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ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS
AND CONGRUENCE MODULES

By H. HIDA (*) anp J. TILOUINE

ABSTRACT. — The purpose of this paper is to prove the divisibility of the characteristic power series of the
congruence module of a Hida p-adic family of theta series coming from a CM-field (with fixed CM-type) by
the anti-cyclotomic specialisation of the Katz p-adic L-function with auxiliary conductor. This requires to
construct first this p-adic L-function since in the original paper by Katz the auxiliary conductor was trivial. The
divisibility proven here is one of two steps towards one of the two divisibilities predicted by the (anti-cyclotomic)
Iwasawa main conjecture for CM-fields. The second step has been carried out by the authors and will be
published elsewhere.

0. Introduction

The purpose of this paper is to prove the divisibility of the characteristic power series
H=y(C,) of the congruence module C, (of a CM-field M and its CM-type X) by
the anti-cyclotomic projection L~ of the Katz p-adic L-function of arbitrary auxiliary
conductor. In another article [HT2], generalizing an idea developed in [MT] by Mazur
and one of the present authors, we will prove another divisibility result asserting that
% (C,) divides the characteristic power series x (Iw™) of an appropriate Iwasawa module
constructed out of the “‘half p-ramified” p-abelian extension of the anti-cyclotomic tower
M~ of the CM-field M. Our method of the proof of the first divisibility is a (many
variable) generalization of the method employed in [DH] by Doi and one of the present
authors for the special values of these L-functions and in [T] in the one variable case. A
summary of these two divisibility results can be found in [HT1]. For the sake of
completeness, we included a treatment of the construction of the Katz p-adic L-functions
with arbitrary conductor € p* for each CM-field M following Katz [K4] where such L-
functions are constructed in the case of p-power level p®.

Throughout the paper, we use the notation introduced in [H1] without detailed
explanation, since this paper is in some sense a continuation of the work done in
[H1]. Let F be a totally real number field and M be a totally imaginary quadratic
extension of F (hereafter such fields will be called CM fields). We write Dy for the
discriminant of F. We write R (resp. r) the integer ring of M (resp. F). We fix a

(1) Supported in part by an N.S.F. grant.
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190 H. HIDA AND J. TILOUINE

prime p, the algebraic closures Q of Q, Q, of Q, and the following two embeddings
throughout the paper:

,: Q-C and 1; Q-Q,

We suppose throughout the paper the following ordinarity hypothesis for M and p:

©.1) FEvery prime factor of p in F splits in M.

Then, writing ¢ both for complex conjugation on C and on Q induced under 1, we
choose a set of embeddings T of M into Q such that

0.2a) TNZc=g, and T\JZc is the set of all embeddings of M into Q;

(0.2b) the p-adic place induced by each element of T composed with 1, is distinct from
any of those induced by elements in X c. ;
The set X satisfying (0.2a, b) is called a p-adic CM-type. Under the ordinarity hypo-
thesis, we can find a p-adic CM-type, and we fix one such X. By abusing the symbol,
sometimes we understand X as a set of places at p (and hence, a set of prime ideals over
p) induced by the embeddings in £ composed with 1.

We now describe the power series L~. Let A: MJ/M™ - C be a Hecke character
such that

0.3) A(xy)= H xmo+dg(1=e) o

ceXl

where m, and d, are integers and as usual M, is the idele group of M and x_, denotes
the infinity part of xe M. Then A has values in Q on the finite part M , of My
Moreover, the map A: M; /M™ - Q, defined by A= (x) J] xlmotds 1= j5 3 well
cel
defined continuous character, which is called the p-adic avatar of A. It is a well known
theorem of Shimura (see (Sh1] and sections 1 and 4,5 in the text) that the special value
L (0, M) of the primitive Hecke L-function L (s, A) is algebraic up to a canonical complex
period if A is Z-critical (i. e. (m,, d) satisfies the condition in Theorem II, (ii) below). Let
C (M) be the conductor of A, and write € for the prime-to-p-part of C(A). Then by class
field theory, we can regard X as a character of the Galois group G, (€) of the maximal
ray class field modulo €p® over M. Then we have a Katz measure p on G (C)
satisfying, for an explicit constant A (),

f hd L@, X
—— =AM __LOM ,
p-adic period complex period

whenever A is critical and of conductor divisible by € (see below Theorem II for
details). In particular, the p-adic period is contained in the p-adic completion O of the
integer ring of the maximal unramified extension of Q, inside Q. Then, the measure p
is defined over O, and thus we may regard p as an element of the continuous group
algebra O[[G,, (€)]]. We now write G,,, (€) for the maximal torsion subgroup of G, (€)
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ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 191

and put W=G_ (€)/G,,,(C), A0=D[[W]]=*lir10 [W/WF]. Then W is determined
canonically independent of €, and hence the complex conjugation ¢ acts naturally on W
via w*=cwc™!. Similarly, regarding A as a character of M), we can let ¢ acts on A,
i.e., Aoc(x)=A(x°). We need to fix a pair of characters (f, Y~ =y~ (Y °¢)) of G,,, (€)
and G,,(C€7), where €~ denotes the conductor of Y~ [as a character of
G, (€)/W]. Replacing O by its finite extension, we may assume that | has values in

0. Then choosing compatible decompositions
Go(D=Gp,: (M XW, G (O)=G,, (O)xW and G, (€7)=G, (CT)xW,

we define a projection

0.4 my: OlG, €N ->O[WII=A, by n, € w)=¥~Qw ' w
for (§, w)eG,,,(€7)xW. Then we define
0.5) L™=m, ().

We assume that Y is primitive of conductor €.

Let N=9 (€) D for the relative discriminant D of M/F, and write h®-°r¢(N; O) for
the p-adic nearly ordinary Hecke algebra of level N defined in [H1]. With the character
V, we then associate a canonical algebra homomorphism: h*-°¢(N; O) — A, (see § 6) to
which we attach the congruence module C,=C,({) (see [H1, (5.2)] and (6.95) in the
text). The congruence module defined in [HT1, (HS5)] might be a bit bigger than the
one we use here. The possible difference of their characteristic power series is only a
fractional power of p, and hence, this change does not affect to [HT1, Theorems 2.1
and 4.1] if # (G, (1)) is prime to p; otherwise, we need to use the definition given in
[H1, (5.2)]. We write H for the characteristic power series of C; in A,. Let E be the
set of primes q of F in F N\ €+ €¢, and let A (s) be the product of Euler factors at primes
in E for the product of primitive L-functions L (s, x) L (s, ¥~) for the quadratic character
x of F; corresponding to M/F; i.e. writing the Euler product

L(s,x)L(s, ¥7)= E[Lq(mF/Q(CI)—S)_l,

we have

0.62) A= TTLs(Req @) 7).
qeE

Then A(1)#0. We put

(0.6b) AM/F; €)=A (1) h(M)/h(F),

where A (M) [resp. h(F)] is the class number of M (resp. F). The excluded Euler factors
A (1) is in fact trivial if

0.7a) C+E =R
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192 H. HIDA AND J. TILOUINE

and is a product of (1+Rgq (q) ™) if the following condition is satisfied:
(0.7b) All prime factors in € outside €~ are inert or ramified over F.
Then we have '

THEOREM 1. — Suppose that p>2. In O[[W]|®,Q, L™ divides H. Moreover, if there
exist a conductor € (prime to p) and a character ¢: G, (€")—> Q> such that the p-
invariant of the branches of the Katz measure corresponding to ™' ¢ and ™! (@°c)
vanishes simultaneously, then A(M/F; €) L™ divides H in O [[W]].

This theorem will be proven section 8. The proof is based on the comparison formula
(8.5a, b) between the Katz p-adic L-functions and the p-adic Rankin product (con-
structed in [H1]) of two A-adic theta series (A =0 [[W]]) with complex multiplication by
M. Naturally, we shall make the following

ConNJECTURE. — H=A(M/F; €) L™ up to unit factors in O[[W]] if p>2.
This conjecture is known to be true when M is an imaginary quadratic field under a
certain additional hypothesis (see [MT], [T], [HT1 and 2]).

We now explain the interpolation property of the Katz measure more precisely. We
associate to A its dual A* given by A* (x)=A(x)"!|x|,. Then the p-adic avatar of A*
is given by A*(x)=A(x)"' N (x)"! for the cyclotomic character %: G (1) - Z,. We
fix a finite idele dy; of M such that the ideal corresponding to d, is the different 9, of
M/Q. We define the local Gauss sum of A at prime ideals Q dividing the conductor of
A

0.8 G(dw Aa)=A(®@39) Y AoWey(@ada'u),

ue (Rg/Q%)™

where @ is a prime element of the Q-adic completion Mg, Ry is the Q-adic integer ring
R of Mg, Ag is the restriction of A to M&, e=¢(RQ) is the exponent of Q in the conductor
of A and ey M,/M->C* is the standard additive character normalized
as ey (x,)=exp(2miTryq(x,)). Outside the conductor of A, we simply put
G (dy, Ag)=1. The canonical complex period Q is in fact an element of F ® o C=CF,
and the p-adic period is found in (O*)* [see (4.4a, b]. Actually, these numbers are well
defined modulo Q* but the ratio “Q_/Q,” is uniquely determined (i.e. If Q , is changed
by an algebraic factor, Q, is also changed by the same factor). We choose an element
8eM such that

(0.9a) &°=-—38and 1, (Im(3°)>0 for all ceZ,

(0.9b) The alternating form < x,y)=Trye(x)*/20) induces an isomorphism
R A R ¢! for an ideal ¢ prime to p G,

where 9 is the different of F/Q. By (0.95), we can take 28 or (23)° as the Q-component
of dy if Q is prime to ¢. Then we define e-factors:

(0.10) W, W)={[IN(B G235 1y},
PeX
W)= T G28) re) T[] G238, A& ]G ((28), A 1Y),
2% LA 11
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ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 193

where £ denotes prime ideals in M and we decomposed €=gF.! so that FF, consists
of split primes over F, | consists of inert or ramified primes over F, F+ & =R and
8> & Then we have

THeoreM II. — There exists a unique measure p on the ray class group G, (&) modulo
Cp® of M having values in O satisfying

Lw,x"” L (= 1" Ty (my =+ d)
=(£R N )Wp(}")\/lDFllm(S)deOZ+Zd

< [TA=AE@){ [T A=AF) [T A=A*(BNJLO, 1)
e€ Bex Bex

moZ+2d
Q

for all Hecke characters ) modulo € p* such that
() the conductor of \ is divisible by all prime factors of &,
(ii) the infinity type of A is myE+d (1—c) for an integer m, and d= Y, d,c with

cel
integers d satisfying either mo>0 and d;=0 or my<1 and d,=1—m,,.
Moreover denoting the measure u for G, (€°) by p,, we have the following functional
equation

j Rdu=Req(OACHWR) | Ardp,
Gy (€)

G (€9

as long as the conductor of \ is divisible by all prime factors of §l.

In the expression of the theorem, we used the convention for an element & of the
formal free module generated by £ \J £ ¢ and for xe C*:

x=[]xe ] x5 and  T;©)= []T ).

ceX cel cel

The set X is also identified with the formal sum Z o, and aeM is considered to be an

cel
element of C® via diagonal embedding a+> (a®),.5. Abusing this convention, 7 is
considered to be the diagonal element (n),.; in C>. The L-functions in the theorem is
always the primitive one associated with the primitive Hecke character. We also tacitly
agree to put A (Q)=0 if Q divides the conductor of A.

Here is a summary of the paper: After giving a brief review in section 1 of all the
necessary items from the theory of p-adic modular forms, we start the construction of
Eisenstein measure in section 2 and finishes the construction in section 3. The content
of sections 1 and 6-8 was actually presented in a series of seminars held at the Université
de Paris-Sud in Winter 1989. We will prove Theorem II by mimicking Katz’s method
[K4] (i.e. by specializing the Eisenstein measure at CM-type abelian varieties) in the
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194 H. HIDA AND J. TILOUINE

subsequent sections 4 and 5. The reader who is willing to admit the interpolation
property of the Katz measure presented in Theorem II can skip all the sections from
section 1 to 5 and go directly to section 6, in which we start the preparation of the proof
of Theorem I. Namely, in section 6, we construct an irreducible component attached
to the CM field M of the spectrum of the p-adic nearly ordinary Hecke algebra and
define its congruence module C,. In section 7, we give a formula relating the self
Petersson inner product of a primitive cusp form with a special value of its symmetric
square L-function. In the final section (§ 8), we prove the main theorem by comparing
the Katz p-adic L-function with the p-adic Rankin product associated with the irreducible
component constructed in section 6. One of the keys in proving this comparison theorem
(Theorem 8.1), which generalizes the one for F=Q in [T], § 7, is the formula obtained
in section 7. The origin of the idea of such comparison goes back to an unpublished
paper [DH] of Doi and one of the present authors, where the comparison of special
values of Hecke L-functions and a Rankin product of theta series of M was carried out
to prove a version of the congruence criterion by those L-values in [H4].

The first named author is grateful to R. Gillard for pointing out some mistakes related
to the level structures in the definition of Eisenstein series. We are also grateful to the
participants of the seminars mentioned above for their patience towards not so well
organized presentation of the material in this paper, [K4] and [HT1 and 2].

NotATiON. — We summarize here some notation we will use. For any number field
X, we write I (resp. Dy) for the set of embeddings of X into Q (resp. the discriminant
(in Z) of X/Q). We write Z[I] for the free module generated by Iy. The formal sum

Y. o will be written as 7. Especially, we write I (resp. ¢) for I, (resp. #z). The integer
celx

ring of F (resp. M) is denoted by r (resp. R). We denote by F, (resp. A) the adele ring
of F (resp. Q). We write F, s (resp. A,) for the finite part of F, (resp. A). Similarly
F,, denotes the infinite part of F,. Any element xeF, (resp. xe F{) is a sum x,+x,
(resp. a product x,x,) for xfeFAf and x_eF_ . For any xeF, and a prime ideal q
of r, x, is the o-component of x. For infinite place cel, we write x, for the o-
component of xe F,. Then we denote by eg: F,/F — C* the standard additive character
such that ep(x,)=exp(2mi), x;). Abusing a little this notation, for any element x and

any subset X of F, or F{ and an ideal N (resp. a set N of places) of r, we write x5 and
Xy for the projection of x and X to [] F, (resp. 11 F,), where F, is the g-adic

q|N qeN

completion of F. Especially Ry= [] R,. We also write t (resp. R for the product

pel

l:[tq (resp. 1:[‘.&) of the g-adic completions r, (resp. R,) over all prime ideals q. We

denote by Fj . the connected component of F,, with identity. We also write F;, for
Fx,Fo+. Wealways write t: G, (1) (or M) - Z; for the cyclotomic character. On
the other hand, for any number field X, 9y, (a)eZ denotes the absolute norm of an
ideal a in X. We sometimes write simply N(a) for 9y (a) if X is clear from the
context. We use the notation introduced in [H1], [H2] and [H3] throughout the paper
with only brief explanation.
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Content
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. Proof of Theorem I, Comparison of p-adic L-functions

1. Summary of Katz’s theory of p-adic modular forms

1.1. HIiLBERT-BLUMENTHAL MODULI SPACE. — We start with a description of the moduli
space of Hilbert Blumenthal abelian varieties (HBAV). Let F be a totally real number
field with the integer ring r and with absolute different 3. We consider a Hilbert
Blumenthal abelian scheme X/S. By definition, X is a proper smooth group scheme
(geometrically connected) over a base scheme S with an isomorphism 6: r — Endg(X)
such that the sheaf Qie (X/S) of its Lie algebras on S is free of rank 1 over Og® ,r. Let
X'=Pic® (X/S) which is naturally a HBAV. We fix a polarization .: X' ~ X ®, ¢ for a
fractional ideal ¢ of r. Then A induces an isomorphism:

Hom, . (X, X), =c,.

where ¢, is the set of all totally positive elements in ¢ and Hom, ., (X, X), is the set
of symmetric morphisms induced by ample line bundles. Let N be an ideal of r prime
to p and take an integer N, prime to p in N. We consider ‘the level structure which is
an r-linear closed immersion:

i (37YNp*$ ) ®, Mg 5= = X,

where for each positive M, p,, is the kernel of multiplication by the integer M on G,, as
a finite flat group scheme over Z. Such a triple (X, A, i) is called a test object. We
consider the functor MM =M (c; N p*),5: Schs — Ens which associates for each Tjg the set
of isomorphism classes over T of the test objects (X, A, i),r. If p*=4 or Mt > N for
an integer M =4 (which will be always supposed tacitly), MM can be represented by an
algebraic space (see [R, 1.20, 1.22, 6.16]) which is smooth and of relative dimension
[F: Q] over Z. Since M(c; Np®) is a geometric quotient of M (c; N pP) (B> ) by a free
action of a finite group [DR, p. 255], we know (e. g. [Kn, IV .1])

(1.1) The canonical morphism: M(c; NpP) - M (¢; Np*) (B=o) is affine and formally
etale.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



196 H. HIDA AND J. TILOUINE
By (1.1), the limit M (c; Np*)= lim M(c; N p®) exists in the category of algebraic

spaces. We write X (¢; N p%)/%i(c; N p*) for the universal HBAV over M (c; N p%).

1.2. THE GAUSS-MANIN CONNECTION. — Let a: X — S be an abelian scheme over an
algebraic space S which is smooth and of relative dimension g over Z. We consider the
sheaf Hpy of the hyper-cohomology R'a, Q¢ under the etale topology. Since X/S is
an abelian scheme, we have the Hodge filtration which is given in the form of exact
sequence as:

1.2 00, Qys— R a, Qys— Rla, Ox - 0.
We repeat here briefly the construction of the Gauss-Manin connection V:

Hjg — Q52 ®o,Hjz done in Katz-Oda [KO] and [K2, 3.2]. Since X/S is smooth, we
have an exact sequence:

(1.3) 0— a* Qg — Q7 > Qx5 — 0.

Then we have a finite filtration: Q,=F°Qy, >F'Qy,> ... >{0} given by
'=Im Q7 ® oy ¥ Qg7 = Qxjz) = Q7 R, a* Qg5 By (1.3), we know
FPIFP* ! =~ QU @, 0* QF, and find two exact sequences of complexes:

(*) 0 Q' @oy0* Qg7 = FO/F? -5 Qs — 0,
(%%) O—»Q;(/_SZ ® oy * Q- F!/F3 - Q! ® oy 0 Q4 0.
The connecting map of the long exact sequence of cohomology induces
v: Hll)R =R! Ay Q;c/s - R? Oy (Q;q_sl ®Dx o* Qsl/z) = Hll)R ® o Qé/z-
Vi Hrlm ® o Qsl./z - Hll)R ® o Qg/z-

We have the exterior product F'*/ > F' A F/, which is compatible with (%) and (**).
This shows that V and V, are connections; namely, for ee Hpy

V(fe)=df ® e+ [V (e) et Viio®e)=do®e—w A V(e).

By construction V,°V=0 and therefore V is integrable. This connection V is called
the Gauss-Manin connection. For each derivation DeTg,, we can define
V(D)€ End (HJy) by

V(D) (e)=id ® D(V (e)) for DeTgy.
Then we have the Kodaira-Spencer map:

(1.4 K—-S8: Tg;— Homg(w, Lie(X'/S)),

where 0= x/s=0, H(Q" x/s), 8ie (X'/S)=R" o* Oy 5 and

V(D)
K-S(D): ©-Hi » Hi > Lie(XY/S) by (1.2).

4° SERIE — TOME 26 — 1993 — N°2



ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 197

If x is an algebraically closed field of characteristic p>0 and if A, is an ordinary abelian
variety over k, we can calculate explicitly K—S on the formal deformation space A,
over the ring of Witt vectors W (k) with coefficients in k (see [K3]). This shows that
(1.5) K-S is an isomorphism if X/S=2X(¢; N p*)/M (c; N p%).

1.3. GEOMETRIC DEFINITION OF MODULAR FORMS. — Write X/ for X(¢; Np%)/
M (c; Np*). Let I be the set of all embeddings of F into Q. Let ® be the Galois
closure in Q of F. We write B for the valuation ring in @ associated to the fixed
embedding 1,: Q - Q,. We always suppose that the ideal of polarization ¢ is prime to
p. Since A: X' =@ X ®, ¢, we have an isomorphism

(1.6) Lie (X'/M) g = Lie (X/M),g.
Hereafter, we write Qie= gie(X/M). Let 0=0o, Q. By definition,

(1.7a) Lie =~ Homg,, (@, Og).

Since Qie and o are locally free of rank 1 over O ® , ¥, we know that for R=1r ®, Oy

Homgg, (®, Og) = Homg, (0 ®g R, Og) = Homg (0, Oy ® 79 .
Write M* for Homg (M, R). Then (1.7 a) is equivalent to, under Tr: 37! - Z,
(1.7b) Lie @ = Oy ®z 371 (= 0* = Lie R (VD ®7 9 H*=Lie ®, 9).

Then the Kodaira-Spencer map induces

1.4 (1.7b)
Tz = Homgy, . e (@, Lie) @ 0* Qg Lie =~ Lie @i Lie®, .

By the duality over Ogyq, we have
(1.18) Qg = © AR .

Let T=Res,;(G,,,); i.e., for any commutative algebra A, T(A)=(A®,r)". Then if
A is a B-algebra, each o: r » B (c€]) induces

c=d®oc: T(A)=(A®z1)* > A*=G,(A).

Therefore one may regard o as a rational character of T. Then, with keZ[I], we
associate the character x,: T > G,, defined over B by y, (x)=[[x°*. Since @ is an R-

module (R=0g5 ®,1), T(Dg) =R ™ operates Og-linearly on @. In particular, we embed
for each B-algebra A (A is assumed to be flat if p ramifies in F), A®,r > A'=[[A(0)

where A (o) = A is considered to be a B-algebra by . Thus we have a decomposition

ORzA=0®,t®z,A) > 0@, A'=[]w(o),

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



198 H. HIDA AND J. TILOUINE

where ®(0)=0 ®gA (o) is an invertible sheaf over M ®, A on which T(A) acts by
o. Thus we can construct an invertible sheaf (k) over M/BV by ®,w(c)*. Then
T (B) acts on @ (k) by xx, and we have a canonical morphism for @® "= Symmg_ (w):

0®"®, 8-> ] o®),

Tr (k)=m, k20

which is an isomorphism if p is unramified in F. For each B-algebra A, we define the
space of modular forms integral over A by

My (Too (NP, ¢; A)=H° (M @z A, 0 (k).

Let, for an affine B-scheme S, =Spec(A)q, (X, A, ®, i)5 be a quadruple consisting of a
HBAV X, a nowhere vanishing differential form meHO (S, wys), a c-polarization A and
an N p*level structure i defined over S. Then we can construct 0y (k)= ®, 0xs(0)*
out of wys(0)=0xs®gB(c). The natural image o (k)=0"=Q,w(c)* is a nowhere
vanishing global section of wys(k). Let feM, (Fyo(Np®), ¢; A). We pull back f by
the unique morphism @: S—9M which induces (X, A, i)=¢* (X, A", #*), Then
feo=0*fis a global section of wy,(k). Thus we may write ¢*f=f (X, A, @, i) @ (k)
with f(X, A, ®, i)eA. Therefore, by tautology, one can define fe M, (I'yo Np%), ¢; A)
as a function of test objects (X, A, o, i) satisfying:

ML f(X, A, ©, )eA if X, A, o, i) is a test object over a B-algebra A,

M2. f(X, A, o, i) only depend on the isomorphism class of (X, A, ®, i),

M3. fX, A, aw, )=a *f(X, N, ®, i) for ac T(A)=(A®zB)* (a *=x. (@)~ "),

M4. If p: A — A’ is a homomorphism of B-algebra, then

f((X’ )‘" , l) X AA’)=p(f(Xa }"9 , l))

1.4. DIFFERENTIAL OPERATORS ON MODULAR FORMS. — We have a canonical morphism
over M, B

(1.9) Qe = @ ®r @~ ®, 0 (20).
We then regard the Gauss-Manin connection as a map
V: Hpg = Quyz ® o Hor = ® (0 (20) ® oy, Hi)-
We also have the Hodge exact sequence
(1.10) 0 - @ — Hjy — Lie - 0.

Let A gy a sheaf of Ogy-algebras (or Ogyan-algebras) over M (or the corresponding analytic
M. We write Higgq for Hip ®op W (or Hig ®ogm A).  Suppose that the Hodge
exact sequence splits after having tensored U by a projection p: H,‘Dm‘ - Qg By (1.9),
the connection V induces another connection

VO™ Hpp®"—> ®,(@(20) ® Hp® ™)
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by the formula of Leibnitz [D1, I1.2.7.2]. Define a differential operator by

Vo Hb®"0(20) @ b " Hy® 2

which is the c-component of V& ™ composed with the inclusion

0(20)® H113R® "o Hll)k® m*2),

To have this inclusion, we need to tensor Q to the base ring if p ramifies in F. This
loss of integrality of V in the ramified case does not cause any harm, and the integrality
of V will be reestablished later by using g-expansion principle [see (1.23)]. Define, on
the symmetric algebra Sym (Hjy) generated by HJy, an operator

V(o): Sym(Hpg) - Sym(Hpg) by V(0)=®,Vp,o

It is known that V(o)’s (c€l) commute each other ([K4, (2.1.14)], see also (1.21) in
the text). Take k, de Z[I] (k, d=0) such that Tr(k)= ) k,=m. We then have a differ-

ential operator
1;] v (c)dcr
80k, )" @ (k) > @8 ™ > Hb® " ————(Hb)® 21 @)
p® (m+2Tr(d)
——— ® "D S o (k+2d)

As examples of A and p, one can offer:

Case C*®. — Over the differentiable manifold Mf associated to IM*®, one has the
Hodge decomposition: Hi; =@ @ w. We take the sheaf A of the germs of C®-class
functions over MU . Then we have the projection p,,: Hpg &, — @,%, and the differen-
tial operators 8 (k, p,,)’. We will see later in (1.21) that this operator coincides with
the classical differential operator of Maass, whose arithmetic implication is studied in
depth by Shimura in many circumstances.

Case CM. — Let M/F be a CM field and (X, A, @, i) be a test object in which X is
of CM type (M, Z). We assume that the test object is defined over an algebraic
number field K, which may not be finite degree over Q if one considers the N p® level
structures. Let x: Spec(K) — 9 which induces the test object (X, A, i). We consider
A, =x, x*Og. Then we can decompose

Higo,=0@)®0E) and o(E)=wgq,

where M acts on ©(Z) = KIF'¥ by the representation T=@®, .y and on ©(Z°) by its
complex conjugate. We know that @ ® U, =~ ®(Z) canonically and therefore for
fe€M (Too NP, ¢; A) with a K-algebra A in C

Bk, p)'NX A @, =3, p) (f(X, &, &, i) €A.
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In particular, if we fix the transcendental isomorphism ¢: X (C) = C*/Z (a) for a fractional
ideal a, we can define ®,,,,=¢* du for the standard coordinate u on C*. Then we can
write Q ®,,,,,=® for the complex period Q_ = (Q(0)), . € C* and we have the algebraic-
ity theorem of Shimura as presented in [K4, (2.4.5)]:

THEOREM 1.1 (Shimura [Sh, §1]). — Let the notation be as above. Then we have, for
JeM (Too NP, ¢; A),

(1 . 11) (8 (k’ pw)df) (Xa }"s Dtrans> l)

k+2d
Q

=@k, po)'NX, A, 0, i)eA

p-adic Case. — Let A be a p-adic algebra over B. Namely, A is a B-algebra such
that A= lim A/p*A. Consider the formal completion of the algebraic space:

MP={M(c: Np®)s 2 a }o [Kn, V.2]. Then for the structure sheaf U, of M, we have
the Dwork-Katz decomposition [K1]:

(1.12) Hig o, = @, ® U,

where U is the maximal sub-sheaf on which the Frobenius map, induced under the
identification of De Rham cohomology with crystalline cohomology, is everywhere
invertible. According to this decomposition, one can define the p-adic differential
operator of Katz 8 (k, p,)°. Under the ordinarity hypothesis (0.24, b), this decomposi-
tion (1.12) coincides with the decomposition in Case CM at the point x. Namely, let
O be a complete discrete valuation ring in the p-adic completion Q of Q, with residue
field F, (an algebraic closure of Z/pZ=F,). For each x=(X, A, o, i),5 with complex
multiplication of p-adic CM type (M, X) and with a N p® level structure i, etc., we can
associate an isomorphism ¢: X =~ G, ® 37! such that the p-part of i is induced
by ¢. Then 8ie(G,®9,)=~9,! and therefore (G, ®9™') ~1,(dT/T). Put
Oean =0 *(dT/T). We assume that o is defined over B=1,"(1,(Q) N O). Then we can
write ® =€, ®_,, with the p-adic period QPE(DX)}; and we have the algebraicity theorem
of Katz:

THeoreM 1.2 (Katz [K4, (2.6.7)]). — Let the notation be as above. Then we have
the identity in B:

(1 . 13) (8 (k’ pp)df) (X’ }\" ®cans l)

k+2d
QP

=@k, p)' N X, X, @, 1)
=@, po)'NH X, %, @, D)eB.

1.5. DEFINITION OF p-ADIC MODULAR FORMS. — Let A, > B be a p-adic algebra.
Consider test objects (X, A, i),, defined over any p-adic A,-algebra A. A function f of
test objects (X, A, i), is said to be a p-adic modular form if f satisfies the following
conditjons (in this definition, the algebra A is also a “variable™):

Mpl. f(X, A, i)e A only depends on the isomorphism class of (X, A, i) ,;
Mp2. If p: A - A’ is a homomorphisme of p-adic A,-algebras, then

S(X A, D) x s AD)=p(f(X, X, D)4))-
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We write V(¢; Ag)=V (¢, N; Ay) for the Ay-algebra of all p-adic modular forms. By
definition, we have

1.149 Ve, Ag)= lim V(c, Ay/p*Ap)

o

and if p is nilpotent in A, the above definition coincides with the definition of modular
functions (i. e. modular forms of weight 0: M1-4), because any A,-algebra is automatically
a p-adic algebra. Therefore,

Ve, Ag/p*Ag)=T (M (c; Npm)A()/p’ Ag> Ogm) =My (Too (Np), ¢; Ao/p* Ap).

Thus V(c; A,) is the ring of global sections of the sheaf Oy ,. We can evaluate any
geometric modular form feIR, (Foo (NP%), ¢; Ag) at (X, A, @,,, 1),a; thus, a classical
modular form gives rise to a p-adic modular form. Then by g-expansion principle, we
shall see later that

the naturalmap: M, (Iqo (N p*), ¢; Ag) = V (¢, N; A,) is injective.

1.6. EXPLICIT DETERMINATION OF THE GAUSS MANIN CONNECTION. — We want to compute
V over C. The projection: M (c; N pP) —» M (¢; N p®) is formally etale (if p>=4). On the
other hand, the construction of the connection V 1is local under the etale
topology. Therefore locally the connections V over M (c; N pf) and V over M (c; N p*)
are the same. Therefore it suffices to compute it for finite «. By the comparison
theorem of the algebraic De Rham cohomology over =9 (c; Np*) and the analytic
one over " ([D1, I1.6.2]), the analytic Gauss-Manin connection V2" constructed for
Hiyg jmen induces V for Hpg an.

Over C, as a consequence of the analytic theory of abelian varieties, a giving of a test
object (X, A, o, i) is equivalent to a giving of a triple (L, A, i) consisting of an r-lattice
£ of F® o C=C], a positive r-linear alternating form A: £ A 8 @ 37 ¢~ and the level
structure i: 971/Np*9~! - F@/®. The positivity of A means that we can write
A (u, v)=A"Im (ur’) for a totally positive element AcF @,R. Put

3={Z= (Zc)celeclllm(zcr)>0}' .

We fix a pair of fractional ideals (a, b) prime to p such that ab™'=¢. Then over C,
every test object of level Np* (X, A, i),¢ is isomorphic to a triple (X,, A, i,) indexed by
ze3 as follows: The abelian variety X, is given by: X,(C)=CYL, where

Q. =2ni(bz+a*), where a*=a"*37!. Then H, (X,, Z) = 2, by cr—»<J duc> for the
standard coordinate u=(u,) on C'. The alternating form A, is given by: ‘ )

A, (Qmi(az+b), 2mi(cz+d))= —(ad-bc)ec™ 1.
Finally i,: p7*N71971/3 " 1=p *N~!a*/a* - F /2, is given by

i;(amod 9~} =2miamod &,.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



202 H. HIDA AND J. TILOUINE

There is an action of the congruence subgroup

a b T ab)*
T'yo (Np% a, b)= d—1eNp* SL, (F
00 (NP5 a, B) {(c a,)e(w,ab9 r )l e pr}n L(F)

on b @ a* given by (x, y)—(x, y)y. Since £,=(b @ a*) ( i ), v€ GL, (F) acts on lattices
by £, y=0b® a*)y ( j ) One can easily verify that

(1 . 15) (Ez, }\‘z’ lz) = (Q'y (z)» }"y (2)° i’y (z)) had YEFOO (Npm; a, b)‘

Therefore P> ~M (¢; Np*)** = Ty, (N p% a, )\ 3 for finite a.

Since the projection 3 — M" is etale, we may compute V*" on 3. Then each fibre of
¥/3 at z is X, and

Hi, (X,/C)=H!(X,, C) = Hom, (2,, C).

Therefore Hig 3~ Hom, 2ni(b@ a*), C) ®cO,. We write X,, Y, for the global
sections of H}, corresponding to

X, 2nwi(b@a*)>2nia*>C and Yc:2ni(b®a*)—->2nib::C.

On each fibre X,, X, ((2ni(az+b))=2nib° and Y, ,(2ni(az+b))= —27ia®. Thus we
have

(1.16) Symm (Hpg 5)=D3[X, Y](X= (Xo), Y= (Y,)).

Since the inclusion of @ in Hpg 3(= Homz2mi(c™'@971), C)®D,) is given by
OJH{ cH f m} for ceH, (X,, C)=2,, we see that X,—z,Y, corresponding to du gives
a global secction of wg:

(1.17) 03 Doe1(Xo 2, Yo) Vg0 (O4rans (0)=(X;~2, Y,,))-

For each global section weH°(M(Np® o), o(k)), if we write o=f.(X—zY)* for
X=-zY)=[]X,—z Y,)*e, the association: ®—f gives an isomorphism

(1.18)  H°@MNp* o), (k)= (Foo (NP, ¢; C) = M, (oo (N p*; 0, b)),

where M, (I'yo N p% a, b)) is the space of classical modular forms on 3; namely, it is
the space of holomorphic functions such that f(y(z))=f(z)(cz+d)* for all
yeI'=T,, (Np* a, b) (actually, we need to assume the holomorphy condition at cusps

if F=Q).
We compute V*" by using the sheaf Qx ;3" of relative differentials of C* class. There
are two merits in the use of Qg %"
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(@) ¥=X,x3 as a differentiable manifold; therefore, the computation of V4ff is
trivial: V¥=id ® ds,

(b) By the original de Rham theory, there is no need to use hyper-cohomology, and
we have Hpp ® O34 =H"' (&, Qg 5 4.

Since we have V¥ =id ® d;, we conclude that on
Hll)R/S ~Hom, 2nui(c ' ®97?Y), C)®c 90,

V*"=id ® d for the holomorphic exterior differentiation d on Oj and thus X, Y are
horizontal to V. Once one gets the expression V**=id ® d, all the differential operators
we have introduced can be made explicit automatically according to the definition: Here
are the results of computation: The Kodaira Spencer morphism 1: Q3 = © ® 0 is given
by

(1.19) 12nidzy)=Xe— 24 Yo)? [K4,(2.1.21)].

The differential operator V (o) is given under Symm (Hpg)=O3[X, Y]

(1.20) V(o)= ;(Xc—zc Y,)? i
2mi 0z,

o

By this formula, one can calculate the effect of &(k, p,): In fact, if we write
Sk, p)  (fX—2zY)) =) (X—2zY)** 24 we have the differential operator of Maass-
Shimura [K4, (2.3.27)):

1 (0 k
1.2l o\ T and =18 154 2+---- g
( ) , 21ti(azu 2iIm(zc)> k l:[ ko +2 dg 2 ke
1.7. g-EXPANSION PRINCIPLE. — For each fe M, (I'o (N p% a, b)), we have the Fourier

expansion

fl@= ¥ a@ fNg for g=expQ2mi} & z,).

Eeab

To algebraize this expansion, we recall the construction of the Tate HBAV: We consider
a set S of g independent linear forms L: F -» Q (g=[F: Q]) preserving the natural
positivity (i.e. L (x)>0 if x is totally positive). We say &eF is S-positive if L (£)=0 for
all LeS. Then we consider the monoid ring

Z[[g; a, b; S]]={ Y a®q*|a@)eZ}

&S —pos, Eeab

and its localization Ag by the multiplicative set {q*|&: S-positive}. We consider the
morphism

g: ab— G, (Ay) given by ¢(§)=¢"
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The morphism ¢ induces ¢: 5 -G, ® a” 19-1 since
Homy (ab, G,, (Ag)) = Hom, (b, Homy (a, G,,(Ag))) = Hom, (b, G,,® 3" *a " (Ag)).

A result of Mumford [M] assures that the rigid analytic quotient G, ® a*/q (b)
(a*=9"'a™") is algebraizables ([R, § 2,4]) to a HBAV Tate, ,(q) over Ag. Moreover,
for every p051t1ve integer M, the canonical morphism py ® a* - G,, ® a* induces an
exact sequence of group schemes over Ag:

1 - py ® a* > Tate, ,(9) > M~ 'b/b - 1.

In particular 1=i . p,-®@93 '@ Hn, ® a*/Na* — Tate, () gives the canonical level
structure if a is prime to N. If a is not prime to N, we just take an isomorphism
e r/N = a/Na and define the level structure i=i(e) composing with i,, above. We
have a pairing of group schemes:

Tate, ; (¢) [M] X Tate, , () [M] -y

given as follows: Taking xe€G,, ® a* and yeG,, ® b* such that xM qé for some £eb
and yM=g" for some N €a, we define

(I, D =Xy € g (G =g =1).

Then there exists a unique isomorphism

¢: 'Tate, ,(q) = Tate, ,(¢) which induce { , ) for all M.

Then, the natural morphism A,,: Tate, ,(q) = Tate, ,(q) ® ab™! gives the canonical ¢-
polarization (c=ab~?') [R, p. 297]. If a is prime to p (then b is prime to p because
c¢=ab~! is prime to p), the identity:

O Lie(Tate, 5(9))=Lie(G, ®z9 'a ) xA®,9 'a 1 =2A®,97!

gives a canonical nowhere vanishing differential ©,,. By the existence of
(Tate, §(g); Acans Deans Lcan) thus defined over MgAg, we can define the g-expansion f(g)
for all fe M, (T'yo Np%), ¢; A) or V(c; A) by

f(‘]) =f(Tatea, 1) (q)’ )"cam mcam ican) € A ((q))ab'

where A((9)e={ Y, a(&)q*|a(§)eA}. This expansion coincides with the Fourier

& eab
expansion over C and determine the modular form because the algebraic space I (N p* )
is geometrically irreducible [DR, § 4]. Namely we have the g-expansion principle [K4,
1.2,1.9]:

W (Too (NP, ¢ A)=M; (oo (NP )N A((9)as if CoA,
(1.22a) M (Too (NP, ¢ A)=T, (Too (NP, 6 ADNAWG) If A'DA
VA=V AYNAW(g). if A'oA
(1.22b) /=0 < f(Tate, §(q), Aean» 1(€))=0 for feV(c; A).
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We shall give a p-adic version of (1.21) shown in [K4, (2.6.27)]. Let
0=f 0, (k)eH® (M, x z,A (k) (feV(c; A)). We then write

8 (k’ Pp)d 0= (ed f) 0“)can (k) € Ho (irnp X Zy Ao « (k))

and also write the g-expansion f (Tate, g(9), Acans lcan) a8 f (@)=Y, a(&, /)g°. Then we
g

have

(1.23) o f@=2E"aE f)q"
. g

2. Fourier expansion of Eisenstein series

We want to calculate Fourier expansion of classical Eisenstein series according to
Hecke and Katz [K4, III] for our later construction of p-adic measure. Let 9 be the
different of F/Q, and for each ideal a we write a*=a~*9~!. We fix a fractional ideal ¢
and take two ideals a and b such that ab™'=c. Let ¢: {r,x (t/f)} x{r,x(/f")}>C
be a locally constant function such that ¢ (™' x, ey)=N(e)* ¢ (x, y) for all eer*, where
k is a positive integer and {' and {* are integral ideals prime to p. We put f=f N {" and
suppose that all a, b and ¢ are prime to f p. We regard ¢ as a function of T=XxY
with X=Y={r,x(r/f)} via the natural projection of {r,x(¢/f)}x{r,x(/f)} to
{r,<@/f)}x{r,x@/f")}. We put X,=(r/p*r)x(r/f) and define the partial Fourier
transform

P¢: {Fp/S;IX(f*/S'l)}xY={ U(p“f)*/s_l}XY—»C

of ¢ by, taking a so that ¢ factors through X, xY,
’ pEANMD T Y ¢ yesax) if xe(pPFS7Y
(2.1 Po(x. )= aeXq
l 0 if x¢(@*P*97Y,
where e is the standard additive character of the adele ring F, restricted to the local

component F,; at pf. This definition does not depend on the choice of a. Then we
see easily by the Fourier inversion formula that

2.2) Y. Po(a y)ep(—(ax),)=¢(x, y).

aeXqy

We want to define the Eisenstein series E, (¢; ¢) as a function of isomorphism classes
of triples (£, A, i) as introduced in 1.6, where i is of level p*§2. Thus i is an injective
homomorphism:

it F, /9,1 x ()%™ 5p = g/exi2g/e.
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We assume that A induces an isomorphism A 2=8"!¢~!. By the Pontryagin duality
induced from Tre°A, we have the adjoint projection of i restricted to F,/97! x f*/9~1:

T (2®,1,) X 8/f € - 1, X (t/f).
We introduce two lattices ' > 2 > & so that
U/18=i((H*/97YH and Q=fL"+Q
Then '/€=i(f*/9~1). By definition,
L =FL + Q)L =L(LENTL)= 1ff.

We consider the sub-r;,-module PV (8) of £®,F;, such that PV(£)>2®,1;, and the
natural inclusion: £®,1;, - PV (£) induces an isomorphism

PV (2)/2®, 1, =Im(i:F,/97 1 x{*/371 > (p~ > /@) x {71 £/Q).
Thus PV(®)®,1;= L= Jﬂ L'/f*. Then i induces an injective homomorphism i:
F,+{*1;, » PV (L) and ar: exact sequence
0-F,®f & > PV(2) 5, x (1/f) > 0.
There is another exact sequence:
0 2®, 1, > PV (2) > F,/97 x */971 >0,

where m is induced by i”!. We now put, for wef 'p NPV (2)=2%P and
P (w)=P¢(n(w), ' (W),

— 1) (kt+st) Po(w)

. (
2.3 E. (& ), 0); ¢, 0= NW) | Nw) [
(2.3) i (( i) 4’ 0 \/IDF‘ weﬂ(Fp)/th(W)k|N(w)i2s s=0

b

where for each element £= ) & o of C[I], we write ' (§)= [ | T'(§,). A priori speaking,

cel cel
the right hand side converges absolutely and locally uniformly, when the real part of s is
sufficiently large; one shows however that it has an analytic continuation to the whole
complex s-plane. Then we evaluate this function at s=0.

We consider the above sum as a function of z=(z,),.,€ 9'=Z via the standard triple
(2,, A, ip) introduced in 1.6, where £, =2ni(a*z+b) in F®,C. Then we see

Ek (Zs ¢)=Ek ((ﬁz’ )“z, lz)’ ¢’ C)
_ (= DMTe(kt+s1) 5 P¢(a, b)
[FeQui 2m)> e rape woyex N(@+ 02| N(a+b2) P[0
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We write

(=DM g (kt+s1)

\/ﬁF Qn i)kt Q@ n)Zst'

c=c(k, s)=

Then we have

E, (z; ¢)=c{ Y _Pé@0)

ae (p"'ai)‘/n:)< N(a)k | N(a) |ZS

+ Y Y Pd@nb) Y ‘ }

be(®—{0}/r* age(p®af)*/a* aEa:N(a+ao+bz)"|N(a+ao+bz)|2’

Putting

1
Si(z; a; 8)=
€3 0 ) a;.N(a+z)"|N(a+z)|23

for ze(F®4C)™, we have

Ek(z;¢)=c{ y _Pe@0 y y P¢(a0,b)Sk(a0+bz;a;s)}.

k 2
acptapei* N (@) |N@ > be{b—{0}}r* ape(pa*/a*

Then, we have by the Poisson summation formula

Sk(z; a; S)=N(Cl)\/ﬁp Z Ck(ls z, S)

aca

for

_ . ep(—xt)
Gl 2,9) L@,QRN(z+z)k|N(t+z)|ZS

Put

(= D" T (kt+st)N(a)
@uij@m>

From the formula:
Ck (x’ aO + bZr S) = eF (X, aO) Ck (x, bZ, S),

weE see
Pd(a, 0) }
E.(z; 9)= — R
k(Z ‘1’) C{ae(pgwtxN(a)k|N(a)|2s
+C{ X X {1 X Pédag bep(—(aay)y) } Cy(a, bz, 5)}

be(®-{0pr™ ac€af  age(p”af)*/a*
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- P ¢ (a, 0) }
c{ae(p“zﬁ)“/rx N(a)"|N(a) Izs

+C{ y Y. &(a, b)Cy(a, bz, 5)}.

be(®—{0)* aca
As calculated in [K4, (3.2.31)] (see also [H1, (6.9 b)]), we have
i'(2ny, if k=1 and x=0,
-(2 ni)kt(_ l)kt
[g (kt)
0 otherwise.

C, (x, bz, 0)= sen (V)N (0 Lep(x, bz),  if xb>0,

From this, we now know, supposing k=2 or ¢(a, 0)=0 for all a,

E (@ &; 0)=c{ » —i“’—("—o—)—}

ae(pPaf)te ™ N(a)" | N(a) |Zs

s=0

+N@{ ¥ )y ¢ (a, b)ysgn(N(a)) N(a)* 'ep(E2)}.

0<teab (g, b)e(axb)/r™,ab=¢

Note that by the functional equation of the Hecke L-functions of F, the constant term
is equal 27'L(1—k; ¢, a), where

L ¢ 0= Y  ¢GE 0sen(NE)F|NE)|™

te(a—{0})r”™
Thus we get, if k=2 or ¢ (a, 0)=0 for all a,

(2 . 4) Ek (¢a C) (Tatea, b (q)’ 7"can’ mcan’ ican) = N(a) { 2—tL (1 - ka ¢, (1)
+ ¥ Y ¢ (a, b)sgn (N (@) N (@)~ ¢*}

0<Eeab (g,b)e(axb)/c™,ab=¢

3. Eisenstein measures

We use the Eisenstein series defined in the previous section to construct the Eisenstein-
measure having values in V (¢, f2; O) for a p-adic algebra O given below. Let x be an
algebraic closure of F, and W (x) be the ring of Witt vectors with coefficients in x. We
consider W (k) as a subring of the p-adic completion Q of Qp. Let © be a discrete
valuation ring finite flat over W (k) inside Q. Let f be. an integral ideal in F prime
to p. We decompose f=][]q*® for prime ideals q. Let {" and { be two ideals prime

q

to p such that fNf’'=f Write f=[]q“®. We choose a prime element @, at
q

q in F so that @° is prime to p and w,=1mod* fq™*@. We put o*'=]]w¢ ®,
q
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o™ ’—Hme @ and m‘—]—[m““’ We also fix an ideale d of F such that dr=9 and

d,. Let T=(r, xr, x (r/f) X (t/f))/r* as a topological space. For each function ¢ on
T, we define two functlons ¢° and ¢* on ry xr, X (r/f) x (¢/f), supposing that ¢ is
supported on (r/f)* to define ¢*, as follows:

B.1) ¢, y,a,b)=P;d(x"", y,a,b)= Y ¢(x"", y, u b)ex(—uad ' w9,
ue(r/f)

O*(x', ¥, d, b)={P ' Pyd(x,y,a, b~ )} (x" 1, y, a, b)
=N{~*' ) Yo oL Y, u 0 ep(—ud' di P o) ep (vb' di  w ).

ue@/N pe@/mh™

Note that ¢° and ¢* satisfy the relation

Ow tx,up, u"ra, ub)=®(x, y, a, b) if uer”.

Thus, writing N for the map N:T - Q, given by N(x, y, a, b)=[] x°, we can define
cel

two Eisenstein measures E, on T and E¥ on
=(r; *r; X (@/f) x /) )™
with values in V (¢, {2; O) as follows:
E.(N"*$)=E, (9% o) and EX*(N"*¢)=E, (¢*; ¢).

In the above definition, the Eisenstein measures are defined only on locally polynomial
functions but by continuity, they extend to measure having values in V (¢, %; O) (see
[K4,1V]). Let S be the set of all prime ideals in F overp. For each
e(p)=(e(p)), .s€Z%, we write p*® for [] p°®. Note that if

peS

¢(X, Y, a, b)=¢(x9 a)¢'(y, b)

is a character of conductor p® @ P P of T =(x) xt) x (r/f)* x (¢/f)*)/r™ extended
by 0 outside T, then

(B.20) P§°(x,p a,D)=4do a1, 0) [ G, )¢, @ x)

e(p)>0

x TT {2 G)—N@ %, (w,x,)},

e(p)=0

where Y, is the characteristic function of r, on F, and

G()=N@ @) Y ¢mes(uw °@d ).

ue (x/q® V)
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We also have

(3.2b) Pé*(x,»,a, b)=N({F"'{")¢(dw°a) §,(»)
x{ l_[ G(d?;l)‘bv(memxv) ﬂ Xv(xv)_N(p)_lxv(mvxv)}

e(p)>0 e(P=0
{ I G D@ @O x, ] %@ *@x)—N(@ )@ @ xy)}
e(q)>0 e(@=0

where y, is the characteristic function on r,.

4. The Katz measure in the right half critical region

We now fix a CM field M/F and a p-adic CM-type X [satisfying (0.24q, b)]. We define
the Katz measure on the ray class group of M modulo €p® for an arbitrary ideal €
prime to p and evaluate in this section the integral of the p-adic avatars of Hecke
characters in the right half of the critical region. The other half will be dealt with by a
functional equation in the following section. We fix an integral ideal € of M prime to

p. LetA:MZ/M™ - C* be a Hecke character of conductor € [] P$¢™® ] P=® such
PeZ PBeX
that A (x,,)=x7, with

4.1 n=myX+ Y d,(c—occ) for my>0 and d,z0 for allc.

cel

We write k=F, for a fixed algebraic closure of F, and W (k) for the ring of Witt vectors
with coefficients in x. We consider that the ring W (k) sits in Q. For each fractional
ideal U prime to €p in M, we take a quadruple (X (U), A (M), o), i(U)) defined as
follows: Over C, X () (C)=CE/Z (). We pick an element 8 M such that, for complex
conjugation c,
(4.2a) 8= —08 and Im(8°)>0 for all ceZ,
4.2b) u,v)=Wv—ur)/28 on R induces an isomorphism RA R=Y~ '™ for the
different 8 of F/Q and an ideal ¢ prime to p.

Then ¢ , ) induces a ¢ (UU°) ™ -polarization A (W) on X (U). We decompose €= FF I
so that

(4.3q) F+F =R, F+F=R, FA+F=R and FO,
(4.3b) 3 consists of ideals inert or ramified in M/F.
Put =3 NF and {"=§.INF. Then {'>f=f We write f'=l_[l" ® and
1
"=T]1¥"®. We choose a prime element ®, for each prime [ dividing pf in F so that
I

o =1 modfl"*® (in this formula, & (p)=0 if p|p) and @, is prime to other prime I’
dividing pf. We choose a differental idele d=d; of F such that dF=dF,,,3 and
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dg,=(28)g for prime ideal Q |§(@=QNF). Then we define
i) Fp/8, ' x({H*8™ > { [ B~} (@F3)*UAU by x—dex,

BeX

which induces i(U):F,/8,'x(f*)*/9"'>X Q). Then we can find a model
(X Q), L QD), i () |§2)5-)m for a finite extension M'/Q which has good reduction over
the valuation ring 8’ of M’ corresponding to the embedding 1,: M’ — Q,, and there exists
a nowhere vanishing differential g on X (). Moreover, defining O as the composite
of W(x) and 1,(8"), X), L), i) is defined over B=1,1(1,(Q) N\ D) and has
good reduction over B. Namely we find a triple (X@), A ), i), for
B=1, ! 1, (@ ND). Since XAU)=X(R)®U and U is prime to p, we have a canonical
isomorphism: Lie (X (U)),p = Lie (X (N)),9®g U= Lie(X(R)),p. Then by duality, we
have o (X (U)),g =0 (X (R)),p» canonically. Thus choosing one nowhere vanishing dif-
ferential @ (R) on X (R),, we obtain a nowhere vanishing differential o (W) for all U
defined over B’. Over O, i induces an isomorphism i : G, ®,9 1 =X () and therefore
gives a nowhere vanishing differential o,, (W) =i, (dt/t), writing G,,=Spec(Z [, t']). It
is important that @, (Y) corresponds to ®,(R) under the isomorphism:
o(X Q) o= (X (RN)),o [K4, 5.1.47]. Thus the ratio

4.40) Q,=o)/o,, WNeDR,r in (D)

is independent of U. Similarly we define ®,, Q) on XQ)(C)=CEZ ) by
Oyrans (W) ((4g)g < ) =, for the coordinate (u,),.; of C*. Then the ratio

(4.4b) Q.= ® (W)/0y4ns (M) €(CH)* = (FR®( C)

is also independent of . We put s=F NF= NF and i=INF. Consider the ray
class group Cly(€p*) modulo €p* of M. We agree to write Cl,(€p®) for
lim Cly(€p%). Then we have homomorphisms

[

@.5) { 1=1:G (@ = {1} X (/)" X1 X (1/5)* }/7™ — Cly (€p®)
' =1 G €)= {1} X (1)) X1} X (/) }7T — Cly (€ p)

induced by the natural inclusion of F into M, where for 1, the first factor r, (resp. the

second t,, (¥/f")%, (t/s)*) is identified with [] Rg (resp. [] Rq, (R/F* x (/I Nr)*,
Pel Pext

(R/§.)*) and for 1*, the first v, (resp. the second r,, (x/f)*, (r/5)) is identified with

IT Rs (esp. [T Rg, (R/F)* x(/IN1), (R/F)™). The morphisms 1 and 1* have

PeZ Pexf
finite kernel, and their cokernel is isomorphic to Cl1~ (J) which is the quotient of Cly,(J)
by the natural image of (r/i)*. We now choose a complete representative set {[;} for
Cl~ (J) consisting of fractional ideals prime to p€€°. Let [U] denote the class of U in
Cly (€p=). Then

Cly(€p®)= U,m@U]" and  Cly (€ p=)= U,;Im(*)[U] .
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We identify Cly (€ p®) with the Galois group G, (€) of the ray class field modulo € p®
over M by the Artin Symbol. We write the ideal of the polarization A () as
=c;U)"'. To define measures on G, (€) and on G, (€, we explain how to
extend functions defined on G (€) or G (€°) to T of T' which supports the Eisenstein
measure:

T={r,x@Hxr,x@N}*,  T={r,x@/NHxr,xH* %,
To={1,x @D xr,x/s) }1*,  To={r; x@/f)* xx, x/s)* }1¥,
T = {1, x (t/s)* x 1, x (t/))* }&™

Write the variable of T as (x,, x;, y,, y;) in this order. For each function qS on G, (C)
(resp. G, (€9)) and index je Cl™ (3J), we define two functions ¢j (resp. 4);) on T (resp. T')
as follows:

(4.64a) First we put on Ty, which naturally surjects onto G, (€), ¢ ;i (0)= d) (] ., We
extend this function to T, by 0 outside Ty. Then we pull back the function defined on T,
to T by the natural projection: T —T,. We denote this function on T by ¢;;

(4.6b) We put on 'T§, (which naturally surjects on to G, (€%): ¢;(x)=¢ (x[U]™H).
Then identifying 'T; with

{1, X (@) x {0} x ey x (@/N)* }/r™ in To={r, % (t/s) x (t/i) x 1, x (t/)* } /1™,

we extend this function to Ty by 0 outside *Ty. We then pull back this function to T' by
the natural projection T' > T We write this function on T’ as §’,

In Case (4.6b), the function ¢; is supported on T’ in T. Thus E*(¢)) is well
defined. We write ¢;=c ;S ~1. Then we define measures ¢ on G_ (€) and ¢* on
G, (€) by

4.7a) f ¢d(p=2j ¢;dE;  for E;=x}E
G (c) JjJT

4.7b) f ¢d(p*=2f $;dEF  for  EF=x}EL
G () JjJT

The measure @ is essentially equal to the measure p in Theorem II up to units in the
measure algebra. We will normalize ¢ to get p in the next section. The measure @* is
introduced to prove the functional equation in section 5. We first state the result for ¢:

THEOREM 4.1. — Let M be a CM quadratic extension of F and Z be a p-adic CM-type
of M. Let € be an integral ideal prime to p in M. We decompose €=&g.JI as in
4.3). We put

wy(M)={ [] Ryyg(B*®)G 28 Ay},

PBeX

w®)=w, ) [ Ae ' (@) [[A7 (=),

2§ SR
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Then there exists a measure ¢ on G, (€) such that

f hdo (= 10 Ty (mg £+ d)
G (€) (XX - FYTo
g
x [TA=2@){ T Q=2 (B) [T A=2*(B)} L, 1)
SN N PeX Pez

for all Hecke characters A such that
(i) the conductor of A divides € p*,
(i) A (X)) =XxmE* 4179 for my>0 and d= Y, d o with d,20.

cel

The result for ¢* is as follows:

THEOREM 4.2. — Under the notation of Theorem 4.1, we put

w* (W) =w, (W) [] Myyq (27 G (28, L) A ! (B) hoe (W)

e|g
X H mF/Q (1 (I)) SRM/Q g (I)) A (@) 6 (28; Ay,
13
W ()= TT Ruyo (27 ¢@)G (28, o) ho (@@ [ Rp1o (1°®) Ry (27 ®) G (258, 1) Ay (w??).
2|F 1S

Then there exists a measure ©* on G, (€°) such that

J hdot (= )" Ty (mg £+ d) /
G (€9) — X XYk F\"o
ngz+ 2d R wr ) \/{ Dy | Im (S)d Qr:)oz +2d
< { TT a=a*@)) [T a=2@) [T A=2®) [T A=2*BP}LO, 1)
2183 218 Pez PeX

for all Hecke characters A such that
(i) the conductor of A divides €° p=,
(i) Ay (x,)=xmo¥+d0=9 for my>0 and d= Z d,o with d,20. Moreover, the

cexf

measures ¢ and ©* are related in the following way:

[T a-r@'w® Ado=T] (1—x*(2~x*(9))-lj Lo cdo*.
G (€9

2|3 Gy (©) 2|81

We prove these two theorems at the same time. We compute

J A do <resp. f qu)*)
Gy (€) Gy (€9
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for algebraic Hecke characters A of conductor dividing € p® (resp. €¢p®), where X is the
p-adic avatar defined on G, (€) [resp. G, (€°)]. We write

M@)=Ax") x|, and  A*@@)=A(exc™H)TIR(x) !

for the cyclotomic character ®. We assume (4.1) for A. Then ¢;=A () "' A" on T§
and ¢J= ?»(Hj)‘lk;@% on ‘Ty. Thus the computation is basically local, and we can
compute the general formula only dealing with the case where f is a prime power.

We begin with the case where €= £* with a prime £ which is inert or ramified in M/F
(thus ao=¢ for ¢ given by f=CN\F=F if [=8, and a=2¢ or 2e—1 if [=2%). We
hereafter use the capital letters £, P and Q (resp. the lower case latter |, p and q) for
prime ideals in M (resp. F). This case is technically more difficult than the case of split
primes. Writing [=2 N F, have

¢; 06 M=) T Ay (x) Azt (7,) 6 (e, 1)
for

AMYa), if (a, b)er) xr,
0, otherwise.

4.8 o (a, b)={

Note that the I-part of PV (U)), is given by w; °r;+R,. Thus n(w; ®)=dg,' @; ® and for
any aePV Q) N1 U, PP, ¢ (a)=A " (wfa) if @fa, modf, is contained in the image
of (r/f)* in R/f; and otherwise PP, !¢ (a)=0. For each prime ideal Q in M and a
character Ay of Mg of conductor Q°, we put

G (dyg A)=A (@59 T Ag(u)ey(@z°dylu),

ue(R/Q%)*

where @y is a prime element at Q. We define e (Q) for prime ideals QeX (J Z° or Q=2
when Q™ is the conductor of Ag. We also define e (B) for PeX by
e (P)=max(e(P), 1). Let X'={PeZ|e(P)=0} and Z'=X-%. We also put
e°(Q)=¢'(Q) [resp. e®(Q)=e(Q)] if QeX and otherwise e’*(Q)=e°(Q)=0. Let yq
denote the characteristic function of Rg in Mg Writing o for I1 m";; ®) and a5 for

PBeX
the projection of ae M to || Mg, we have by the Fourier inversion formula
PBeX
P (@=2U) ' N([] B~ ®)A ! (wiay
PBeX
XY AT as)ep((28) 7 bay)
be@/p®)

=m‘-"0a
= TR IN(]] B )N (wtay)

PBeX

X Y AN ag)er (28) buw )

be@/p®)
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=AU (@5 a) [T NP ®)G28; Ay (ag) i (age

Pex”

x ‘Bl—[}:' )VsEfl (amc) A ! (asB) xsn (aq;) (X% (aep)‘N B ! A (msn aq}))

if ®ae Ry for all PeZ” and wfa; mod fR, e (r/f) ™.
Writing @ for Ay (x,) Az ( yp)¢(x[, 1), we have by Theorems 1.1 and 1.2

f Ado
4.9) &—=Q;""°““>zx(u;l)J N(x) ™™ (x~ 1y @ (x, y) dE; (x, y)
J G

moZ+2
QP

AU DOE,,, (X QL), AU, o, A, iA); )

moZ +2d
Q;

Z

AU 85 By (KAL), MU, 04 (U, 1 (A)); @)

=z

Qm02+2d
Writing @ *¢ for o I1 mg,o ® we put
PBel
SB,.=me°”u,.{ l_[ ‘B_e(m}l—‘, wp(k)={ l_[ NP *®G(23; 7»,3)}
PeZ BeX

and

w@)={ [[ NB*®)G(28; Ay) } Ay * (w}).

PeX

By the explicit formula of the Maass differential operator (1.21), we know that each
term of the series

)\' (ul_ 1) 8;‘lno Emo ((X (uj)’ }" (uj)s Orans (uj)s l(uj))’ (D)
is given by P ¢ (a) a~™0*~2¢(1 =9 multiplied by the constant:

(=)' T (mg t+d)
\/l DF | Im (8)d Qr:jo):-l-Zd'

We compute this number if useo*“aSBj'1 is prime to pf and ®fa; mod fRe(x/f)"
(otherwise it vanishes). We have

Pd’? (a)a—mOE—Zd(l —c)

=w, M)A UTHA (@ a) Ay (@) [] Ag(ag) (tp () = N ()™ 19 (wg ay))

PeX’

=w,MAQUT DA @) Ay (@) [] Mg (ag) (g (ag) = N (B) ™" g (@g ay))

Pel’
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=wM) LB M@ ) FN) AL (@) [T hg(ag) (Xg(ag) = N (B) ™ xq (Oy ay))

PeX

=wMA@ 2 aB; ) ] A (ag) (g (@) — N (B) ™ xq (myay)),

PeX'

where we regard A as a character defined modulo [] B [] PB°f (and hence

PeX” PeZ
A(@a"B; 1Y) for a®=aa; ! is well defined although ©*’a®®B; ! may contain prime
factors PeZX’). Then we have, for

(= D" ' T (mot + d)

= Iy )
(4 W( )\/lDFllm(S)er;02+2d

J‘ Ado
Go

(4.10) W
=c Z Z )\,(aEBj_l) n Xm(am)(ng(asn)-N(;‘B)—lX@c(m‘nasn))N(asBj_l)-leo
i aer+f2§}/rx Pel’

(= D)™ g (mot +d)
\/i DF I Im (6)41 Qr;oz+2d

{1 =2 [T A=A (BN FA -2 @) LO, M),

Bel PBeX

=R )W)

because {a%;‘ } for ae(x/f)*/R™ and je Cl™ (&) gives a representative set of Cly (&).

We now compute P¢;. Write the conductor of A, as 2¢® for 0<e ()< if | remains
prime in M and 0<e(I)<2¢ when =22 Writing ¢(x, »)=A Q) " A (x,) Az (7,) ¥,
we have

AL, if (a, b)e{0} xS,
0, otherwise.

@.11) ¢ (a, b)={

Note that the dual map *:U/fU—r/f of iQ):f*/r*—->f 'UAUA is given by
*(x)=Trye (dx(28)" ") mod f. Thus
er (* (a) w; °bd; ) =ey ((28) ' ©; *bay).

Then we have

PO @=AQ)'NOTIN(I B ®) ¥ M@en(28) " vaw )

BeX ve @™
X Z X;l(b—la a&)eF((ZS)’lbaz)
be(/p®)

/0
u=a¢

= azk(u,-)“N(f)‘lN(H PEE)TL N A (0) en((28) ! vaym %)
Bel ve@h™
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XY A7 ar)er (28) buws )
be@/p®)

=AMUPTIND T Y ME@en((29) 7 va w0
ve @™ ‘

x TT N(B ™) G (28; Ag) Ag ! (ag) A (g0)

Pex”

x T A" (ag) g (ag) (g (ag) = N (P) ™! 1y (Bgay))

Pelk
ifw*ae Ry forall QeX” and giewly *PR,. Put

%j:meouj{ 1“[ ;B—e(‘B)}’ %}=me0uj{ l—[ gB—e'(‘B)},
PeX PeX

Dj=me°mg<’3"euj{ H m—e(m)}gs—e(n,
BeX

D}=me°mg“)-euj{ l—[ gB—e’(‘B)}Qa—e(I)’
Bel

w,M)={ [ NB*®)G (23, Ay) }

Bel
and

w* O\'):{ H N(‘B_e(m)G(z 3; 7“1;)}7\'7 (@) NF/Q(T) NM/Q(Q—e(I))G(z 3; Ayp.
PeX

By the computation similar to (4.10), our value is expressed as the value at 0 of the
infinite sum of P ¢}* (a)a™m0*"2¢(1=9 N(a)~* over a in o B, Then if mjo.a.%j'l is
prime to ="' [otherwise P ¢* (a) vanishes],

P¢;* (a)a—mOE—Zd(l -0

=N®O'w, WA Y A(v)ey((20) ' va ;%)
ve @™

X xp_ag (@ l—[ A (ag) (Xp) — N(PB)~ ! Y (Bg ag))

Bel’

=N@Tw, WA Y Mlav) ey ((28) 7 va %)
ve (/>

x K;u}o (@) n 7‘@ (aq:) (Xep (aqs) -NP)! A (T aqs))

Pex
=NOw,N) Y M@v)ey(28) g )A(B; A (@) )
venH™

X Mg (@) [T Ag(ag) (Xg (@) — N (B) ™! xg (Bg ay))

PeX'

=N®'w,) Y Mav)ey(2d) 'avw )
ve />

X M@ a"B; 1) T] A (ag) Ote)— N (B) ™! 1y (Bg ag)),

PeX
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where we regard A as a character defined modulo [] B* [] B°f (and hence
PBel” PBeX

A (w?° a"B; 1) is well defined although m % aq® B! may contain prime factors BeX’ for

a®=aa; 1) We may assume that @*°=1 mod fR, by choosing @y so that wy=1

mod fR,. This shows that

M(av) ey (28) ™  va ) = (@ ayv) ey (28) ™ ©°° vy m;°°).

Thus in principle, we can compute f A do*/Qmo=+24 We write
G

(— )"t g T (mot+ d) . y
=w*(x)\/|D i (3 Qo2 and  r*()={eer*|e=1mod f}.

Then we have

j A do*
Goo

moE+2d
Q;

=C{G(2 5, }"l))\‘l(m?)NM/Q(fﬁ_e(n)}_1

Zl(23 DX M@ Y Mo)en(3) T vqw)

ae %,/r ve (t/f)

X H k‘n(wp)(qu(aqs)_N(‘B)—lqu(mqsaqs))N(a%j_l)_sls:o

PBel
=C{G(28 7\'1))"l(me)NM/Q(fg—e(l)))}_l
x ) I(U)Z)\'(% D) Z A (@) A (@)

ve@n /™ aeBj™

x Y ey((28) ! vua; %)
uer /e ()

x H k‘n(aqs)(X$(a@o)_N(‘B)—1X%(mmag}))N(a%j—l)_s|s=o

Pek
=c{GQ28, ML @) Ny (2D} T A" 'TASB Y
ve@hH /™ j
x Y AMaP ) (a)ey (28) vay ot
aeBjc™ M
x [T R (ag) (X (@)= N(B) ™! (g (Bpag)) N(@B; )™=
Pek
(choosing representatives of v prime to p in 1)
=c{GQ3 M@ Nyg(L*M} ™" ¥ M@ X781
ve @/ > J

x ) MaPT) M (a) ey (28) 7 vay o)
aeBjir™ (f)
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X H )Vsp (asp) (Xsu (asn) -N(B)~ ! Ap (mss asp)) N(a Qsj_ 1)_s |s=0
PeX’

=c{GQ8 MM@) Nyo(L D)} Y M@ YA B Y
ve(nHn* J

x Y ME TP ) AT a)ey ((28) 7 vayw; %)

acvBjf*(f)

X n 7\«43(‘11;) (Xa} (asp)_N(‘B)_l (Xsu (W‘naq;))N(va SBj_l)_s|s=0

PeZ’
use the fact: yq (vag) = xgq (@g))
=c { G (29, A A (wy) NM/Q ( 8—8(1)) } -t
x Y YAETIBYH Y MEP™) M (a) ey ((20) 7 va w0

ve@H > J aevBjfc* (f)
X l_[ 7‘«1&(“@9)(Xsc(aqs)'—N%j—1)(X$(mma$))N(vaSBj_l)_sls=0
Pes’

=C{G(2 9, }"I);"I(mf)NM/Q(fg_e(l))}—1
x Yy Y Y Aav "B H A (a) ey ((28) ! vuaym; %)

ve@n it J acoBj*®

X 1_[ xqs(asu)(Xm(asn)_N(gB)_l(Xm(mspam))N(va%j_l)_SL:o

RBeX
(use the fact: (R* v*)=(R*/R* ) :x " O)R*D:x™ ()
=c(R~ 3’3x){G(26a 7Ll)7\'1(“‘7};)vam:)(fﬂ_em)}_1
X z Z z A(av? B; N (@) ey ((28) L vua, w;®)

ve@MN RN J acoBIR*()

[T Ay (ag) (tn (ag) = N(P) " (X (B ag)) N (vaB; 1) "=

Pel

=R~ ZIX)C1C{G(28, XI)XI(W%)NM/Q(fﬁ_e(D)}_1

xj O (x) ey ((28) 1oy “x)A(X)|x]s°d* x|s=0
Ma

where ¢; #0 is a suitable constant, ®=[]®,(x,) is a Schwartz function such that ®, is a

v
characteristic function of R, if v is outside p*, @ (x,)=x;™0* % exp (—2n Ny (x,) at
each infinite place o, at X" it is a characteristic function of R times A, ! and at Qe ¥’,
it is (o (xg)—N(Q) ' xa(@gx,)). We have chosen the multiplicative Haar measure

d* x; so that for any open compact subgroup U of R*, J d* xf=(§i" :U)"! and at

U
each infinite place o, we take d* x,=|x, | ?|dx, AdxS|. Let

U=Uf={xeR*|x=1mod {R}.
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In fact, decomposing My =J; ,M* v~ ') p- 1 UM%, (where v runs over a representative
set for (r/f)* R*/R™), we see

J D (x)ey(28) o tx)(¥) | x|s°d™ x |0
My

=vol (U) D (x)ey ((28) ' Fx) A (X) | x |xsd ™ x |50

MR /U
=vol(U)J Z (I)(F,x)eM((26)'lm,"xI)K(x)|x|Asdx x|s=0
MM /UgeM™

=vol (U) Z M (u™ P po ) |y @D pot |
v, J

XJ Y @EvTb  x,)ey((28) T mr P EY M (x) | X [ard ™ X s
M

WIR M EeM™

=vol(U)G() Y DD

ve@n R M I EeoByR™(®
X @, (E0 P p ey ((28) P o tEYAEI AL (E T B HNELT B
=vl(WGEH ¥ ¥ X

veMH RYR™ J EevByR (M)

[T A (8) (g Ge) =N (P) ™" (s (W Eq)

BPeX’

ey (28) 1o g A (EIAET B HNEY T B ) o

where R* ()={ueR* |u=1mod {} and

GE=TI | exp(=2m|x,[)|x,[>*m0* 4o~V dx, ndx

ceLJC™

=Qmn) " Stmtt AT (st+myt+d).

Thus ¢, =vol(U[M) ' GO) =0 {Qn) ™" Ty(myt+d)}~* for the Euler func-
tion ¢ of M. On the other hand, we see

J O (x) ey ((28) ' fx) A (X) | x|psd ™ x
Ma

=f D (x) ey (28) "o *x) M (x) [ x [ x [T | @, )0, ()| x[d™ x,.
M

v#1JM,
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Note that

f D (x) ey ((28) " @y *x) M (x) | x[d ™ x;
M

=% Kl(m%)lmilff en((29) " mim T x) M (X)d " X
mX

0<a T
and if A, is non-trivial on R, writing £° for the conductor of A;, we have

0, if a#—e,

L,x M(x) ey (xa*(28) 1) d> x={(p(ﬁe)_1?»,(m‘§)G(28, A, if o=—e

and if A, is trivial,

N(®)
N(©)—1

f M(X)em(xtij“(25)‘1)dx x= {Xml(ma)—N(Q)_lX‘J{I(m‘”l)}.
R
This shows that

clJ D (x)en (28) " w *x) A (%) | x[ad ™ x]=o

={ TT A =2(B)A—=2*(B) } L0, 1)

PeX
X{NM,Q(QSQ"e)XI(mf)GQS, A) if e>0,
Ny (892 (m]) (1 —A* (L)) if e=0.
Thus we have
j A do*
(4.120) o= R ) (0= @) { TLA-ABNA-2* (BN JLO, 1),
p PBeX
where
oy D e O 1+
cC=Ww ( )\/lDFllm(S)dQ':)oz-"Zd
with

w*M)={ [T NB PG (28 Ay) } 14 (@) Ngjq (V) Ry (87D G (255 ).
BeX
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This also shows that

4.12b) (1—7»(53))j A do*
Go

=Ny () Ny (27 0) G (23, M) A (0%) (1 - 1*(2)) j A dgp.

Go
We now treat the case of split primes. We fix a split prime [=28° prime to p. Let

us write f=1°® and put o*=][o{®. According to (3.1), we define
1

0, =Pl o0, L xi )= Y d(a y)er(—axdy! vgo).
ae(r/)

Write the conductor of A as £5 2" and €=2¥ 2% (0<e’'<¢’ and 0<e"<¢"). Thus
e=¢. Let G_=Cly,(€p>) and identify R/L* x R/L*" with (¢/f") x (x/f"") for '=I" and
f”=I".  For each function ¢ on G (€), we have associated a function ¢; on T by

0;(%, M=0((x, NN  for (x,y)eRy xRy x Ry, x R,
0;(x, »)=0 outside Ry X R x Ry x Ry, if €' #0,
G N=4(Ce pG)  for (o )eRI X REXREXRee i &' <" =0,

(If &' =0, then &”=0 and thus €=1). As already chosen, we have d, =(28),. If ¢ isa
character A, then

0;=AQ) A5 on RY X RE X RE X Ry
and
Apr! (X5 X, ) =2y 1 (X, 7,) Age! (Do) hg ().
Then by (3.24a)
P (@=A(U) ™ Ay ! (dp, 0% ag) hec (ag) P, 0, (a,).
We now put ¢ (P) if Pe X and €° (Q)=0 otherwise. Put

0 - -
Q}j:me +euj l"[ B e(P) 1_[ Q 5(9)’
BeZ full

w,M)={ [T N(B G238 Ay}

PeX
and

wM)=rz @) { [T NB PG 23; Ay }.
PeX
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Note that for any U=1U, PV QU)={ My x 7* Ry } ®Ryeqc, Where

M2= l_[ MgB and mzc2c=m£cx l_[ ‘.ch.
PeZ Pez

This shows that mt(a)=(28) " ag, mod 9, and ' (a) = age X (agc mod £%). First suppose
that €”>0. Then we have, for 2'={QeX|e(Q)=0}

P¢f (@) a ™= 20 9=y M)A (@ aB; ") ] Aglag) (xe(ag) = N(B) ! (g (wgay),

PeX

where we consider A as a character defined modulo € [] P* [] B~ and thus

PeI’  Pele
k(meo‘“‘a%j'l) is well defined although meo”a%j?" may have a factor P" for PeX’
and n< —1. Thus we have

‘1 wa‘p_ e ey DT T my 1 +d)
4.140) W_( i )w( )\/|DF|Im(5)dQZ°2+2d
x{(1=A@) A=A [T A=ABNA-2*(B) } L(O, 1.
BeX

Suppose that €’=0. Then we have, for Z'={QeX|e(Q)=0}
P¢Y(@)a "= 20" 9=y (WA (@ **aB; ") hoe (a)

x [ Ap(ay) (g (ag) = N (B) ™" xq (@g ag)),

PeX’

where we consider A is a character modulo € [[ B~ [][ B®. Thus we have

Pek” PBeXc

J\ ):d(P mgt dr
(4.14b) G"’—=(€R"'rx)w()») (=)' " I (mo 1 +d)
. Q;.02+2a \/I DFl Im (5)er£02+2d

X(1=2() [T A=AEBPA=2*(B)JL(O, 1.

PeX

We now compute J A do* for characters A of conductor dividing € p®. In this
G (€9
case, @; is given as follows:

0;(x, =4 ((x, NI for (x, y)e Ry X Ry x Ry, x Ry,
@i(x, y)=0 outside Ry X Ry x Ry, X Ry,
006, M=0((x,, NUT'D  for (x,)eRZ xR x R x R if €7=0,
0i(x, »)=0  outside Ry xRy x RE xR if & #0.
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First suppose that ¢”>0. When ¢=2A, we write the conductor of A as

[TB®]] e®. We write @ for the prime factor of & Then we put
Blp et

Z,={€e(@)>0}, Z={2)e(€)=0}, Z'={PeZ|e(P)=0} and Z"=Z—Z". Then
we see from (3.25), writing g for the characteristic function of Ry for each prime Q
of R,

Po* (@=A (U Dhe ! (@hag){ J] N(B®)G (23, Ag) 2" (ag)

Pex”

X H 7“5 ! (asu) 7“;3 (asu) (qu (asp) -N(B)~ ! Xgp (mq; asp)) }

Pel’

X N(27®) G (28, Ae) Azl (ag){ ¥ A3 (watag)

Qely

x H Aa H(wgtag) Ao (@g°ag) (No (@3 ag) —N(Q) ™' xq (mg ™ *ag)) }

Qe

if ael;@7egC~< @) T P~ ®. Qutside U; 7L E" EDTT B=®, Po*(a)=0
PeZ PeX

and if a®B; ' is divisible by Q for one of primes Q with either ¢(Q)>0 or Q=g, then

P $’* (a)=0, where

= —e+e(29) e —& Qc(e—e(29) —e ()
B=whwe gt U, 2TELC [T B-e®
PeX

and &' (Q)=¢e(Q) if e(Q)>0, and &' (Q)=1if e(Q)=0. We also put

w*(M)=N(27“®)G (28, hed hg ' (@) e’ (@) { X [] NBT®)G (285 Ay -

PeX

Then we see
P ¢;* (@)a~moE"d1 = yx Q) (w, o 535904 a QS}T o)

H Ay (ag) (Xp (ag) =N (B)~ ! X (B ag))

Pel
X [T Aa(®@3°ag) (Re (@3°ag) — N(Q) ™! xa (By *ag)).
QeXp
We then have
A do*

Lw X . X (— D" n? Ty (mgy t+d)

(4.15q) W—(m i )w) D] tm @y
XA=AENA=A* @) { [T A=A(PB)NA=2*(P)) } L(O, ).

PeX
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Now suppose that ¢”=0. The computation is essentially same as above. We only
stat the result. Put :

W)= N(27°®) G (28, M)A (@) A% (@h) { [T N(B*P)G(25; Ay ).

PeZ

We then have

J A do*
G (€9

moZ+2d
QP

(= D™ T (my t+d)
\/I DF] Im(&)dggoz+2d
X (I=2* (@) { [T A=A (BN A—1*(B) J L (O, ).

BeZ

4.15b) =Rt )w*(\)

Note that if the conductor of A divides € p®, then the conductor of A ¢ divides € p®
and if the infinity type of A is given by m, X+ Z d,o(l1—c¢). Thus we can construct
cexf
do* out of the CM-type Xc. Since L (0, A)=L(0,\A°c), comparing (4.144, b) with
(4.15a, ¢) we have

(4.16) (l—k(ﬁ))'lw’(k)j

Gy (€)

Xa’<f>=(1—7»*(13‘))"j (hec)do*,

G (€

where W (M)=N(Q )G (28, o) ho(@5"¢®). The above formula is the formula
relating ¢ and ¢* in Theorem 4.2, when { is a power of a split prime £ The case of
inert or ramified prime power is proven as (4.12b). The general case follows from
these prime power case as already explained. By (4.10) and (4.144, b), we obtain
Theorem 4.1. The first part of Theorem 4.2 follows from (4.124a) and (4.15a, b).

5. Functional equation of the Katz p-adic L-function

In this section, we prove Theorem II of the introduction. Namely we study the
functional equation of Eisenstein series and the Katz p-adic L-functions. According to
[K 4, 3.3], we construct a dual (X', A', i), out of a test object (X, A, i),, as follows. Here
iis a Ty (N p=)-level structure for N prime to p, and A is a c¢-polarization for an ideal ¢
prime to Np®. The ¢ !-polarization A’ is given by the following commutative diagram:

M (XY -X'®, !
I lreid
X =X®,c®,c?

Take a positive integer N, prime to p in N and consider py,»®9~', which is the
maximal subgroup of py ,»®9~* killed by Np*; i.e.

UN p°°®9— l= Homgr ((Fp/Sp- 1) x N*/r*s uNopw®9— 1)'
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Then i:py,»®97!' - X is a closed immersion. We define i:py ,«®9~ ! - X' by the
commutative diagram:

e ®97t - X
I "

upr®19_l®tcﬂX®t C.
Now suppose that A is an algebra over the localization Z, of Z at prime ideal p. Then

c®zA. Given a nowhere vanishing differential o, we construct wjy: by the following
commutative diagram:

Lie(X) =~ s-lTlazA
lx
Lie ()ﬁ@I 0 9! (r|®ZA)
o®id
Le(X)®,c = 37 'e®,A

We apply this construction to the Tate HBAV (Tate, ;(9), Aean» Dcans can)- Lhen it is
obvious by construction (see § 1.7) that

(5 . 1) (Tatea, b (q)’ )“cam Wcans ican)t = (Tateb, a (q)’ xcan’ ®cans ican)'

Since the correspondence (X, A, i)— (X', A, i) gives an anti-equivalence of the category
of test objects, we have an involution

St V(e L, N; A)=V (e, N; A)
and
W (71, Too (Np®); A)= M, (c, Too Np™); A)
given by /X, A, i)=f (X, M, ) and f* (X, A, o, I)=f (X", A, &, 7).

Let ¢:{r, ) x(/f)x (t/f) } > O be a continuous function with ¢ (ex, ey)=¢(x, y)
for all eer™ and put as in (3.1)

4)0 (x’ Y, a, b)=Pa_1 ¢(x;1, Y, a, b)

(', y, a, 0)={P ' Po(x, y, 4, b}, ), d, b)

and we write E(§; ¢) for the Eisenstein series whose g-expansion at (Tate, (9), Aans ican)
is given as

N@{ X ) ¢°(a, b)sgn(N (@) N(a)"'ep(§2)}.

0<Eeab (g, b)e(axb)r™,ab=E
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Then by (5. 1), we see
(5 . 2) E (¢9 ¢ l)t ((Tate“, b (q)’ 7"czu-n ®Dcans ican))

= E (4), C_ 1) ((Tateb, a (q)7 )“can’ (Dcan’ ican))
=N®{ ¥ > $°(a, )| N@| "es(62)}

0<Eeab (g, b)e(dxa)r™,ab=¢t

=N 'a){ Y ep(E2)x Y $%(a, YR (ab™")|N(a)| ™'}

0<Eeab @, bye(axb)t™,ab=t
=N HE*($; o),
where ¢% (a, b)=¢° (b, a) and
(5.3a) e, =NMOP Oy 1, x71, —b71, @) R(xy) L.

Now we compute the dual of (X(U), A), (M) We see easily that
XU'=XAU®,c(UU) =X (cU°) because L () is a ¢ (UU) ™ '-polarization. By the
commutative diagram:

X(u)‘: (X(u)t)t __)X(cu—c)®'c—1 UUE
H L weid
X)) =XQA)®, (< WA) ' @.c 2,

we know that A(QU)'=A(cU™ ). Write {=si, so that s consists of split primes in M and i
consists of ramified or inert primes in M. To compute i U), we see the diagram:

i pp2,e®37t o X(cUT)[F2p~]
| |

b2, ®, 871, e (X (W), O [ 5]
Then
PO F /9,1 x (s2)*/r* x (i2)*/r*3(x,, X', X')>(28x,, 28x', dp x")eX (¢ UTF).
Thus
P =i(cU™°)
and
XD, A, iAD)p= X (cUT), A(cUT), i(cUT)) 5.
By using this formula, we now compute
L  Redo= 3 E(b 0 (X7, A7, 1)

=TV () E* (G ¢ ) (X (U}, AU, £ (e U7y
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Let ¢; (resp. ¢)) be the function ¢; (resp. ¢7) corresponding A [resp. A*=(L°c) ' N7!]
relative to {2[;} (resp. { cU;°}). We regard sometimes that the prime to p-part of these
functions are defined on M, having value 0 outside R,. At each split prime ideal [= 8¢
in f, by definition, the -part ¢; o of A (U}) ¢, is given by

Ael(x) on Ry,
. X)=
45,209 { 0 outside RJ.

The L°-part ¢; o¢ of L(U,) ¢, is given by, when & >0,

Al (x) on Ry,
0 outside Ry

‘l’ j, 8° (x)= {
and, when & =0, ¢; o< (x) = (X).
On the other hand, we have for the L°-part

Ao (x) on R,
* ¢ x)= e pu
UL {0 outside R

The £-part ¢¥'q of A* (cU; ) ¢¥' is given by, when £”>0.

Ag (x) on Rg,
0 outside R,

d?}'f's (x)= {

and when &' =0, ¢}‘j'g (x) =20 ().

By the Fourier inversion formula, we see
;e (X)=N(L N hee (@ ) G (28, hge) §Fe (@™ 2 a2),
B0 () =Do (= 1) % 'ee ().

When [ is inert or ramified, we see

0;.((a, b)= { M ;(a) if (a, b)er] Xy,

otherwise,
and
A (D) if (a, b)e{O}xrlxxr[,
%7 —JM
$7'1(a, b) { 0 otherwise,
and

, M) if (a, b)e{0}xx],
* = 1 1
jo1(a: b) { 0 otherwise.
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This shows that §; =X, (— 1) N(I¥) ¢*. We put

;:l[l (x) = )\‘2 (ws—e (I!C)) d)}‘jlﬂ (xg) ¢;|:/2£ (xﬁc) lf I= QQc (2 # QC),
¥ =¢¥, if lis inert or ramified in M,
P Q=AU (=N’ A O N~ 2 [T9FF (x)-

We now have

(5.4 Xd<P=Z E(¢ ¢) (X (cU;), M(cU), i(cU;))p)

G (€)

= ZN(cj) E* (%, ¢ DX (U7, A(cUS), i(cU7))p).

=cN@OQ T A(CTH Y E*@F ¢ ) (X (U7, M), i(cUF))p)

=c mF/Q (©~ s (3 1) H Age (mggﬁc) ) gzM/Q (e “9 ) J A do*,
2|y G (€9

where

=[] Rao (7 EN hege (@) G (28, Age) Ao (= D [T A (= 1) Ry (°©).
2§ I

We define the standard measure p on G (€) by
(5.9 J ddp=9¢([] 2® [[wi®) b do.
G (©) 21§ eli G (€)
Then we have

THEOREM 5.1. — Let M be a CM quadratic extension of F and X be a p-adic CM-type

of M. Let € be an integral ideal prime to p in M. We decompose C=gg 1 as in
(4.3). We put

W, (W)={ ] RyjoqB*®)G2& 1)},
PeX
W M= T] G284 TT G238 reH) [T G20, M.
L|g 2| g i

Then there exist a (unique) measure p on G (€) with values in O such that

j My (—Dmo' n? T'p (mg t+ d)
LD —(R*x)W, (L) o
Qg02+2d \/l DFl Im (5)er;0£+2d

* [T A=2@){ [T A=2@BN [T A=A*(BN}JLO, b

e|c pel PeX

(5.6a)
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for all Hecke characters \ modulo € p® such that

)"co (xoo)=x':)°2+“1_c) for m0>0

and
d= Y d,o  with d;20
oot
and
j A du
(5.6b) %?:%77
=(R*:t%) (Dot O 1+ d) W, (V) R0 ()11 ()W (D)

\/l DFl Im(a)er:)OZ+2d
{1 A=a*(2) [T a=2@) [T a=2B)) [T A=2*(B)}LO, 1%

L|g 2| gt PekX Bel
for all Hecke characters . modulo € p® such that
Ay (X)) =x@ moZt@+mo=DEA=0  for >0
and

d=Y d,o  with d,20.

cel

Proof. — The formula (5.6 a) follows from Theorem 4.1 and the definition of n. We
prove (5.6b5). By Theorem 4.2 and (4.12a), (4.15a, b) and (5.4), we see that

J Ry o
G (€) :(mx .tx) (—1)'"0 T FF(mot+d)
QZIO):’er ' \/IDF| Im(8)"Q’;02+“
{TT A=) 1 A-2(®)
L|F 28t
x [T A=A [T A=2*(BP}LO, 1%,
Pel PeX

where, for c in (5.4) and w* (A*) in Theorem 4.2,

W=cReo (@ ' AT HW**) T e (@p) [[M(@D) [T A (@)
e i 2§
=R (O AT [] Aee! (@ ¢ F)N(2#79)
2%
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x nl:[ﬁ (w%) H M@)W,A%) [T NE@7“®) G238, MM~ (%) M (whe)
I 21§

X [1Mee M) A¥ (@) G (28; &)

I

= C‘RF/Q ()~ 1 A(c™ 1) Wp A*) 1_[ Y Cary)
2|

XTI M (@) { [] Aee' (@ @) N (25€979)
I 2§

x{ H G (28, A Y e ' (@) hee () }
L|E

XT Reio DA (@) G (28; A7 ) }

i

=W, (V%) R0 (7AW (V).

We now deal with complex functional equations to show that the value of the right hand
side of (5.6b) is equal to that of (5.6a), which finishes the proof of Theorem II. As a
differental idele of M, we take d,, such that dMq=(—28)q if g divides €p N 9, and
dy,=1 outside €p MYy for the absolute different 3y of M. We write Dy for the
discriminant of M/Q. Then as is well known (e. g. [W]), we have

(5.7a) G,_(s)L(s, A"
=kAM(B) Ay, (1) (| Dy| NO)?P7*G, _;(1—s)L(1—s, W),

where (1)=b=®% (dy)csy if the conductor of A is C= [] £2®), (ii) A* is the unitarization
jU

of A, i.e. M|A

, (iii) k=[] «,, x, is defined as follows: for each finite place v with

v

e(v)=0, x,= 1, and for each finite place v with e (v)>0

K, =|we® |, /2 J )»“(x)eMv(b,,‘lx)dx
L

for the additive Haar measure dx with volume 1 on ®R,. For an infinite place v, write
Mx)=x"*x"B|x[**® with AB=0 and A, B=0. Then, we have x,=i**® and
G, =[] G, () for

VE ®©

G, (59)=Q2m)! ~CHATBIT (s+ (A +B)/2).

Since the choice of the additive character in [W] is eg(— x), the formula (5.7 a) differs
from the one given in [W] by this sign. If the infinity type of A* is myZ+d(1—c), then
the infinity type of A is

myZ+d (1—c)=Q2—=mg) Z+(d+(my—1)Z) (1—c)
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and thus the integers A and B of A*(x)=N(x)"'?A* at cel given by A=0 and
B=my+2d,. Then L(0, A*)= L(my/2, A**) and

Gxg(%—o—>=(2n)"m0“’I‘F(mot+d).

Note that L(0, &)=L (1—(m,/2), (A*)~1). Thus we have
(5.7b6) Ty (mgt+d)L(0, \¥)

=KA*¥ (D) A, (= 1) (| Dy | N (C)) 702274 (2m) =t *mo 4T (14 d) L0, M),
= KA () oy (= 1) (| Dy | N (C))1! 7m0¥2 20~ Vi T (myy ¢ +d") L(0, 1),

where C is the conductor of A.

Now we compute k(A*<c)*(b)A, (—1)(|Dy|N(C)* "™0)/2, which is equal to
KA (b)), (—1) (| Dy | N(C))(l ~mg)/2.

KA*oo)* (b)) A, (—1) (l Dy | Rujo (C))t~mo)/2
=hc(— D)o 2Py o (C) 72 N (CYy)mol2 (A* oy (A (@° C)) A (@)
X{ T G (dyg Mo) } (| Dy|Ryyq (C))* ~m0¥2

2|c

=he(—1) ot 24 mM/Q (O |DM |1/2 (A*e c)csM (dy) { H G (dMna Ao) }

g|C
Note that G (dyg, Ae) =he (— D N(2°P)G (dyy hg ')~ Thus we know
KA* () Ay, (— 1) (| Dy | Tty (O ™02

=¥ 2 Dy 2 (M* e 0)e (dn) { [T G (dugr Me D7}

g|C

Note that 26 =3¢ for the absolute different 3y of M. Thus, the prime-to-C 3y part of
the ideal (28) is ¢ and we see

(Ao C)CSM(—25)=7\-* (0)~1(28) " moE-di-0)
=L () Ngo(0) Im (2 §) mox jTmoE (— )4
=705, (€) Ry (€) | Dy |~ 2 Tm (23)4 0= (— 1y,
since Im (28)%=My,q (9 )2 =|Dy|""* Ry o (c). This shows
K (M* 2 0)“ (B) Ao, (— 1) (| Dy | Ty (O 702
=0 () (A*° )y ((—28) 1 dyy) N ()
Im (28) 0% { [ G (dygs 25171 }.

2|c
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Note that G (dy,, Mg ) =2e((—28)dy,) G((—28), Az ') and hence
(5.7¢) ®K(A*° )" (B) koo (= 1) (| Dy | Ry (C))F 7m0

‘ =2 (©N() Im 2O = ] G(—28, 251}

e|c

Since (— 1)™'=(—1)"*, we know from Theorem 5.1 that

)\'du ! ’ ’ r
Lw(c) C (% (=)' n? T (mg t+d")

WM {[1G(=28, Ag"H '}

Qzl62+2d' . \/I_])_Fl Im(s)d'gr:ob):+2d’ 2lp
<{ [T a=a*@) [T a-r®)
2|t 2§
* [T =2 [T A=2*(B)} LO, 1)
BeZ PeZ

(—l)mb’n"'FF(m()Hd’)
\/m Im (S)d’gzz)bz-l-Zd'
x{TT a=a*@y) TT a-r®)

2|8 28t

=(R*:t™)

W, (™)

x [T A=A [T A=A* (BN} LO, D).

peX PeX

This conclude the proof of Theorem II.

6. Theta measures attached to CM-fields

In this section, we shall construct the theta measure of CM-type (M, X) having values
in the space of nearly ordinary (p-adic) modular forms and then study the congruence
module C, () attached to . We suppose the ordinarity conditions (0.1) and (0.2a4, b)
for (p, M,X). We shall use the same notation introduced in [H 1, § 1] for the space of
classical and p-adic Hilbert modular forms. Let I,=X | Z_ be the set of all embeddings
of M into Q. Let A be a Hecke character of M /M * with values in C* whose infinity
type is given by A(x,)=x;" for n=) n,oeZ[ly] and whose conductor is

C(A)=C%P°. Here we use the notation introduced in section 4 and thus p® denotes the

product ] P*®. We suppose that n,=n, for all ceX. Since A is invariant
PeZuZ .

under M*, we know that n+mnc=mgty for an integer m, and ry= ) o. Let
cely

Res: Z[I,] — Z[I] be the restriction map and define ve Z[I] and ne Z[I] by

6.1 v=) mn,Res(c) and n=Y (n,—n,—1)Res(o).

celc cel
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Then we see easily that n+2v=(m,—1)¢ for =) o. Let L:MZ/M* - Q, be the p-
cel

adic avatar introduced in section 0. For each idele yeF,, we define a formal g-
expansion coefficient a,(y, 0(A)€Q, (cf. [H1, § 1] by

Yy A, if ytis an integral ideal,
(6.2) a,,(_r. 0()»))= l xx‘=pxr=1

0 otherwise,

and a, ,(y, 6(A))=0

where x runs over all integral ideles in M modulo U “®)={ue R> | upeee =1} such that
(i) xR is integral, (ii) Ny (x)=y and (iii) xo=1 for prime ideal Q in X and in €. We
define a subset R(y, €) of M by the condition (i)-(iii) as above. Note that
R (y, €)/UP* s a finite set. We define a pair of weight (k, w) by k=n+2¢ and
w=t—v. We also define a pair of finite order characters {:FJ/F* - Q* and
Vi) - Q> by

V@W=x @ |x[f  for xeF}
and
V=Kt for yer,,

where we have identified r, with Ry,= [] Ry and x(q)=(M/F/q) is the quadratic
PeZc

character associated with the extension M/F by class fied theory. Then we shall prove

THEOREM 6.1. — Let C(\) be the conductor of A and D be the relative discriminant of
M/F. Suppose (0.1) and (0.2a, b). Then there exists a unique modular form 0(\) in
M, .. Ry (CA)Dp, V', V; C) whose g-expansion coefficients in the sense of [H1,
Th. 1.1] are given by a,(y, 0(A)). Moreover the automorphic representation of GL, (F,)
spanned by the right translations of 6 (\) has conductor Ry (C (L)) D.

Proof. — Let A, be the unitarization of A, i.e., Ay (x)=A(x)|x|fo%. Then it is well
known (e.g. [Y, Th.2], [G]) that we have a primitive modular form ®(d,) in
Sk k2 Myyr (€PB) D, id, Y; C) if A is not of the form pe Ry for a Hecke character p
of F{/F* and otherwise in M, ;, (Ryr (EP°) D, id, |; C). The Fourier expansion of
O (1) is given by

@(xo)((y x>>= S a(Eydr © (o)) (Er) ep (Ey.) e (),

0 1 0<¢eF
a(y, © ()"0))=mF/Q (yo)~ 1z z Ag (B),

BBP = yr

where B runs over all integral ideals such that BBP=yr, A% is the ideal character
corresponding to A, in the following way: A§ (Q)=2%, (wg) for all prime ideal Q outside
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C() (A (B)=0if B has a non-trivial common divisor with C())). First suppose that
6.3) C()) is prime to all B in X°.
Then we put, for m=m,—1,

0" (1) (x)=d|x ™71 O (Ao) (x) | det (x) |1 ™2 € M, ,, Ftyyyr (C(M) D, id, Y; C).

In fact, according to the formula for the weight of ® W)® ||;™? in [H1, § 7.E, p. 369],
the weight w of 0’ () is given by (k—mt)/2=t—v. Thus we see

0" (V) ((g )lc>>= |71y ]2 © (A) <<g )lc>>

and hence the coefficient of 6’ (L) of ez (i§ y ) er (§ x) is given by

|de |x ™2~y |x™? a €y dp, © (M) Eyo)?
=|J’IA|E.ude|;(m/2)_lmF/Q@yS)_l/Z z 7»8‘(23)(&31@)"/2

BBP=£y9

=[y[aRegEy O™ Y AE(B) ()P

BBP =£y9

=lya T M®BCEy,)"

BB =¢y9

=y {Cyde)’} Er)™" X l*(%){(éde)‘”}-

BB =ty9

Therefore we know from [H2, Prop.4.1] (with the notation in [H1]) that
a(y, W)= Y A*(B){y7"} and hence by [HI, (1.3b)] which tells us:
BBP =yr
a,(y,H)=a(y, 0 {3"}(»,) 7" we have a,(y, ¥ A)= 3} A*(B)y,”. Modifying 6'(})
BBP =yr
asin [H1, § 5, Lemma 5.3, (iii)] to exclude the coefficients at X€ and writing the result
as 0 (L), we have

a,(n, 0()= ) AMGEEOR)y,”,

xxP=y

where x®9 = xx;¢', and x runs over a representave set of the set of ideles satisfying (i)-
(iii) of (6.2) modulo U**®). Note that xz, =y, under the identification: r,= Ry, and
that X(x)=7»(xf) x,". Especially, if xz¢=1 and xx“=y, then () =A*(x R) y, " since
v= Y m,Res(c). Therefore we know that

ceXc

a,(»,0())= Y MEEOR)y, = ) Ap (%),

xxf=y x eR (y, €)/U (pCE°)
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which shows the desired assertion when (6.3) is satisfied. We prove the general case of
the theorem (i.e. the case where C(A) has common factor with ) after proving the
following p-adic version of Theorem 6. 1.

THEOREM 6.2. — Let O be as in section 4. Then, there is a unique O-linear measure
0:€(G,, (€) ;0) - 8" 4 (Ryr (€) D; O) which is given by

Y O(x), if yis integral,
a,(1, 0(9))=1 xer (/U (5669

0, otherwise,

for each function $eS (G (€); D), where ¢ is regarded as a function on M via the
natural projection map which sends @, for each prime ideal q outside €, to the class of the
ideal g.

Proof. — Keeping the assumption that A is unramified at Z°, we now treat
imprimitive A. Write the conductor of A as C(A)=€" [[ PP, where € is a divisor
PeX

of €. Then, again modifying as in [H1, Lemma 5.3, (iii)] 6'(A) in the proof of
Theorem 6.1 of lever D%y (C(A), we still have (L) of level Np® given as in
Theorem 6.1 for N=D%y s (€). We have a natural exact sequence

1R (=1,) > G, (O)-Z(©) -1,

, and

where Z(€)= lim Cly,(€ [] B%). Let Q be the completion of Q, under | |
PBeX .

consider the subspace A of S(G,, (€); Q) spanned by characters A for all (primitive or
imprimitive) Hecke characters A unramified at X°. We claim that

(6.4) A is dense in S(G, (€); Q).

This is obvious because A contains any finite order character factoring through Z(€)
and any character of the form xr—x~" for meZl[l,] with n+nceZry (c¢f [H3,
Lemma 3.9]). Since the Q-linear map 6 is well defined on A by Theorem 1 and is
bounded with measure norm 1, 0 naturally extends to €(G_ (€); Q) by continuity,
and the extended measure still has the given g-expansion. By [H1, (2.25)], we see
oM | T(w,)= X(mm) @, 0 (A) for wyer,=R;.. This shows that 6 has values in the nearly
ordinary space. This finishes the proof.

Proof of Theorem 6.1 in the general case. — We now prove the complex case of
Theorem 6.2. Namely we show 0 (A) exists as a complex modular form even if C(A) is
not prime to X°. We already know that 8 ()) is meaningful as a p-adic nearly ordinary
form even when (6.3) is not satisfied. If n=0, it is well known that any nearly
ordinary common eigenform of T (w,) for all prime q is classical ([H3, Cor. 2.5], [H 1,
Cor. 3.3]). This shows the desired assertion in the case of n=0. There is a more
general argument which is valid without assuming »=0 and without using p-adic
theory. Let n=®,n, be the automorphic representation generated by
O (Ap)®| |a™'?, which always exists. Let V(r,) denote the representation space of
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n,. For each prime factor p of p in F, by the ordinary assumption (0. 1), p splits into a
product of two primes: p=PP°in M, i.e. PeX and P°eXZ‘. Then the local representa-
tion m,=m(Ay, Age) is a principal representation, which can be realized on the function
space  B=B(Ag, Ay) consisting of smooth functions ¢ on GL, (F,) such that

b
o << g d> x> =|a|, Ay (d) Age(a) § (x) for all upper triangular matrices (here GL, (F,)

acts on B by right translation). Writing C(A)=€ [] PB®, let d=max (e(B), e(B°))
Blp
and define, for p=F N B,

U={<a Z)eGL2 (r,)|cep® and a=d=1 mod pﬁ}.
¢
Then we define a function ® on GL, (F,) by

. b
(D(x)z‘la|v)\’9(d))\’pc(a)a if x=<g d>u for ueU,

0, otherwise.

Then ®eB and @|T(w,)(x)= Y @ (x (m" : >> =Age(@,) @ (x). Thus in V(m,),

rexy/P 0

there is a non-zero vector v, which is an eigen vector of T (w,) with eigenvalue Ay (@,).
Outside p, it is well known that there is a unique (up to constant factors) new vector v,
in V (r,) satisfying v, | T(q)= a,(w,, 0(M) v, Especially, if n, is spherical, v, is the unique
spherical vector. Thus the automorphic form corresponding to ®,v, must be a non-
zero constant multiple of 0(A) because of the duality theorem [H 1, Th. 2.2], which
finishes the proof.

Let N=9%(€)D and $**(N; O) be the space of O-integral nearly ordinary p-adic
modular forms introduced in [H 1, § 3, after Cor. 3.], where it is written as S**¢(N). By
Theorem 6.2, we have an 0-linear map 0:S (G, (€); O) — S™°¢(N; O), which induces

6.5) 0: S(G, (€); K/O) - S™(N; K/Q)=S""¢(N; O)®,K/O.

We now want to dermine the kernel of the above map. Write M*=Hom, (M, D) for
any O-module M, and let h*°"¢(N; O) be the p-adic nearly ordinary (cuspidal) Hecke
algebra introduced in [H3] and [H 1, § 3]. Then it is known that

(6.6a) Smord(N; O)*~h™°¢ (N; O) canonically ((H 1, Th. 3.1)).
It is taulogical that
(6.6b) S(G,, (€); O)*~O[[G,, (®)]] as topological algebras,

where on the left-hand side, the ring structure is given by the convolution product of
p-adic measures. Thus 0 induces a morphism by duality

8*: k¢ (N; ) - O[[G,, (®)]].
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Note that S(G,, (€); D) is naturally an D[[G,, (€)]]-module via the convolution product
of functions and measures. Then we see easily from the construction of (6.64, b) and
0 that

(6.74) 0(b|0*(h)=0(9)|h  for heh™r4(N; D).

Thus especially 6* is an algebra homomorphism. We have a natural group morphism
1: My x Mg, - G, (€) because G, (€) is a quotient of M. Let T(y) for yerN Fj, be
the (normalized) Hecke operator introduced in [H 1, § 3] and { q ) be the operator given
by the right translation f|{q)(x)=f(x w,) for each modular form f in [H1, §1] and
prime q outside €p. Then by Theorem 6.2, identifying r,” with Ry, we conclude

0*(T(w)=1(1, u) for uer),
0*(T (w,))=1(1, @w,) for each prime p dividing p,

(6.7h) [QI+[Q] if =@ (Q#Q9),
: 0* (T (q))= Q] if Q ramifies in MJF,
0 if q remains prime in M,

0*((a))=x(a) Nrio (@)~ 'al,

where [Q)] is the image of the prime ideal Q under the Artin symbol and we agree to put
[Q]=0 in O[[G,, (®)]] if Q divides €.

Now suppose that €°=E. Then complex conjugation ¢ acts naturally on G, (€). Let
USO={yeR™ |uge=1}.

PROPOSITION 6.3. — Suppose that €°=C and let H be a subgroup of G=G_(€)
generated by uu™° for all ue U® \J Rz N\ Mgs). Then we have

Ker (8)={ 6 € (G/H; K/O)[¢°c=—d 1.
Proof. — For any split prime q outside € and ue U9 ) (Rgy, N Meyo),
a, (v, o uu’, 0())= ¢ (w, 1)+ ¢ (v u).

Thus if ¢ € Ker (0), then by Cebotarev density theorem, we know that ¢c=—¢. Thus
o (@, u)= —§(w,, v) =9 (w,u). Again by Cebotarev density theorem, we see ¢|u=¢|u’
for all ue U (Rgz N Mex), Where ¢|z(z)=¢(zZ') for z, 2’€G. Thus ¢|uu=
for all ue U®® | (Rez, N\ Mgy). Then ¢ factors through G/H. The converse assertion
is obvious.

Let N=DMNy (€) and define a compact group
G=GMN)=Z(N)xx,

for

ZMN)=F{/F*Upg(Np®)F_ , = lim Clg(Np").

]
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The inclusion F, into M, induces a group homomorphism of Z(N) into G (€) with
finite kernel. The identification r, with Ry combined with the natural morphism:
Ry, = M - G, (€) induces another group homomorphism of r," into G, (€). Thus
we have a canonical morphism i: G (N) —» G (€) with finite kernel and cokernel. In
particular, we can choose the free part W of G, (€) and W of G so that i induces an
isomorphism of W into W with finite cokernel. We have two characters

r, 3u-T(u ™ )eh™ " (N; O)
and
Z(N)3[q]— (g eh™(N; D).

These characters induces a O [[G]]-algebra structure on h™°¢(N; D). The use of the
character: u+— T (1~ ') [instead of u+— T (u)] looks artificial but it is in fact natural because
[ER] for E=1 mod pC (EeM ™) is equal to i(E5 %, E5Y) in G, (€). Let A=O[[W]] and
Ay=O[[W]]. Then by (6.7), 6* is almost a A-algebra homomorphism (i. e. 6* becomes
an A-algebra homomorphism if we twist the A-algebra structure of h"° (N; O) by the
cyclotomic character). It is known [H 3, Th. 2.4] that

(6.8) h™°"4 (N; Q) is torsion free and of finite type as A-module.

With the notation of Proposition 6.3, the Q,-dimension of (G/H)®,Q is d =[F:Q],
less than that of G®Q because H is of finite index in G~ ={xeG|x*=x"'}. Therefore
the Pontryagin dual module Ker (0)* of Ker (0) is pseudo-null as O [[G]]-module if F#Q

and is always torsion O[[W]]-module. In the following corollary, we do not assume
that €=G¢°.

CoROLLARY 6.4. — Let G, (€) be the torsion part of G, (€) and Y :G,,,(€) > O™ be
a character. Let Y, :O[[G,(®)]] > O[[W]l be the projection induced by V, i.e.
U, €6 W=V Q)W eG,, xW). Let 6*: 0" (N; D) > O[[G,, (©)]] for N=Ry:(€)D be
the dual map of (6.5), which is an algebra homomorphism. Then A=\, °0* is surjective
if V#VYec modm for the maximal idealm of O. Without assuming that
VY # Ve c mod m, A becomes surjective after localizing at any height one prime P of O [[W]]
if F#Q. When F=Q, possibly for all but one height one prime P,, the morphism A
induces a surjection after localization.

Proof. — Applying Proposition 6.3 to €=CNE, we have a morphism
A =* 0% hmord (Jtyr (€)D; D) » O[[W]]. The cokernel of this morphism is given by
the Pontryagin dual (G, (€'); K/O)[y] N Ker (8), where

(G, (€); K/D)[V]={9€% (G, (€); K/O)|x=V (x) ¢ for xeG,, (€)}.

We see easily that (¢°c)|x=(¢|x°)°c. Thus if $e% (G, (€); K/O)]IN Ker‘(e),
then ¢°c=—¢ and ¢°ce¥ (G, (€); K/O)[y°c]. Namely

(G, (@), KIO) NN € (G, (€); K/D) [ ] >% (G, (€);K/D) W] M Ker (8).
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We know that
€ (G, (C); KIO)NWNE (G, (€), K/IO)[Yeoc]=0 if Y#Yecmod m.

This shows the assertion because Im (A) >Im (A") by (6.75). For any height one prime
P of D[[W]], as already seen, Ap,=A mod P satisfies Ap#Ap°c if F#£Q. When F=Q,
there is at most one height one prime P, modulo which Ap=Ap°c holds. In fact, this
prime corresponds to the cyclotomic projection O[[W]] - O[[I']] for T=1+pZ, given
by wi—ww=%Ry,o(w). As long as Ap#Ap°c holds, the same proof works well, and we
have the surjectivity of A after localization at P.

We now have an algebra homomorphism
A h(N; D) > Ap=D[[W]]  (N=%Ry;(€)D),

which is generically surjective. Let G,,, be the torsion part of G(N). Let y, be the
restriction of A to G,,. Since G=r, X Z(N), we can write G,,,=p X Z,,, for the torsion
parts p of r; and Z,, of Z(N). Thus we have two characters |’ and y* such that
Yo =V QV* () for ( 2)enxZ,. Then W=y '+i|, and ¥*=yo ' xl;,,
where % (q)=((M/F)/q). There ({', ") is the character of A in the sense of [H1,
§ 5]. Asseen in [H1, § 5], we can decompose "4 (N; O)®,Q=H ", y")®B as an
algebra direct sum so that H(y*, ') is the maximal quotient on which G,,, acts via the
character (Y*, ¥’). Let h(y™*, |’) be the image of "¢ (N; O) in H(\*, V). Suppose
that { as a character of G_(€)/W=G,, has conductor divisible by €. Then A is
primitive in the sense of [H 1, Th. 3.4] by theorem 6.1. Let K be the quotient field of
Ao. Then X induces a K-algebra decomposition

h(y*, V)®,K=K®B

so that the first projection coincides with A on h(™*, y’). Writing R for
Th(Ut, V)®, Ay, we consider the images R(K)~A, and R(B) in K and B,
respectively. . Then the congruence module C, (A) is defined by

6.9  Co(M=RE)®RB)=(RK)@RB))/R=R(K)/{RNRK)DO)}

which is a torsion Aj-module of finite type ((H6, § 6]). Let H be a generator of the
smallest principal ideal in A, containing the ideal R N (R (K)@®0). Thus H is a charac-
teristic power series of C, (A).

7. Petersson inner product and symmetric square L-functions

In this section, we generalize the formula in [H4, Th. 5.1] relating the self Petersson
inner product (f, f) (of a primitive Hilbert modular form f) with a special value of the
symmetric square L-function of f. We use the same notation as in [H 1] for complex
and p-adic Hilbert modular forms. Let fin S, , (N, ¥, {; C) be a common eigenform
of Hecke operators T (w,) for all primes q. The ideal N is assumed to be the smallest
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possible level of f. Let f° be the primitive form in S, ,(C, id, ¥; C) in the sense of [H 1,
§ 5] associated with f, where C=C(f) is the conductor of f. Then k—2w=mt with an
integer m20 and r=) c. Write f°|T(q)=a(q) f* for each prime ideal q of F and

n=®,™, for the automorphic representation of GL, (F,) generated by the right transla-
tions of f. We call n, is minimal if C(n)>C (n,®&) as ideal in r, for all quasi
characters £:FS —C*. Here for local representation =, C(r,) denotes its
conductor. When w, is a minimal principal series representation or minimal special
representation, we may write n,2=7(n, n’) or 6(n, n’) so that n is unramified and
a(q)=n(w,) +n (w,) according as m, is spherical or not. When =, is principal, we define
o, =n(®,)|w,|"*V? and B,=n'(w,)|w,|"*/?>. We first define an imprimitive adjoint
lift L-function £ (s, Ad (f)) by the following Euler product:

(7.1) LG, Ad (0)=l:[ gN@™™!

where

(1—a,B,X) (1B, o, X), if m, is spherical,
L.X)= (1-|w,|,X), if =, is special,
1, otherwise.

Next we denote by L (s, Ad(f)) the primitive L-function attached to the adjoint lift of
n to GL (3) by Gelbart-Jacquet [GJ]. Note that L(s, f) is independent of the twist of
f. Let S be the set of primes q dividing C such that

(7.2) m, is supercuspidal and m,®@y,=m, for the unique unramified quadratic character
Xq of Fo.
When r, is principal or special, we write ©,=m(n,, N;) or o (n,, N,) and define

§'={a|C{®|m,=n(n, n;) and n,=n; on ;' },

[1]

,=1{a|C{)|r,=n(n, n,) and =, is minimal },

[1]

.={q|C)|n,=o(n, n,) and x_ is minimal },

p—
=/
—

{q|C()|q¢E, n,=n(n,n,) and n,#n, on rS},

"

{1}

={q|C()|q¢E, n,=0(n, n,) and n, is ramified }
We assume that

(7.3a) fis primitive in the sense of [H1,§ 5],

which is equivalent to the following two conditions:
(1) For qeE, n, is unramified, and f | T (w,)=n (w)f.
(i) f|T(w,)=0if qeE"UE"US US.
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Then we define for each prime ideal q dividing C (f) (¢f. [HS5, § 6])

L,(X)=2,(X) if n,is either special and q€E or spherical,
L,X)=(1-X) ifqeE,UE,
LX)=(1-|wv,|,X) if qeE"UE,,
(7.3¢) L,X)=(1+X) if qeS,
L,X)=(1=7X) (1-X) (1-7,X)
Jor y,=n,(@)/n,(w) for qe§’,
L,(X)=1 otherwise.

Here we note that L, (X)=2,(X) if either qeE, U E, or &, is supercuspidal but q¢S,
and otherwise €, (X)=1 for q|C because of (ii). Thus £ (X) is different from L (X)
only for gin E=SUS UE UE"”. Namely

Lg(s, Ad(£)= [] L, (Rgjo (@) ™) L(s, Ad(B) =2 (s, Ad ().

qeE

We then define

(7.30) L(s, Ad(0)=[JLq(N(Q)_‘)‘1-

Let p be the 2-dimensional Galois representation into GL, (Q,) attached to f. Namely p
is unramified outside C/ and for every prime q outside C/,

det (1, — p (Frob,) X)=(X—a,) (X —B,)-

Then writing Ad for the adjoint representation of the algebraic group GL (2), the L-
function L (s, Ad (f)) is the L-function of the Galois representation Adep. It is obvious
that the Euler factor at q for q outside C/ as above is a correct factor for the Galois
representation Adep by definition. We can vary / and therefore, the prime / does not
pose any problem. The determination of the Euler factors at primes dividing C accord-
ing to the classification of the automorphic representation is a subtle question, which is
basically solved by [GJ]. A good and clear summary of the result in [GJ] can be found
in [Sch, § 1] (there is a minor misprint in the formula (1.7) in [Sch], and we need to
replace Sym? (o) there by Sym? (o )®sgn*; see also [HS, § 6]).

THEOREM 7.1. — Let f be a primitive form in S, ,(C, V', ; C) satisfying
(7.3a,b). Let E=E'\UE"USUS'. Then we have

(£, £9¢=|Dg|Tg (k) Rgo (C) 272 I+ 1 n == L (1, Ad(F)),
where

Le(s, Ad(®)= [] L,Rpo@) ™) L(s, Ad(0)=2(s, Ad(f)),  Tr(k)=]] T (&),

qeE cel
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{k}=7Y k,, £“€8, 12 (C; V', \s; C) is the unitarization of f defined in [H1, (4.2 a)] and

cel

(f*, £*)c is the self Petersson inner product of £* defined in [H1, (7.1)].

Before starting the proof of the theorem, we prepare a lemma concerning the Rankin
product L-functions: let f (resp.g) be primitive forms in §, ,(N,id, y; C)
(resp. S, ,(M, id, x; C)). Write ’

k-2w=mt and Kk-20=pt(m, peZ).

Let n=®,m,(resp. n'=®,7,) be the automorphic representation spanned by f and
g. When r (resp. m,) is principal or special, we write m,=mn(n, n, or c(n, N,
(resp. m,=m(§,, &) or o (&, &)) and assume that f| T (w,)=n(w,)f and n is unramified
(resp. g|T(mq)=E_,(mq)g and & is unramified) if =, (resp. m;) is minimal but neither
supercuspidal nor spherical. Then we define whenever n, (resp. m;) is minimal but not
supercuspidal,

!

%=n(®,)|® |2 and  B=m'(wy)|w, [TV
aq=n(mq)|“’q|f."'/2)+l and bq:nl(mq)lmq|("l/2)+la
(resp. oy =E (m,) |®, | ¥+ 12 and B, =& (w,)|w, |12,
8 @) B¢ and K= (o) |0, |#7)

(7.4

We now write the Fourier expansion of f* as

(1.5) f“((y x>)= T a(yd DEy ) e (Ey)epty)  for d=dp

O 1 0<teF

where the function y+—a(y, f) is defined on finite ideles and vanishes outside integral
ideles. We then know (see [H1, (4.3 b). (2.2)] that

an+1_ n+1 an+1_bn+1
(7.6) a(wy, f)=|o| 122 Ba ' _aq "
%~ B, a,~ b,

and o, B, =V (w,) if 7, is spherical,

a(w}, f)=|w}| 3 at=a} is spherical,

a(wl, f)=|w}|/? apg=d} if m, is minimal but neither spherical nor supercuspidal,

a(wy, £)=0 if n>0 and =, is non-minimal or supercuspidal.
Similar description of a(w}, g) holds using o, B, and b;. We divide our argument into
the following 5 cases:

Case A: n, and m; are both spherical,

Case B: m, is minimal but neither spherical nor supercuspidal and T is spherical,
Case C : m is minimal but neither spherical nor supercuspidal and =, is spherical,
Case D: &, and =, and both minimal but neither spherical nor supercuspidal

Case E: one of n, and m; is non-minimal or supercuspidal.
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Then we define Euler factors

D, (X)= (1=, 0 X) (1=, B X) (1= B, e X) (1B, B, X) in Case A,
7.7 g D, (X)=(1—0o 0, X) (1 -0, B; X) in Case B,
' , D, X)=(1—a,a,X)(1-B,2X) in Case C,

D, (X)=(1-a,a,X)in Case D, D (X)=1 Case E.
We define
( D(s, £, g)=]] Dy Mg (@7 "
q

(7.8) and
? D(S9 f9 g)=;a(a’ f)a(a’ g)mF/Q(a)—ss

where a runs over all integral ideal of F. It is easy to see that D (s, f, g) is equal to the
standard zeta function L (s, " x n'*) of GL (2) X GL (2)z up to finitely many Euler factors
(see [H1, § 0 and § 5]).

LEMMA 7.2. — Let L be the product of primes q for which one of nq and nq are not
. Spherical. Then we have

D(s+1,£,8=L 2s+2, x¥)D (s, 1, g),
where Ly (s, xW)={[]|.(1—x¥ (@) N(a)™5) } L(s, x\) for the primitive Hecke L-function
q
with character y\.

Proof. — By definition, we need to compute

PX)= 3 a(al, g) X"
n=0

We start the computation in Case A. Then we see

(0(:+1 _Bz+ 1) (Ot;"+1 _ B;n+1)

(0t = Bg) (0= B) "

PX)=Y |al],
n=0

Thus we see

1 . . 1y xn
Z (an+1_Bz+1)(aqn+1_Bq +1)X

P‘ﬁF X)= q
B @ X0 5w o5

= 1 _ - nn+1 _ nn+1 __ nn+1 nn+1 n
P G o o) @B (B (BB X
= (1= 0B, % By X7 D () ! = (1= 19 (m) X2) D, (X) "
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This shows the assertion in Case A. Now we go into. Case B. We have

+1 +1__ +1
% (@ =B

ot (%= By)

PN (@X)= ) X"'=D,(X)7!,
n=0

which shows the desired assertion. The similar computation yields in Case C that
P (Rgo (@) X) =D, (X) ™.

In Case D and E, the computation is much simpler and yield the same result, which
finishes the proof of the lemma.

Proof of Theorem 7.1. — We now take a primitive from fe§, ,(C, id, |; C). Let f¢
be the complex conjugate of f; i.e. a(y, f)=a(y, f)° for all yeF] " Then we consider
D(s, f, £9). Here Cases A, D and E only can occur. We divides E=&, U &, so that

E, (resp. E)={qeE|m, is principal (resp. special) }.
Then we have
P,X)=(1-X)L,(X) in Case A, D,X)=L,(X) when qeE,
D,X)=(1—-X) when qeE, and P,(X)=1 when qeE.
Thus we see for the Dedekind zeta function { of F
(cs+2)D(s, £, f)=D(s+ 1, f, {9
=[JA-Ree@ ™ HEG+D [ LiMpe@ ) L(s+1, Ad()

q|C q¢E,q|C

=[] (1=Rpo@ ™ DL+ Le(s+1, Ad(H),

q|C
since for q|C but q¢E, L (X)=1. Thus we have

Res,-oLc(25+2)D(s, f, £9)={Res,= 1 () } [] (1 =Reo (@™ Le (1, Ad ().

alC
On the other hand, with the notation of [H1, Th. 6.1], we see
Res,—; G, (x, id, id; s)=Res,_; E (x, id, id; s)=n?Res,_; {c(2s—1)
=2""nRes,_; {c(5)=2""n? Z ¢ _mF/Q(Q)—l) Res,_; £ (s).

qlC
The first equality of the above formula follows from the definition:

Gy (x, id, id; §)=Ng,o (C)* "' Ey(x 1, id, id; s)
for

0 -1
T= eGL, (F, ),
<m 0 ) 2( Af)
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where m is a finite idele with mr=C. Then we can see the second equality follows

looking into the Fourier expansion of E, (x, id, id; s) given in [H1, Th. 6.1]. From the
formula [H1, (4.7), (4.2 a)], we see

Z(s. £, £, id)=Ng,o (O)° 1 | D¢ |‘“/2) J f*(x)f*(x) E (x, id, id; s+ 1) duc (x).
X0 (©)
Therefore we have
Cc@Rs+2)Z(s. £, £, id) =Ng o (CO)” t | De |‘(”2’ j f*(x)f*(x) Eq (x, id, id; s+ 1) dpc.

Xo (©)

Here the Eisentein series E, and E¥ have the relation:

Eo(x, id, id; 5)=Cc(25)Ef (x, id, id; 5)  [H1, 4.8 o)),
from which the above formula follows. Thus we have
Res,_ o Cc(2s+2)Z (s, f¢, £, id)
= mF/Q O~ ! | D¢ l_(l/z) 27nd H (1- mF/Q (@~ 1) Res;_; (s) (F, £*)c.

q|C
Moreover we know from [H1, (4.6)]
Z(s, £, 1, id)=| D |42 (4m) "+~ M T s+ K) D s, £°, 1),
‘ \ ‘

where I (s+k)=[] T (s+k,) and {k}= ) k,eZ. Therefore we have

cel cel
Res,_,Lc(2s+2)D s, f, £9)
=|Dg| 2@ m)* [] T (k) Res,_oc (25 +2)Z (s, £, £, id)

cel

=|DFl—-1 FF(k)_lmF/Q((g)—l 22{k}—1 nd+(k}
[TA-Rgq@ ") {Res-; §(5) F (£ ),

qlC

which is in turn equal to

{Res,—;0(9) } [T (=g (@)™ Le (1, Ad(H)).

q|C
This shows that
(f*, fu)C=|DF|rF(k)mF/Q(C)2_2(k}+1n_d—{k)LE(l, Ad ().
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8. Proof of Theorem I, Comparison of p-adic L-functions

The idea of the proof of Theorem I is the comparison of two p-adic L-functions
(8.5 a, b): one is the Katz p-adic L-function given in [K4] and Theorem II and the other
is the p-adic Rankin product L-function constructed in [H1, Th. 5.2]. We use the
notation introduced in Theorem II and in the previous sections. We fix a conductor €
prime to p and a character | : G, (€) - Q* of conductor €. Here we regard | as a
character of G_ (€)/W and in this sense its conductor is defined. Thus we have the
associated projection Y, : O[[G]] » A, =O[[W]] for G=G (€). Let

X=Homg_,, (Ao, Qp) =Spec(Ao) (Qp)‘

Then for each Pe X, we have a continuous character A,=P-V{, : G- Q,. We say A;'
(or P) is critical (of type X) if, regarding G, (€) as a quotient of M/, we have
Ap (x,)=x," for neZ[Iy] such that

(8.1) the p-type M of Ay *ismy = +d(1—c) for an integer mq and d= Y. d, o with integers
cel
d, satisfying either my>0 and d;20 or my<1 and d,=1—m.
Then, my=(n,+n,,) for all ceX, and there exists a complex avatar Ap , : Mg - C*
such that 13" (Ap , (2))=1, " (Ap(a)) for all ideals a prime to p€. Let

L(s, Ap, )= Z: )\'P, o (@) mM/Q (a)7F

be the complex L-function. Then, writing L, (Ap) [resp. L, (Ap)] for jl dyp for the Katz

measure p in Theorem II [resp. L (0, Ap )], we have

L,

moZ +2d
Q;

8.2)

=@ )W, 0 [T A=271 @) [T Q=2 % * (BN A =25 L, (B)

g|c BeX
(—D)moFQrd T (my t+d)
| DF| 1/2 Im (8)d Qr:ooz+2d

L)

In [H1, Th. I, Th. 5.2], a measure related to p has been constructed. We now want
to compare these two measures. As in section 4, we assume O to be a complete
discrete valuation ring in Q with residue field x=F,. Then we put A=O[[W]] and
Ay=D[[W]]. Since W is naturally a subgroup of finite index of W, A, is a finite flat
algebra extension of A. Let h™"¢(N; O) be the nearly ordinary Hecke algebra of (prime
to p) level N=D Ry x (€). Let1: G=Z(N)xr, » G=G, (€) be the natural morphism
defined in section 6, which sends (1, u) with uex, to ue Ry, (=r,). Then the 6-measure
constructed in Theorem 6.2 induces an algebra homomorphism

0f : k™ (N; ©) - O[[G]]
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satisfying (6.7 ). Let €' be another conductor prime to p. We fix another primitive
character ¢ : G, (€)—> 0. Then V¥ (resp. ¢) induces a projection morphism
¥y 1 O[[G,, (©)]] > A, (resp. ¢, : D[[G,, (€)]] > A,). We put

A=V, 0% - h™"(N; D) - A, and v=0,°0% : h(N'; ©) - A,

for N'=%yz(€)D. Then A and v are primitive in the sense of [H1, Th. 3.4]. Let P,
QeU(A), then Ap=P°%: G, (€) > Q, and vy=Q-°v: G, (€) - Q, have their com-
plex avatard for which we use the same symbol. Let n and & be the infinity type of
Ap' and vg', respectively. We define m, and myeZ by n+nc=my1, and
E+Ec=myty. Then we have, with the notation introduced in [H1, §0],

ceX

' my—=1=m(Q), v(Q)= Y &0

ceX

‘mo—l=m(P), v(P)= Y NeOlp
8.3 a)

Then ©(Ap) (resp. 6(vy) is the modular form belonging to A at P in
Sk, (NP Up, s O) [resp. v at Q in S, (N'p% 0g, 05; O)] for N'=%,(€)D,
k=nP)+2¢t and w=t—v(P) (resp. K'=n(Q)+2¢ and w'=t—v(Q)) for suitable
a=(o(p)) € Z*, where

6.3 0) { VX P=2 (1L 1) g ()X @=vg! (L, X))

' Ve =X @A @)|x[F,  0f ()=x()ve()|x|F for xeFy.
Here  is the quadratic character of G corresponding to M/F. Let n(P)=®,m,
(resp. 7' (Q)=®qm,) be the automorphic representation generated by 6(}p)
(resp. 0(vg)). Then we can write

= T (()\'P)Q7 ()\'P)Qc) if =2,
a 7 (3, 8q Xq) if g=Q or q=Q?% and (Ap)q= 8 ° Nyyrs

= { T ((VQ)Qa (VQ)QC if q=q",

9 (8, 8%y if g=Q or =27 and (vg), =8, Ny
where Q is a prime ideal of M dividing g, and 3, and 3, are the characters of F;. If g
is inert or ramified in M/F and there are no characters 3, (resp. §;) such that
(Ap)g=19,° Nyyr (resp. (vo), =0, ° NM/F), then , (resp. m;) is supercuspidal.

We fix a group decomposition r; =W~ X u(x,) of topological group such that p(x,) is
the subgroup of roots of unity in r,. Thus for each given character n : p(r,) > Q*, we
can find veZ[I] such that n({)=¢" for all {ep(r,). Let J={weZ[I]|{*=1 for all
Ceu(rp)}. Then Z[I]/J=~Hom (u(x,), Q*), which is a finite module. We apply this
argument to the characters

Vi pR)=u@,)-Q* and ¢: pRy=p(,) Q%
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and write v ({) and v (@) for the corresponding elements in Z[I]. Then we consider the
subset P of X X X (X=Spec(A,) (Q)) consisting of (P, Q) such that

B8.4a) t=n(P)—n(Q), n(Q-n@®)+2:=(mP)-m@Q)t and v(Q=zv(P),

(8.4 b) p and @, are both induced by finite order Hecke characters of ¥ [F™ unramified
outside p.
Since we know from (8.3 b) that

Ve =V (OB =W ®
and

Ve (@Q=Vs' QP =L W7 ®,

the set 9, consisting of (P,Q)eXxX such that (P, Q) satisfies (8.4 a),
v(Q)+v(@)=v(P)+o(Y)=0 mod J and (Yp) |w- =(0g) |w— =id is a subset of 9. The
subset 9, is obviously Zariski dense in X X X, and hence ) is dense in X x X.

Let (P,Qe® and 6(Ap)° (resp. 0(vy)®) be the primitive form associated
with O(Ap) (resp. the complexe conjugate 0(vg)* of 0(vgy)). Then we define
D(s, 0(Ap), B (v))=D" (s, O(Ap)%, B(vp)®, id) as in (7.8). Write D,(s, 0 (Ap), 0(vo))
for the L-function obtained from D (s, 6 (Ap), 0 (vg)*) excluding Euler p-factors. Let E,
(resp. Eg) be the set consisting of prime ideals Q outside p (in M) such that one of the
conductors of  and ¢! (resp.  and o) is divisible by Q but the conductor of ¢ ~*
(resp. Vo) is prime to Q, where ¢'(x) =@ (x°)*=(¢°c) " (x) as idele character having
values in Q. For any ideal Hecke character n, we write n° for the primitive character
associated with . Applying the Euler product expansion of D (s, 0 (Ap), 0(vo)°) given
in (7.7), we see easily that

(®.5a) D5, 0(hp), 0(v))=E"(P, Q; 5) L, (s, (Ap v3)°) L, (5, (Mg v§™)°),

where V§!(x)=vq(x)° for xeM] with x,=1. Here E'(P, Q; ) is a product of Euler
factors of the form (1— (A% vg) (Q) Ny () %) or (1 — (Mg vEM)® (Q) Ry o (Q) 7).  In fact,
there exists certain subset Z (resp. Z') in the set B, (resp, &) such that

E'(P, Q9= [ 0-v3)° (@) Ryq( @) [I (1= vEM)° (Q) Ry (R) 7).

QekE QeE

The difference of E,—E and Ej—E’ is contained in the set of ramified primes in M/F
and depends only on { and ¢. Then writing

¥i Q= IT (1= (evg ")’ () Ryq (D)™

Qe

¥, (Sé’fq) = l—l (1=(hp (Vg )~ 1)0 (Ce)] mM/Q @™

QeE’
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for ef, o= ((hevg )= )" N1 (ep, olhp ' Vo)°) and epfq=(Vq ' (hpoc)’R~!
(&5, =5 ' (vq°0)°), we see

8.5 ) :o,,<1 +M, 0 (he), G(VQ)‘>

= Tl (Sg, Q) ‘PZ (8;‘, Q) Lp (0’ 8;‘, Q) Lp (Oa si’fQ)‘

Let C,(A) be the congruence module of A defined in (6.9) and H be its characteristic
power series. Then by [H1, Th. 5.1-2],
(8.6) there exists an element D of the quotient field of Ao® A, such that:

@) HRD)DeA;®4 A,
(ii) Suppose that (P, Q) €Y. Then we have

PP, Q=CP, QWP QWP QSP® 'EP,Q

o Dp (14 (m(Q) = m (P))/2), 8 (Ap), 8 (Vo)) ‘
OOV, 8 (Ap) DV’

Here 0 (\p)QV}’ is the primitive form associated with ©(P)®Vp, and E(P, Q), S(P),
W (P, Q) and C(P, Q) are given as follows:

mQ-n® I DF |1+M(Q)—M(P) it 20 P -20(Q—n(Q -3t}

CP, Q=

2{n(Q+v(Q-v®+2t}+H{v(Q-v () +1}+{n(P)+1}
XTe((Q+2(Q)—v(@)+2) Ik (@(Q—v(P)+1);
To write down the g-factor W (P, Q), we put for simplicity

Ge= 2 &®2uod=]]rw@*)GAz¢,),

u mod C (gx) pel

writing C(ep)=p°=[] p°® and w°=[[w:®. Then W(P, Q=W'(P, QW,(P, Q)
pel plp
and

(VQ, P (dp) ' >"P, P (dp) I G (Va,lzc )“P, ) G (Val}: 7‘?, )
(7&,,’ P (dp) Vo, p (dp) | G O"P_, lz )"P, z‘))

Nyyjo (€)™ QDT IR, o (D) F Q= mEVDW' (B (v,))
W' (P, Q)= (0 of Ut V). (— 1) M@ “ G }
(P, Q=(9g 9o Vp Vp)o(—1) Rajo ™ ®/2(9 (Ap))

E(P, Q=E; (P, QE,(P, Q)

W, (P, Q=

>

and

_ o (e, @° (BN (1 — (85, 0)° (B9))
E,(P, Q)=
®Q qsl;[z (1= (e ) (B) (1 — (55*0)° (B))
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=11 (1~ (ep, 0)° (B (1 — (8, 0)° (B)) (1 — (e, 0)° (B)) (1 — (£, 0)° (BY))
ez (1= (ef 0)° (B) (1 — (e} o)° (BN (1 — (65*)° (BN (1 — (&5 x)° (B))

* (@ rx \— 1y’
E2 (P, Q) - l"[ )"P_, %;C VQ s ('LUZ’) )\1;—’ ;:c VQ, 5 (mz) = 1—[ ((SP, Q)f (mp) (SP, Q)E (mp )) .

5

PeX PeX Ny (B P)
S(P)=S,(P)S,(P), S; (P)= ] (1—(gp)° (B)) (1 = ((¥)° (B)),
PesS
S, (P)=((e¥) ;' N (x?)
where
g5 o= ((Apvq DeeyM~! (SP,Q=)"P_1 Vo)
and
8;’?Q=V6 ! Apec) N~ ! (ep, Q= 7"1;1 (VQ° c)),
Cet =11 BB, Cle*e)=[1 (B"B),
BeX BeX
=k 1 Op) N1 =" Ryyr) (RN 2 (=05 ' (A 0))
and

CeH)=1[] B P?) for o, oy, 7, 8€Z[Z].

PeX

By (8.6) (i), (H®1) D generates a pseudo-null module in the quotient field of A,&® A,
modulo Ay,®,A,, which is in fact null. Thus
8.7) ®=H®I1)D belongs to

Ae®oAo=DO[Xo, - - > Xgse Yo -+, Yaull  and  D=@/H.

Since the conductor of O(A)@VYy is N=9,(€)D times the conductor of
®, ez, Up, A Up) and on Ry, Az by coincides with Ap (AR yec) ™' =¢gp|gz, we know
that C (8 (Ap)@Yp)=Np®. Let S be the set of primes q dividing N such that

(1) q is inert or ramified in M/F;
(ii) A #A,°c when q is inert M/F;
' (iii) Ayng=A,°c for the unique unramified quadratic character n, of M, if
M, /F, is ramified.

(8.8 a)

Then it is well known that S is the set given by (7.2) for 8 (A,)®VY;’. Thus we also
know from Theorem 7.1 that

(8.85) (O(hp)®Vp, 6 (Ap)®V)
=|Dg T (n(P)+21) Ngo (Np?) 272 In@F 20031 g =n@T 3 A(1) L (0, e) L(1, %),

where A(1) is an in (0.6 @) and
L@, x)=2F 971 (Ngo (D) | D)~ 2 al AR - 1)~ h(M)/h(F)

for the class number 4 (M) [resp. 4 (F)] of M (resp. F).
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Combining (8.5), (8.6) and (8.8), we can now express the value
PP, Q=@(P, Q/H(P) in terms of L, (ep o)L, (e} 0)/L,(ep) up to a specific
constant. We now interpret this expression in terms of power series in A, interpolating
L,(ep, o) L, (eF @)/ L, (ep).

Let L,, L,, L¥, L¥eD[[WxW]|=A,®,A, and L™, L *eO[[W]]=A, be such that
Ly (P, Q=L,(ep,q), Lt (P, @)=L, (}.0). Ly (P, Q)=L, (e, o). L§(P, Q=L, (o) and
L™ (P)=L,(gp), L™ *(P)=L,(ef) for all arithmetic points (P, Q) €%. By the result of
Katz [K4], Theorem II and (8.2), to show the uniqueness of these L™, L,, L,, L™*, L%
and L%, it is sufficient to show that the points (P, Q)9 are dense in Spec (A,®, Ao),
which is already seen. We will show the existence of these elements in O [[W x W]]
later. By the functional equation obtained in [K4, (5.3.7)] and Theorem 5.2 in the «
text, L™ (resp. L, and L,) is a unit multiple of L™* (resp. L¥ and L%). We now -
determine the infinity type of €f o, &p*q and ef. Write oo (¢) for the infinity type of
each Hecke character . We write

w0 (ef)=—mE— Y d,(6—0c), w(gtx)=—mZI— ) d,(c—00),

cel cel

and
w(Ef)=-m"Z—- Y d(c—oc).

cel
We also write 00 (Ap) =m, 0 (Vo) =&, myty=n-+mnc and myty=E&+E&c. Then

‘ m(P)=m0—1a m(Q)=m:)_l’ n(P)= z (no_ncp_l)olF
ceXl

8.9
( a) '”(Q)= z (&c_&cup_l)cllﬁ Z)(P)= Z ncpc,F’ 'U(Q)= Z &opGIF'

- cel ceX cel

From this, we know

dlg= 3 M=~ Dolr=n@®)+2(P)-n(Q-v(Q~1,

i
cel
S » m=2—my+my=m(Q)—m(P)+2,
(8.90) (@d+mE)|p= Y, Eopp— Mot Do|p=0(Q—v(P)+1¢
(2d+m2)|1== Z (nc_ncp_l)o-lF_ Z (&c_gap—l)c|F=n(P)_n(Q)
ceXl cel
" d'|g=Y =&~ Do|g=nP)+2(P)—2(Q),
S m' =2—my+my=m(Q)—m(P)+2,
®.9¢) @M D)= ¥ G Mo+ Do |p=n(@Q+v(Q~0()+21
celXl
Qd+m'D)|e=) Me—&p—Do|et Y E—Ngt Do|p=n(P)+n(Q)+21
cel cel
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| d'[g= Y Me=Mg—o|p=n@), m"'=2,
(8.9 d) ) 0§2 g e

(" +m"'D)|g=n@)+2t:, (2d"+m"T)|[p=2n(P)+21.

We may consider ¥ =¥, ¥, in (8.5 b) as an element in A,®,A, because A and v
have values in A,. We put

U= DL OLT*
WL¥LY WLYL*H
We compute U (P, Q) and show that U is a unit in A;®,A,®,Q. For that purpose,

we shall compare the values of ®/H and L¥L%¥/L™* at each (P, Q) €% factor by
factor. We start from the extra Euler factors:

Extra Euler factors. — The extra Euler factors coming from ®/H are:

I (1= (ep, )" (B (1 — (e)° (B)) (1 — (£, 0)° (B)) (1 — (e5*x)° (B9))
pez (1= (ep)® (P (1 = (5)° ()

The extra Euler factors coming from L¥ L%/L™* are:

I (1= (e8)° (B (1~ (2, o) (B (1~ (5¥0) (B (1~ (21, o)° (B))
Pex (1= (&p)° (B (1 = (e))° (B)

Thus they will be cancelled out in U.
e-factors at p: W,. — The Gauss sum factor at p coming from ®/H is:
(8.10 @) My (BH'E, (P, QS,(P)!
X G (Vg 5 Ap, ) G (Vg 5 Ap, 5)/G (hp, 5 A, 52)

(g8, 9z ' (@) (¥l ' (@) G ((Er*)p) G ((Er*o)y)) Rwig (B°)
R (BB (ED)z ' (@) G (()y)

= Wp (8;’?‘(}) Wp (8;, Q)
W, (&)

b

where the first Ry o (PB?) ™' comes from the same factor in (8.8 b) and W, (¢) is as in
(0.10). Thus we have

(8.105) Myo(PB?) ™ E, (P, Q)S,(P)T'W,(P, Q)
— (VQ. P (dp) | ;"P, P (dp) | ) Wp (e;’?Q) Wp (8;, Q) .
()\'P, r (dp) ‘ VQ, ¥4 (dp) |) Wp (8;‘)

We define an idele C by 286=dyC. Then
}"P(dM)l)”P(dM)rl:)VP(C)—l |)"P(C)|=)"P(Cf)_l |7\'p(cf)‘i{nm+'}
=0, (C) T (B) (= 1) ® g (™1 i),
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because the value of the complex character A, (C,) is equal to
Ap(Cp Gy =0 (C) (— 1)

for its p-adic avatar A,. Here we regard V,(CyeA, as a function on X by
Y, (C)(P)=V,(Cy)mod P. Thus the quotient of the e-factors of WL¥L}/L™* and
®/H is given by

8100 Var@lte,@))
()\‘P, p (dp) | VQ, 4 (dp) I )

— (Mp (d(wf)) I Vo (dgf)) l )

(Vo@D [ 2 (@) ])

Reo (" PP o (C(Q ™, (Cp (P itm@7m P,
The factor R q ()" @ ™® will be cancelled out modulo units in A, by the same factor
in (8.12 b) below.

Complex and p-adic periods. — Since the period factor coming from L,(g) with
0 (8) =moZ+d(1—c) is given by (Qmo**24/Qmo*+24) we see that the factor corresponding
to WL*L*(P, Q)/L~*(P) is

QmE+2d\ /mE+2d"\ /OmE+2d"
(8‘ 11) <Q:):+24) <Q:10'z+2d'> <Qi”2+2d”>'
p 14 =]

By (8.9 b, ¢, d), we get

mE+2d+m'E2+2d' -m"E2-2d"=nP)—n(Q)+nP)+n(Q)+2t—2nP)—2¢=0.

Thus (8.11) is reduced to 1. This is consistent with the fact that D=®/H does not
contain any period factor.

2-power factor. — The 2-power appearing in ®-part is

2= (R (@+0(@-vP)+2t} = {v(Q-v ) +1}=(n®)+1}+2(n(P)+21}=1 _ 7(m (P)=m (Q) [F: Q] -1
On the other hand, we see from (8.9 b, ¢, d) that
8.12 q) d+d' —d"=m®P)-m(Q))t—1t

and we see also from {u‘v—uv’/28|u, veR}=9""c with the notation of section 4 that
dR=27"19yrd¢, where 9y is the relative different of M/F. Thus Im (3)-part in the
evaluation formula in Theorem II gives

(8.125) Im(8) ¢ 4" *4" =Im(§) m®-—m@r+1

=)m®)~m@Q-1)I[F:Q] RNp o (D C2)-(m(P)-m(Q)-1)/2(DF!m(Q)—m(P)+ 1

Thus, from the factor 2!F: @~ ! coming from (8.8 b), we see
(8.12 ¢) the 2-part of H/® and L¥ LX/L™* are the same.
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n-factor. — On the side of ®/H, we have

ml2v@®-20(Q-n(@Q-3t}+{n(P)+21} = p(m(P)—m(Q-1)[F: Q]

On the other hand, on the side of W L} L/ L™*, we have
pld+d'=d" = g -mQ-DIF:Q py (8.12 q).
I'-factor. — On the side of ®/H, we have

IFe(n(Q)+v(Q)—v(P)+2) T (v(Q—v(P)+1)
T (n(P)+21)

On the side of W L} L¥/L™*, we have by (8.9 b, ¢, d)

Tp(mt+d)Te(m' t+d) _Te(r(Q+2(Q—o(P)+2) T (0(Q—2(P)+1)
Tp(m t+d") e (n(P)+21) '

De-power. — From C(P, Q) and (8.8), we have | Dg|1/2+™m@=m® on the @/H-side
and by (8.12b) and Theorem II, we have |Dg|X/2*mQ=m® on the
W L$ L3/ L *side. Thus
(8.13) the Dg-part of ®/H and ¥ L} L3/ L™* are equal.

Unit index factor. — We have (R* :t*)™ ! in (0(Ap)®@Vp, 0 (Ap)®Vp) by (8.8), which
will be cancelled out by the same factor on the side of W L} L}/ L™*.

W'-part. — We first compute W’'(0(Ap;)). As seen in [H1, (4.10a)],
W (0 (Ap)) it~ ® =2} gives the root number of the functional equation of L(s, Ap). With
the notation of (5.7 a, ¢) applied to A=A, we see

W (O )it 772 [T A (@5 ® dyg) R (B2 G (M5 )
Blp

=WOMp) it TP =15 (D) hp, o (— 1)
=hp, o (— D™ 20 T Ry o (R 1203 (@5 P dy) G (Mg )
2 Coy
Since {myX+2d}={n(P)+1} by (6.1), we see
W (B(Ap))=Lp, o (— it 2nPF30)
x H Ry (R° @)~ 12 )% (mg® dwg) G (Ag D)

Q| Cohy, Q+pR=%R
= 7“1’, o (= DAp (dgvf)) I Ap (d}wp)) |_ Lit2n®+30 ERF/Q ©) —m® -y (Ap),
where d,, is a differential idele of M/Q for which we assumed as in section 4 that
dy,=(28) for Q |dyp€. We see from the functional equation (Theorem 5.2) that there

exists W’ (L) in the quotient field of A, such that W (L) (P)=W'(A;) for all PeX. We
know that for all critical P, W’'(Ap) is a p-adic unit. This shows that W' (A)e A, .
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Similarly we can define W' (v)eAg. Thus we see

(8.14a) W' (P, Q=5 ¥p 0§ 9oAp Vo)w
( - 1) j(2n@Q-2n(®)} gnF/Q (D)("‘ Q-m(P)/2+1

% Vo (dkf’) l Ap (di,f)) | mM/Q ©OYW W) (Q )
Ap (d) | vo (@) | W (M) (P)

Since Ap ¢ (—1) [resp. v, ¢ (—1)] is independent of P (resp. Q) and
M (CD=(=IPOand v e (—D=(= 1@,
we see easily from definition that

(8.14 b) (‘l’; \%(pa (PMPVQ)OO(— D i 2n(Q)—2n(P))(_. l)v(P)+V(Q>+n(P)+n(Q)e{ +1 }

is a constant independent of P and Q.
Thus we see from (8.10 ¢) that

(8.14¢0) Nyo(P)'E, (P, QS,(P)'W(P,Q
=Ny (B)'E, (P, QS, ()W, (P, QW' (P, Q)

— Wp (SI’TQ) Wp (8;, Q) N (D)(m Q-m®)/2+1 ¢ (c)m Q) ~—m(P)
* F/Q F/Q
W P (SP)

% Rrie O W V) (Q
W) (P)

0, (CHQ ™ Y*(CHP)itr@—n®,

Note that N (d) Ry o (CO)W VW' V)19, (Cp) ', (C)) is a unit in A,. The factor
i"@Q-n®} s cancelled by the same factor in C(P, Q) by (8.14 b). The other factor
Ry o (D)™ @-mPN2+1 QY (E)m@-mP) is cancelled out by (8.12 b).

Thus we have finished comparing all major factors of ®/H and W L} L¥/L™*, and by
(8.8) the remaining difference is

8.15) AM/F; €)=A(1) h(M)/h(F).

Since L™*, L¥ and L% are unit multiple of L™, L, and L, by the functional equation in
[K4, (5.3.7)] in the text, we have

THEOREM 8.1. — We have

®_ UYLILY _ U,¥LL,
H AM/F;6)L * A(MJF;G)L"

Sor units U, and U, in Ay® Ao
We now explain how to construct L,. Complex conjugation ¢ induces an automor-
phism of G, (1) which hence preserves G, (1) and induces an automorphism of

4° SERIE — TOME 26 — 1993 — N°2



ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 257

W=G, (1)/G,(1). Let m be the prime-to-p-part of the conductor of y~!¢ and con-
sider the character g, : G (m) - O [[W x W]] defined by

e G wW=v"e@Q W™, weD[WxW]  for ({, w)eGy, (m)x W,

which induces an algebra homomorphism ¢, : O[[G_ (m)]] > O[[WxW]]. Let L, be
the image of the Katz measure p in O [[G_, (m)]] under ¢;. Then by definition, we see

L, P Q= €p, A =L, (p o)

Go (W

Similarly, we can construct L,, L¥ and L%¥. For example, to construct L,, we use the
morphism

g1 Gup(C(V° )71 0) > O[[Wx W]

given by &, w)=W%c) ")) (W, w), and then we see L,=¢,(n) for p on
G, (C((V°c)"*)). To construct L™, we consider the morphism for €~ =C ({~):

g G,(€)>O[W]] given by e W)=V "' @Qw " we.

Then L™ =g (p) for pon G, (C(y~*(¥°¢)). Similarly, we can define L™*.

We now finish the proof of Theorem I. For a given character P : W — O, the map
p: O[[W]] - O [[W x W]] - O[[W]] given by 1, (h)=P®id (1®4) is an automorphism of
O[[W]], where P®id is an algebra homomorphism induced by the character:

W X W — O[[W]] which takes (w, w’) to P(w)w'".

Let L be the image of p under ((W°c)"'¢),. Then we see easily that
L, ,=P®id(L,)=1%(L). Thus the p-invariant of L, and the specialization L, p are
equal to that of L and are independant of P. Here the p-invariant of XeO[[W]] or
DO[[WxW]] is by definition the maximal exponent of the prime element we O which
divides X. Similarly, L, ,=P®id(L,) has p-invariant equal to that of (y "' @), (w). It
is easy to see that the Euler factor W has trivial p-invariant in O[[W X W]]. Suppose
that one of the prime factors P of L™ in D[[W]] outside p divides L; (for one of
i=1,2). Then |P(P)|,— 0 as P approaches a zero of P. Write G;=W P" so that X
is prime to P. Then we can let P approach to a zero of P without letting X (P, Q) be
identically zero as a function of Q. Since Q~ L;(P, Q) is nothing but L; p, writing
L; =P ([P)"X; for X;(Q)=X(P, Q), the p-invariant of L; , becomes arbitrary large if
P approach to a zero of P outside the zero of X. This is a contradiction because the
p-invariant of L; p is independent of P. Thus inside O[[W(M)xWM)]|®,Q, L is
prime to L,L,. Since each factor of ¥ is of the form1-R~'(Q)V, ¢;'(Q) or
1R (Q) (W, (95 1°¢)(Q), the same argument shows that L~ is also prime to ‘P.
Namely we have proven Theorem I:

THEOREM 8.2. — L~ divides H in O [W]|®,Q=A,®,Q. Moreover if one can choose
the character @ so that the p-invariant of L, L, is equal to 0, then A(M/F; €) L™ divides
H in A, for AMJF; €) in (8.15).
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