^T)2 - (^?)2 + (^)2;
4. /T A ̂  A e^ +/; A eT A ef +/? A ef A e? 2 ̂  = (^)2 - (^?)2 - (e?)2;
5. /? A ̂  A ̂  -/? A e\ A ̂  -/T A e^ A ̂  2 ̂  = (^)2 + (ey + (^)2;
6. f^ A ̂  A ̂  -/^ A ̂  A ̂  2 ̂  = (ef)2;
7. /? A ^f A ̂  -/^ A ̂  A ̂  2 ̂  = - (ef)2;

8. ^ A ^ A ^ ^=0;
9. 0 ^<o=0-

Proof. - Let us show how to simplify (2.7), (2.12), (2.16), (2.17), (2.19) with the
help of gauge symplectic transformations to get normal forms 1-6. In (2.7) let us
perform the following sequence of transformations:

(1) 6?i -^ -/i, ̂  -^ ~fl. ^3 -^ ~/3. fl -> ̂ 1' /2 -^ e^ /3 ̂  ̂ 3.

(2) e^[i~lfke^e2-^e^e^->e^f->[l'k~lf^f2->f2,f3->f3'

(3) ^+^"2/l^/l, -^+^~ l/l^-2^2^,^^^^3^^/3->^/2^/2•
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(4) e^-l/l^^e,, e^e^ e^e^ /i-^-2^-2/,, /,->/„ f, ->/„ that
reduce (2.7) to the normal form

(0=^ A ̂  A ^±24i-2/? A/,* A/3*

corresponding to (1) for ^= ±2^"2.
Similarly let us transform (2.12) to get the normal form (2). For other forms all the

parameters are killed with the help of gauge transformations.
In (2.16) the transformation

el->se^f^->s~lf^e^s2e^f2->s~2f^f^e^e^-f^

transforms (2.16) into

0)== -/? A e^ A 6^+/2 A €\ A ^+/3' A ̂  A ^.

Accordingly, for (2.17) there arise two normal forms without any parameter. The
transformation

^-^^e^f^r-^f^e^r^e^f^r-^f^e^-f^f^e, for r>0

or

^-(-^^/.-.(-^/^^^(-r)1/2^,

/^(-r)-1/2/^-^-^-^ for r<0

reduced to the forms

C0= -/? A C\ A C^f! A ̂  A ^-/? A ̂  A ;̂

(0=/^ A ̂  A ^+/? A ̂  A ^-/? A ̂  A ̂ .

In (2.18) the transformations

(1) tl -* Vl. ^2 -^ ^2» ^l ̂  ̂ ~ ' €„ /2 ->/2, ^3 -^ 6?3, /3 -^/3,

(2) /I -> ^1. ^1 -^ -/1./2 -^/2. ^2 -* ^2. ^3 -^ ^3./3 -^/3.

yield

O ^ ^ A ^ A ^ - ^ A ^ A ^ .

In (2.19) the transformation

e! -> H^l./l -> H"1/!,^ -^ H^/2 ̂  P"1^^ -^ ̂ /3 -^/3

yields

®= -/? A 6?? A 6^+/^ A ̂  A ^.
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Further, the forms q^ for 1-6 are GL(6, R)-different, therefore the corresponding
representatives belong to different orbits of Sp (6, IR). It remains to show that different
values ^ and v2 correspond to different orbits. For this consider the operator A^: V -> V
corresponding to the quadric ^(X, Y)=Q(A^X, Y). Then

(2.20) 5i=^^detA,, v= 1/2^/^detA,

Remarks. — (1) One may derive a description of Sp(6, C)-orbits in the space of
effective 3-forms on a complex 6-dimensional space from [8, 19].

(2) Theorem 2.6 shows that generic orbits correspond to "non-linearizable" Monge-
Ampere equations. Therefore in the classification problem of Monge-Ampere equations
on 3-dimensional manifolds to generic orbits also non-linearizable (even at a point)
equations correspond.

3. Effective forms and their stabilizers

3.1. For n^4 generic orbits in A^(V^) have trivial stabilizer, therefore instead of the
list of normal forms we may make use of versal families co^ = G)() + ̂  ̂  (o^ where (DO is a

i
representative of a generic orbit and {coj a basis in Coker Bo, and
Bo: S2 (V^ „) -> A^ (V^ „) is the operator, defined by the formula Bo (h) = 5 (X,, J ©o), where
X^ is a linear Hamiltonian vector field. We identify Lie algebra Sp(V) with S^V*)
assigning to each symmetric tensor h the linear operator

X, e Sp (V) c: V (g) V*, X, = (1 ® r-x) (8/0,

where F: V -> V* is an isomorphism, determined by Q; and 5: S^1 (V*) -^ S^ (V*) (g) V*
is the Spencer cohomology operator [7].

3.2. Omitting routine calculations give an example of a representative of a generic
Sp(8, R)-orbitonA^(Vt):

C0o=^ A ̂  A ̂  A ^+/T A/^ A/^ A/i+/f A/^ A ̂  A ̂

-2/f A/? A ̂  A ^+3/f A/^ A ̂  A ^-4/^ A/3: A ̂  A ̂

+5/? A/i A e\ A ^+6/^ A/^ A e\ A ^.

It is known that every symplectic transformation may be represented as a composition
of transvections, i. e. shift transformations along the trajectories of linear Hamiltonian X^
fields, where /z==^2 , ^-eV*, X^O. The explicit form of the transvections is

(3.1) V-^V /=V+2^(V)X,

In what follows under a transvection we will also mean their infinitesimal generators,
Hamiltonian fields of the form X^2, XeV*. A vector X,, will be called a directrix of the
transvection X^2.
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3.3. Let coeA^(V^) be an effective fc-form on V.
The stabilizer (Lie algebra of linear symplectic symmetries) of co with respect to the

natural Sp(V)-action on A^(V^) is

(3.2) ^={^eSp(V)|go)==0}={AeS2(V*)|8(X,JG))=0}.

A transvection X^i, ^eV* is called a characteristic transvection of oeA^V^J if
^2^.

Denote Char^ the set of characteristic transvections ofco.
Then Char / ^ U { 0 } is an algebraic (conic) subvariety in V*. This subvariety is an

Sp(V)-invariant ofco: ifo)2=F*((Oi)» FeSp(V), then F* (Char /^)= Char /^.

PROPOSITION. -- X^2 is characteristic for coeA^(V^) if and only ifk A (X^ J co)==0.

Proof. — Let L^ be a Lie derivative along X^i then by (3.1) we have

Lx,2(co)(Vi,...,V,)=2 ^ 5i(V,)co(V,,...,Xl,...,V,).
l ^ i ^ k

We may assume (perhaps after a linear transformation of V\, . . ., V^) that the first k—\
of these vectors belong to KerX and ^Pl(Vfe)^0 therefore L^(co)=0 if and only if
X^ J (o8 on Ker 'k.

3.4. Fix ^ e V*, ?i ̂  0 and consider f]^= { ® e A^ (V^ „), ^ A (X^ J co) = 0}. This space
consists of effective A:-forms for which X^i is characteristic.

An effective form coeA^(V^) is called regular if its Sp(V)-orbit does not intersect
with Yi^ otherwise co is regular if it has no characteristic transvections.

THEOREM. — Let co e A^ (V^ „) have a pair of characteristic transvections whose directrices
are not in involution. Then there exists a decomposition V=V / ®A:XQ®A:XQ+ such that

Q(Xe,Xe+)==l; O^eV*, V^KerOU KerG-^,
(3>3) c o = f 9 A Q+-——1——0^ ACOo+eOi ,

\ n-k^rl )

where Q'=Q|V'; coo, coi are effective forms on V.

Proof. — For 9, ̂  take the directrices of characteristic transvections whose existence
is assumed in Theorem. Making use of decomposition from the proof of Theorem 1.6
in [14] and Proposition 3.3 we get (3.3).

3.5. Theorem 3.4 and the results of Sections 1 and 2 allow us to refine the classifica-
tion of effective forms from A^(V^). Namely if coeA^(V^) has two characteristic
transvections which are not in involution then (3.3) takes the form co = (6 A 9 + — 0') A coo
where ©o e A^ ~ 2 (V^*, - 2) since co^ e A^ (V^ - 2) = 0. Therefore making use of the classific-
ation of 2-forms on a symplectic space we get the following result.
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THEOREM. - Any effective form CD e A^ (V|) possessing a pair of characteristic transvec-
tion whose directrices are not in involution may be transformed by a symplectic transforma-
tion to one of the following forms:

(1) co=M^T A/T A e\ A/$+^ A/? A of Aft)
+^T A/T A ̂  A/^+^ A/$ A ef Aft)

+U^T A/T A Of A/^+^ A/$ A ̂  A/I?), ^+^3+^4=0

(2) CO=^TA/TA(2^A /2 -^A /S-^A /^ )

+^ A/? A (V^ A/?-V^ A/^)-^ A/$ A (̂  A/?

+?l^ A/i+V^ A/^-V^ A/;)+2^ A/3; A Of Aft

(3) G)=^ A/? A ̂  A/^-^ A/^ A ̂  A/^+^T A/f A (2 K ̂  A/$

-)l^ A/^-)l^ A/;)-^ A/^ A (?l̂  A/^+)l^ Aft)

+ 2 ^ A / ^ A ^ A / ^ ,

(4) C0=^ A ̂  A/f A/?-^ A ̂  A/f A/^+^ A ̂  A/T A/^ + ̂  A ̂  A/$ A/^:.

(Here e^ e^ e^ eff^f^f^ft is a symplectic basis in V|).

3.6. Before we start describing stabilizers of the most important types of effective
forms let us make several remarks.

Let V be represented as the direct sum of Lagrangean subspaces V=E+F. Then
making use of Q we may identify F with E* and under this identification Q turns into
the standard 2-form on E©E* for which 0(6?, e*)=e*(e) with ^eE, ^*eE*. Every
linear transformation A:E-^E generates a symplectic transformation A ©(A*)"1

ofV. If <?i, . . .,^,/i, • . .,/n is a symplectic basis ofV and E, F are linear spans of
e., . . . ,<?„ and/i, ...,/„ respectively, then to infinitesimal analogues of the symplectic
transformations above correspond tensors of the form ^=^^*®/j*. Let us make

u
use of (3.2) to find /^. Direct calculations show the validity of the following.

PROPOSITION. - The stabilizers of effective forms oeA^V^) reducible to the normal
forms 1-5 of Theorem 2.6 respectively are

(1) ^^sl(3, R) generated by the tensors of the form h= ^ ^*./f, where
l^i ,J '^3

||^.||eSL(3,R);
(2) </a)^sl(3, R) generated by the tensors of the form

h= ^ ^*/T+ E W'+vW+Yi^M-vWs)
l ^ i , j ^3 1^^3

+ y, (̂  ̂  + v^T/!) + Y3 (^T ̂  - v'/T/?), ^2 = ̂ i + ̂ 3. ̂ . Vi ̂  ̂

(3) ̂  the semidirect sum of SO (2, I)=SO(^|E) ̂  H2(2; 1) c= S^E*) generated by
symmetric tensors h = ^ &^ ̂ * ̂ * 5'MC/? ^ar ^i i + ^22 - ^33 = O?

l^i ,J '^3
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(4) </(o is the semidirect sum o/SO(l, 2)=SO(q^) and the space H^l; 2) c= S^E*)
generated by the symmetric tensors h= ^ ^ ̂ * ej such that &i i — ^22 ~ ̂ 33 = 0.

1^0'^ 3

(5) </<„ ^ semidirect sum of SO (3) = SO (^ [g) ̂  ̂  ^<^ IL, (3) c: S2 (E*) of
harmonic tensors of the form h = ^ Z^ • ef e^ where &i i + ^22 +^33 == 0.

l ^ i , J ^3

3.7. Let ^i, . . .,^, /i, . . .,/„ be a canonical basis of the symplectic space V and
(v^, . . .,v^) an arbitrary set of numbers of which/? are positive and q are negative,
p-^-q=n. Denote ^^(p; q) the space of qnasiharmonic tensors and so(p, q) the Lie
algebra preserving ^ v;(^*)2.

l^i^n

PROPOSITION. — Let in a canonical basis e^ . . .,^, /^, . . .,f^ ofV an effective form
0)6A^(V^) be reduced to one of the following forms

(1) 0)=/? A . . . A/^+X^ A . . . A e^ X € R , X^O;

(2) (0= ^ V,^ A . . . A/* A . . . A ̂ , V^eR
l^i^n

then in case (1) /^=sl(n, R) is generated by the tensors of the form ^ a^off^
l ^ i , j ^ n

where ||^[[esl(^, 1R).
In case (2) /^ = SO (/?, q) -> N2 (/?, ^) is generated by the elements of the form

E^*/T+E^*^ wh^ K||eSO(^ ^) and ^&^*^eH2(^ ^) c= S^V^)
l,J f ,J t \7

4. Prolongations of reductive Lie algebras
and stabilizers of effective forms.

4.1. Let V and W be finite dimensional vector spaces over field k (unless otherwise
stated k=C). The first Cartan prolongation /(1) of a subspace / c: Hom(V, W) is
defined as follows ([7]):

(4.0) ^ ( l )={TeHom(V,^) |T(M)^=T(z;)M,M,z;6V}=(W®S 2(V*))n^®V*

The k-th prolongation of/ is defined inductively as ^Wr::^^-1)^1) and coincides with
(w^s^^v^n^s^v*).

The most important case is the one when W = V* and / c: End (V) = V* (x) V is a Lie
algebra. They say that / is of finite type k if ^"^O and /^^Q (and therefore
^(^O for s^k) and of infinite type otherwise.

Note also that the functors of complexification and prolongation commute. The
algebra ^*)=^-1)+^(0)+^(1)+ . . . +^<n)+ . . . where J^^V, f^^/ is a graded
subalgebra of the Lie algebra of polynomial vector fields

Vect(V)=V4-V®V*+V(8)S2(V*)+. . .

t'e. [/{i}, /(j)] c: /{i+j} with respect to the bracket in Vect (V).
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Clearly, ^(*) is finite dimensional if / is of finite type and infinite-dimensional
otherwise. The complex irreducible in V Lie algebras / c= End (V) of infinite type were
listed by E. Cartan [4], ct. [7].

We will be interested in classification of reductive subalgebras / given by a
representation y in EndV such that (^OOy^O.

4.2. First consider the case when y\/ -^ EndV is irreducible. The following theo-
rem is a combination of the well-known results ([9]).

THEOREM. - Let / be a reductive subalgebra in EndV given by a faithful irreducible
representation y. Then (^(/^^O if and only if ( / , V) is one of the pairs listed in
Table 2.

TABLE 2. — Cartan prolongations of irreducible subalgebras

No f ^-module ̂ -1) /w

1. Afc+A,+C 0—0—. . .—0®0—0—. . .—0®C A k + , + i , / ^ l , A : ^ l

k I

2. A^+C 0—0—0—.. .—00C D«,w^4
n

3. A^+c 0—0—...—00C C«,w^4
n

4. Ds+C 0—0—0 ®C Eg
5. Ee+C 0—0—0—0—00C E7

6-0-.""-o^c B"+l'"^2

61 Al+c 6®c B2

7. D,+C 0—0—...—0 (8)C D,+i,7i£4

6-0-...-o®c
^^ 6-o-...-o^o®c CH"

la A" 6-0-..-o s"+l

6-o-...-o^o

Remarks. - (1) ̂  is given up to an automorphism of / .
(2) The cases (1)-(7) correspond to Hermitian spaces and in these cases

^(*)=V+^+V* whereas the cases (8)-(11) correspond to irreducible primitive Lie
algebras of infinite type (Cartan series).

4.3. Now consider the case when y is reducible.

THEOREM. — Let / be a reductive subalgebra in EndN given by a faithful reducible
representation y. Then (^ OQ)^ ̂  if and only if ( / , ̂ ): / = /o C ̂ , ^ = <^o ® ̂ .
y ( / ) = ̂ o (/o) © ̂  W. ̂  c K^ e^o. / c Ker v|/ ^rf (^ ^o) ^ ̂ ^ ^/ the pairs listed
in Table 2. Then y ( / ) is of infinite type if and only if so is (/o, Vo).
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Lei us preface the proof of Theorem 4.3 with two technical lemmas.

LEMMA 4.3.1. — Let / be a reductive algebra, y: / -> End V be such that
y= ^ y,. Let y=y^^, where v|/»= ^ ̂  W^C/)c:EndV,, V= ^ V,. If

l^i^s k^i l^i^s

T:V->-^(^) is a linear map which enters the definition of the first prolongation (4.1)
then T = ^ T, where T,: V -^ 5^ C/) ̂ r^/^ (4.1) /or any ; W T, (V,) c= y, (Ker \|̂ .).

l^i^s

LEMMA 4.3.2. — Under notations of Lemma 4.3.1. If T^: V .̂ -> ̂  (Ker \|/,) a^rf
(^WV^^O ̂ ^ ^r^ ̂ a'̂  o c e { 1, . . . , s ] such that

(a) Kerv|/,nim^==Im^;
(b) (^(KervU^^O.
Proof of Theorem 4.3. - Sufficiency. By Lemma 4.3.1 T:V-^C/) is of the

form T = To + T^ where To: Vo ̂  ̂ o (^o) and T^: U ̂  v|/ (^) where ^o (<^o) c End (Vo),
\|/(^) c: EndU, V=Vo © U.

By hypotheses there exists To 9^0 satisfying (4.0) and therefore /(1}^^,
^(D ̂  ̂ i) Q ^(D Y^g assumptions imply /(k) = /^ © ̂ {k} and since / ( k } ̂  0 for /c ̂  1
weget^^Oforfc^l .

Necessity. Let .9^= ^ ^'^ where c97^ are irreducible. By Lemma 4.3.2. there
l^i^s

exists a number a such that Ker \|/^ Him (pa=Im (p^, ((p^(Ker\|/,))^0. This means that
^=^o©^. ^(^)==^(^o)+^(^) and ^o=Ker^, L^. v|/J^o)=0. Since
Imv|/,nKer4f,=0, Im^=Kerv|/,, then ^(Imv|/,)=0 L^. ^(^)=v|/J^), where
^==Im\|/,. Since (^(Kervl/^y^^O, then (/o, (po) is contained among the pairs listed
in Theorem 4.2. If /^^O for k^l then /{1)^ and therefore
^(^)=^i(^i)©...©^p(^p)©^(^) where / = / ^ © . . . ©^© ̂ ,
(^(^V^^O, (vj/^^^^O; consequently ((p^ (A))^ ̂  0 fo1' k^1 for a number
a e { 1, . . .,/?}, ^^. {/^ ^a) ls one of the pairs (8)-(11) of Theorem 4.2.

COROLLARY. — Let ^ be a reductive subalgebra in sp(V). Then either ^^O or ^ is
of infinite type. In the latter case ^ contains a simple ideal sp (U), U c V which is a
regular subalgebra in sp (V), where

spW^/eS^V^jXja/^O for XeU}

4.4. Let us return to the study of stabilizers of effective forms and investigate when
they are finite as subalgebras in sp(V). First formulate a general result on finiteness of
stationary subalgebras.

Let V be a finite-dimensional vector space, G a semi-simple Lie group with Lie
algebra,/ and G-^AutV a faithful representation. Denote by {Hj the full set of
pair-wise non-conjugate nilpotents in / . A vector veV is regular if the intersection of
orbit v and {Hj Q. v 0 H,= 0 for any i.

THEOREM. — The stationary subalgebra of a regular element is of finite type.
Due to corollary of Serre theorem [20], [7] the stationary subalgebra of z;eV is of

finite type if and only if it has no elements of rank 1. Since / y <= EndV=V(g) V*, the
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elements of rank 1 are of the form co ® co*, oeV. Notice that we can confine ourselves
to the study of nilpotent elements of this form only, since thanks to semisimplicity we
may assume that the representation is given in sl (V) and therefore there are no non-zero
diagonal elements. The regularity condition allows us to disregard nilpotents also.

PROPOSITION 4.5. — (k is algebraically closed). Let coeA^(V^).
(1) /^ is of finite type if and only ;/o has no characteristic transvections.
(2) If / ^ is of infinite type then o = ̂  A Oo + Oi where X^ J o^ = 0.

Proof. - (1) is a corollary of Theorem 4.1. (2) Follows from 3.3.

COROLLARY. — (k is algebraically closed). The stabilizers of regular forms are of finite
type.

Remark. - The results of[l] imply that for n==3 the stabilizer of a generic
coeA^(V^) is non-zero if k =2 or k ̂ 3.

4.6. Having in mind some future applications let us discuss the problem of finiteness
of the type for stabilizers of effective forms of a special form.

Let (oeA^(V^) and J^^+^o. where ̂  is the Levi subalgebra.

PROPOSITION. — y^^O if and only if co has a pair of characteristic non-involutive
transvections.

Proof. - Let ^^O. Then by Corollary 4.3. ̂  3 sp(U) is simple and therefore
y^ =l sp(l), where sp(l) is a regular subalgebra in sp(v) generated by {X^, X_^, H^}.

Here X±^, H^ are the elements of a Chevalley basis {X^, X_^, H^} of sp(V) so any
effective polyco vector Q)eA^(V^) is a linear combination of elements of the form
X^ . . .X^ (e^ A . . . A ef) where ef A . . . A e{ is a simple (primitive) element of
^(VD. H/the corresponding element of the Cartan subalgebra ([13]). There exists a
symplectic basis {e, f] in V such that these elements act on the vectors of the basis
according to the rules

X^)=X_^)=0, i^n, H,^)=0, i+n\

X^(/»)=^ X_^)= -A; H^0,)=0, i^n,

X^)=0, i^n, X_^)=0; H^)=^; ^(fn)=fn-

Let us present co as follows: 0)=^ A C0i+/^A co^^, A/^ A (1)3+004 where o)^ for
i= 1, 2, 3, 4 do not contain either ^ or/,,.

The condition ̂  ̂  { X^, X _ ̂  H^ } means that X^ o = X _ ̂  co = H^ o = 0. Rewrit-
ing these equations in the form e^ A co^ = -/„ A co^ = ̂  A (Oi -/„ A co^ we get C0i = ©2 = 0
i. e. co = ̂  A /„ A ©3 + (04.

If co=^ A/, A 0)3+0)4, where 0)3, 0)4 do not contain either ^ or/,,, then taking the
above into the account we get

A^{X^X_^,H^sp( l )
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and therefore ̂ ^O by Corollary 4.3.

PROPOSITION 4.7.- (1) For the forms coeA^(V^) of the form 3.7 (O^^O/or A:^ 1.
(2) For the forms © e A^ (V^ „) o/ ^6? /orw 3.7 (2)

/^^^2(P.q\ k^l.

Proof. — Clearly it suffices to prove the statements for k= 1. Let us prove (1). Let
ee^cS^V^then

^J89=^)=^<^/?
a, b

/;.jse=/,(X)=sP^^/?
a,b

where a,=||a^[|, P^==|[P^J| belong to sl(w, R). Making use of the equalities
fj (e, (6)) - e, (/, (9)) = 0 we get ^ a^ ̂  = ̂  P^.,/? yielding a, = P, = 0.

a, b a, b

COROLLARY. - /^=0 for K^O for the effective forms (oeA^(Vg) of the
form 2.6 (1,2).

5. Spencer cohomology of the stabilizers
of effective forms.

In this section we study the involutivity of symbols of Monge-Ampere equations
(= stabilizers of the corresponding effective forms = symmetry algebras of the correspond-
ing operators). Notice that by functorial property all the results on the triviality of
Cartan prolongation and 8-cohomology obtained for k=C hold for R also.

5.1. Let V be a vector space, / a Lie algebra such that / c: EndV=V®V* and
/ ( k } the k-th prolongation. Then the sequence

(5.1) ...^^^A^-^V^^^-^A^V*)-5. . . .

where

8(^®v|/)=^[^,]®v|/A^ for ^^vl/e^^A4-1^*)
f=i

and a basis {e , }, i= 1, . . . , n of V is a cochain complex. Its cohomology

W-q OQ = Ker 8 ( / ( p ) ® A4 (V*))/Im 8 (/(p+1) ® A4-1 (V*)

is called the Spencer cohomology of / , see [7].
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Since / ( p ) c: V (x) S^1 (V*), then on the elements of the form g=v (x)/, where/is a
homogeneous polynomial of degree /?+1, we have [g, u]=v 0 D^/, where MeV and Dy/
is the derivative of/along u.

If (V, Q) is a symplectic space and ^=sp(V) then ̂  is identified with S^V*) and its
prolongations with S^2 (V*); if Jf c= / is a subalgebra then Jf^ c= S^2 (V*).

5.2. In the space of homogeneous formal series of degree k consider the subspace
^k (V*) of homogeneous harmonic polynomials of order k. Let A = ^ S^^/Qxf be

l^i^n

the formal Laplace operator, v e V, v = ^ a .̂, Dy= ^ ^ S / S x ^ . Then
1 ^ i ̂  n 1 ̂  i ̂  n

(5.2) D, (^fc (V*)) c ̂ k - 1 (V*), S^ (V*) = ̂  (V*) + r2 S' - 2 (V*)

where r2=x^ . . . +x2. A direct calculation with (5.2) shows that the following state-
ment holds.

LEMMA. - (^(V*))^^^2^*).

5.3 /w is called ^-involutive if HP' q(/)=0, p^s, q^O. A 1-involutive algebra is
called involutive [7].

PROPOSITION. - The algebras S = V* + S2 (V*) + S3 (V*) + . . . and ^ = V* + ̂ f2 (V*)
+ ̂ f3 (V*) + . . . are involutive.

THEOREM. — Let / be a reductive subalgebra in EndV then ̂ ^ is 3-involutive and if
/ c= sp (V) then /w is 1-involutive.

Proof. - If / c= End V is of type k then /w is (k + l)-involutive since H5'q ( / ) = 0 for
s ̂  k + 1; indeed, ^(k +1) = 0 and H^'" ( / ) = /^\ where n = dim V. Since all tt^e reductive
subalgebras in EndV are of three different types ^/ is of 1-type if ^/^^V^^; of 2-
type if^^^V+^+V*, and of infinite type otherwise) and also since the subalgebras /
of sp(v) are of two types (of 1-type or of infinite type), then making use of the results
on prolongations from S. 4 we get the desired.

5.4. Now let us investigate the involutivity of symbols of Monge-Ampere operators
(stabilizers of effective forms which define the operators). Notice that /^=Q for o) of
the form 3.7 (1) implies H^C/^0, p>Q for ^0; the 2-involutiveness of /w for ©
of the form 3.7 (2) follows easily from the theorem stated in Serre's letter [7].

6. Classification of Monge-Ampere equations

6.0. Let us start with a classification of Monge-Ampere operators. We say that the
operators A^, A^, (Oi, (D^eA^J1 M) are equivalent at me J1 M if there exists a contact
diffeomorphism F: V\ -> V^, F (m) = m for some neighbourhoods V\, V^ of m e J1 M such
that F(A^)=A(^ in a neighbourhood of m.

To find conditions needed to express A(^ in a coordinate system in the simplest
form (with constant coefficients) remind that we supposed that there exists a contact
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symmetry X^ of A^ such that f(m) ̂ 0. Then there exists a local contact diffeomorphism
preserving m and sending Xy into X^. Therefore, we may assume that L^ (AJ=0.

The latter condition together with effectiveness of co allows us to consider o as a
differential form on T* M and the classification problem of Monge-Ampere operators
given by these forms as the classification problem of effective forms on T* M with respect
to the group of symplectic diffeomorphisms (section 0).

The latter problem can be in turn reduced to integration of an overdefinite differential
Monge-Ampere equation.

6.1. Let ©i, 0)2 e A" (T* M) be two effective n-forms, dim M = n, i. e.
o ) i A Q = o ) 2 A Q = 0 where ^leA2(T*M) is the 2-form on T*M defining the symplectic
structure. Consider T* M x T* M as a symplectic manifold with the structure 2-form
Q= Tif (Q) - T^ (0) where n,: T* M x T* M -^ T* M is the projection onto the ;-th factor,
;'=1,2. Every symplectic diffeomorphism F:T*M-^T*M determines a Lagrangean
manifold: the graph (F)=(x, F(.x)) c: T*M x T*M, ;ceT*M. Then F transforms ©2
into co i and F* 0)2=0)1 if and only if o [graph (F) = 0 where o)=7rf(o)i)— 7^(0)2) is an
effective n-form on T* M x T* M.

Since we are only interested in local equivalence, we may assume that T* M x T* M is
symplectic diffeomorphic to some manifold T* N in a neighbourhood of m x m and the
projection of the image of F onto N is non-singular. In this case (locally) graph (F) is
determined by the differential of a function on N (the generating function of F) and the
condition F* 0)2=0)1 turns into the Monge-Ampere equation determined by o with
respect to the generating function of F. Moreover, since our problem is local, we may
assume that M= 1R", m=0, N= 1R2" and therefore the existence of F is equivalent to the
solvability of an overdefinite Monge-Ampere equation ̂  c= J2 (M) where o e A" (T* R2").

6.2. Let us discuss when this equation is solvable. First consider the formal
integrability. By Goldschmidt criterion [6] <^ is formally integrable if 7^3 2 '• ̂ } ""> ^co
and 7^2, i : ̂ o -^N are smooth vector bundles and ̂  is 2-acyclic.

In our case the fibre of the equation ̂  over (x, y)eT*N=T*M xT*M is formed
by the linear symplectic transformations A: T^ (T* M) -> Ty (T* M) sending 0)2 ̂ y into
0)1 ^. Therefore the map <f^ -> T* N where o^ has constant coefficients on T* M = T* [R",
is surjective if and only if the Sp(2n)-orbit of 0)2 is constant and the symbol of ̂  at

the point z e ̂  projecting to (x, y) is isomorphic to the stabilizer of the effective form
Oi ^ in sp (2 n) = sp (T^ (T* M)). Summarizing we get the following

PROPOSITION. — Let 0)1 be an effective form with constant coefficients. Then in a
neighbourhood of 0 x 0 e T* V x T* (R" the map <^ -> T* R2 n is a -vector bundle if and only
if 0)2, y belong to the same orbit ofSp(2n) and for all sufficiently small yet* R" and the
symbol of ^^ is isomorphic to the stabilizer or an effective form o^ o? ^here OeT* R".

6.3. To derive the conditions for surjectiveness of the map ^-x^^ consider the
following more general situation. Let ^+3,1+2''^-^ ̂ '^ be vector bundles for all
i^k and derive the conditions for surjectiveness of ^+3 fc+2^^^ "^^^ 1̂  [FK ls

the fe-jet o f F a t x then [F^e^ if and only if [o^-F* (0)2)^=0. Let us find out
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when we can jiggle F so as to preserve the A:-jet of F at x but get
[cOi-ri^F*^)]^1^ where T| is a symplectic diffeomorphism such that
[^+i=l. Let s=o)i-F*(o)2) then by the choice of F we get
[e]^1 e S'+ x (Tj? (<D)) ® A;? (T? (0))) where 0 = T* r.

Compare [c^1 with [e]^1 where ̂  = of - TI* ° F* (0)2). We get

(6.1) [s,r1 = K - T|* ° F* (o)2)r1 = [co, - TI* (G), - s)r1

= [(i - ̂ *) cojr1 + h* (e)r1 = [L, (o)i)r1 + [sr 1

where L^ is the Lie derivative along X^ and [frI^^O and the shift by t=\ along X^
coincides with T|.

Therefore, for surjectivity of 7^+3^+2 ' ' ^ + 1 ) -^fc) k is necessary that
^k (®i. ^2) ^ = [£]^'mod ̂ m c^ = °- Here

(6.2) C^ : S^ 3 (T; 0) ̂  S^1 (T^ 0) ® A^ (T; 0)

acts as follows:

(6.3) C^([Ar3)=[4(o)OK+l, where /zeC00^), [^^O.

Thus ^ (0)1,0)2) considered as a section over ^) of the bundle with the fibre
Coker C^ ^ at [F]^1 is the obstruction to surjectivity of ̂  + 2, k +1 : ̂  +1) -^ ^fc)-

Taking into account that KerC^ is the fc-th prolongation of the stabilizer of o^ i
and therefore does not depend on x and making use of the Goldschmidt's criterion of
formal integrability we get the following

PROPOSITION. - The Monge-Ampere equation ^ c J2 M corresponding to a pair of
effective forms Oi, 0)3 e A" (T* 1R") of which o, is a form with constant coefficients is
formally integrable if

(1) ^i+3,i+i '• ̂ +1) ̂  ̂ ) ^r^ bundles for all O^i^k and <^,^)=0;
(2) ̂  orft^ 0/0)2 w^A respect to Sp(2^) does not depend on y:
(3) ^^(/^o^Oforallj^k.

THEOREM 6.4. - Let o^eA^T*^) be an effective form with analytic coefficients
satisfying on a neighbourhood o/OeT* R" the conditions of Proposition 6.3. Then there
exists an analytic symplectic diffeomorphism F: T* IT -^ T* R", F (0) = 0 /or w/^cA F* (0)2)
^ a form with constant coefficients.

Theorem follows from Proposition 6.3.1. and Cartan-Kahler's theorem [10].

6.5. If /^ is of finite type Theorem 6.4. can be generalized onto the smooth
case. This transition is based on the following observation which allows us to replace
Cartan-Kahler's theorem by Frobenius theorem.

Let TC : E -> M be a smooth bundle and /: M -> E, /e F (71), is a smooth section
of7t. Then the (fe+l)-jet \f^l=xk+l determines the subspace L(^+i) c= T^J^Tt))
tangent to the graph j\(f) at x^=\f^.
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Let C(Xfc) be the linear span of the union of L(x^) over all Xk+^=[h]k,+l suc!1 ^at
^ = [/?]^. The distribution x^ -> C (x^) on J^ (71) is called the Cartan distribution.

PROPOSITION. — Let € c Jk(n) be a system of differential equations with symbol / (x^
of finite type r at every x^e^. Then if nk+i,k+i-i '•^)(l)-)> ̂ (l-l) is a bundle for all
1 ̂ ^r+ 1 then the restriction of Carton's distribution onto ^(r) is completely integrable.

Proof. — In fact, the map Kk+r+i^k+r'-^^^ ~^ ^{r} ls a (local) diffeomorphism and
C (x,^) U T,̂  OT = L (x,^ i), where x,^ i e ̂ (r+1) is the preimage of x,^ e ̂ \ It
remains to notice that L(x^+^+i) is the tangent to the graph of the jet^(/) of/er(7i)
and therefore the condition of the Frobenius theorem is automatically verified.

6.6. The following result is a corollary of Proposition 6.5.

THEOREM. - An effective form 0)2 e A" (T* tR") whose Sp(2n)-orbit is constant and the
stabilizer /r o is of finite type can be reduced by a {smooth) symplectic diffeomorphism
in a neighbourhood of 9 e T* (R" to a form with constant coefficients if and only if
80(0)1, 0)2)= . . . =8,.(o)i, 0)2) =0, where 8^(0)1, 0)2) is the obstruction constructed in 6.3.
and r the type of the stabilizer.

6.7. Let us apply this theorem to classification of Monge-Ampere operators on 3-
dimensional manifolds. Let us start with generic orbits. Then /^^Q and therefore
we are to verify whether 60(0)1,0)2) and £1(0)1,0)2) vanish or not. The geometric
meaning of 80, 81 is the following one. If 80 =9 then ^1)-^^ ls ^e surjection which
by triviality of / ^ } is a local diffeomorphism. We can reformulate this fact: at every
point x^e<^^ there is chosen a subspace L(^) such that x^e^ and 71:3^ 2 (^3) =^2
smoothly depends on x^ and is transversal to the fibre of the projection
<^->>T*N. Denote the obtained distribution by J?o. The fibres of the projection
^ -)- T* N are identified with the stabilizer G. 0)1 of the form o^ o ln Sp (2 n). Denote
by 9 the projection T^ (^) -> / ̂  onto the tangent space to the fibre (identified with
/ ̂ . Let us consider 9 as a ^/^-valued 1-form on ^. In these terms the map
^2) -> (^1) is surjective if and only if J^o ls completely integrable, i. e. dQ=0 on J^o.

THEOREM. — (1) An effective form 0)2 e A3 (T* (R3) such that det A^ = const^ 9 and
80(0)2, o)i)= 81 (0)2, O)i)=9, reduces by a local symplectic diffeomorphism to one of the
following forms:

(1) o)=rf/?i A dp^ A dp^-\-\dq^ A dq^ A dq^, ^-const^.

(2) o)==^7i A dq^ A dp^-\-dp^ A dq^ A dq^—dq^ A ^2 A ^3

-\-v2 dp^ A rf/?2 A ^3? v-const^9.

(2) An effective form 0)2 e A3 (T* R3) with analytic coefficients such that detA^=9,
80(0)2, Oi)=8i (0)2, Oi)=9 and which belongs to one of the Sp(6)-orbits 4.6(3)-(5)
reduces by a local analytic symplectic diffeomorphism to one of the following forms:

(3) o)=^i A dq^ A dq^-dq^ A dp^ A dq^dq^ A dq^ A dp^
(4) o)=fi^i A ^2 A dq^—dq^ A rf^ A dq^— dq^ A ^2 A ^P^
(5) Q)==rf/?i A ^2 A dq^-^-dq^ A ^3 A dq^-\-dq^ A ^2 A ^3-
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6.8. For Monge-Ampere equations on 3-dimensional manifolds the corresponding
result takes the following form.

THEOREM. — Let a Monge-Ampere equation determined by an effective form
(oeA3^*^3) satisfy £0(0)1, P^i^^i ̂  P^i) where p ~1 = ̂ /| det A^ |, detA^^O.
Then by a symplectic diffeomorphism it can be locally reduced to one of the following
forms'.

(1) Hess/i+?i=0, ^^0;

(2) ^-^4-^+^Hess/^O, v^O
8qi 8qi 8qi

where q=(q^ q^ q^) is a coordinate system in R3, h==h(q) and Hess/!==det is
Sq^Sqj

the Hessian.
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