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ANTI-CYCLOTOMIC KATZ^-ADIC L-FUNCTIONS
AND CONGRUENCE MODULES

BY H. HIDA(1) AND J. TILOUINE

ABSTRACT. — The purpose of this paper is to prove the divisibility of the characteristic power series of the
congruence module of a Hida /?-adic family of theta series coming from a CM-field (with fixed CM-type) by
the anti-cyclotomic specialisation of the Katz ^-adic L-function with auxiliary conductor. This requires to
construct first this^-adic L-function since in the original paper by Katz the auxiliary conductor was trivial. The
divisibility proven here is one of two steps towards one of the two divisibilities predicted by the (anti-cyclotomic)
Iwasawa main conjecture for CM-fields. The second step has been carried out by the authors and will be
published elsewhere.

0. Introduction

The purpose of this paper is to prove the divisibility of the characteristic power series
H==^(C()) of the congruence module CQ (of a CM-field M and its CM-type £) by
the anti-cyclotomic projection L~ of the Katz p-sidic L-function of arbitrary auxiliary
conductor. In another article [HT2], generalizing an idea developed in [MT] by Mazur
and one of the present authors, we will prove another divisibility result asserting that
X(Co) divides the characteristic power series %(lw~) of an appropriate Iwasawa module
constructed out of the "half ^-ramified" /?-abelian extension of the anti-cyclotomic tower
M~ of the CM-field M. Our method of the proof of the first divisibility is a (many
variable) generalization of the method employed in [DH] by Dot and one of the present
authors for the special values of these L-functions and in [T] in the one variable case. A
summary of these two divisibility results can be found in [HT1]. For the sake of
completeness, we included a treatment of the construction of the Katz /?-adic L-functions
with arbitrary conductor £7?°° for each CM-field M following Katz [K4] where such L-
functions are constructed in the case of^-power level p^.

Throughout the paper, we use the notation introduced in [HI] without detailed
explanation, since this paper is in some sense a continuation of the work done in
[HI]. Let F be a totally real number field and M be a totally imaginary quadratic
extension of F (hereafter such fields will be called CM fields). We write Dp for the
discriminant of F. We write 9i (resp. r) the integer ring of M (resp. F). We fix a

(1) Supported in part by an N.S.F. grant.
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190 H. HIDA AND J. TILOUINE

prime p, the algebraic closures Q of Q, Qp of Qp and the following two embeddings
throughout the paper:

i,: Q^C and î : Q^Q^.

We suppose throughout the paper the following ordinarity hypothesis for M and p:

(0.1) Every prime factor ofp in F splits in M.

Then, writing c both for complex conjugation on C and on Q induced under i^, we
choose a set of embeddings £ of M into Q such that
(0.2 a) £ r\ S c = 0, W S U S c ^ ̂  ̂  o/ all embeddings of M f^o Q;
(0.26) the p-adic place induced by each element of S composed with \p is distinct from
any of those induced by elements in S c.
The set £ satisfying (0.2^, b) is called a /?-adic CM-type. Under the ordinarity hypo-
thesis, we can find a /?-adic CM-type, and we fix one such S. By abusing the symbol,
sometimes we understand S as a set of places at p (and hence, a set of prime ideals over
p) induced by the embeddings in Z composed with ip.

We now describe the power series L~. Let ^: M^/MX -> C be a Hecke character
such that

(0.3) M^oo)- n x^o-^i-^o
o e £

where m^ and dy are integers and as usual M^ is the idele group of M and x^ denotes
the infinity part of xeM^. Then ^ has values in Q on the finite part M^ of M^.

Moreover, the map X: M^/M" -> Qp defined by X(x)=?i(x) f] j^o+^d-^ is a well
CT6Z;

defined continuous character, which is called the /?-adic avatar of X. It is a well known
theorem of Shimura (see (Shi] and sections 1 and 4,5 in the text) that the special value
L (0, K) of the primitive Hecke L-function L (s, X) is algebraic up to a canonical complex
period if ^ is Z-critical (;. e. (wo, d) satisfies the condition in Theorem II, (ii) below). Let
C(K) be the conductor of ^, and write K for the prime-to-/?-part of C(X). Then by class
field theory, we can regard ^ as a character of the Galois group G^ (C) of the maximal
ray class field modulo C/?00 over M. Then we have a Katz measure [i on G^((T)
satisfying, for an explicit constant A (k),

td\jt
L(0,X)

=A(5i)
p-adic period complex period

whenever ^ is critical and of conductor divisible by (£ (see below Theorem II for
details). In particular, the ;?-adic period is contained in the /?-adic completion 0 of the
integer ring of the maximal unramified extension of Qp inside Q. Then, the measure 4
is defined over 0, and thus we may regard ILI as an element of the continuous group
algebra 0 [[G^ (£)]]. We now write G^r (K) for the maximal torsion subgroup of G^ (£)

4° SERIE - TOME 26 - 1993 - N° 2



ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 191

and put W=G^(6;)/G^((£), Ao=0[[W]]= lim OtW/W"]. Then W is determined
a

canonically independent of £, and hence the complex conjugation c acts naturally on W
via w^cwc'1. Similarly, regarding ^ as a character of M^, we can let c acts on ?i,
i. e.,\°c (x) = ̂  (.0. We need to fix a pair of characters (\|/, \|/~ = v[/~1 (\|/ ° c)) of G^r (^)
and Gtor(C~), where (£~ denotes the conductor of v|/~ [as a character of
Goo (^)/W]. Replacing 0 by its finite extension, we may assume that \|/ has values in
0. Then choosing compatible decompositions

Goo (1)= G^ (1) x W, G, ((£) = G^ ((£) x W and G, (£-) = G^ ((£-) x W,

we define a projection

(0.4) 7̂ -: 0 [[G, (£-)]] ̂  0 [[W]] = Ao by -̂ K, w) = v|/- (Q w-1 ̂

for K, w) e G^ (£-) x W. Then we define

(0-5) L-=7^ai).

We assume that \|/ is primitive of conductor (£.
Let N^M/F^)0 ̂  the relative discriminant D of M/F, and write h"-0"^; 0) for

the /?-adic nearly ordinary Hecke algebra of level N defined in [HI]. With the character
\|/, we then associate a canonical algebra homomorphism: h" •ord (N; 0) -> A() (see § 6) to
which we attach the congruence module Co=Co(\|/) (see [HI, (5.2)] and (6.96) in the
text). The congruence module defined in [HT1, (H5)] might be a bit bigger than the
one we use here. The possible difference of their characteristic power series is only a
fractional power of/?, and hence, this change does not affect to [HT1, Theorems 2.1
and 4.1] if # (0^(1)) is prime to p\ otherwise, we need to use the definition given in
[HI, (5.2)]. We write H for the characteristic power series of Co in A(). Let E be the
set of primes q of F in F H C + C", and let A (s) be the product of Euler factors at primes
in E for the product of primitive L-functions L(s, %)L(s, \|/~) for the quadratic character
5C of FA corresponding to M/F; i. e. writing the Euler product

L(s, ^)L(s, v|/-)= n^^F/Q^)"5)"1,
q

we have

(0.6 a) A(s)= n^^F/Q^)"5).
q e E

Then A (1)^0. We put

(0.6 b) A (M/F; (£) = A (1) h (M)/h (F),

where h(M) [resp. h(P)] is the class number of M (resp. F). The excluded Euler factors
A (1) is in fact trivial if

(O.la) (£+(^=9?
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192 H. HIDA AND J. TILOUINE

and is a product of (1 ±9^/0 (q)~1) if the following condition is satisfied:
(0.76) All prime factors in C outside £~ are inert or ramified over F.
Then we have

THEOREM I. - Suppose that p > 2. In 0 [[W]] ®z Q.^ ~ divides H. Mo/w^r, ;/ there
exist a conductor (T (prime to p) and a character (p: G^^-^Q" ^cA ^r the \ji-
invariant of the branches of the Katz measure corresponding to ^~1^ and vl/"1^0^)
vanishes simultaneously, then A(M/F; Q)L~ divides H in 0[[W]].

This theorem will be proven section 8. The proof is based on the comparison formula
(8.5 a, b) between the Katz /?-adic L-functions and the ^-adic Rankin product (con-
structed in [HI]) of two A-adic theta series (A=0[[W]]) with complex multiplication by
M. Naturally, we shall make the following

CONJECTURE. - H=A(M/F; G)L~ up to unit factors in 0[[W]] if p>l.
This conjecture is known to be true when M is an imaginary quadratic field under a

certain additional hypothesis (see [MT], [T], [HT1 and 2]).
We now explain the interpolation property of the Katz measure more precisely. We

associate to X, its dual X* given by 'k*(x)=='k(xc)~l\x\^. Then the /?-adic avatar of X*
is given by ^(x)=fk(xc)~19l(x)~l for the cyclotomic character 91: G^(\)->Z^. We
fix a finite idele d^ of M such that the ideal corresponding to d^ is the different 8^ of
M/Q. We define the local Gauss sum of ^ at prime ideals Q dividing the conductor of
X:

(0.8) G(^^)=^W) E ^(^CM^Q^Q^),
u e (91Q/Q6) x

where TO is a prime element of the ^-adic completion M^, WQ is the ^Q-adic integer ring
91 of MQ, KQ is the restriction of ^ to MQ , e = e (Q) is the exponent of Q in the conductor
of ^ and CM: M^/M ->CX is the standard additive character normalized
as eM(xoo)=exP(2TC^TrM/Q(x^)). Outside the conductor of X, we simply put
G(^M» ^Q)= 1- The canonical complex period Q^ is in fact an element of F 00 oC^C2,
and the 7?-adic period is found in (0 x)2 [see (4.4 a, b]. Actually, these numbers are well
defined modulo Q" but the ratio "Q^/Qp" is uniquely determined (i.e. IfQ^ is changed
by an algebraic factor, Qp is also changed by the same factor). We choose an element
8 e M such that
(0.9^) 5'== -8 and^(lm(6a))>0for all oe£,
(0.9 b) The alternating form < x, y > = Tr^/p (^72 8) induces an isomorphism
91 A <3{^Q~1€~1 for an ideal c prime to pW,
where 8 is the different of F/Q. By (0.9 b\ we can take 2 8 or (2 8)' as the Q-component
of d^ if Q is prime to c. Then we define s-factors:

(0-10) W^)={^N(^-e^)G(28;^)},
P e E

w^)= n o^y, ^-1) n o(28, ̂ no^y, xr1),
f i I 8- fi I 8, i | i
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ANTI-CYCLOTOMIC KATZ /?-ADIC L-FUNCTIONS 193

where £ denotes prime ideals in M and we decomposed K = gg^ I so that gg^ consists
of split primes over F, I consists of inert or ramified primes over F, g + 8'c= ̂  £in(^
3'c0 => 5. Then we have

THEOREM II. — There exists a unique measure ^ on the ray class group G^ ((£) modulo
(£/?°° ofM having values in 0 satisfying

Kd[i
Jooo^) ^x-r-nv p/-1)^71^^1^)
Q^2d ^ • ) J?v ^iDFllmCay^o^d

x n (i-Mfl)){ n o-w)) n (i-^w)}^, ̂
f l |(£ <Pe£ ^eE

/or all Hecke characters 'k modulo G.p00 such that
(i) the conductor of\ is divisible by all prime factors ofS,
(ii) the infinity type of ^ is m^-^d (1-c) for an integer m^ and d= ^ d^a with

(re£

integers dy satisfying either m^ > 0 and dy ̂  0 or m^ ̂  1 and dy ̂  1 — m^.
Moreover denoting the measure [i for G^ ((£'') by ̂  we have the following functional

equation

f ^d^^^cr^^-^ww [ ^d^
^GOO (C) JGoo (C0)

a51 fo^ ̂  ̂  conductor ofk is divisible by all prime factors of^t
In the expression of the theorem, we used the convention for an element i; of the

formal free module generated by £ U S c and for xe C2:

^= n 4° n 4^ and r,©= nr&).
o e E C T e S o e S

The set £ is also identified with the formal sum ^ CT, and ^ e M is considered to be an
C T 6 E

element of C2 via diagonal embedding ai—^a0)^^. Abusing this convention, n is
considered to be the diagonal element (Tc)^gs in C?. The L-functions in the theorem is
always the primitive one associated with the primitive Hecke character. We also tacitly
agree to put ^ (Q) = 0 if Q divides the conductor of ^.

Here is a summary of the paper: After giving a brief review in section 1 of all the
necessary items from the theory of/?-adic modular forms, we start the construction of
Eisenstein measure in section 2 and finishes the construction in section 3. The content
of sections 1 and 6-8 was actually presented in a series of seminars held at the Universite
de Paris-Sud in Winter 1989. We will prove Theorem II by mimicking Katz's method
[K4] (i.e. by specializing the Eisenstein measure at CM-type abelian varieties) in the
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194 H. HIDA AND J. TILOUINE

subsequent sections 4 and 5. The reader who is willing to admit the interpolation
property of the Katz measure presented in Theorem II can skip all the sections from
section 1 to 5 and go directly to section 6, in which we start the preparation of the proof
of Theorem I. Namely, in section 6, we construct an irreducible component attached
to the CM field M of the spectrum of the /?-adic nearly ordinary Hecke algebra and
define its congruence module Co. In section 7, we give a formula relating the self
Petersson inner product of a primitive cusp form with a special value of its symmetric
square L-function. In the final section (§ 8), we prove the main theorem by comparing
the Katz^-adic L-function with the/?-adicRankin product associated with the irreducible
component constructed in section 6. One of the keys in proving this comparison theorem
(Theorem 8.1), which generalizes the one for F=Q in [T], § 7, is the formula obtained
in section 7. The origin of the idea of such comparison goes back to an unpublished
paper [DH] of Doi and one of the present authors, where the comparison of special
values of Hecke L-functions and a Rankin product of theta series of M was carried out
to prove a version of the congruence criterion by those L- values in [H4].

The first named author is grateful to R. Gillard for pointing out some mistakes related
to the level structures in the definition of Eisenstein series. We are also grateful to the
participants of the seminars mentioned above for their patience towards not so well
organized presentation of the material in this paper, [K4] and [HT1 and 2].

NOTATION. — We summarize here some notation we will use. For any number field
X, we write Ix (resp. Dx) for the set of embeddings of X into Q (resp. the discriminant
(in Z) of X/Q). We write Z [Ix] for the free module generated by Ix. The formal sum
^ a will be written as t^. Especially, we write I (resp. t) for Ip (resp. tp). The integer

oelx

ring of F (resp. M) is denoted by r (resp. 9i). We denote by F^ (resp. A) the adele ring
of F (resp. Q). We write F * . (resp. A .̂) for the finite part of F^ (resp. A). Similarly
F^ denotes the infinite part of F^. Any element xeF^ (resp. xeF^) is a sum x^x^
(resp. ^product x ^ x ^ ) for x^eP^ and x^eF^. For any xeF^ and a prime ideal q
of r, x^ is the a-component of x. For infinite place a el, we write Xy for the a-
component of x e F^. Then we denote by Cp: F^/F -> C x the standard additive character
such that ep(x^)=exp(2ni^Xy). Abusing a little this notation, for any element x and

0

any subset X of F^ or F^ and an ideal N (resp. a set N of places) of r, we write x^ and
XN for the projection of x and X to Y[ Fq (resp. Y[ F^), where F,, is the q-adic

q | N q e N

completion of F. Especially 91^= Y[ ^p' We also write r (resp. M for the product
p6£

f^q (resp. n^q) of the ^-adic completions r^ (resp. 9t^) over all prime ideals q. We
q q

denote by F^+ the connected component of F^ with identity. We also write F^ for
^y1^- w^ always write 91: G^ (1) (or M^) -> Z^ for the cyclotomic character. On
the other hand, for any number field X, 9lx/Q (a)e ̂  denotes the absolute norm of an
ideal a in X. We sometimes write simply N(a) for S^x/oC^ ^ X ls ^^ f^m the
context. We use the notation introduced in [HI], [H2] and [H3] throughout the paper
with only brief explanation.
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Content

0. Introduction

1. Summary of Katz's theory of/?-adic modular forms

2. Fourier expansion of Eisenstein series
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5. Functional equation of the Katz^-adic L-functions
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8. Proof of Theorem I, Comparison of/?-adic L-functions

1. Summary of Katz's theory of/?-adic modular forms

1.1. HILBERT-BLUMENTHAL MODULI SPACE. — We start with a description of the moduli
space of Hilbert Blumenthal abelian varieties (HBAV). Let F be a totally real number
field with the integer ring r and with absolute different &. We consider a Hilbert
Blumenthal abelian scheme X/S. By definition, X is a proper smooth group scheme
(geometrically connected) over a base scheme S with an isomorphism 9: r-^Ends(X)
such that the sheaf flie (X/S) of its Lie algebras on S is free of rank 1 over Og ® z r- Let
Xt=Pico(X/S) which is naturally a HBAV. We fix a polarization 'k: X1 ^ X(x),c for a
fractional ideal c of r. Then \ induces an isomorphism:

Hom^X.X^c^.

where c+ is the set of all totally positive elements in c and Horn,. symC^ ^)+ ls tne set

of symmetric morphisms induced by ample line bundles. Let N be an ideal of r prime
to p and take an integer No prime to p in N. We consider Ihe level structure which is
an r-linear closed immersion:

i: (8-l/N^&-l)(x)^^X,

where for each positive M, a^ is the kernel of multiplication by the integer M on G^ as
a finite flat group scheme over Z. Such a triple (X, ^, ;) is called a test object. We
consider the functor 9M=9M(c; N/?")^: Sd)/s-»(£ns which associates for each T/§ the set
of isomorphism classes over T of the test objects (X, 'k, i)^. If/?"^ or Mr =) N for
an integer M^4 (which will be always supposed tacitly), SO? can be represented by an
algebraic space (see [R, 1.20, 1.22, 6.16]) which is smooth and of relative dimension
[F: Q] over Z. Since 9W(c; N/?") is a geometric quotient of 9W(c; N^13) (P>a) by a free
action of a finite group [DR, p. 255], we know (e. g. [Kn, IV. 1])
(1.1) The canonical morphism: 9M(c; N/?13) -» 901 (c; N/?") (P^oc) is qffine and formally
etale.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



196 H. HIDA AND J. TILOUINE

By (1.1), the limit 9M(c; N^°°)= lim 9Jl(c; N^") exists in the category of algebraic
a

spaces. We write X(c; N^")/^ (c; N^) for the universal HBAV over 9[R(c; Nj^).

1.2. THE GAUSS-MANIN CONNECTION. — Let oc: X -> S be an abelian scheme over an
algebraic space S which is smooth and of relative dimension g over Z. We consider the
sheaf Hop of the hyper-cohomology ff^oc^Qx/s under the etale topology. Since X/S is
an abelian scheme, we have the Hodge filtration which is given in the form of exact
sequence as:

(1.2) 0 ̂  o^ Qx/s ̂  R1 oc,, Qx/s ̂  R1 (^ Ox ̂  0.

We repeat here briefly the construction of the Gauss-Manin connection V:
HoR-^/z®^11^ done in Katz-Oda [KO] and [K2, 3.2]. Since X/S is smooth, we
have an exact sequence:

(1.3) 0 ̂  a* Q^/z ̂  Qx/z ̂  ^x/s ̂  0.

Then we have a finite filtration: Qx/z ==FO Qx/z =3 F^x/z ^ • • • =:> { ^ } g^G11 by
F1 = Im (Qx/z1 ®0x a* ̂ s/z -̂  ̂ x/z) ^ ̂ x/~z ®0x a* ̂ /z. By (1.3), we know
F^/F^1 ^ QX/S^ ^ox^* ̂ /z and ^md two exact sequences of complexes:

W 0 -> Qx/s1 ®ox a* ̂ /z - F°/F2 - Qx/s - 0,

(^) 0 -^ Qx/s2 ®Fx a* ̂ /z ̂  F'/F3 -> ̂ x/s1 ®0x a* ̂ /z ̂  0.

The connecting map of the long exact sequence of cohomology induces

V: HDR-^O^QX/S-^ ^M^x/s1 ®Oxa*osl/z)=HDR®o,Qsl/z•

Vi: ^^(aos^/z-^HDR®^^^.
We have the exterior product Fi+j ^ F1 A F7, which is compatible with (^) and (^).
This shows that V and V\ are connections; namely, for eeH^

^(fe)=df®e^f^?(e) et Vi (co® ^)=JG)(X) ^-o) A V(^).

By construction V i ° V = 0 and therefore V is integrable. This connection V is called
the Gauss-Manin connection. For each derivation DeTg/z, we can define
V(D)eEnd(HDR)by

V(D)(^)=id®D(V(^)) for DeTg/z.

Then we have the Kodaira-Spencer map:

(1.4) K - S: Ts/z -^ Hom^, (G), £ie (X^/S)),

where © = © ̂  = oc^ H° (Q1 x/^), £te (X7S) = R1 a* Ox/s and
V(D)

K - S (D): © ̂  HDR -> HDR -^ flie (XVS) by (1.2).

46 SERIE - TOME 26 - 1993 - N° 2



ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 197

I fK i s an algebraically closed field of characteristic p > 0 and ifA/^ is an ordinary abelian
variety over K, we can calculate explicitly K-S on the formal deformation space A/^
over the ring of Witt vectors W(ic) with coefficients in K (see [K3]). This shows that
(1.5) K - S is an isomorphism if X/S = X (c; N^/SB (c; N/?01).

1.3. GEOMETRIC DEFINITION OF MODULAR FORMS. - Write 3E/9K for 3£ (c; N/?")/
9M(c; N^"). Let I be the set of all embeddings of F into Q. Let 0 be the Galois
closure in Q of F. We write 33 for the valuation ring in 0 associated to the fixed
embedding ip: Q -> Qp. We always suppose that the ideal of polarization c is prime to
p. Since 'k'. 3P ̂  3£ 0,. c, we have an isomorphism

(1.6) file (r/9W)/^ ^ flie (3£/W)^.

Hereafter, we write flie = flie (X/3M). Let © == o^ Q^. By definition,

(1.7^) flte^Hom^(©,0^).

Since fiie and © are locally free of rank 1 over Oa» ®zr, we know that for R==r OOzOaw

Hom^(©, ^an) ^ Hom^(® ®RR, 0^) ^ Hom^, 0^ ®z9~1).

Write M* for Hom^M, R). Then (1.7 a) is equivalent to, under Tr: 9~1 ->Z,

(1.7&) fi te®R®^0^®z^- l(^©*^flie®R(OaB®z^- l)*=flte(x),^).

Then the Kodaira-Spencer map induces
(1.4) ( 1 . 7 & )

^/Z ^ HomOOT/» ® r (®' flie) ^ ®* ®R flie ^ £te ®R £te ®t 8-

By the duality over 0<m/»9 we ^ave

(1.18) ^W/»^®®R».

Let T=Res,/z(G^); i.e., for any commutative algebra A, T(A)=(A®zr)x . Then if
A is a 93-algebra, each a: r -> 33 (a e I) induces

a=id®a:T(A)=(A®zr) > < ^A X =G„(A) .

Therefore one may regard a as a rational character of T. Then, with fceZ[I], we
associate the character ^: T -> G^ defined over 93 by %k(x)== fjx0^. Since © is an R-

<T

module (R = 0^ ®z ̂ ^ T (0^) = R x operates 0^-linearly on ©. In particular, we embed
for each 93-algebra A (A is assumed to be flat if p ramifies in F), A (8)^1 -> A1^ Y[A(a)

a

where A (a) ̂  A is considered to be a 93-algebra by CT. Thus we have a decomposition

o)®^^®^^^)-^0?®^^!!0? (a)'
a

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



198 H. HIDA AND J. TILOUINE

where ©(<7)=®(g)^A(<j) is an invertible sheaf over SWOO^A on which T(A) acts by
CT. Thus we can construct an invertible sheaf w(k) over 9M/93 by ®<,®(a)^. Then
T(93) acts on (p(fe) by ^, and we have a canonical morphism for ©^^Symm^co):

o^Ozas-^ n ^(^
Tr (k)=m,k^0

which is an isomorphism if p is unramified in F. For each 93-algebra A, we define the
space of modular forms integral over A by

^(roo(N^), c; A)=H°(9M(x)zA, ©(A:)).

Let, for an affine 93-scheme S/«g = Spec (A)/<g, (X, ^, co, Q/s be a quadruple consisting of a
HBAV X/g, a nowhere vanishing differential form (oeH°(S, cox/s), a c-polarization K and
an N^-level structure ; defined over S. Then we can construct ©x/sO^^o^x/sC^
out of (Ox/sC^^x/s®®^^- The natural image o)(fe)=cofc= 00^ ©(a)^ is a nowhere
vanishing global section of ©x/sW- t^t /€ W^ (Foo (N/?01), c; A). We pull back / by
the unique morphism (p:S-^9W which induces (X, X,, Q=(p*(3£, ^univ, f"^). Then
/°(p=(p*/is a global section of ©x/sW- Th^ w^ may write (p*/=/(X, ^, (D, Oco(^)
with/(X, ^, o), QeA. Therefore, by tautology, one can define/eaW^FooCN/?"), c; A)
as a function of test objects (X, ^, (D, Q satisfying:

M1./(X, ^, G), QeA ;/(X, K, co, Q ^ ^ test object over a S-algebra A,
M2. /(X, ^, o), ;') only depend on the isomorphism class of (X, X,, o, O/^,
M3./(X, ?i, ^0, 0=a-k/(X, X, co, 0/or ^eT(A)=(A®z»)x ^"^Xfc^)"1),
M4. If p: A ->• A' ^ ^ homomorphism of ̂ -algebra, then

/((X, ,̂ co, /) x A AQ == p (/(X, ?i, G), 0).

1.4. DIFFERENTIAL OPERATORS ON MODULAR FORMS. — We have a canonical morphism
overWOOzS

(1.9) Q^ ^ W ® R ® -> ®^®(2a).

We then regard the Gauss-Manin connection as a map

V: Hop -. O^/z ®o^ HDR -. ®, (G) (2 a) ®^ HDR).

We also have the Hodge exact sequence

(1.10) 0-^-^HDR->£ie-^0.

Let 91̂  a sheaf of Og^-algebras (or O^an-algebras) over SO? (or the corresponding analytic
ar"). Wewri teHDR^forHDR®^9I(orHDR®^an9l ) . Suppose that the Hodge
exact sequence splits after having tensored 91 by a projection p: H^/g, -> (0/91. By (1.9),
the connection V induces another connection

V0"1: HDR^^J^a^HDR0")
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by the formula of Leibnitz [Dl, 1.2.7.2]. Define a differential operator by

V Tjl ® w .,/^ _\ ̂  Tjl ® w Tjl ® ( m + 2 )
w, o- ^DR -^ (»)(/ (7^ Q9 HDR ~^ ^DR

which is the a-component of V0 w composed with the inclusion

© (2 a) 0 Hop0 w -^ Hop0 (w+2).

To have this inclusion, we need to tensor Q to the base ring if p ramifies in F. This
loss of integrality of V in the ramified case does not cause any harm, and the integrality
of V will be reestablished later by using ^-expansion principle [see (1.23)]. Define, on
the symmetric algebra Sym (H^p) generated by H^p, an operator

V (a): Sym (H )̂ ̂  Sym (H )̂ by V (a) = ®, V,,,.

It is known that V(o)'s (oel) commute each other ([K4, (2.1.14)], see also (1.21) in
the text). Take k, de Z [I] (k, d^ 0) such that Tr (k) = ̂  k^ = m. We then have a differ-

<y

ential operator
II V (<y)^<r

8(fc, p/: ©(AO^CO^-^HDR^————^(H^^2^^

^®(m+2Tr(d))^_^^_^^

As examples of 91 and p, one can offer:

Case C°°. - Over the differentiable manifold SW41" associated to W, one has the
Hodge decomposition: HDR==CP©CT. We take the sheaf 91̂  of the germs of C°°-class
functions over SW"". Then we have the projection p^: H^R/^ -> (0/91 and the differen-
tial operators 8(fc, p^)< We will see later in (1.21) that this operator coincides with
the classical differential operator of Maass, whose arithmetic implication is studied in
depth by Shimura in many circumstances.

Case CM. - Let M/F be a CM field and (X, K, (D, i)^ be a test object in which X is
of CM type (M, S). We assume that the test object is defined over an algebraic
number field K, which may not be finite degree over Q if one considers the N^°° level
structures. Let x: Spec (K) -> Wl which induces the test object (X, ^, ;). We consider
91̂  = x^ x* 0<m. Then we can decompose

HDR /^ = ® (S) g) © (5;°) and © (£) = ©/^,

where M acts on (p(£) ^ K117 :Q] by the representation S^®^^ ^d on ^(^c) by its
complex conjugate. We know that (p ® 91̂  ̂  CD (£) canonically and therefore for
/e^roc^N;?01), c; A) with a K-algebra A in C

(8(fe, pJ^X, ?i, (D, 0=8(fc, p,)(/(X, X, co, Q)€A.
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In particular, if we fix the transcendental isomorphism ^: X (C) ^ C2/! (a) for a fractional
ideal a, we can define (Otrans = <|> * du for the standard coordinate u on 0s. Then we can
write 0^ co ,̂ = o for the complex period Q^ = (Q (a)),, g 2 e C2 and we have the algebraic-
ity theorem of Shimura as presented in [K4, (2.4.5)]:

THEOREM 1.1 (Shimura [Sh, § 1]). - Let the notation be as above. Then we have for
/eaw^rooN^.^A),

(l.ll) (5(t- PJ^ff•/• "••-•') -W. P.)̂ , ̂  ̂  .)eA
~-oo

/?-^c C^?. - Let A be a j^-adic algebra over 33. Namely, A is a 25-algebra such
that A= lim A/p^A. Consider the formal completion of the algebraic space:

a

W^ = {W (c: N/?00)^ A }a [Kn, V. 2]. Then for the structure sheaf ̂  of ^(p), we have
the Dwork-Katz decomposition [Kl]:

(1-12) H^^(D^®U/^,

where U is the maximal sub-sheaf on which the Frobenius map, induced under the
identification of De Rham cohomology with crystalline cohomology, is everywhere
invertible. According to this decomposition, one can define the ^-adic differential
operator of Katz 6(k, ppY. Under the ordinarily hypothesis (0.2^, b\ this decomposi-
tion (1.12) coincides with the decomposition in Case CM at the point x. Namely, let
0 beji complete discrete valuation ring in the /?-adic completion Q of Qp with residue
field Vp (an algebraic closure of Z//?Z==Fp). For each x=(X, X, ©, i)^ with complex
multiplication ofj^-adic CM type (M, £) and with a N/?00 level structure i, etc., we can
associate an isomorphism ((): X ^ G^(x)8~1 such that the ^-part of ; is induced
by <|). Then ^ie(G^®^-1)^^-1 and therefore ®(G^®0-1) ^ r^(^T/T). Put
^can = <|> * (^T/T). We assume that (D is defined over B = \p 1 (i^ (Q) Q 0). Then we can
write o)=ftpG)^^ with the /?-adic period ̂ e(G^ and we have the algebraicity theorem
of Katz:

THEOREM 1.2 (Katz [K4, (2.6.7)]). - Let the notation be as above. Then we have
the identity in B:

(I.,,, ^^^^••'-•"-(Sftp^oc.X^..)
~P

-(S^Pj'/KX^.co.OeB.

1.5. DEFINITION OF /P-ADIC MODULAR FORMS. - Let AQ => 93 be a ^-adic algebra.
Consider test objects (X, ̂  i)^ defined over any /?-adic Ao-algebra A. A function/of
test objects (X, ^, i)^ is said to be a /?-adic modular form if / satisfies the following
conditions (in this definition, the algebra A is also a "variable"):

^^•/(X, ^, QeA only depends on the isomorphism class of(X, X, i)^,
Mp2. If p: A -> A is a homomorphisme of/?-adic Ao-algebras, then

/((X, X, i)x^A)=p(f(X, ?i, z)^)).
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We write V (c; Ao) = V (c, N; Ao) for the Ao-algebra of all ^-adic modular forms. By
definition, we have

(1.14) V(c, Ao)= lim V(c, Ao/^Ao)

and ifp is nilpotent in Ao, the above definition coincides with the definition of modular
functions (;'. e. modular forms of weight 0: Ml-4), because any Ao-algebra is automatically
a /?-adic algebra. Therefore,

V(c, Ao/^Ao^naJKc; N^/^ O^-aMFootN^), c; Ao/^Ao).

Thus V(c; Ao) is the ring of global sections of the sheaf O^p). We can evaluate any
geometric modular form /effl^rooCNW, c; Ao) at (X, 'k, co^ O/A? ^us, a classical
modular form gives rise to a ^p-adic modular form. Then by ^-expansion principle, we
shall see later that

the natural map: 90^ (Foo (N^), c; Ao) -^V(c, N; Ao) is infective.

1 . 6. EXPLICIT DETERMINATION OF THE GAUSS MANIN CONNECTION. — We Want to Compute

V over C. The projection: 9K(c; N^) -^ 9M(c; N^") is formally etale (if/^^). On the
other hand, the construction of the connection V is local under the etale
topology. Therefore locally the connections V over SO? (c; N/^) and V over 9W (c; N/?")
are the same. Therefore it suffices to compute it for finite a. By the comparison
theorem of the algebraic De Rham cohomology over 9K=9M(c; N^") and the analytic
one over SO^" ([Dl, 11.6.2]), the analytic Gauss-Manin connection V^" constructed for
^DR /a^" induces V for H^p /an-

Over C, as a consequence of the analytic theory of abelian varieties, a giving of a test
object (X, ^, co, i) is equivalent to a giving of a triple (fi, ^, i) consisting of an r-lattice
£ of F ® oC=C1, a positive r-linear alternating form ) l : f l A f l ^ ^ - l c - l and the level
structure ;': Q'^N^^"1 -^Ffl/fl. The positivity of ^ means that we can write
\(u, v) == A ~1 Im (m/') for a totally positive element A e F ®Q R. Put

a-^-^ei^llmCz^O}.

We fix a pair of fractional ideals (a, b) prime to p such that ob"1^. Then over C,
every test object of level N^" (X, X, f)/c ls isomorphic to a triple (X^, ^, ?'J indexed by
ze3 as follows: The abelian variety X^ is given by: X^(C)=C1/^ where

» \
S,==27u(bz+a*), where c^a-1^1. Then Hi(X,, Z) ^ £, by c^ du,\ for the

• /CT

standard coordinate u^=(Uy) on C1. The alternating form ̂  is given by:

^(2 n i(az+ b\ 2n ;(cz+ d)) == - ((2rf-&c) e c~1 .

Finally i,: ̂ ""N"1^"1/^'"1^'"0^"1 a*/a* ̂  Ffi^ is given by

^ (^mod8~1) = 2 TC ̂ mod £^.
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There is an action of the congruence subgroup

roo(Wa,b)={(^ ^ef r hb)*) rf-leN^rlnSL,(F)
t \ c rf/ VN^aba r / J

on b © a* given by (x, y ) \-> (x, y) y. Since £^ = (b ® a*) ( ], y e GL^ (F) acts on lattices

by fiz Y = (b ® a*) Y ( ). One can easily verify that

(1.15) (£„ ^, /,) ̂  (£^, \^, ̂ ) o yeFooCN^; a, b).

Therefore W^m (c; N^)811 ̂  Foo (N^; a, b)\3 for finite a.
Since the projection 3 -> W is etale, we may compute V3" on 3- Then each fibre of

3£/3 at z is X^ and

Hop (X,/C) = H1 (X,, C) ̂  Homz (£„ C).

Therefore Hop/3 ̂  Homz(27u(b © a*), C) ®c^z- We write X^, Y<, for the global
sections of H^p corresponding to

X^: 2ni(b(Sa*)->2nia*^C and Y^ 27i;;(b® a*)-^27i;;b-^C.

On each fibre X,, X^((2Ki(az-^b))=2Kib0 and ^^(2ni(az^rb))=-2nicf. Thus we
have

(1.16) Symm(H^/3)=03[X, Y](X= (Xa), Y= (Y,)).

Since the inclusion of (0 in HDR/^^ Homz(27t;(c~1 ®8~1), C)®c^z) ls given by
f r )co^^ct-^ ( o ^ f o r c e H i (X^, C)=£^ we see that Xy-z^Yy corresponding to du gives
I Jc )

a global section of ©3:

(1.17) cp3^ ®^i(X,-z,Y,)03, (o)^(a)=(X,-z,Y,)).

For each global section CD e H° (9M (N^; c), ® (^)), if we write ^/.(X-zY^ for
(X-zY)k= ^(X^-z^Y^, the association: G)I->/ gives an isomorphism

<T

(1.18) H°(9W(N^; c), ©(^^(rooCN^), c; C) ^ M,(roo(N^; a, b)),

where M^ (Too (N^01; a, b)) is the space of classical modular forms on 3» namely, it is
the space of holomorphic functions such that /(Y(z))=/(z)(cz+rf)fc for all
Yer=roo(N/?01; a, b) (actually, we need to assume the holomorphy condition at cusps
ifF=Q).

We compute V3" by using the sheaf fi.x/3 diff of relative differentials of C°° class. There
are two merits in the use of Ox/3*diff:
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(a) 3£ ^ X^ x 3 as a differentiable manifold; therefore, the computation of ^diff is
trivial: V^ = id (g) d^,

(b) By the original de Rham theory, there is no need to use hyper-cohomology, and
we have H^R (x) C^ = H1 (o^ Q^'diff).

Since we have V^ = id 00 ^3, we conclude that on

H^R/3 ̂  Homz(27i/(c-1 ©8-1), C) ®c0z,

Van = id ® d for the holomorphic exterior differentiation d on ©3 and thus X, Y are
horizontal to V. Once one gets the expression V^ = id ® rf, all the differential operators
we have introduced can be made explicit automatically according to the definition: Here
are the results of computation: The Kodaira Spencer morphism i: ̂ c ̂  co ®R® ls given
by

(1.19) i(27i^z,)=(X,-z,Y,)2 [K4,(2.1.21)].

The differential operator V (a) is given under Symm (H^) = 03 [X, Y]

(1.20) VC^-^X.-z.Y,)23-.
27i; Sz^

By this formula, one can calculate the effect of 8(fe, p^): In fact, if we write
5(fc, pJ^/CX-zY^^^/KX-zY)^2^ we have the differential operator of Maass-
Shimura[K4,(2.3.27)]:

(1.21) S ^ - / ^ — — ^ — — ) and 8^ FI^^. . . . <•
2ni\0z^ 2;Im(z^)/

1.7. ^-EXPANSION PRINCIPLE. - For each/e Mfc (roo (N/?01; a, b)), we have the Fourier
expansion

f{q)= Z a^f)q^ for ^=exp(27i^^z,).
^ eab CT

To algebraize this expansion, we recall the construction of the Tate HBAV: We consider
a set S of g independent linear forms L: F-^Q fe==[F: Q]) preserving the natural
positivity (i. e. L (x) > 0 if x is totally positive). We say ^ e F is S-positive if L (^) ̂  0 for
all LeS. Then we consider the monoid ring

Z[b;a ,b;S]]={ ^ a(Qq^\a^)eZ]
^:S—pos, ^ e ab

and its localization Ag by the multiplicative set {^ |^ : S-positive}. We consider the
morphism

<y. ab -^ G^ (As) given by ^ (^ = ̂ .
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The morphism q induces q: b -> G^ (x) a~1 Q~1, since

Homz(ab, G^(Ag)) ^ Hom,(b, Horn;, (a, G^Ag))) ^ Hom,(b, G^ ® 9-1 a-1 (Ag)).

A result of Mumford [M] assures that the rigid analytic quotient G^®a*/^(b)
(a*=8-1 a-1) is algebraizables ([R, §§ 2,4]) to a HBAV Tate^) over Ag. Moreover,
for every positive integer M, the canonical morphism ^ ® a* -> G^ ® a* induces an
exact sequence of group schemes over As:

1 -* HM ® o* -^ Tate^,^) -^ M-1 b/b -> 1.

In particular i=^an-' Hp-®8~1 ® ^NO ® a*/Na*-^Tate^(,(^) gives the canonical level
structure if a is prime to N. If a is not prime to N, we just take an isomorphism
E: r /N^a/Na and define the level structure f=;'(s) composing with i^ above. We
have a pairing of group schemes:

Tate,,, (q) [M] x Tate,,, (q) [M] -. ̂

given as follows: Taking xeG^OOa* and yeG^®b* such that xM=q^ for some ^eb
and y^ = q^ for some T| e a, we define

<M, M>M=:^/^e^M((^//)M=^T1/^l1=l).
Then there exists a unique isomorphism

(p: Tate^^(^) ^ Tate^^(^) which induce < , >^ for all M.

Then, the natural morphism ̂ : Tate^(^) ̂  Tate^^(^)® ab~1 gives the canonical c-
polarization (c=ab~1) [R, p. 297]. If a is prime to p (then b is prime to p because
c==ab~ 1 is prime to p), the identity:

(o^: Lie(Tate,^(^))==Lie(G^®z&- la- l)^A®z^- la- l^A®z^ - l

gives a canonical nowhere vanishing differential co^n. By the existence of
(T^a,!)^ ^-can. ^can. ^can) ^^ defined over Fis Ag, we can define the ^-expansion /(^)
for all/e9M,(roo(N^), c; A) or V(c; A) by

/(<7)=/(Tate^), ̂ , co^, i,JeA((q))^

where A((^))^={ ^ <3(0^|(3(^)eA}. This expansion coincides with the Fourier
^ e a b

expansion over C and determine the modular form because the algebraic space SEW (N/?"; c)
is geometrically irreducible [DR, § 4]. Namely we have the ^-expansion principle [K4,
1.2,1.9]:

^ (Foo (N^), c; A) = M, (Foo (N/?01; c)) U A ((^ if C ̂  A,
(1.22^) ^(^oo(N^,c;A)=9M,(^oo(N^a),c;A7))nA((^)„ if A'^ A

VCc^^^A^nA^)), if A^A

(1.22&) /=0 o /(Tate,,,^),^,f(E))=0 for/eV(c;A).
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We shall give a j^-adic version of (1.21) shown in [K4, (2.6.27)]. Let
^ =/ ®can W e H° (TOp x ̂  A, ® (A:)) (/ e V (c; A)). We then write

8 (fe, p,^ o == (9^ /) (D,^ (fe) e H° (TOp x ̂  A, G) (^))

and also write the ^-expansion/(Tate^to), ̂ , ̂ ) as / (^) = ̂  a (^,/) ̂ . Then we
^

have

(1.23) ^/(^S^C;,/)^.
^

2. Fourier expansion of Eisenstein series

We want to calculate Fourier expansion of classical Eisenstein series according to
Hecke and Katz [K4, III] for our later construction of ;?-adic measure. Let 8 be the
different of F/Q, and for each ideal a we write a* = a"18~1. We fix a fractional ideal c
and take two ideals a and b such that ab~1 == c. Let ^: {Xp x (r/f) }x {XpX (r/f)} -» C
be a locally constant function such that (|)(e~1 x, sy)=:N(s)k^(x, y) for all eer", where
k is a positive integer and f and f" are integral ideals prime to p. We put f= f 0 f and
suppose that all a, b and c are prime to f p. We regard ^ as a function of T = X x Y
with X = Y = { X p x (r/f)} via the natural projection of { X p x (r/f)} x { X p x (r/f)} to
{^(^^{^Wr)}. We put X^W^^x^/f) and define the partial Fourier
transform

P(|): {F,/^; lx(f*/9-l)}xY={U(^f)*/^- l}xY-^C

of (|> by, taking a so that ()> factors through X,, x Y,

^-a[F=Q]^-i ^ ^^y)^{ax) if x6(^f)*/&-1,
( 2 . 1 ) P^.v,^)^ ^x«

( 0 if x^(^f)*/8-1,

where Cp is the standard additive character of the adele ring F^ restricted to the local
component Fpy at p f. This definition does not depend on the choice of a. Then we
see easily by the Fourier inversion formula that

(2.2) ^ P ̂  (a, y) e^ (- (ax)^) = ̂  (x, y).
aeXy

We want to define the Eisenstein series E^ ((|>; c) as a function of isomorphism classes
of triples (fi, K, i) as introduced in 1.6, where ; is of level /?°°f2. Thus ; is an injective
homomorphism:

;: Fp/8;1 x (f2)*/8-1 -^-°° fi/fl x f-2 fl/fl.
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We assume that ^ induces an isomorphism £A,£^8~1 c~1 . By the Pontryagin duality
induced from Tr°^, we have the adjoint projection of; restricted to Fp/8~1 x f*/8-1:

^: (£®^)xfl/fa->^x(r/f).

We introduce two lattices &" =) &' •=> Q so that

fl'Vfi = f((f W-1) and £7 = f £" + S.

Then fi7fi=;'(f*/8-1). By definition,

fl7f a" ̂  (f a" + fl)/f ^" ̂  fl/(fi n f £') ̂  r/f.
We consider the sub-r^-module PV(fl) of £0^^ such that PV(fl)=3£®,r^ and the
natural inclusion: fi®yt^->PV(£) induces an isomorphism

PV(£)/£(x),r^ImO-: Fp/8-1 x f*/9-i -, (^-00 £/fi) x f-1 £/£).

Thus P\(&)(S)^=^= lim fiyf0'^. Then ; induces an injective homomorphism ;:
a

Fp + f* r^ -> PV (fi) and an exact sequence

0 ̂  F^©f fif7 -^ PV (fi) ̂  r^ x (r/f) ̂  0.

There is another exact sequence:

0 ̂  £®^ ̂  PV(£) ̂  F^;1 x f*/^-i -^ 0,

where TT is induced by F1. We now put, for wef "^"^fl Pi PV (fi) = ̂ (FP) and
P^H^P^HO.TC'OiO),

(2.3) E.^^O;^^^1^1-^^^ E ^^
' /1T\ A-^ A7-/-.. \ fe A r ^

^/l^l .e^^WI^W^I-O5

where for each element ^ = ̂  ̂  o of C [I], we write Fp (0 = ]"[ r (^)- A priori speaking,
oel ae l

the right hand side converges absolutely and locally uniformly, when the real part of s is
sufficiently large; one shows however that it has an analytic continuation to the whole
complex .y-plane. Then we evaluate this function at ^=0.

We consider the above sum as a function ofz^z^^e^^Z via the standard triple
(fl^, ^, Q introduced in 1.6, where ̂  = 2 n i (a* z + b) in F(x)^ C. Then we see

E,(z;(|))=E,((^,^,y;(^,c)

_ (-^T^kt-^st) P^(a,b)
/~C /'•) — ;\fct /^ —\2st -̂' Tirv i i \ f r l i r ^/FF(2"Okt(27^)2st^,„((^.,„^^(a+^|^(a+&z)|2s|„o'
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We write

c^..)= ̂ '^^ .
^/D^O^)2"

Then we have

E,(z;^)=J S ^'^
' L^^mW

, V V^ Q 1 ^ i\ V^ 1 (

^(b-tO})/," «o6(p%f)«/a« 0' <,^'N(a+ao+bz)k\N(a+ao+bz)\2s\

Putting

st(z;a'')=J«.^+^|^(a+z)|^

for z e (F®Q C)x, we have

^^^'^ E ^l^^^ s s P<Kao^)S,(.o+te;a;,)l.tae^af^/r^W |^W| bg{b-{ 0 }}/r>< ao eCp^f^/a* J

Then, we have by the Poisson summation formula

S,(z; a; s)=N(d)^/D; ̂  C,(l, z , s )
a e a

for

C» (x, z , s ) = f • ^"^——- dt.
]F^N(t+z)k\N(t+z)\2s

Put

^_(-irrF(^+^)^(a)
(27^^•)tt(2TC)2sl

From the formula:

CkCx, ao+^ s)=e^(x, ao)C,,(x, bz, s),

we see

^-L .̂.̂ }
+ c { £ £ { £ P^(^^)eF(-(^o)/)}C,(^&z,^)}

be^-tO})^ ^eof aoe(Pa<»f) i l l/a' l•
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=J y P<I>(^O) }
L^.^^mwJ

+c{ E Z<K^)C,(a,fo^)}.
beCb-^O})^ « e d

As calculated in [K4, (3.2.31)] (see also [HI, (6.9&)]), we have

/ '(In)1, if A:==l and x=0,
P T r n ^ f — l ) ^

C^,fo,0)= ^-—^-Lsgn^^JV^^eF^,^), if xb^O,
1 F (^0

0 otherwise.

From this, we now know, supposing k^2 or ^(a, 0)==0 for all a,

E^;O)=J E p(^0) I
• Le(^^(^|^^[-L.O

+^^){ Z S ^(^^sgn^^^^-^F^z)}.
0<^eab (a, fc)e(axb) / r> < ,ab=^

Note that by the functional equation of the Hecke L-functions of F, the constant term
is equal 2 - tL(l -k, <|>, a), where

L (s; ̂  a) == ^ ^ ( ,̂ 0) sgn (^(^ | N^) | -s.
^(a-tO})^"

Thus we get, if k^l or ((> (^, 0)=0 for all ^,

(2.4) E,(^, c)(Tate,^^), ̂ , co^, ^)=^(a){2- fL(l-A:; <(), a)

+' E E (|)(a,6)sgn(JV^))JV(a)fc-l^}
0<^^eab (f l ,b)6(axb)/rx ,afc=^

3. Eisenstein measures

We use the Eisenstein series defined in the previous section to construct the Eisenstein-
measure having values in V(c, f 2 ; 0) for a j9-adic algebra 0 given below. Let K be an
algebraic closure of Fp and W (K) be the ring of Witt vectors with coefficients in K. We
consider W (K) as a subring of the /?-adic completion Q of Qp. Let 0 be a discrete
valuation ring finite flat over W(ic) inside ft. Let f be an integral ideal in F prime
to p. We decompose f=^cl8(q) for prime ideals q. Let f and f" be two ideals prime

q

to p such that f n f^ f . Write f==n^ (q)- we choose a prime element vs at
q

q in F so that ^q is prime to p and xs =1 mod x fq"8^. We put nr6 ( f ' ) = Y\ ̂  '(q),
q
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^(f")=r-^"(q) and T^]"] .̂ we also flx an idecde d of F ^ch that A =8 and
<» q

rf^. Let T=(r^ x r^ x (r/f) x (r/f))/P as a topological space. For each function <|) on
T, we define two functions (|)° and (()* on r^ x r^ x (r/f) x (r/f), supposing that ^ is
supported on (r/f)" to define (()*, as follows:

(3.1) ^ ( x ^ y ^ ^ b ^ P ^ ^ x - ^ y ^ ^ b ) - ^ ^(x-\ y, u, b)^(-uad^^\
u e (r/f)

(̂ , /, ̂ , ̂ {P^P^x, ̂  ̂  ̂ -l)}(x-l, ̂  a\ b1)

-^(f)"1 E E ^(x/- l,/,M,^- l)eF(-^^- lCT"e)eF(z;y^- lCT-£).
"e(r/f) ue^/f)"

Note that (|)° and (()* satisfy the relation

<S)(u~1 x, uy, u~1 a, M^)==0(x, y, a, b) if uexx.

Thus, writing TV for the map N:^ ->Qp given by N(x, y, a, b)= f] x0, we can define
<y e I

two Eisenstein measures E^ on T and E* on

T^xr^r/Rx^/Ry

with values in V(c, f 2 ; 0) as follows:

E, (N^ ())) = E, (^°; c) and E* (N^ ̂ ) = E, (^*; c).

In the above definition, the Eisenstein measures are defined only on locally polynomial
functions but by continuity, they extend to measure having values in V(c, f 2 ; 0) (see
[K4, IV]). Let S be the set of all prime ideals in F over p. For eache (P) = (e (p))p 6 se zs.we write p6 ( p ) fof n p6 (p)- Note that if

p 6S

(|) (x, y, a, b) = (|) (x, a) ((/ ( ,̂ &)

is a character of conductor p^p^^ff" of T" =(r; x r; x (r/f)x x (r/f)^/? extended
by 0 outside T", then

(3.2^) P^(x,y,a,b)=^(d^a)^(y,b) Yl G^^^^x^
e (p) > 0 x n {xp(^)-^(p)- lxp(^^)},

e(p)=0

where 5^ is the characteristic function of Xy on Fp and

G(^)=^(q-^) ^ ^eF^in,-6^^-1).
ue^/q6^)
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We also have

(3.2 b) P <)>* (x, y, a, b)) = N{\-l f") <(> (^ ̂  a) ̂  (y)
x{ n G^-1)^^,) n Xp(^)-A^(p)-lXp(^^)}

e (p) > 0 e (p) = 0
x { n G (<(>,-^o '̂-6^, n ^(v^,)-^-1)!,^,1-6^)}

e (q) > 0 e (q) = 0

where ̂  is the characteristic function on r .

4. The Katz measure in the right half critical region

We now fix a CM field M/F and a^-adic CM-type £ [satisfying (0.2 a, &)]. We define
the Katz measure on the ray class group of M modulo £7?°° for an arbitrary ideal £
prime to p and evaluate in this section the integral of the /?-adic avatars of Hecke
characters in the right half of the critical region. The other half will be dealt with by a
functional equation in the following section. We fix an integral ideal (£ of M prime to
p. Let \: M^ /Mx -> Cx be a Hecke character of conductor 6: [] ^e w f] ^ce (<pc) such

^e£ ^BeE
that ̂ J==^ with

(4.1) r |=Wo2:+^ ^((7-ac) for WQ>O and d^Oforallo.
<T6£

We write K=Fp for a fixed algebraic closure of Fp and W(K) for the ring of Witt vectors
with coefficients in K. We consider that the ring W(K) sits in Q. For each fractional
ideal U prime to C/? in M, we take a quadruple (X(U), ^(U), G)(U), ;(U)) defined as
follows: Over C, X (U) (C) = C^/S (U). We pick an element 8 e M such that, for complex
conjugation c,
(4.2^) y= -6 and In^S^O/or all oeS,
(4.2 A) <M, v)=(ucv-uvc)/26 on 9i induces an isomorphism 9?A^9l^8~1 c~1 for the
different 8 of F/Q and an ideal c prime to p.

Then < , > induces a c (HIT) - ̂ polarization ^ (U) on X (U). We decompose (£ = gg, 3
so that

(4.3^) S+Sc-^ S+y=9i, 8c+%=9? and g^y,

(4.36) 3 consists of ideals inert or ramified in M/F.
Put f=g3 OF and r=g,3nF. Then f^f^f. We write f^ni6^0 and

r=n^8 (I)- ^e choose a prime element CTI for each prime I dividing /?f in F so that

CTI=I modfl"8^0 (in this formula, s'(p)=0 if p\p) and ^ is prime to other prime F
dividing ̂ f. We choose a differental idele 6?=^ of F such that dp=dp and
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^ = (2 a)^ for prime ideal Q | g (q = Q 0 F). Then we define

z(U): F^^x^^/a-i-,^ ^-co^g3)-2H/y by x^d^x,
^PeS

which induces ;(U):F^;1 x (f2)*/^-1 ^X(U). Then we can find a model
(X(U), ^(U), ;(U)|^2^-i)/^ for a finite extension M'/Q which has good reduction over
the valuation ring 93' of M' corresponding to the embedding Vp:M' -> Qp, and there exists
a nowhere vanishing differential co/^ on X (U)/<^. Moreover, defining 0 as the composite
of W(K) and i^®7), (X(U), ?i(U), i(U)) is defined over B=i;1 (i^(Q)nO) and has
good reduction over B. Namely we find a triple (X(U), ?i(U), ;(U))/B for
B = ip 1 (ip (Q) 0 0). Since X (U) = X (9i)00<R U and U is prime to p, we have a canonical
isomorphism: file (X (U))/<^ £ie (X(9^))/s,(x)„U^flie(X(9^))^,. Then by duality, we
have co(X(U))/«B'^(p(X(9l))/<^, canonically. Thus choosing one nowhere vanishing dif-
ferential co (91) on X(W)/^, we obtain a nowhere vanishing differential co(U) for all U
defined over 93'. Over 0, ; induces an isomorphism ^: G^OOz 8~1 ̂ X (U) and therefore
gives a nowhere vanishing differential co^n (U) = 4 (A/0, writing G^ = Spec (Z [r, t~1]). It
is important that CD^nW corresponds to o)can(9i) under the isomorphism:
TO (X (U))/^ ̂  © (X (9i))/o [K4, 5.1.47]. Thus the ratio

(4.4^) "p=(o(U)/o)can(y)eO®zr in (W

is independent of U. Similarly we define (o^nsW on X (U) (C) = C^/S (U) by
^irans (u) ((^o e i)= ^o for ^G coordinate (u^ g i of C2. Then the ratio

(4.46) Q, = (o (U)/o)^ns (") e (C2)x = (F(X>Q C)x

is also independent of U. We put s = g, 0 F = % Pi F and i = 3 0 F. Consider the ray
class group C^^p") modulo ^p" of M. We agree to write C^^p^) for
lim Cl^^p^). Then we have homomorphisms

a

f i = i,: G ((£)={ r; x (r/f)x x r; x (r/s)x ]/x^ C^ (C^00)
11* = i*: G (6") = {r; x (r/s)x x r; x (r/f)x }/rx ̂  CM (C^00)

induced by the natural inclusion of F into M, where for i, the first factor r x (resp. the
second r;, (r/fy, (r/s)') is identified with f] ^p (^sp. n 9i^ WS)' x(r/3nr)x ,

^el, ^es0

(^/Sc)') and for i*, the first r; (resp. the second r;, (r/f)', (r/s)') is identified with
I"] 9?<p (resp. ]"[ 9^ W^V xWSnr) ' , (SR/^)'). The morphisms i and i* have
^ e £ ^ e S*"

finite kernel, and their cokernel is isomorphic to Cl~ (3) which is the quotient of 01^(3)
by the natural image of (r/i)x. We now choose a complete representative set { U } for
Cl~ (3) consisting of fractional ideals prime to pW. Let [U] denote the class of U in
CIM(^°°). Then

ClM(^°°)= U,Im(i)[U,]-1 and C\^p^}= U,Im(i*)[U,]-1.
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We identify 0^(6;^°°) with the Galois group G^ (C) of the ray class field modulo (£/7°°
over M by the Artin Symbol. We write the ideal of the polarization X(U^) as
c,.=c(U,U?~1. To define measures on G^(£) and on G^((T'), we explain how to
extend functions defined on G^ (C) or G^ (^c) to T of T which supports the Eisenstein
measure:

T - { x, x (r/f) x r, x (r/f) ̂  T == { r, x (r/f) x r, x (r/f)x }/?\

To = {rp x (r/f) x ̂  x (r/5) }/^, To' == { r; x (r/f)x x r; x (r/s) - ̂

^- {^xW^'x^x^/ f ) - } /^

Write the variable of T as (Xp, x^ y^ y^ in this order. For each function ^ on G^ ((£)
(resp. G^ (CF)) and index^ed" (3), we define two functions ̂  (resp. (()}) on T (resp. T')
as follows:
(4.6 a) First we put on T^, which naturally surjects onto G^ (C), ̂  (x) = (|) (x [iy ~1). FF^
extend this function to TQ by 0 outside T(^ . TA^ we pull back the function defined on T()
to T 6y the natural projection: T -^ To. ^ denote this function on T ̂  (j)̂ .;
(4.6&) ^ /?^ on To', (^fcA naturally surjects on to G^ ((£')): (|)}(x)=(()(x[U^]'"1).
77?^ identifying ^T^ w^/z

{r; x (r/5)x x {0 } x r; x (r/f)x }/?" ^ To = { r, x (r/s) x (r/i) x ̂  x (r/f)x }/r^,

w^ extend this function to To ̂  0 outside T^. F^ then pull back this function to T by
the natural projection T -> To. We write this function on T' as ^p

In Case (4.6 ft), the function ^ is supported on T' in T. Thus E* ((()}) is well
defined. We write c^c^.U?"1. Then we define measures (p on G^(C) and (p* on
G.^by

(4.7,0 f ^(p=^f^.^E, for E,=xfE^
•^Goo (c) J JT

(4.7&) f (|)^(p*=^f .̂̂ * for Ef=xfE,*.
JGoo^) J JT'

The measure (p is essentially equal to the measure n in Theorem II up to units in the
measure algebra. We will normalize (p to get ^ in the next section. The measure (p* is
introduced to prove the functional equation in section 5. We first state the result for (p:

THEOREM 4 . 1 . — Let M be a CM quadratic extension of¥ and S be a p-adic CM-type
of M. Let € be an integral ideal prime to p in M. We decompose C==g%3 as in
(4.3). We put

^pW-{ I! 9^M/QOP-e(<p))G(28; ^)},
^PeE

w w = w, (^ n ̂ ' w n ̂ r' (^D,f i i 5 in
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Then there exists a measure (p on G^ ((£) such that

[ XAp
JG «n (-l)WO t7^d^F(Wo/+^)
*/GOQ (C)_______.^f^X . y X \ „, (\ \ _________________F °_______/

Q^+2d ^ • ^ } ̂ \D^lm(8Y^+2d

x n (i-^(£)){ n (I-M^)) n (I-^(D)}^(O,^)
f l |C ^eS ^eS

/or ^// Hecke characters K such that
(i) ̂  conductor ofk divides C/?00,
(ii) ^(xJ==xy+d(l-c)formQ>Oandd= ^ d^a with d^O.

o e S

The result for (p* is as follows:

THEOREM 4.2. — Under the notation of Theorem 4.1, we put

w^W=w,W n ̂ M/Q(£-ce(fic))G(28, ̂ c)^-1^)^^)
fi|5

x n^F/QO'^^M/Q^"^0)^^)®^^ ^),
I |5

H;/(^= n 9lM/Q(£~e(fl))G(28, ^)^«e(a)^^F/Q(Ie(I))^M/Q(£-e(I))©(2§, ̂ ) ̂  (^2£).
- e i g - i |3

T/z^/z there exists a measure (p* on G^ (C0) 5'MC/? ^^^

JG ^ cp (-l)mot7td^F(Wo^+^)
^^oo (c )___ = f_R x • r x ^ w* Ck}n^^d ^ • ^ ^ ^iDFlimca/Q^^.

x { n (i-^w) n o-^w) n O-MD) n (I-^*(D)}^(O,^)
£|95 .e|3-c ^eZ <P6£

/or ^// Hecke characters ^ ^MC/? ^A^^
(i) the conductor of"k divides ^p^\
(ii) ^oo(^oo)=XSO£c+d(l~c) f^ mo>o and d= Z d^ mth d^' Moreover, the

ae^

measures cp and (p* are related in the following way:

r rn (i-x^))-^^?,) ^rfcp= n (i-^*(^-A*o2)r1 x°c^(p*.
£13-3 JGoo(G) •213-I JGoo^)

We prove these two theorems at the same time. We compute

r - / r - \X^(p ( resp. X-Ap* )
JGoo(C) V Jooo^) /
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for algebraic Hecke characters K of conductor dividing £/?00 (resp. C^/?00), where X- is the
j^-adic avatar defined on G^ (CT) [resp. G^ (£'')]. We write

?i* (x) = 'k (x-') | x IA and X* (x) = X (cxc~1) -191 (x) -1

for the cyclotomic character 91. We assume (4.1) for ^. Then ^j='k(Uj)~lfkp^ on ̂
and ^^^(U^)"1^^ on T^. Thus the computation is basically local, and we can
compute the general formula only dealing with the case where f is a prime power.

We begin with the case where (£ = £" with a prime £ which is inert or ramified in M/F
(thus a=s for £ given by f^UF^8 if !=£, and a=2s or 2e-l if I=fi2). We
hereafter use the capital letters fl, ^ and Q (resp. the lower case latter I, p and q) for
prime ideals in M (resp. F). This case is technically more difficult than the case of split
primes. Writing I = £ H F, have

(^,(x, ̂ )=^(U,)-1 M^^U)^ Vi)

for

(4.8) ^b)=^11^ if ^6r^
[ 0, otherwise.

Note that the I-part of PV(U^.)i is given by rn^x^^. Thus n^^^d^^^ and for
any a e PV (U^)i O f " 1 Up P( P^~1 ̂  (a) = ̂ i~1 (^ <3i) if ̂  a?i mod fi is contained in the image
of (r^fi)" in 9li/fi and otherwise PjP^1 (|)(<2)=0. For each prime ideal Q in M and a
character X^ of M^ of conductor Q6, we put

G(^ ̂ )=^(^e) S ^(^CM^^MQ^
M e (^/-Q6)><

where ZCTQ is a prime element at Q. We define ^ (Q) for prime ideals C^eZU^orC^fl
when Q6^ is the conductor of ^. We also define ^OP) for ^peE by
^(^)=max(^(^P), 1). Let 2y={^eS |^OP)=0} and £"=2:-S\ We also put
eto(G)=e'(G) [resp. ^°(Q)=^(Q)] if QeS and otherwise e10 (Q) = e° (Q) = 0. Let /<p
denote the characteristic function of 9l<p in M<p. Writing m^0 for ]~[ in6^(<p) and a^ for

<pe£
the projection of a e M to ]~[ M<p, we have by the Fourier inversion formula

<Pe£

^(^^^(^-^(n ^-e/(<p))^^ l(^^)P(^
^PeS:

x S ^-^^-^^eF^S)-1^)
& e (r/p6')

= e'0""'= '^(^-^(n ̂ '^r1^1^)
^eE

x Z ^^(A-S^eF^S)-1^!!!-6'0)
b 6 (r/p6')
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=X(U,)-1V1(^^) ]-[ TO-e(•P))G(2§;^)^l(^)^cl(a,pc,
^62:"x n ̂ cl(^c)^^^)^(^)(x^(^)-^(^)-lx<p(t5J<p^))
<lBer

if CT^ e SR<p for all ̂  e S" and ̂  ̂  mod f ̂  e (ii/fi)x.
Writing 0 for ̂  (Xp) ̂ c1 (^) ()) (xi, ^i), we have by Theorems 1.1 and 1.2

f ^d^

<4-9) ——zT^=Qp(WOE+2d)Z^U71) f N(x)-m^x-ly)d<S>{x^)dE^y)
•~p i Ja

_ ^(u.-l)e•'E^((X(^t,), x(u,), CD^(U,), /(u,)); $)
" Q^+2,

_ ^(^.-1)8^E^((X(^^,), ?.(U,), a).̂ (U,), ;(U,)); <&)

" n^^2-'

Writing w6^6 for ̂  n ^ow)' we put
^eE

s^^^'u^ n <p-e?)}I-e, ^)={ n ^(^-^^Gds; ̂ )}
^eS <lBeE

and

H.(?I)={ n ̂ (^-e^)G(28; X^)}^-1^).
^eS

By the explicit formula of the Maass differential operator (1.21), we know that each
term of the series

MUr^E^XOI,), ^(U,), o)^(U,), f(U,)); 0)

is given by P^^flr^^d-c) niultiplied by the constant:

(-l)mof7ld^F(mor+^)
^/|DF 1^(8)^^+2^

We compute this number if TO60'^®,"1 is prime to ;?f and 'm\a^ mod f9li e (ri/fi)x

(otherwise it vanishes). We have

P^^)^"^2-2^1-^

-^W^^^^a^^d) ]"[ ̂ M^M-N^)-1^^)
<P6£'

=w^(?l)?l(U71)^(^)-l^-^^) n ̂ (^)(x<p(^)-^(^)-lx<p(^^))
<1B6S'
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= w W ̂  (»,-x) ̂  ((̂ )(̂ )) ̂  (a) n ̂  (̂ ) (X<p (̂ ) - W) -1 ̂  (TD<p ̂ ))
<Pe£'

^(^W0^^-1) n ̂ M^a^-NW1^^),
^Per

where we regard X as a character defined modulo n ^°° Fl ^P^f (and hence
^eS" ^eS

^(TU60^0®^1) for ^(I)==^-1 is well defined although rn60^0®^1 may contain prime
factors ^peS7). Then we have, for

(-\)^^Y^t+d)
c w{ ^iDpllm^/Q^'2'9

X^cp
(4.10) 'JG00
v / r\mQ^+2d

"'P

-c 1; ^ ^®71) n ̂ (^^(^^(Wx^^^))^^®;1)-5!,^
J aer+f®}/^ ^ e S'

^x x, ^(-l)^^^^^^)-ffl •' ̂ ^w^w-
x { n o-w)) n (i-^*(^))}(i-^(£))^(o,x),

^eS <pe£

because {^®7 1 } for ^e^/f)''/?^ andyeCl" (g) gives a representative set of 0^(5).
We now compute P(|)f. Write the conductor of \ as ^em for 0^e(I)^£ if I remains

prime in M and 0 ̂  e (I) ̂  2 s when I = fi2. Writing ^ (x, y ) = ̂  (U,) -1 ̂  (^-p) ̂ ~c1 (^p) <(>'.
we have

(4 .11 ) <^)=<^-l(&)' if (a '^ ')e{o}xt.x '
[ 0, otherwise.

Note that the dual map ;*:U/fU^r/f of ;(U)pf*/r*-^f"1 U/U is given by
;* (x) = Tr^/F (rfi x (2 8) -1) mod f. Thus

CF (;* (̂ ) mr6 Mi-1) = CM ((2 8) -1 ̂ ba,\

Then we have

P^W-^^N^^N^ ^-e'^) ^ ^(z;)eM((28)-1^^-8)
^eS ^(t/f)x

x ^ ^l(&-l,^)eF((28)-l^)
b e (r/p6')

e'0

"^ ^^(U,)-1^)-1^!"!^'^)"1 E ^(z;)eM((28)-l^^-e)
^S ^(r/f)^
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x ^ ^-^A-Sa^eF^S)-1^^-6')
b e (r/p'"')

^(lyA^fr1 Z M^M^S)-1^,^-6)
f 6 (t/f) x

x n TO-ew))G(28;^)^l(fl,p)?^cl(a<pc)
ISeS" x n ̂ (^M^Hxv^-TOr'x.p^p))

^eS;'

if ̂ a e 9?Q for all Q e I" and ̂  e t^-e (I) ̂ . Put

».=^°».{ n ^-e(<p)}- ^'r^^A n ^-e/w},
^ 6 E ^ e £

s,^0^-6^ n ^-^^^fl6-^0,
'PeS

^);=CTeo^^^I)-eU,{ ]"[ ^p-^^^fi6-^0,
^SS

M;p(^={ n^w^x^czs;^)}
^eS

and

w*(^)={ n ̂ (^-e(<p))G(28; ^)}^(^)^F/Q(f)^M/Q(S~e(I))G(28; ^).
<Pe£

By the computation similar to (4.10), our value is expressed as the value at 0 of the
infinite sum of P ());* (a) a-^-^(1 -c) N^a)-8 over a in vs-60 93,. Then if jsf . a. 871 is
prime to 5V' [otherwise P<))}* (a) vanishes],

P^^a-"1^-2^1-^

=N^-lw,WK(U^) ^ ^(zOeM^a)-1^^-6)
v 6 (r/f) x

x ̂  (̂  n ̂  (̂ ) (x<p) - ̂ (^P) -1 x<p (m<p ̂ ))
<p6r

=7v(f)-l^(^)^(U71) ^ ^(^^eM^S)-1^^-8)
y 6 (r/f)xx^^) n ^(^^(^-^wx^^^))

<Pe£'

=^(f)-lw,^) ^ ^(^^eMttIS)-1^!;^-8)^^"1)^^0)^^)
v e (r/f) x

x ̂  (̂  n ̂ (^)(x<p(^)-^w-1 x<p(^^))
^PeE'

^TVCf)-^,^) ^ ^(^^eM^S)-^^^-6)
y e (r/f) x

x K (ro-0 fl<I) <B7l) ]-[ ^ (̂  (X.p) - ̂ (W -1 X,, (^ fl<p))'
^eS'
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where we regard X as a character defined modulo I~[ ^ ]~[ ^f (and hence
Q _ • ^el." <p6S

^(m6 a^a^-1) is well defined although T^0^0®,-1 may contain prime factors ^eZ' for
a^^aa^). We may assume that CT^Es lmodf^ i by choosing ̂  so that m<p=l
mod f 9li. This shows that

?lI(^^)eM((28)-l^T^I-e)=^(T^eoaIZ;)eM((25)-lCTeo^mI-£).

Thus in principle, we can compute X-^(p*/Q^+2d We write
•/Goo

(-l)^^^?^^^)
^"^^1^1^(5)^^^. and ^-{——Ic.lmodf}.

Then we have

^6/(p*
————^=c{G(28, ̂ )^(^)^Q(f£-^)}-i
--P

S?.(<B71) ^ Ma )̂ E ^^e^^B)-1^^,-6)
•' as ®}/r >< 11 e (r/f) x

x n ̂ M^a^-NW'l^^NW1)-5^
VeL'

= c { G (2 8, X.) ̂ , (̂ ) ̂ /Q (f £-'(I)))} -!

x S ^(zOSW) £ ^(^''^^^(a)
t>6(r/f) '</rx J aeSj/t"

x E eM^S)-1!)^,®,-6)
uet'</l'< ff)

x n ̂ (^(xv^-^Wx^^^))^^®/1)-5!,^
¥62'

=c{G(28,^,(roO^/Q(f£-e(I))}-l £ ^(^))-1£^((B71)
ved/R^/r" ^

x £ H^^^eM^sr^cor6

fl e ®}/r >< (f)

x n ^(^)(X<p(^)-^(^)-l(x,p(T^<p^))7V(^»71)-s|,^
^Per

(choosing representatives of v prime to ;? in r)

=c{G(28,\)^(^)^M/Q(ffi-e(I))}- l E ^oo (^-'Z^-1®/1)
l;6(r/f)x/r>< J

x ^ ^ (̂  -)) ̂ , (a) CM ((2 8) -1 va, ̂ -e)
a e SBj/r x (f)
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x n ^M^M-NW-^^a^N^1)-8^
^eS'

=c{G(28, ^^O^M/QCf^"^)}"1 Z ^(zO-1^^-1^-1)
v<=(f^x/vx J

x ^ ^((^-^^^^(z^^^eM^a)-1^^-6)
aev ®}/r x (f)

x n ^^H^M-NWr'^^^N^a^1)-8^
<Per

use the fact: XQ (̂ o) = XQ (̂ ))

= c {G (2 8, )̂ \ (0 A^M/Q (f fi-6 (I))} -'

x ^ ^?i(z;-1^-1) ^ ^(^^^(^eM^B)-1^^-8)
u 6 (r/f) x / r x J ae v^'j/v x (f)

x n ̂ (^)(x<p(^)-^»71)(x<p(^^))^(^®71)-s|^o
^PeE'

= c { G (2 8, \) ̂  (TnD A^M/Q (f fi-6 (r))} -x

x E I Z ^(^-^.-^^(^eM^B)-1^^^8)
t ;6(r / f )x / rx J a e l;<B/•/r x (f)

x n ^(^(x^^-^wcx^^^))^^®."1)"5.^
^PeS'

(use the fact: (^x r><)=(9r/9r (f):rx/r>< (OX^- (f):rx (f)))

=c(9r :rx){G(28, ^^(^D^M/Qdfi"^0)}"1

x S E S ^(^-^.-^^(^eM^a)-1^^,-6)
ve(t/^x9{x/<3tlx J aevS'j/^W

n ^(^)(x^(^)-^(w-l(x<p(^^))^(^®71))-s|^o
^per

=(9{x:rx)Clc{G(28,^)^(^)^M/Q(ffi-e(I))}- l

x [ OMeM^S)-1^-6^)^^)!^^^^^^
JMA

x
JMA

where Ci 7^0 is a suitable constant, 0=]"JOy(Xy) is a Schwartz function such that Oy is a
v

characteristic function of 9^ if v is outside /?00, <D^ (^) = x^^o + 2d^ exp (- 2 n 9lc/p (x^)) at
each infinite place a, at 2V' it is a characteristic function of ̂  times ^-1 and at Qe2V,
it is (/^(^-^(^"^^(CTQXy)). We have chosen the multiplicative Haar measure

- rd " Xf so that for any open compact subgroup U of ^x , d " x^O^ :U)~1 and at
Ju

each infinite place a, we take d x x^ = \ x^ \ ~ 2 \ dXy A dx^ \. Let

L^LKD^xe^lxEEl modf^}.
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In fact, decomposing M^ = U,, „ Mx v-^ b] 1 UM ,̂ (where v runs over a representative
set for (r/f)"^/^), we see

o^eM^sr^-'xi^ooMA^^o
JMA

=vol(U) | ^eM^a)-1®,-6^)^)!^^;^,,
JMA/U

=vol(U)( ^ ^(^^eM^S)-1^-6^)^^)!^^^^!,^
JM" M i / U ^ g M "

^VOlO.J)^^-^00)^-!)^-^00^-!)^

r.^

x f ^ ^(^"^^^Je^^^-^.-^^^Jlx,^^^!,^
JM^/SB^O^M"

=vol(U)G(^) S Z S
^)e(r/ f)x9^'< /WX ^ ^eDB^/M'^f)

X^^Z^-^^^-^eMaiS)-1^-^,)?,^)^^^-!^-!)^^-1®;!)-^,^

=VOI(U)G(^) E E E
t>6(l / f)x9^x /MX } S6''»}/MX(f)

n ^ (o (x, (^) - A^(^)- 1 (^ (^ ̂ )
^62:'

xeM^S)-1^-^,)^^,)^^^-1®/1)^^!,-1®/1))-^,^

where <R'<(f)= {ye ((f |y= 1 mod f } and

G(^)=n f exp^Trlx.J2))^!2^''^-1)!^^!
06EJc x

=(27cy-(st+mof+d)^F(^+mo^+^).

Thus c,=vol(U(f))- lG(0)- l=(p(f) ^Try-^^r^mo^+rf)}-1 for the Euler func-
tion (p of M. On the other hand, we see

| ^We^lSr^^x^^^x^sd^
JMA

= ^w^^r^rxwx^x^d-x^ f ̂ w^x^x^d- x,
•^l y ^ l J M y
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Note that

f ^we^isr^r^^x^d-x,
JMi

= ̂  ^(^)|^|f [ eM^S)-1^-8^^)^
O^a J^

and if ^ is non-trivial on M^, writing fl6 for the conductor of ^, we have

f ^(^(x^S)-1)^^ ^ - i , 0 ;—^. , , if "^"^J^x [ (p (fl6) ^i (TCT^) G (2 8, ?ii), if a = - 67,

and if ^i is trivial,

f ^(x)eM(xI^a(25)- l)^xx=-^w{x^(T^a)-^(^
JM^ Y V ( ^ — 1

This shows that

^i f ^WeM^S)-1^-^!)^^)!^!!^^!,^JMA
= { n (i - ̂  w) (i - ̂  w)} ̂  (o, ^)

< P 6 £

xf^M/Q?£^~ e)^(^)G(25,^) if ^>0,
I ^M/Q^W^KI-^W) if ^0.

Thus we have

XAp*

(4-12^) —IT2^==(9^x : r><)c( l-x*(£)){ n (i-W))(i-^*(r))}^(o,^
&2pu <Pei;

where

(_l)^^rF(mo^+^)
C = W* (A) — . — — — — — — — — — — — — —v/^|Dp|Im(8)dQ^^2.

with

^W={ n W(<P))G(28; ̂ )}^(^)^F/Q(Ie)^M/Q(£-e(I))G(25; ̂ ).
^eS
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This also shows that

(4.12&) (l-X(fi))[ ^(p*
^Goo

=^F/Q(I£)^M/Q(£-e(I))G(28, ̂ )^«)(1-^*(£)) f (̂p.
JGOO

We now treat the case of split primes. We fix a split prime I = flfi0 prime to p . Let
us write f^8^ and put tn^]"!^^. According to (3.1), we define

^{x,y)=P^^x,\^y)= ^ ^a,y)e^-ax^d^^).
a e (r/f)

Write the conductor of ^ as fl^fl^' and &=Q€IQCS" (O^^s' and O^^s"). Thus
s == s'. Let G^ = QM (C^00) and identify M/fl8' x ^/fl6" with (r/f) x (r/f") for f = I8' and
f"=I8". For each function ^ on G^ (£), we have associated a function ^ on T by

^ (̂ , ̂ ) = 4 ((^- y) ["71]) for ^- y) ̂  ̂  x ̂  x ̂ c x ̂
([), (x, ^) == 0 outside 9^ x 9^ x ^sc x ^c^ if s' s" ̂  0,

^y)=^(x,y,)[U^]) for (x, ̂ e^ x ̂ x x ̂  x ̂  if s^e^O.

(If £'=0, then c'^O and thus £= 1). As already chosen, we have dp =(28)^. If ^ is a
character X-, then

and

4,=X(U,)-1 ^~i1 on 9^ x ̂  x 91^ x ̂

î1 (Xp, Xfi, ̂ ) = ̂ x (^p^) ̂ 1 (^0 ̂ 1 (^a).

Then by (3.2 a)

P ̂ 0 (^) = X (U,) -x ̂ -1 (^^ ̂  ̂ ) ̂ c (^c) P, ̂  (^).

We now put ^° (^P) if ^P e S and ^° (Q) = 0 otherwise. Put

9^.=^°+^ pj ,p-e(<p) pj fl-e(fi)

^ P e E £19

^-{n^'^^s;^)}
< P 6 £

and

w^)=^- l«){ n ^(^-e^)G(25; ^)}.
^PeE
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Note that for any U=U,, PV(U)= {M^ x fi-6^ }@<3{^ where

Ms = n M^ 2ind ^c = ̂ c x n 'V
^eS <pe£

This shows that n (a) = (2 8) ~1 a^ mod 8^1 and n' (a) = ̂ c x (^ mod fl^). First suppose
that s" > 0. Then we have, for 2V = { Q e Z | e (Q) = 0}

P^^)^-wo£-2d(l-c)=H.(^)^(^o+^®71) [] ^(^(X^^-^W-1^^^)),
<P6£'

where we consider ^ as a character defined modulo £ Y[ ^°° Y[ ^co and thus
<Pe£" ^eSc

X^0-'8^®,-1) is well defined although ^0+£^®,0-1 may have a factor ̂  for ^eS'
and n ̂  — 1. Thus we have

?CAp
JG (-l)wo t7^d^F(wo^+^)/ yl 1 / 1 \ ^00 /CV^ X X \ /''\ \ r '-

(4.14.) .^^-(^ :r)W^^Th^(8?——

x [(\--k (s))(i- ?.(£')) n (I-M^KI-^W)}^,^.
VeE

Suppose that e" = 0. Then we have, for Z' = { Q e E | e (Q) = 0}

P^(d)a~m^~2d{l~c)=wWk(vfeo+ta'S^)'kQc(a)

x ft ^(^')Wlv)-NW^V5va^
Ve^'

where we consider A, is a character modulo G Y[ ^p'30 Y[ ^p00. Thus we have
<P 6 S" <(! 6 £c

f 5Crf(p
Jo (-l)'"ot7t<'^F(wo?+^)

(4-14^) Q^'^^^^^Tir^imCS)^^
x(l -\(&)) ]-[ (l-^^QXl-^^))}!,^.^).

<P6S

We now compute X,fi?(p* for characters ^ of conductor dividing ^ p " . In this
JOoo ((£'•)

case, (p'j is given as follows:

^ (x, y) = <|> ((x, 3.) [U,-1]) for (x, y) e 91̂  x 9^ x (R^ x (R^,

(p;. (^, y) = 0 outside 9^ x ̂  x <H^ x <R^,

4;.(^,^)=4((Xp,>')[U71]) for (x,J')e^xx(Rsx^x^ if e"=0,

());. (x, ^) = 0 outside ^ x <Rflx x ^scx ^s^ if e" ̂  0.
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First suppose that s'^O. When (|)==X, we write the conductor of X as
]~[ ^P^n ^ew' We writefl for the prime factor of g. Then we put

^ \ p f i | i
^{fl^^X)}, ^{fi^CC^O}, 2y={^eS |^Op)=0} and S^S-S7. Then
we see from (3.2 A), writing 5^ for the characteristic function of 9^ for each prime Q
ofM,

P^.*(a)=X(U71)^-l(^^){ ?! N(^-e^)G(28,^)^l(^)
<per'

x n ̂ ^^M^a^-N^r^^a^)}
^el.'

x^(fl-ce(sc))G(28,^c)^-cl(^c){ ^ ^l(^-c£^)
-QeSi

x n ^l(^£^)^(^e^)(x^(^£^)-^(Q)-lx^(^-£^))}
-QeS'i

if ^eU,^-6^^-^^ n ^"''^^ Outside U.fl-8^^-6'^ n ^""'^ P<|);*(^)=0
^62; ^62

and if aS]~1 is divisible by -Q for one of primes Q with either ^(Q)>0 or Q=fi, then
P(|);*(a)=0, where

s^^CTfic^^^^u.fl-^^6-^^ n ^-e^
^6£

and ^' (Q) = e (Q) if ^ (G) > 0, and ^' (Q) = 1 if ^ (Q) = 0. We also put

w*0)=^(fl-ce^)G(28,^c)X^-l(t^y^-cl(^-c£){ x n ^(^-e^)G(28;^)}.
«?€£

Then we see

P^^fl-^-^l-^^H;*^)^^^0^^-^®,-1)

n ̂ MW^)-Nw~1^^)
<P€S' >< n, ̂ (^e^)(xa(^£^)-^(G)-lx^(^-£^)).

-QeSi

We then have

f wcp*

(4-1 5^ Q^+2d -(9l • r )H;(x)^/^JI^l(8)dQ^+2d

x (1 - X (£-)) (1 - ^* (fi-)) { n (1 - ̂  (^PO) (1 - ̂  W) } L (0, ^).
<P6E
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Now suppose that £"=0. The computation is essentially same as above. We only
stat the result. Put

w*(?l)=^(£-ce(fic))G(28, ^c)^-l(T^y^c(^c){ n W-^)G(28; ̂ )}.
^PeS

We then have

f XAp*

(4.15.) !G^ , ^ffl^r-).*^)^1^71^-^0^^
^o£+2d ^/|Dp| In^Qy^

x (i - ̂  (a-)) { n (i - ̂  w) (i - ̂ * w)} L (o, ^).
^eS

Note that if the conductor of ^ divides £/?00, then the conductor of ' k ° c divides C^00

and if the infinity type of 'k is given by WoS^ ^ ^a(l -c). Thus we can construct
ae^

rf(p* out of the CM-type Sc. Since L(0, K)=L(0,'k°c), comparing (4.14^,6) with
(4.15^, c) we have

(4.16) (l-Mfl))-1^) f ^cp^l-^*^))-1 f (?i°c)^(p*,
Jooo (<£) JGoo (G')

where ^a)=^(fl-e(s))G(28,^)^(^+e(fi)). The above formula is the formula
relating (p and (p* in Theorem 4.2, when f is a power of a split prime fl. The case of
inert or ramified prime power is proven as (4.12&). The general case follows from
these prime power case as already explained. By (4.10) and (4.14^,^), we obtain
Theorem 4.1. The first part of Theorem 4.2 follows from (4.12 a) and (4.15^,^).

5. Functional equation of the Katz p-adic L-function

In this section, we prove Theorem II of the introduction. Namely we study the
functional equation of Eisenstein series and the Katz ;?-adic L-functions. According to
[K4, 3.3], we construct a dual (X\ ̂ , f)^ out of a test object (X, 'k, i)^ as follows. Here
/ is a YQO (N/?°°)-level structure for N prime to p, and X- is a c-polarization for an ideal c
prime to N^00. The c~1-polarization ^ is given by the following commutative diagram:

^: (X7 ^x^.c-1

I I J^®id

X =XOO,c®,c~1

Take a positive integer No prime to p in N and consider ^Np00®^"1. which is the
maximal subgroup of Hjvo^00®8"1 killed ̂  Nj?00; i.e.

^Np-O^'^Hom^ttF^-^xN^r^^op-^^"1).
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Then ^^p00®^1 -^X is a closed immersion. We define ^^p00®^1 -^ by the
commutative diagram:

f: HN^®8~1 -^ X^
1l ^

HNp-^z^'^c-^X®^.

Now suppose that A is an algebra over the localization Z^ of Z at prime ideal p. Then
cOOzA. Given a nowhere vanishing differential o/x, we construct co^ by the following
commutative diagram:

Lie(XO ^ Q-^zA
^ I I

Lie(X®,c) ^(rg^A)

I^X^c'V^-^c^zA

We apply this construction to the Tate HBAV (Tate,,^), ̂  G),,,, ^). Then it is
obvious by construction (see §1.7) that

(5.1) (Tate,,, (q\ ̂  co^, i^J = (Tate,,, (q\ ̂  o^, i^.

Since the correspondence (X, X, Oi-^X', ^, ;•') gives an anti-equivalence of the category
of test objects, we have an involution

/^/t: V^-^A^V^NiA)

and

9^(c-1, roo(N^°°); A)^(c, roo(N^°°); A)

given by/t(X, ̂  i)=f(^\ ̂ , 0 and/t(X, ̂  co, ^^^(X^ ^, < f).
Let (|>: {r; x r; x (r/f) x (r/f)} -^ 0 be a continuous function with ^ (ex, &y) = ̂  (x, y)

for all eer" and put as in (3.1)

^(x,y,a,b)=P^^(x;\y,a,b)

^(x\ y\ a', b')={P^P^(x, y, a, b-1)}^-1, y\ a\ b1)

and we write E (((>; c) for the Eisenstein series whose ^-expansion at (Tate,,, (q\ 'k^, i^)
is given as

N<<an Z Z ^^b)sgn(N(a))N(arl^^z)}.
O^eab (a, f c ) e ( a x b ) / r x , a b = ^

4eSERIE - TOME 26 - 1993 - N° 2



ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 227

Then by (5.1), we see

(5.2) E (̂ ; c-1)' ((Tate., b (q), ̂ , a^, ;ean))

=E(<(), C^KCrateb,,^), .̂n. ®can. ^an))

=^(b){ S S (|)°(^) IA^I-^Z)}
0<^ea6 (a, (>) e (6 xa)/i x , at=S

^(c-1^ S eF(^z)x ^ (j)0'^,^^^-1)!^^)!-1}
O^Seab (a, b) e (a x 6)/t'<, a(>=S

=^(c-l)E*($;c),

where ^'(a, b)=^°(b, a) and

(5.3 a) ^^^(DP^GrSx-1, -^)-l,a)g^(x^)-l.

Now we compute the dual of (X(U), ?.(U), Z'(U))/B. We see easily that
X(ll)t=X(U)®,c(UU°)-l=X(cU-'') because ^.(U) is a c(UU'')~ ̂ polarization. By the
commutative diagram:

^W'- (X(uyy -^x(cu-c)®,c- luuc

|] ^,».(u)®id

x (ii) = x (ii)®, (c mr) -' ®, c -' mi',
we know that 'k (U)' = A, (c U""'). Write f = si, so that s consists of split primes in M and i
consists of ramified or inert primes in M. To compute i(U)', we see the diagram:

;(uy: ^2poo®9-1 ^ x^u-^tf2/'00]

û . 2 p,o®,&-1®. c^-(X (U)®, c) [f2/?"].

Then

;(U)': Fp/&p-1 x (s2)*/!* x (i2)*/!^^, x', x")^(26x^ 26x', d^eX^U-').

Thus
((uy^dr'')

and
'(X(U), K(U), iOO/B^X^U-'), ̂ (cU-'), ((cU-^/B.

By using this formula, we now compute

f ^<p= Y ̂  ̂ '((XW), MdI/O, i(cU^)
jGo, (c) J

=^Ar(c,)E*^,, ^-^(X^U/Q, ^(cll/^ ((CU/^/B.
J
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Let (^ (resp. (()}) be the function ^ (resp. (()}) corresponding 'k [resp. ^^P^c)"1^"1]
relative to {Uj} (resp. { c U^}). We regard sometimes that the prime to ^-part of these
functions are defined on M, having value 0 outside 91,. At each split prime ideal I = ££''
in f, by definition, the fi-part ^ ^ of K (Uj) ̂  is given by

i , ^ f^OO on 9^,<p, a(>")=^ £ ?

[ 0 outside 91 .̂

The fl^part ^^ ^ of K (Uj) ̂  is given by, when s" > 0,

^M-^100 on^[ 0 outside 91 .̂

and, when £"=0, ^j,QCW=^(x).
On the other hand, we have for the fl^part

i^^-f^M on ̂
V?, 0 I.A../ —— \J [0 outside 9^c.

The fi-part '̂a of ^(cU/'•)()))" is given by, when e">0.

r.M '̂̂  on(Rfi'•' (.0 outside 9^,

and when e"=0, <t»,*'s(x)=^(x).
By the Fourier inversion formula, we see

^ c W =N(&e-e ̂ ) ̂  (CT ̂ e (cc)) G (2 8, ^^1) ̂  (^ -e a),

^flc(x)=^(-l)^%c(x).

When I is inert or ramified, we see

JL { L\ f ^"i 1 (fl) it (°' ^)e ''i'" x in
^•^'^'^ 0 otherwise,

and

i^ A^J'^W if ( a^ )e{0}xr , x xr„
17 '1 ( 0 otherwise,

and

^^ M=f^(6) if ("^)e{0}xtIX ,
17 '1 [ 0 otherwise.
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This shows that (j)^ = ̂  (- 1) N (I8) ̂ \. We put

^V W = ̂  (^ (£c)) <^ (^) ̂ c (^c) ^ I= ̂ c (^ + ̂ \
^[ = (|) î if I is inert or ramified in M,

^" w = ̂  (c-1 u? n ̂  (x!) = ̂ (o2 ̂  (c) ̂ (",) -x ̂  (H,- 1) n ̂ T ̂ i)-
We now have

(5.4) f ?^(p=^ E(^,; c.yftXCcU,-0), ^(cU;-), ^(cU,-^)
JGoo (C) J

= EA^(C,)E*(^, c^KXCcUp, ^(cU;0), ^(c^-^).
j

=c^(c)- l^(c- l)^E*(^rc71)(X(cU7c), McU,-̂  ^CU/^/B)
7

=C91F/Q(C)-^(C-1) ]-[ ^(^^-^OTM/Q^^-6) [ ^^*,
fl I a- ^Goo (ec)

where

^ n ^M/Q(fl£-e(fic))^(^-e(flc))G(28, ^ l)^(-l)^^(-l)^F/Q(I£(o)•
f l | 5 I | i

We define the standard measure n on G^ ((£) by

(5.5) f (^-(Kn^n^f <^-
JGoo(G) S I S S i t JGoo(C)

Then we have

THEOREM 5 . 1 . — Let M be a CM quadratic extension ofF and £ be a p-adic CM-type
of M. Let £ be an integral ideal prime to p in M. We decompose C^SSc1 as m

(4.3). We put

^pW=[ n 9W^-e(<p))G(28; ^)},
«P6£

w'^)= n G((25y, ^-1) n G(2§, -̂c1) n G((25y, ^-1).
a 131 fi I Sc 1 1 1

Then there exist a (unique) measure [i on G^ (C) with values in 0 such that

\ td[i
JG re) (-l^n^p^mot+d)/<: /:/,\ ^Goo^) _rwx.^x\\\7 /^ \ ^ ^ u /

(S-60) ^^TT^-^ •'• ^.^^1-^^(8)^——..

x n (i-Ms^no-Mr^no-^owm^
f i | C p e £ < lBe£
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for all Hecke characters ^ modulo &p°° such that

^o^oo)^0^^ for mo>0

and

d= ^ d^a with d^O
C T 6 2

and

f Wn
JGoo (C)(5.6b) —0^)

Qwo2+2d

(-l)^^??^^^)

• '̂'̂ limOTy'"^^ Mc) ^^ID
x { n (i-^w) n o-^(fl)) n Q-^W)) n o-^*^0))}^^^*)

fi|3- .213-c t ^PeE <PeE

/or fl// Hecke characters X modulo (£7?°° ^MC/! ^^^

^o^J^cT"0^^"0"1^1"^ /or mo>0

a^rf

^= S ̂  w^ ^o^o-
0 6 £

Proof. — The formula (5.6 a) follows from Theorem 4.1 and the definition of n. We
prove (5.6 b). By Theorem 4.2 and (4.12 a), (4.15 <a, b) and (5.4), we see that

JG ro ^ (-l)mot7^d^F(wor+^)^oo (c) = (9?x • r x ̂  _ _ _ WQ^+2d • ^ / [ ^ [ i^5yiQ^+2 d

x{^( l -^*( f i c ) ) n o-^(^))
£ l a- a l ̂ t

x n (I-MD) n (i-^w))}^(o^*),
<peE ^PeS

where, for c in (5.4) and w* (^*) in Theorem 4.2,

w^^F/o^r1^-1)^*^*) n ^ynw)n ^(^r6^)
fi|3' i|t fi lg-

=^F/Q(C)-^(C-1) n ^(^-^^(fl-^-6)
•e ig-
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x n (^nw)w^*) n ^(£-ce(fl))G(28,^c)?l^l(^)^(^)
•C|8r I | t f i l S

X^^F/Q(^£(I))^(^)G(2§;^)
I j t

=^F/Q(C)-1^(C-1)W,(^) n M^)
•C|3r

x n ^(o{ n ^(tny^))^^^-8)}
l i t f i |g .

x { ]-[ G (2 8, ^-1) ̂ -1 (my ̂ c (^c)}
•c la-

x n ̂ F/Q (r6 (I)) ̂ 1-^O G (2 8; ^-1)}
l i t

=W^*)^/Q(c)-lMc)-lW/(X).

We now deal with complex functional equations to show that the value of the right hand
side of (5.6 b) is equal to that of (5.6 a), which finishes the proof of Theorem II. As a
differental idele of M, we take d^ such that d^ = (—28)q i fq divides C^O&M and
d^ = 1 outside &p Fl ^M ^or ^e absolute different Q^ of M. We write D^ for the
discriminant of M/Q. Then as is well known (e. g. [W]), we have

(5.7^) G^)L(^)

=K^(&)^(-l)( |DM|^(C))< l/2 )-SG^_l(l-^)L(l-^(^)- l),

where (i)=^=^(^M)c&M ^ ̂ e conductor of ^ is C= J^[ fl6^, (ii) ^" is the unitarization
Q

of ,̂, L^. ^/|^|, (iii) K= I"! Ky, Ky is defined as follows: for each finite place v with
v

^(z?)=0, Ky= 1, and for each finite place v with e(v)>0

K = ^\;1'2 f X-^eM,,^-1^-e(v) | - l /2 ^ - l ^ Y ^ p ^-1

"i; |v W^My^t;
J^J^

for the additive Haar measure dx with volume 1 on 9ly. For an infinite place v, write
'ku,(x)=x~Ax~B\x\A+B with AB=0 and A, B^O. Then, we have K^^® and
G.oo^)= Ft G^)for

y e oo

G^ (^) = (2 Ti)1-(S+(A4-B)/2) F (^ + (A + B)/2).

Since the choice of the additive character in [W] is ep(-.x), the formula (5.7a) differs
from the one given in [W] by this sign. If the infinity type of X* is m^ Z + d(\ - c), then
the infinity type of 'k is

mo2:+rf /(l-c)=(2-mo)2;+(rf+(mo-l)S)(l-c)
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and thus the integers A and B of ^*u(x)=N(x)mol2'k* at a el given by A=0 and
B = wo + 2 <,. Then L (0, 7.*) = L(wo/2, X*") and

'̂I0)^")'-'"0--'̂ ^^).

Note that L (0, )i) = L (1 - (wo/2), (?i*") -1). Thus we have

(5.7b) n''rp(mot+d)L(0, X*)

=KX*"(Z))^(-l)(|DM|^(C))<l-mo»/22-<'(27I)-'+mo+''^F(^+rf)L(0,?l),

=K^"(&)^(-l)(|D^,|JV(C))<l-mo»/22<mo-l)<^'rF(wo/+^')L(0,^

where C is the conductor of X.

Now we compute K(^°c)"(^(- IMlDj^oy1-'".))^ which is equal to
^"(^(-IHlDMiA^C)/1-'''.))/2:

K (X*»c)*" (b) ̂  (- 1) (| DM | <RM/Q (C))<1 -"•o1/2

=^(-l)^°s+2('9l^(C)-l/2A^(C9M)'"»/2(^»c)^(^(^C))^W
x { n G(^ ^)}(|DM OTM/Q^y1-'"")/2

C|(E

=^(-l)^+2^M/Q(C)-l|DM|l/2(^«c)^(^){ n G(^,^)}.
a|c

Note that G(d^, ̂ )=^(- l)^^^^^, ̂ -1)-1. Thus we know

K^"(^,)^(-1)(|DM|9^M/Q(C))<1-'MO)/2

^o^iDj^^oc^MK n G(^^-1)-1}.
fl I c

Note that 2 8 = ̂ c for the absolute different ̂  of M. Thus, the prime-to-C ̂  part of
the ideal (2 8) is c and we see

(^^CSM^S)^*^)-^)-''^-^1-^

= ̂  (c) 94/Q (c) Im (2 8) - ""0s r "o2 (- 1)''

= r'"o^ (c) <)ft^ (c) | DM | -1/2 Im (2 8)'1-"o)£ (- l/,

since Im (2 8)2 = ̂ /Q (̂ M c)1^ D^ |1/2 ̂ ^(c). This shows

K^ocTO^-lKlDj^/QO^1-'""'/2

= ?. (c) (^»c)^ ((- 2 8) -1 ̂ ) 9lp/Q (c)

^(Z^-^^nG^,^-1)-1}.
£ |C
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Note that G (d^, ̂ 1) = ̂  ((- 2 8) d^) G ((- 2 5), ̂ ') and hence

(5.7 c) K (X* o c)" (b) ̂  (- 1) (| DM | ̂ /Q (C)y1 -'""^

=^(091(0 Im (ISy1-"^ f[ G(-28, ?^1)-1}.
fl|C

Since (- lyo'^- lyo', we know from Theorem 5.1 that

f Hdv.
•^Goo (c)•^o(c) -x. ^(-l)'»ot"'''rFK>r+^)

^^r^——^————————-W,,(?L*){nG(-25,^-1)-1}
/In I T»r,<'X^'r»mnZ+2d' p - ' l 1 1 v ' s / >^o£+2d' ^/|DF|Im(5)'i'Q^+2-^

x { n (l-^(fi)) n (l-^W)
S I Be 1 C I »

x n (i-w)) n (i-^w))}^^,?.)
'PeS ^BeZ

^^ ^^r,«^^
^|DF|Im(8)d'%o£+2d'

x { n (i-^w) n (i-^(^))
•2 1 8 ' a I Set

x n (i-^w)) n (i-^*m)}^(o,?i).
pe5; ^eE

This conclude the proof of Theorem II.

6. Theta measures attached to CM-fields

In this section, we shall construct the theta measure of CM-type (M, Z) having values
in the space of nearly ordinary (7?-adic) modular forms and then study the congruence
module Co (v|/) attached to \|/. We suppose the ordinarily conditions (0.1) and (0.2 a, b)
for (p, M,S). We shall use the same notation introduced in [HI, § 1] for the space of
classical and ;?-adic Hilbert modular forms. Let 1̂  = Z U S^ be the set of all embeddings
of M into Q. Let ^ be a Hecke character of M^/M" with values in C" whose infinity
type is given by fk(x^)=x'^ for r|=^ r^aeZ[IJ and whose conductor is

<r

(^(T^G^. Here we use the notation introduced in section 4 and thus p6 denotes the
product [] ^eop)- we suppose that r|^r^, for all aeS. Since ^ is invariant

^ 6 E u Sc

under M", we know that r[+r[c=mot^ for an integer m^ and ^= Z (J- Let

C T 6 l M

Res: Z [IM] -> Z [I] be the restriction map and define v e Z [I] and n e Z [I] by

(6.1) v= ^ r|,Res(a) ^ 7 2 = ^ (r|,-r|,p- l)Res(a).
CT 6 EC CT 6 E
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Then we see easily that n + 2 v = (m^ - 1) t for t = ̂  a. Let X-: M^ /Mx -» Q^ be the j9-
<r e I

adic avatar introduced in section 0. For each idele y e F^, we define a formal (7-
expansion coefficient sip(y, 9(X))eQp (cf. [H 1, § 1] by

! ^ X,(x), (f .yr is an integral ideal,
(6 .2) a^(r ,0(^) )= ^=^£=1

0 otherwise,

and^,(y,QW)=0
where x runs over all integral ideles in M^ modulo U^ c;e;c) ̂ M e M ^ y ^ ^ l } such that
(i) x9i is integral, (ii) 9^M^F(x)=y an(! (m) ̂ ^ 1 fo1' prime ideal Q in S and in C. We
define a subset R(j, £) of M^ by the condition (i)-(iii) as above. Note that
R(y, CO/U^^ is a finite set. We define a pair of weight (fe, w) by k=n-\-2t and
w = ^ — z \ We also define a pair of finite order characters xl / iF^/F^ -^Q" and
^r^Q-by

vt/(x)=x(x)^(x)|x|S;o for xeF,:

and

^OOy^OO"1 for ^er;,

where we have identified Xp with 91^= !"[ ^ an<^ X^^M/F/q) is the quadratic
<P e £c

character associated with the extension M/F by class fied theory. Then we shall prove

THEOREM 6 . 1 . — Let C(k) be the conductor of\ and D be the relative discriminant of
M/F. Suppose (0.1) and (0.2 a, b). Then there exists a unique modular form Q(X) in
Mfc^(9^M/F(C(^))D/?,\|/, \|/; C) whose q-expansion coefficients in the sense of [HI,
77?. 1.1] are given by a (y, 9(X)). Moreover the automorphic representation o/GL^F^)
spanned by the right translations ofQ(k) has conductor 91̂ ? (C (^)) D.

Proof. — Let KQ be the unitarization of ,̂, i.e., ^(.x)^^)!.^!^2. Then it is well
known (e. g. [Y, Th. 2], [G]) that we have a primitive modular form © (^o) in
Sfe.fc/iC^M/F^^)^ lc^ ^5 C) if ^ is not of the form H^M/F fo1' a Hecke character (i
of FA/F" and otherwise in M^k/i^u/FW^. ̂  ̂  c)- The Fourier expansion of
© (X-o) is given by

^^((^ x}}^ S a^yd^Q^^y^e^i^yJ^^x),
VV0 I / / O ^ ^ e F

^(^©(^-^F/Q^r)-^2 S ^(»)-
»®P=yr

where ® runs over all integral ideals such that <S<Sf)=yx, ^ is the ideal character
corresponding to ^o in the following way: ̂  (Q) = ̂ o (rn^) for all prime ideal Q outside
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C(X) (^ (93) =0 if S3 has a non-trivial common divisor with C(A-)). First suppose that

(6.3) C (X) ^ /?rw^? to all ̂  in ̂ c.

Then we put, for m = m^ — 1,

9' (5i) (x) = | d\-^-l @ (^o) (x) | det (x) l^2 e 9M,,, (^IM/F (C (X)) D, id, v|/; C).

In fact, according to the formula for the weight of ©(^)® 11^/2 in [H 1, § 7. E, p. 369],
the weight w of 9" (k) is given by (k— mt)/2 = t— v. Thus we see

e'(^ ^^I^IA-^-^^IA-^Q^O)^ ^))

and hence the coefficient of 9'(X) of ep(i?,y^)ep(!,x) is given by

|^|;('"/2)-l|^|;-»/2fl(^^Q(^))(^Jk/2

=MA|^F|A(m/2)-l(W^9)-l/2 E ^(SX^oo)^
®»P = ̂ y3

-I^IA^F/QC^S)'"^ Z ^(SX^J^2-^2-1
1B9}1'=S}'»

=MA E ^(®)(^j-"
SSP = ̂

=|^|A{(^^)l;}(^oo)~v Z ^(®){(^^)-u}.
SBSBP = ̂ ya

Therefore we know from [H2, Prop. 4.1] (with the notation in [HI]) that
aCv,y(^))= ^ ^(S)^-'} and hence by [HI, (1.3Z?)] which tells us:

<B<BP=yr

a^(^f)=a(^,f){r}(^)- l ; ,wehavea,^,e /(X))= ^ ^(S)^-'. Modifying 9' (k)
»®P=yr

as in [H 1, § 5, Lemma 5.3, (iii)] to exclude the coefficients at S(£ and writing the result
as 9 (^), we have

a^,9(^))= ^ ^(x^W)y,\

where x^^xx^, and x runs over a representave set of the set of ideles satisfying (i)-
(iii) of (6.2) modulo U^^). Note that x^,=yp under the identification: Xp=^ and
that ^(x)='k(Xf)Xp1}. Especially, if x^=l and .xx^^, then ^(Jc)=^*(x9?)^y since
v = ^ T|̂  Res (a). Therefore we know that

06 EC

ap(^9(^))= ^ ^(x^ai)^-^ ^ ^^),
xJcc=y ^ e R ( y , GVUCpG^)
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which shows the desired assertion when (6.3) is satisfied. We prove the general case of
the theorem (i.e. the case where C(k) has common factor with 2^) after proving the
following p-adic version of Theorem 6.1.

THEOREM 6.2. — Let 0 be as in section 4. Then, there is a unique ^-linear measure
9: £ (G^ (£) ;0) -. S" •ord (̂ IM/F (K) D; 0) which is given by

( E ^ 00, ?/ ^ is integral,
2p (V , 9 (()))) = ̂  e R (y, (£)/U (pC^)

^ 0, otherwise,

for each function ()) e S (G^ ((£); 0), w/^r^ (|) is regarded as a function on M^ via the
natural projection map which sends xs^ for each prime ideal q outside £ to the class of the
ideal q.

Proof. — Keeping the assumption that X, is unramified at S0, we now treat
imprimitive 'k. Write the conductor of X as C(7/)==(r ]~] ^p60^, where (T is a divisor

<Pe£

ofCL Then, again modifying as in [HI, Lemma 5.3, (iii)] 6' (X,) in the proof of
Theorem 6.1 of lever D^/F (c (T)). we stin have 9 W of level N^00 given as in
Theorem 6.1 for N=D9flM/F?)• ^e have a natural exact sequence

1 ̂  9^c(=r;) ̂  G, ((£) ̂  Z((£) -^ 1,

where Z((£)= lim QM^ n ^a)' Let Q be the completion of Qp under | \p and
^7- <P6£

consider the subspace A of S(G^((£); Q) spanned by characters X for all (primitive or
imprimitive) Hecke characters X unramified at S0. We claim that

(6.4) A is dense in S (G^ (($:); 0).

This is obvious because A contains any finite order character factoring through Z((£)
and any character of the form x\-^x~^ for r|eZ[lM] with r\-^-r\cEZt^ (cf. [H3,
Lemma 3.9]). Since the Q-linear map 9 is well defined on A by Theorem 1 and is
bounded with measure norm 1, 9 naturally extends to £(G^(K);0) by continuity,
and the extended measure still has the given ^-expansion. By [HI, (2.2&)], we see
9 (X) | T (m^) = ̂  (in<p) m^ 9 (k) for rn^ e Xp ̂  9^c- This shows that 9 has values in the nearly
ordinary space. This finishes the proof.

Proof of Theorem 6.1 in the general case. — We now prove the complex case of
Theorem 6.2. Namely we show 9 (k) exists as a complex modular form even if C (X) is
not prime to Z0. We already know that 6(k) is meaningful as a /?-adic nearly ordinary
form even when (6.3) is not satisfied. If n ̂  9, it is well known that any nearly
ordinary common eigenform of T(OT^) for all prime q is classical ([H3, Cor. 2.5], [HI,
Cor. 3.3]). This shows the desired assertion in the case of n^O. There is a more
general argument which is valid without assuming n^O and without using /?-adic
theory. Let n=(x)^n^ be the automorphic representation generated by
€)(^-o)®| lA^2? which always exists. Let V(T^) denote the representation space of
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Tiq. For each prime factor p of p in F, by the ordinary assumption (0.1), p splits into a
product of two primes: p=<tp^c in M, i.e. ̂ eS and ^eS^. Then the local representa-
tion 7ip=7T(^<p, ^<pc) is a principal representation, which can be realized on the function
space B = B (^<p, ^<pc) consisting of smooth functions ^ on GL^ (F^) such that

(|)(( ) ^)=|^|p^<p(^)^(^)(|)(x) for all upper triangular matrices (here GL^Fp)

acts on B by right translation). Writing C(T)=(£ ]~[ ^e(^, let 5= max (^QP), ^OP'))
^ P I p

and define, for p = F 0 ̂

U=^ )eGL2(r,,)|cep5 and ^=^=1 mod p6}.
\\c d } J

Then we define a function 0 on GL^ (Fp) by

0(^)= HpVO?S,c(^), if x = { _ _\u for M G U ,

0, otherwise.

Then OeB and 0|T(^)(x)= ^ ofxf^ ^^^(^O^). Thus in V(7i,),
rerp/P \ \ 0 I//

there is a non-zero vector z^ which is an eigen vector of T(Ti5p) with eigenvalue ^(TCT?).
Outside p, it is well known that there is a unique (up to constant factors) new vector Vy
in V (Ttq) satisfying v^ | T (q) = a^ (rnq, 9 (^)) ^^. Especially, if n^ is spherical, z?q is the unique
spherical vector. Thus the automorphic form corresponding to ®q^q must be a non-
zero constant multiple of 9(X) because of the duality theorem [HI, Th. 2.2], which
finishes the proof.

Let N^^M/F^)0 ^d S^^N; 0) be the space of 0-integral nearly ordinary ^-adic
modular forms introduced in [H 1, § 3, after Cor. 3.], where it is written as S^^CN). By
Theorem 6.2, we have an 0-linear map 9: S (G^ ((£); 0) -> S"-0^ (N; 0), which induces

(6.5) 9: S (G^ ((£); K/0) ̂  S"-0^ (N; K/0) = S"-0^ (N; 0)®o K/0.

We now want to dermine the kernel of the above map. Write M*=Homo(M, 0) for
any 0-module M, and let ^•^(N; 0) be the j9-adic nearly ordinary (cuspidal) Hecke
algebra introduced in [H 3] and [H 1, § 3]. Then it is known that

(6.6^) S"-0^ (N; 0)* ̂  h^ (N; 0) canonically ([H 1, Th. 3.1]).

It is taulogical that

(6.6 b) S (G^ (£); 0)* ̂  0 [[G^ (£)]] as topological algebras,

where on the left-hand side, the ring structure is given by the convolution product of
^-adic measures. Thus 9 induces a morphism by duality

9*: h^N^^OttG, (£)]].
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Note that S (G^ ((£); 0) is naturally an 0 [[G^ ((£)]]-module via the convolution product
of functions and measures. Then we see easily from the construction of (6.6 a, b) and
9 that

(6. la) 9(<|)[9*(/0)=9((|))|/? for Aeh^^N; 0).

Thus especially 9* is an algebra homomorphism. We have a natural group morphism
i: M^ x Ms, -^ G^ ((£) because G^ ((£) is a quotient of M^. Let T (y) for ^ e r 0 F^ be
the (normalized) Hecke operator introduced in [H 1, § 3] and ( q ) be the operator given
by the right translation f |(q)(x)=f(x^) for each modular form f in [H1,§1] and
prime q outside &p. Then by Theorem 6.2, identifying r^ with 91̂ ,, we conclude

9*(T(M))=i(l,^) for uex^
9* (T (CTp)) = i (1, CTy) for each prime p dividing p,

(6 7M . (CT+^l if q^^C^Sy),
9*(T(q))= ^ [Q] i/ Q ramifies in M/F,

( 9 ;/ q remains prime in M,

e^q^x^W0!)"1^
where [Q] is the image of the prime ideal Q under the Artin symbol and we agree to put
[Q] = 9 in 0 [[G^ (€)]] if Q divides (£.

Now suppose that &c=&. Then complex conjugation c acts naturally on G^ (£). Let
U^^e^l^^l}.

PROPOSITION 6.3. — Suppose that C°=K a/2rf fe^ H te a subgroup of G=Goo(£)
generated by uu''for all u e U^ U (M(££C 0 ̂ sc)' ^^ we /!az;^

Ker (9) == {(|) e £ (G/H; K/0) | ()) ° c = - (|)}.

Proof. - For any split prime q outside (£ and ueV^ U (Mcsc 0 M^c),

a^ (^ ̂  M^, 9 (^))) = (|> (TU^) + ̂  (^ M).

Thus if <|) e Ker (9), then by Cebotarev density theorem, we know that ^ ° c = — <|). Thus
(() (TO(, M) = — (|) (Tiy^ u) = <|) (t3iq M0). Again by Gebotarev density theorem, we see ^ \ u = ̂  \ u"
for all MeU^UC^cHM^), where ^ \ z ( z ) = ̂  ( z z ) for z, z'eG. Thus ^[^-^(l)
for all u e U^ U (9i<££c 0 M^c). Then ()> factors through G/H. The converse assertion
is obvious.

Let N = D^IM/F (^) an^ define a compact group

G=G(N)=Z(N)xr;

for

Z (N) = F,; /F x Up (Np00) F^ ̂  == lim dp (N^).
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The inclusion F^ into M^ induces a group homomorphism of Z(N) into G^((£) with
finite kernel. The identification Xp with 91̂  combined with the natural morphism:
9̂ . -> M^ -> Goo (£) induces another group homomorphism of r^ into G^ ((£). Thus
we have a canonical morphism f:G(N) ->G^(S) with finite kernel and cokernel. In
particular, we can choose the free part W of G^ (K) and W of G so that / induces an
isomorphism of W into W with finite cokernel. We have two characters

r; 9 u ̂  T (u~1) e h"'0^ (N; 0)

and

Z(N)^[q]^^<q>ehM•o ^ d(N;0).

These characters induces a 0 [[G]]-algebra structure on ^•^(N; 0). The use of the
character: u \—> T (u~x) [instead of u \—> T (u)] looks artificial but it is in fact natural because
R 91] for ^ = 1 mod p (£ (^ e M x) is equal to i (^~1, ^~c1) m G^ (£). Let A == 0 [[W]] and
Ao = 0 [[W]]. Then by (6.7), 9* is almost a A-algebra homomorphism (;'. e. 9* becomes
an A-algebra homomorphism if we twist the A-algebra structure of h"-0^ (N; 0) by the
cyclotomic character). It is known [H 3, Th. 2.4] that

(6.8) ^n.ord ̂ ĵ  ̂  ̂  ^orsion free and of finite type as ^.-module.

With the notation of Proposition 6.3, the Q^-dimension of(G/H)®zQ is d =[F:Q],
less than that of G(x)Q because H is of finite index mG~=[xeG\xc=x~l]. Therefore
the Pontryagin dual module Ker(9)* of Ker (9) is pseudo-null as 0 [[G]]-module if F^Q
and is always torsion 0 [[W]]-module. In the following corollary, we do not assume
that £=6:°.

COROLLARY 6.4.- Let Gmr (^) be the torsion part of G^ ((£) and v|/: G^ ((£) -> 0x be
a character. Let \|/^: 0 [[G^ ((T)]] -> 0 [[W]] be the projection induced by \|/, i.e.
v|̂  (^ HO = ̂  (0 ̂ ) e Gtorx W). Let 9* : h"-^ (N; 0) ̂  0 [[G, ((£)]] /or N = ̂  (£) D &^
the dual map of (6.5), w/»c/z ^ ^^ algebra homomorphism. Then ^=vl^°9* ^ surjective
if \|/^v|/°c mod m /or ^ maximal ideal m o/ 0. Without assuming that
\|/^\|/° c mod m, X becomes surjective after localizing at any height one prime P 6/0 [[W]]
?/ F^Q. When F=Q, possibly for all but one height one prime P(), the morphism \
induces a surjection after localization.

Proof. - Applying Proposition 6.3 to (T = £ 0 C0, we have a morphism
\> = Y|,* o e* : h"-0"1 (91M/F (6;/) D; 0) -^ 0 [[W]]. The cokernel of this morphism is given by
the Pontryagin dual ^(G^ ((T); K/0) [\|/] 0 Ker (9), where

^ (G, (67); K/0) [v[/] ={ ̂  e ̂  (G, ((£-); K/0)^ | x = v|/ (x) ̂  for x e G^ ((E-)}.

We see easily that (^c)\x=^\xc)-c. Thus if (|)G^(G^(^); K/0) [\|/] 0 Ker (9),
then ((^^-(^and^ce^ (G^ (C'); K/0) [v|/0 c]. Namely

^(G,((T); K^^in^CG,^); K/0)[^°c]^^(G,(6:');K/0)[^]nKer(9).
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We know that

^ (G, (67); K/0) W U ̂  (G, ((T); K/0) ̂  ° c] == 0 if ^ ̂  ̂  o c mod m.

This shows the assertion because Im (K) ̂  Im (^) by (6.7 ̂ ). For any height one prime
P of 0[[W]], as already seen, ^•=\ mod P satisfies ?ip^p°c if F^Q. When F=Q,
there is at most one height one prime PQ modulo which ?ip==)ip°c holds. In fact, this
prime corresponds to the cyclotomic projection 0 [[W]] -^ 0 [[F]] for F =1+7? Z given
by WI-^WW^^IM/Q^). As long as ?ip^p°c holds, the same proof works well, Ld we
have the surjectivity of \ after localization at P.

We now have an algebra homomorphism

^ h-rd (N; 0) -. Ao = 0 [[W]] (N = 9l̂ p (C) D),

which is generically surjective. Let G^ be the torsion part of G(N). Let \|/o be the
restriction of?i to G,o, Since G=r; xZ(N), we can write G^=^xZ^ for the torsion
parts [i of r^ and Z^, of Z(N). Thus we have two characters \[/ and ^+ such that
^0(^=^(0^) for K ,z )eHXZ^ . Then ^==v|/-10^ and ^^^-i^l
where ^-((M/FVq). There (^, vl/^ is the character of ^ in the sense of [H0!,
§ 5]. As seen in [H 1, § 5], we can decompose h^^N; i^zQ^H^, ̂ ©H as an
algebra direct sum so that H^, v|/) is the maximal quotient on which G^ acts via the
character (i^, v^). Let h^\ ̂ f) be the image of h"^ (N; 0) in H (^+, ^). Suppose
that \|/ as a character of G^(C)/W=G^ has conductor divisible by C. Then ?i is
primitive in the sense of [H 1, Th. 3.4] by theorem 6.1. Let K be the quotient field of
Ap. Then ^ induces a K-algebra decomposition

W.^^i^KeB
so that the first projection coincides with 'k on h^, \|/'). Writing R for
h(v)/W)®AAo, we consider the images R(K)^Ao and R(B) in K and B,
respectively. Then the congruence module Co (A<) is defined by

(6.9) Co W == R (K)®R R (B) ̂  (R (K)© R (B))/R ̂  R (K)/{ R 0 (R (K)©0)}

which is a torsion Ao-module of finite type ([H6, § 6]). Let H be a generator of the
smallest principal ideal in Ao containing the ideal R 0 (R(K)©0). Thus H is a charac-
teristic power series of Co (^).

7. Petersson inner product and symmetric square L-functions

In this section, we generalize the formula in [H4, Th. 5.1] relating the self Petersson
inner product (f, f) (of a primitive Hilbert modular form f) with a special value of the
symmetric square L-function of f. We use the same notation as in [H 1] for complex
and ^-adic Hilbert modular forms. Let f in S^(N, v|/, ̂  C) be a common eigenform
of Hecke operators T(tn^) for all primes q. The ideal N is assumed to be the smallest

4eSERIE - TOME 26 - 1993 - N° 2



ANTI-CYCLOTOMIC KATZ p-ADIC L-FUNCTIONS 241

possible level of f. Let f° be the primitive form in S^ ^(C, id, \|/; C) in the sense of [H 1,
§ 5] associated with f, where C=C(f) is the conductor off. Then k-lw=mt with an
integer m^O and ^==^a. Write f° |T(q)=a(q) f° for each prime ideal q of F and

a

7t= ®,7t, for the automorphic representation of GL^F^) generated by the right transla-
tions off. We call 7i, is minimal if C(7i,)=3C (7t,®^) as ideal in r, for all quasi
characters ^: F^ -> Cx. Here for local representation 71,, C (TI.) denotes its
conductor. When 71, is a minimal principal series representation or minimal special
representation, we may write 7i,=7i(r|, TI') or a(r|, TI') so that T| is unramified and
a (q)= r! (^q) + r! (^q) according as TI, is spherical or not. When 71, is principal, we define
a, == T| (TO,) | TO, ^m+1)/2 and P, = TI' (^) | ̂  [^'^1)/2. We first define an imprimitive adjoint
lift L-function fl (s. Ad (f)) by the following Euler product:

(7.1) ^^(f^nfl^qrr1
q

where

(1 - o^ P^ X) (1 - (^ ̂  X), if Tiq is spherical,
S,(X)= (l-|t^X), if 71, is special,

1, otherwise.

Next we denote by L(s, Ad(f)) the primitive L-function attached to the adjoint lift of
n to GL(3) by Gelbart-Jacquet [GJ]. Note that L(s, f) is independent of the twist of
f. Let S be the set of primes q dividing C such that
(7.2) TT, is supercuspidal and 7t,®^^7i, for the unique unramified quadratic character
Xq^/Pq-
When 7i, is principal or special, we write 7i,=7i;(r|,, rQ or a(r|,, r|,) and define

S / ={q|C(f) |7 l ,=7^(T^, ,T^, )and^=^^,onr , x },

Ep = { q | C (f) 171,^ 7i (T|,, T|,) and TT, is minimal},

5, ̂  { q | C (f) | TT, = a (T|,, T|,) and TT, is minimal},

S /={q|C(f) |q^5,7l,=7I(r | , ,r | ,)andr| ,^T^,onr,<},

E" = { q | C (f) | q t S, TC, = a(r|,, r|,) and TI, is ramified}

We assume that

(7.3^) f is primitive in the sense of [H 1, § 5],

which is equivalent to the following two conditions:
(i) For q e 3, T|, is unramified, and f | T (TO,) == T| (tu,) f.

(ii) f iT^O^qeS-US'US-US.
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Then we define for each prime ideal q dividing C (f) (cf. [H5, § 6])

Z^ (X) = fi^ (X) if Ttq ̂  ^7/^r special and q e 5 or spherical,
L,(X)=(1-X) ifqeS.US7 ,

L,(X)=(1-|^|,X) if qeS-US,
(7.3c) < L,(X)=(1+X) if qeS,

^(X)=(l-Y,X)(l-X)(l-y,X)
/^ y<,=r|^(^)/r|^(CT^ for qeS',

L (X) = 1 otherwise.

Here we note that L^ (X) = fi^ (X) if either q € 5p U S, or 7^ is supercuspidal but q ̂  S,
and otherwise £^(X)=1 for q |C because of (ii). Thus £^(X) is different from Z^(X)
only for q in E = S U S' U 3' U 5". Namely

L^(s, Ad(f))= n ^(^Wci)"5)^ Ad(f))=£(^ Ad(f)).
q e E

We then define

(7.3c) L(s, Ad(f))=n^(N(q)-5)-1.
q

Let p be the 2-dimensional Galois representation into GL^ (Q^) attached to f. Namely p
is unramified outside C / and for every prime q outside C /,

det (12 - p (Frob,) X) = (X - a,) (X - P,).

Then writing Ad for the adjoint representation of the algebraic group GL (2), the L-
function L(s, Ad (f)) is the L-function of the Galois representation Ad° p. It is obvious
that the Euler factor at q for q outside C/ as above is a correct factor for the Galois
representation Ad ° p by definition. We can vary / and therefore, the prime / does not
pose any problem. The determination of the Euler factors at primes dividing C accord-
ing to the classification of the automorphic representation is a subtle question, which is
basically solved by [GJ]. A good and clear summary of the result in [GJ] can be found
in [Sch, § 1] (there is a minor misprint in the formula (1.7) in [Sch], and we need to
replace Sym2^) there by Synr^a^O^sgn^; see also [H5, § 6]).

THEOREM 7.1. - Let f be a primitive form in S^(C, \|/\ \|/; C) satisfying
(7.3 a, b\ Let E = 37 \J E" U S U S'. Then we have

(P, ^)c=|DF|^p(fe)g^F/Q(C)2-^^+17l-d-^}LE(l, Ad(f)),

where

LE (s. Ad (f)) = ft L, (^F/Q^)"5) L (s. Ad (f)) = £(^, Ad (f)), Fp (k) = ]"] r (U
qeE oe l
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{k]== ̂  k^ f"eSfe^/2(C; v|/, \|/; C) ^ ̂  unitarization off defined in [H\, (4.2 a)} and
oel

(P, f")c is the self Petersson inner product off defined in [HI, (7.1)].
Before starting the proof of the theorem, we prepare a lemma concerning the Rankin

product L-functions: let f (resp. g) be primitive forms in Sj, ^ (N, id, \|/; C)
(resp.S,,,(M,id,/;C)). Write

k-lw^mt and K-2 00 = |.i t (m, ^leZ).

Let 7i = 00 ̂  71,, (resp. 71'= 00 ̂  71̂ ) be the automorphic representation spanned by f and
g. When 7Tq(resp. TC^) is principal or special, we write n^=n(r[^ rQ or a(r^, r^)
(resp. 7^=7i(^, ^) or a(^, ^)) and assume that f|T(^)=r|(^)f and T| is unramified
(resp. g|T(^)=^(^)g and ^ is unramified) if n^ (resp. 71 )̂ is minimal but neither
supercuspidal nor spherical. Then we define whenever 7^ (resp. 71 )̂ is minimal but not
supercuspidal,

a^Ti^l^l^1)/2 and ^=^^)\^+^2

^Ti^)!^/2^1 and b^^^^'2^1,
(resp.oc^^^lTnJ^1)/2 and P^^l^l^1)/2,
a^^)^2^1 and ^^^(^l^l^2^1)

We now write the Fourier expansion of f" as

(7.5) f^ ^^ ^ ^(^^^(^J^eFO-^Jep^) for ^=^,
W0 I// 0<^6F

where the function y\—>a(y, f) is defined on finite ideles and vanishes outside integral
ideles. We then know (see [HI, (4.3 b). (2.2)] that

(7
^n+l_on+l n+l_Ln+l

.6) ^.f)^^20^^————^=^———--L-
a,-P, fl,-^

^^zfif a^ P^ = \|/ (tiĵ ) ;/ 71^ ;51 spherical,
a (^, f) = | ̂  | ^1/2 a^ = a\ is spherical,
a (us^, f) = | CT^ [^/2 o^ = ̂  ;y TT^ ^ minimal but neither spherical nor supercuspidal,
a(v5^, f)=0 ifn>0 and n^ is non-minimal or supercuspidal.

Similar description of a (^, g) holds using o^, P^ and b'^. We divide our argument into
the following 5 cases:

Case A: 71̂  and n^ are both spherical,
Case B: n^ is minimal but neither spherical nor supercuspidal and n^ is spherical,
Case C : 7^ is minimal but neither spherical nor supercuspidal and n^ is spherical,
Case D: n^ and n^ and both minimal but neither spherical nor supercuspidal
Case E: one of n^ and n'^ is non-minimal or supercuspidal.
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Then we define Euler factors

; iyX) = (1 - a, a, X) (1 - a, p, X) (1 - p, a, X) (1 - p, p, X) in Case A,
(77 ) ) ^(X)=(l-a,a,X)(l-a,p,X)inCaseB,

^ D, (X) = (1 - a, a, X) (1 - p, a,X) in Case C.
3\ (X) = (1 - a, a, X) in Case D, 3\ (X) = 1 Case E.

We define

i ^f^^^owqrr1

(7.8) and\ ana
( D(s, f, g)=^a(a, f)a(a, g^p^a)"5,

where a runs over all integral ideal of F. It is easy to see that T> (s, f, g) is equal to the
standard zeta function L(s, n" x 71'") ofGL(2) x GL(2)/p up to finitely many Euler factors
(see [HI, § 0 and § 5]).

LEMMA 7.2. - Let L be the product of primes q for which one of nc\ and n^ are not
spherical. Then we have

^(s+l, {, g)=L^(2s+2, ̂ )D(s, f, g),

where L^ (s, ̂ ) = {]~[ \ Jl - ̂  (q) ̂ V(q) -s)} L (s, ̂ ) for the primitive Hecke L-function

with character ^\|/.

Proof. — By definition, we need to compute

00

P(X)= E^«§)X".
n=0

We start the computation in Case A. Then we see

00 (^n+l—f\n+l^(r/fn+l—f^'11'^^P(X)=Z ^\^—p^-)(a^——^-^x,
n=o (a,-P,)(a,-P,)

Thus we see

powq)x)=^_^_^ f ^+l-^+l)(^+l-yrl)^n

i
^-w-^^ pq naq -pq

=————————————- V {fa OLfY+l—(c^ R^"'^1—^ r/y1'^1-!-^ R'^n+ llY"
(oc,-p,)(a,-p,)^o1 q " v q p q / uw (w fx, a«) - (an Pn)" • - (?„ a;)"+1 + (B, P,)»+1} X"

=(l-^P,0(,p,X2)^>,(X)-l=(l-^(^)X2)'D„(X)-l.
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This shows the assertion in Case A. Now we go into Case B. We have

00 rY"'^1 ̂ /n+l — R7"'^1^
P(9lp/Q(q)X)= ^ q v q pq ^-^(X)-1,

n=o 0^(0^-|5q)

which shows the desired assertion. The similar computation yields in Case C that

P(9lF/Q(q)X)=D,(X)-1.

In Case D and E, the computation is much simpler and yield the same result, which
finishes the proof of the lemma.

Proof of Theorem 7.1. - We now take a primitive from feS^(C, id, \|/; C). Let F
be the complex conjugate of f; i.e. a(j, r)=a0, fy for all ^ e F . . Then we consider
2)(5", f, f). Here Cases A, D and E only can occur. We divides 3=5^ U 5, so that

Ep (resp. 5^) = { q e S 171^ is principal (resp. special)}.

Then we have

S),(X)=(1-X)L,(X) in Case A, T\,(X)=L,(X) when qeS,,

D,(X)=(1-X) when qeS^ and 3\(X)=1 when qeE.

Thus we see for the Dedekind zeta function £, of F

^(2^+2)D(^, f, r)=^+ 1, f, D

= n (l-SWq)"5"1)^!) n ^CWcrW^+L Ad(f))
C t I C q ^ 3 , q | C

=^(l-^F/Q(q) - s - l)^^+l)^E^+l,Ad(f)) ,
q | C

since for q | C but q ̂  E, L^ (X) = 1. Thus we have

Res,^c(^+2)D(^, f, r)={Res^^)} ]~[ (1 -^/^r^W, Ad(f)).
q | C

On the other hand, with the notation of [HI, Th. 6.1], we see

Res,= i Go (x, id, id; s) = Res,= i E() (x, id, id; s) = T^ Res,= i ̂ (2s-\)

=2-lndRes^,W=2-lnd ^ (1 -9lF/Q(q)-l)Res^^(4
q | C

The first equality of the above formula follows from the definition:

Go(x, id, id; s^yi^CY-^^x^ id, id; s)
for

T=(° "^eGL^F^),
\w 0 / /
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where m is a finite idele with mx=C. Then we can see the second equality follows
looking into the Fourier expansion of Eo(x, id, id; s) given in [HI, Th. 6.1]. From the
formula [HI, (4.7), (4.2a)], we see

Z(s. F, f, id)^^)-1^^1/2) f P^rOOEgOc, id, id; s+\)d^(x).
Jxo (C)

Therefore we have

Ws+l)Z(s. F, f, id)=^Q(C)- l |DF|-< l/2) f P^roOEoOc, id, id; ^+1)^.
Jxo(C)

Here the Eisentein series EQ and Eg have the relation:

Eo (x, id, id; s) = ^c (2 s) E$ (x, id, id; s) [H 1, (4.8 c)],

from which the above formula follows. Thus we have

Res^o^(^+2)Z(^fc ,f,id)

=glF/Q(0-l|DF|-<l/2)2-1^^0-^F/Q(q)-l)Res^^(.)(fu,fu)c.
q | C

Moreover we know from [HI, (4.6)]

Z(^, f0, f, id)-]DF|( l/:2)ts(4^)-(js-^^^p^+^)D^ f^ f),

where Fp (^ + ̂ ) = f] F (^ + k^ and { ^ } = ̂  ̂  e Z. Therefore we have
CT el oe l

Res^o^(2^+2)D(^f,r)

^DFl-1/^)" ]-[ ^(^)-lRes„oi;c(25+2)Z(5, f,, f, id)
06l

=|DF|-l^F(A:)-l<»F/Q((S;)-122('t>-llI<i+('t»

n (1 - 9lp/Q (<0-1) {Res,, ̂  (s) } (f", f")c,
«|c

which is in turn equal to

{Res,^(5)} ]"[ (l-WF/Q^r1)^!, Ad(f)).
q | C

This shows that

(f", f")c=|DF|rF(A:)g^F/Q(C)2-2( t '+lIt-< ' -< t»^(l, Ad (f)).
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8. Proof of Theorem I, Comparison of/?-adic L-functions

The idea of the proof of Theorem I is the comparison of two p-adic L-functions
(8.5 a, b): one is the Katz /?-adic L-function given in [K4] and Theorem II and the other
is the /?-adic Rankin product L-function constructed in [HI, Th. 5.2]. We use the
notation introduced in Theorem II and in the previous sections. We fix a conductor £
prime to p and a character \|/ : G^r (£) -> Qx of conductor £. Here we regard \|/ as a
character of G^ (C)/W and in this sense its conductor is defined. Thus we have the
associated projection \|/^ : 0 [[G]] -> Ao == 0 [[W]] for G = G^ ((£). Let

3£=Hom^_^(Ao, Q^=Spec(Ao)(Q^).

Then for each Pe3E, we have a continuous character X,p=P°\|/^ : G -> Qp. We say ' k p 1

(or P) is critical (of type S) if, regarding G^ ((T) as a quotient of M^, we have
Xp (Xp) =Xpr} for r\eZ [1̂ ] such that
(8.1) the p-type T| ofkp 1 is m^ £ + fif(l - c)/or an integer m^ and d= ^ dy a w^/? integers

(T6£

^ satisfying either m^ > 0 W2fif ̂  ̂  0 or WQ ̂  1 a?^^ ̂  ̂  1 — WQ.
Then, Wo=(r|(y+r|^) for all oeS, and there exists a complex avatar ^p oo : M^ -> C"

such that i^1 (^p ^ (a))= lp 1 (^p (a)) fo1" an ideals a prime to p (£. Let

^(^P, J=E^P, oo (^M/oO-O-5

a

be the complex L-function. Then, writing Lp(^p) [resp. L^ (^p)] for \d\^ for the Katz

measure [i in Theorem II [resp. L(0, ^p ^)], we have

f8 2) ^^"^v • / rynoL+ld
~~P

=(9ix :rx)w,(^- l)^(l-^p l(fl)) n (i-^p/c.^Dxi-^p;1.^))
fl|(£ ^eE

(_l)mp[F:Q]^p^^^^

| Dp |1/2 In^Q^^ ^^P '
X___________' - h V - U - • -/ i

I-r^, \ MiT^ ^v\dr^m^Y+^d —ooV^P ^•

In [HI, Th. I, Th. 5.2], a measure related to [JL has been constructed. We now want
to compare these two measures. As in section 4, we assume 0 to be a complete
discrete valuation ring in Q with residue field K=F^. Then we put A==0[[W]] and
Ao=0[[W]]. Since W is naturally a subgroup of finite index of W, Ao is a finite flat
algebra extension of A. Let h"-01'11 (N; 0) be the nearly ordinary Hecke algebra of (prime
to p) level N = D ̂ /F (K)- Let i : G == Z (N) x Xp -> G = G^ ((£) be the natural morphism
defined in section 6, which sends (1, u) with ueXp to uey{^(=Xp). Then the 9-measure
constructed in Theorem 6.2 induces an algebra homomorphism

e^h^NiO^OttG]]
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satisfying (6.7 b). Let (T be another conductor prime to p. We fix another primitive
character (p : G^ ((T) -^ 0x . Then \|/ (resp. (p) induces a projection morphism
^ : 0 [[G, (C)]] ̂  Ao (resp. (p^ : 0 [[G, (£')]] ̂  Ao). We put

^ = ̂  ° 9f!S •• h"^ (N; 0) ̂  Ao and v = qy 95/ : h"-0^ (N^; 0) ̂  Ao

for N' = ^IM/F ((r)D- Then ^ and v are Primitive in the sense of [HI, Th. 3.4]. Let P,
Qe9I(Ao), then X p = P ° X : G^((£)-^Q; and V Q = Q ° V : G^((T)-.Q; have their com-
plex avatard for which we use the same symbol. Let T| and ^ be the infinity type of
X p 1 and VQ1 , respectively. We define m^ and m'oeZ by T |+T |C=WO^M and

^+^c=m'Q t^. Then we have, with the notation introduced in [HI, §0],

hn^-\=m(P), v(P)= ^ TI^^IF,
^ (re£

(8 ( /"o-l=w(Q)^(Q)=E^^|F.
( o e S

Then Q(kp) (resp. O(VQ)) is the modular form belonging to ^ at P in
S^Np-^vl/p^O) [resp. v at Q in S,, ,/(N'p-(RQ, (?Q ; 0)] for N'= ̂ /F (^) D.
k=n(P)+2t and w=t-v(P) (resp. ^==^(Q)+2^ and w'^-z^Q)) for suitable
a == (a (p)) e Z2, where

f ^(^x-^^^-^iO.x)), (pQ(x)xI;<Q)=VQl(l(l,x))
UpM-XW^pWi^F^ (PQW=XWVQ(X)|X ^ for^eF,;.

Here x i5 the quadratic character of G corresponding to M/F. Let 7i(P)== ®<^
(resp. 7t /(Q)=®q7I;q) be the automorphic representation generated by 9(^p)
(resp. O(VQ)). Then we can write

^ 7r((^p)Q,ap)QO it* q=^^
^ { TC(8,,8,x,) i f q = G or q=G2 and (?ip), = §, ° ?IM/F,

, ^ f ^((VQ)Q, (VQ)QC if q-q',
7lq 1 7i(8,,8,x,) i fq -^ or q=Q2 and (Vp), = 8,° 9^

where -Q is a prime ideal of M dividing q, and 8^ and 8^ are the characters of F^. If q
is inert or ramified in M/F and there are no characters 8^ (resp. 8^) such that
(U^V^M/F (resp. (VQ),=8;°91M/F), then n, (resp. TI,) is supercuspidal.

We fix a group decomposition r^ ==W~ x (j,(rp) of topological group such that [i(Xp) is
the subgroup of roots of unity in Xp. Thus for each given character T| : n (Xp) -> Q x , we
can find veZ[l] such that nK)-^ for all ^e^(r^). Let J=={weZ[ I ] | ^= 1 for all
^en(rp)}. Then Z [I]/J ̂  Horn (^i (r^), Q"), which is a finite module. We apply this
argument to the characters

v|/: ^(^^(^Q' and (p: H^^O^Q^
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and write ^(\|/) and z^((p) for the corresponding elements in Z[I]. Then we consider the
subset 9) of X x X (X = Spec (Ao) (Q)) consisting of (P, Q) such that

(8.4 a) ^(P)-72(Q), ^(Q)-^(P)+2^(w(P)-m(Q))^ and ^(Q)^(P),

(8.4 b) \[/p a^rf (pg <2r^ both induced by finite order Hecke characters of¥^ /Fx unramified
outside p.
Since we know from (8.3 b) that

and
^^-/(or^r1^-1^

^©-^-/(or'^-r'^-'^
the set 9)o consisting of (P,Q)e3£x3£ such that (P, Q) satisfies (8.4 a\
i?(Q)+z;((p)=-y(P)+z;(\)/)=OmodJ and (v|/p)|w- ^((pylw- =id is a subset of ^Q. The
subset 9)o is obviously Zariski dense in X x 3£, and hence 9) is dense in X x JC.

Let (P, Q) e 3) and 9 (^p)° (resp. 9 (v^Y0) be the primitive form associated
with 9(^p) (resp. the complexe conjugate G^v^Y of 9(vo)). Then we define
T) (s, 9 (^p), 9 (vpU = ̂ / (^, 9 (?ip)°, 9 (VQ)^, id) as in (7.8). Write ^ (^, 9 (?ip), 9 (vpU
for the L-function obtained from D (j1, 9 (^-p), 9 (Vp^) excluding Euler ^-factors. Let So
(resp. So) be the set consisting of prime ideals Q outside p (in M) such that one of the
conductors of v|/ and (p~1 (resp. \|/ and (p^) is divisible by Q but the conductor of v|/(p~1

(resp. vj/cp1^) is prime to Q, where (p^ (x) = (p (x^0 = ((p ° c)~1 (x) as idele character having
values in Q. For any ideal Hecke character T|, we write r|° for the primitive character
associated with T|. Applying the Euler product expansion of T)(^, 9(^p), 9(vQy) given
in (7.7), we see easily that

(8.5^) ^ ̂  9 ()ip), 9 (VQ;O = E- (P, Q; s) L, ̂  (^p v^)0) L, ̂  ̂  v^")0),

where v^ (x) = VQ (x^ for xeM^ with Xp=\. Here E'(P, Q; s) is a product of Euler
factors of the form (1 -(^v^)0 (0)91^ (Q)-5) or (1 -(^v^)0^)^^^)"5). In fact,
there exists certain subset S (resp. 5') in the set SQ (resp, So) such that

E^P.Q;^ n (l-WVQTO^M/Q^)-5) 11 (I-^PV^W^M/Q^)"5).
•QeS -QeS'

The difference of So — 3 and So ^- S7 is contained in the set of ramified primes in M/F
and depends only on \|/ and (p. Then writing

^(^o)- n (i-(^pvQT(^)9w^)~1)
•QeS

XF2(ep*Q)= n (l-^pCv^)-1)0^)^^^)"1)
r'\ — B''-QeS'
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for ^Q^pVQ^c^-^ep^p-ivQ)0) and epi•Q=(Vol(Xp»c))o<R-l

(ep.Q-^p-^VQocO^.wesee

(8.5.) ^(l+-(0)^,0(^9^)

= ̂ i (EP, o) ̂ 2 (e?. Q) L, (0, e?, Q) ̂  (0, ep*Q).

Let CoW be the congruence module of \ defined in (6.9) and H be its characteristic
power series. Then by [HI, Th. 5.1-2],
(8.6) there exists an element D of the quotient field o/Ao<§>oAo such that:

(0 (H®l)X>eAo®oAo

(ii) Suppose that (P, Q)e?). Then we have

I>(P, Q)=C(P, Q)W(P, Q)W(P, (^(PF^P, Q)

^ ̂  (1 + ((m (Q) - m (P))/2), Q (\p), 9 (Vp)0)
( e ( X p ) ® v | / p ° , e ( X p ) ® ^ p 0 ) '

^ere 9(^p)®\|/p° w f/zc primitive form associated with 7i(P)(2)^p, an^ E(P, Q), S(P),
W(P, Q) and C(P, Q) are given as follows:

^i(Q)-n(P)lj^ jl+m(Q)-m(P)^{2»(P)-2t>(Q)-n(Q)-3(}
C l A , ^/) = —————————————————————————————^————————————___________________

^{n(Q)+i)(Q)-i;(P)+2t}+{u(Q)-v(P)+(}+{n(P)+t}

X^F(n(Q)+v(Q)-v(P)+2t)^y(v(q)-v(P)+t)•,

To write down the e-factor W(P, Q), we put for simplicity

G (e) = ^ ^ (u) 2p W d) = ft ^ (̂  (p)) G (̂ , e,),
« mod C (es) p g £

writing C(es)=pe= ]"[ P6^ and vs^^vs^. Then W(P, Q)=W'(P, Q)W (P, Q)
peZ P ip '' '

and

W (P Q) - ̂ Q. P (̂ ) I ̂ P. p (̂ ) IG (VQ,SC ̂ p. zO G (VQ^ ̂ p, ̂ c))
" ' (^p(^)|vQ,p(^)|G(^^p,,c))

W'(P, Q)=((p, <p ;̂ WJ- ,, ̂ Q ̂ )(m (Q)/2)+1 ̂ o (D)1 -^ ̂ -'" ̂ ) W (9 (v.))
^M/Q ((£)'» (p)/2 (9 (?lp))

E(P,Q)=Ei(P,Q)E2(P,Q)

and

Ei(p Q) = n ( 1 ~(£p-Q)o (<pc)) (1 ~(8P-Q)o (<pc))
¥eE (1 - (e?, o)0 m (1 - (ep*Q)° (<?))
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- rf (1 ~ (^ o)0 (^c)) (1 - (^ o)0 W)) (1 - (£p, o)0 m) (1 - (£p, o)0 (^c))
< P e E (l-(£?,Q)o(^))(l-(£?,Q)o(^c))(l-(8p*Q)o(^))(l-(£p*Q)o(^^ 5

^(P, Q)- n ̂ w<)^cv, ̂ p= n ((£P*Q)S1(^)(£P*Q)£1(<));
^ 2 ' < p e £ ^M/oOP7^7')

s (P) = s, (P) s, (P), s, (P) = n o - (£p)° (^c)) (i - ((£p*)° (^c)),
< P 6 S

S2(P)=((£FS)z l9l-2)(^)

where
£p,Q=((^VQ l)oc)9l- l(£p,Q=^- lVQ)

and
£p*Q=VQlapoc)9l-l(8p,Q=?lp-l(vQ°c)),c (8?, o)= n (^ ̂ ca). ^ (£P*Q) = n (^ ̂ ca').

^eS <pe£

EFS=^p-l(^pC)9l-l=(v|/,-l^^)(^c)29l-w<p)-2(6p=^p-l(^pC))

and
C (s?) = n W ̂ c8) for oc, a', y, /, 5 e Z [S].

<PeS

By (8.6) (i), (H(x) 1) I) generates a pseudo-null module in the quotient field of Ao®oAo
modulo Ao®oAo, which is in fact null. Thus
(8.7) 0 = (H® 1) £) belongs to

Ao®oAo^O[[Xo, . . ., X,^, Yo, . . ., Y^J] and ^=<D/H.

Since the conductor of 9(?ip)00\|/p° is N==91^(^)0 times the conductor of
®pe£7r(^p, ̂ p) and on 9^, Xs\|/p coincides with ^^(^^^"^Spl^. we ^ow
that C (9 (^p)®v|/p°) = N p5. Let S be the set of primes q dividing N such that

i (i) q is inert or ramified in M/F;
, ) (ii) ^^^°c when q is inert M/F;

\ (iii) \r[^=\°c for the unique unramified quadratic character T|^ of M ;/
I M^/F^ z'5- ramified.

Then it is well known that S is the set given by (7.2) for 9(?ip)®\|/p°. Thus we also
know from Theorem 7.1 that

(8.8 V) (9(?ip)®v|/p',9(Xp)®^p)

=|DF|^F(^(P)+20^F/Q(Np5)2-2^^+ 2^+ 17^-^^+ 3^A(l)L(9, e?)L(l, x),

where A (1) is an in (0.6 a) and

^(l^^^F:Q]-l^^p^^^-l/2^F:Q]^. ..^-^(M)//^)

for the class number h(M) [resp. A(F)] of M (resp. F).
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Combining (8.5), (8.6) and (8.8), we can now express the value
D(P,Q)=0(P,Q)/H(P) in terms of L^^^)L^ (s?, o)/L^ (Sp) up to a specific
constant. We now interpret this expression in terms of power series in Ao interpolating
Lp(£p,Q)Z^(s^Q)/Z^(Sp).

Let Li, Z.2, Lf, Z^eO[[WxW]]=Ao®oAo and L-, L-*eO[[W]]=Ao be such that
L^(P, Q)=^(£p,Q), Lf(P, <2)=L,(^Q), L^P, Q)=L,^\ L?(P, Q)=L,(£p*Q) and
L~(P)=Lp(£p), L~*(P)=Lp(£p) for all arithmetic points (P, Q)69). By the result of
Katz [K4], Theorem II and (8.2), to show the uniqueness of these L~, 1 ,̂ Z^, L~*, Lf
and L$, it is sufficient to show that the points (P, Q)e9) are dense in Spec(Ao®oAo),
which is already seen. We will show the existence of these elements in 0 [[W x W]]
later. By the functional equation obtained in [K4, (5.3.7)] and Theorem 5.2 in the <.
text, L~ (resp. L^ and Z^) is a unit multiple of L~* (resp. L^ and Z^). We now
determine the infinity type of s^ Q, £p*Q and £p^. Write oo(e) for the infinity type of
each Hecke character s. We write

(X)(£?)=-m£- ^ ^(a-ac), a) (Sp*?) = - m' S - ̂  ^(a-ac),
o e S (re£

and
X)(8?)=-m"Z- ^<(a-a^).

cre£

We also write oo (^p) = r|, oo (v?) = ̂ , WQ ̂  = TI + T| c and m'o t^ == ^ + ̂  c. Then

( w(P)=mo-l, m(Q)=Wo-l, ^(P)= I (r|,-r|,p- l )a |F
1 0 6 S(8.9^)
( / / ( Q ) = = E (^-^p-l)a|F, z.(P)= S r|^a|F, z;(Q)= S ̂ a|p.

oeEC T 6 E CT 6 £

From this, we know

(8.9^)

(8.9c)

^IF- Z (Tl,-^-l)a|F=^(P)+z;(P)-^(Q)-z;(Q)-^,
t reS

m = 2 - WQ + m'Q = m (Q) - m (P) + 2,
(^+w2)|p= ^ (^p-n.p+l)a|F=t.(Q)-z;(P)+r

<re£

(2^+mS)|F= ^ (Tl,-n,p-l)a|F- ^ (^-^p-l)a|F=^(P)-^(Q)
(Te£ <r6£

^'|F= Z (ne-^p-l)CT|F="(P)+r(P)-^(Q),
CTeS;

w'=2-Wo+Wo=w(Q)-w(P)+2,
(rf'+w'2)|F= S (^-ii^+l)CT|F=«(Q)+f(Q)-y(P)+2f

(T££

(2d'+m'^)^= ^ (^-^p-l)o|F+ ̂  (^-ri^+l)CTJF=«(P)+H(Q)+2r
creS o e S
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( rf"|F=I;(^-ri^-l)o|F=«(P), m"=2,
(8.9C/) / ae£

(((/"+w"S)|F=n(P)+2?, (2^"+w"S)|F=2n(P)+2f.

We may consider T^'Fi'Fa in (8.5 &) as an element in Ao<§)oAo because A and v
have values in Ag. We put

T)Z.~* _ <S>L~* -
"^Z^Zi'^LfZ^H'

We compute U(P, Q) and show that U is a unit in Ao®o^o®zQ- For that purpose,
we shall compare the values of <E/H and L\L^L~* at each (P, Q)e9) factor by
factor. We start from the extra Euler factors:

Extra Euler factors. — The extra Euler factors coming from $/H are:

p (1 - (SP, o)° (D) (1 - (e?)° W) (1 - (sp, p)0 (^c)) (1 - (sp^)0 m)
pA (l-(ep)o(<^BC))(l-(e^t)o(^))

The extra Euler factors coming from L* L ^ / L ~ * are:

„ (1 - (e?)° (^c)) (1 - (Ep. p)0 (^BQ) (1 - (£p*Q)° (^)) (1 - (£p, o)0 m)
.pVs (l-Cep^^^Xl-Ce?)0^))

Thus they will be cancelled out in U.

s-factors at p: Wp. — The Gauss sum factor at p coming from <I>/H is:

(8.10 a) <RM/Q W) ~l E^ (P, Q) S, (P) -l

x G (VQ^C Xp, ̂ ) G (VQ/S ̂ p, sO/G (Xp-1; ̂  sc)

_ ((eg, Q)z 1 (rop (ep*Q)̂ -1 (̂ ) G ((ep*Q)̂ ) G ((ep )̂̂ )) <RM/Q W)

^M/Q ('P' 'P'') ((e?)s 1 (̂ )) G ((e?)̂ )
_Wp(ep*Q)W^(ep,Q)

W,(e?)

where the first <RF/Q(<P8)-1 comes from the same factor in (8.8 b) and Wp(e) is as in
(0.10). Thus we have

(8.10&) ^M/QOPT'E^P.OS^P^W^Q)
_ (VQ, , (d,) | ?.?,, (̂ ) |) W, (8p*Q) W, (eg. Q)

(^,p(rfp)|vQ^(^)|)Wp(ep-)

We define an idele C by 2 8 = d^ C. Then

M^lM^I-^MQ-^MQhMC^lMCy)^"'1'^1

=^(c/)-1 (P)(- ly^^F/Q^r^'^ ^{" ( t > ) + t } ,
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because the value of the complex character Xp (Cp) is equal to

^(C^C^^^^C.^-IY^

for its ^-adic avatar Xp. Here we regard \|/^(C^)eAo as a function on 3£ by
\|^(C^)(P)=v|^(C^)mod P. Thus the quotient of the s-factors of ^FLfZ^/L"* and
0/H is given by

(g 10 c) (WWp.^l)
(^P,p(^)|VQ,,(^)|)

_ (̂ -P ("M ) I ̂  ("M ) I ) m ;',-\m(Q)-m(P)» //-< \ //t\ - 1 ,|, /p \ /p\ •{ m (Q) - m (P)}

"(vpwiw)!) F/Q() ^( /)(Q) ^( / ) ( )

The factor ^^(c)^1^""1^ will be cancelled out modulo units in Ao by the same factor
in (8.12 b) below.

Complex and p-adic periods. — Since the period factor coming from Lp(s) with
oo (s)=WoS+^(l -c) is given by (Q^+2dyQ^os+2^ we see that the factor corresponding
to^LTZ^QVL-^is

/Ow£+2d\ /om'S^^d^ /ow//£+2<^'\
/O 1 1 \ ^^oo V 00 H P _ _ _ _ _ _ _ \
v / \ owS+2d j \ ow'E+2(r / \ ow"£+2d" /

\-"p / \-"p / \-"oo /

By (8.9 b, c, rf), we get

wS+2^+w /£+2^-w / /£-2^=^(P)-72(Q)+^(P)+^(Q)+2/-2^^(P)-2^=0.

Thus (8.11) is reduced to 1. This is consistent with the fact that T)=0/H does not
contain any period factor.

2-power factor. — The 2-power appearing in <D-part is

^ - { n (Q) + v (Q) - v (P) + It} - { v (Q) - v (P) + (} - { n (P) + 1 } + 2 { n (P) + 2 r } - 1 ̂  ̂ (w (P) - w (Q)) [F : Q] - 1

On the other hand, we see from (S.9 b, c, d) that

(8.12^) ^+^-rf"=(w(P)-w(Q))^-/

and we see also from [ucv—uvc/26\u, ̂ eSl}^"^ with the notation of section 4 that
89?=2~1^M/F^C? where Q^/p is the relative different of M/F. Thus Im(8)-part in the
evaluation formula in Theorem II gives

(8.12 b) ^(ar'-^^in^a)-^-^^1

^(m(P)-m(Q)-l)[F:Q]^ r^ ^2\-(m (P)-m (Q)- 1)/2 I p I m (Q) - ̂  (P) + 1

Thus, from the factor 2117: Q]-1 coming from (8.8 b), we see
(8.12 c) the 2-part of H/0 and L^ L ^ / L ~ * are the same.
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n-factor. — On the side of 0/H, we have

^{2 i ; (P) -2y(Q)-n(Q)-3(}+{n(P)+2f}^^(w(P) -m(Q)- l ) [F :Q]

On the other hand, on the side of ^FLfL^/L"*, we have

^d+d'-d"}^^(m(P)-^(Q)-l)[F:Q] ^ (8.12^).

T-factor. — On the side of 0/H, we have

rF(^(Q)+^(Q)-^(P)+2orp(z;(Q)-z;(P)+o
r^(P)+2r)

On the side of ̂  L^ L$/L~*, we have by (8.9 b, c, d)

^y(mt^d)^y(mft+df)_^^(n(Q)+v(Q)-v(P)-^2t)^^(v(Q)-v(P)-^t)
T ^ ( m " t ^ d " ) Y^(n(P)+lt)

Dp-power. - From C(P, Q) and (8.8), we have \^\W)+(m(Q)-m(p)) ̂  ̂  0/H-side
and by (8.12&) and Theorem II, we have ^p^112^^^^"1^ on the
^L?L^L-*-side. Thus
(8.13) the Dp-part of <D/H and ̂  Lf L^\ L ~ * are equal.

Unit index factor. - We have (9T : r")-1 in (9(?ip)®\|/p, 9()ip)®v|/p) by (8.8), which
will be cancelled out by the same factor on the side of TLfZ^/L"*.

W-part. - We first compute W(Q(kp)). As seen in [HI, (4.10<a)],
W (9 (^p)) ̂  ~n (p) ~ 2t} gives the root number of the functional equation of L (s, Xp). With
the notation of (5.7 a, c) applied to ^ = Xp, we see

w^e^p))^-^-2^ n ^(^^^^M/Q^^-^'G^P;^
^ \ p

=W(9(?lp))^-n^-2^=K^(^^p^(-l)

^.(-i)^0'^ n ^M/Q^^r^^^^^G^1)
Q|C3M

Since { w o S + 2 r f } = { ^ z ( P ) + / } by (6.1), we see

W^e^p))^^-!)^2"^3^

n ^M/Q (^(Q))-1/2 ^p (^^ ̂ ) G (^ ̂
a | C 8 M > • Q + p < w = < R

-^.(-i)^^)!^^)!-1^2"^^^^^^)-^^^
where ^ is a differential idele of M/Q for which we assumed as in section 4 that
^MQ = (2 ̂  for ̂  | ^M? ̂  We see from the functional equation (Theorem 5.2) that there
exists WCk) in the quotient field of Ao such that W (k)(P)=W (kp) for all PeX. We
know that for all critical P, W(kp) is a j^-adic unit. This shows that W(k)eA^.
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Similarly we can define W (v) e \^ . Thus we see

(8.14 a) W (P, Q) = (x|/p v|/p <pQ (pQ ̂  VQ),
^ _ I );•{ 2n (Q) - 2ti (P)} y^ (T))("' <0) - "• (p))/2 + 1

^ VQ W I ^p m I 91M/Q (g) W' (V) (Q)

U^IVQWIW'^KP)

Since ^<s:(- 1) [resp. VQ ^,(- 1)] is independent of P (resp. Q) and

^pj-l)^-!)"^' and VQ,^,(-!)=(-1)"^',

we see easily from definition that

(8.14 b) (^ v|/p(pQ (pQ^pVQU- ^•^''(Q^'XP)^- iy(P)+v(Q)+n(p)+»(Q)g^ ^ j ^

w a constant independent of P aW Q.
Thus we see from (8.10 c) that

(8.14c) ^M/QOP'r'E^P^S^Pr^P.Q)

= ^M/Q (^P8) ~ ' E^ (P, Q) S^ (P) -x Wp (P, Q) W (P, Q)
W ( p ' * "IW ( p * ^

= " ^ ^ ^F/Q (P)1'" (Q)-m (p))/2+ 1 ^F/Q (C)'" ̂ -^
W^(£p)

><9lM/^^^

Note that ^W^M/Q^W^v)^^)-1 cp^C^)-1^^) is a unit in AQ. The factor
;{"(Q) n(P)} is cancelled by the same factor in C(P, Q) by (8.14 b\ The other factor
^(D)0"^-^^1 yi^r^^^ is cancelled out by (8.12 b\

Thus we have finished comparing all major factors of <D/H and ^FLfZ^/L"*, and by
(8.8) the remaining difference is

(8.15) A(M/F; £)==A(1)A(M)//?(F).

Since L~*, Lf and L$ are unit multiple of L~, L^ and L^ by the functional equation in
[K4, (5.3.7)] in the text, we have

THEOREM 8.1. - We have

<D^ U^LT^ _ \J^L,L,
H A(M/F;C)L-* A(M/F;(£)L-

for units Ui o^J U^ in Ao<§)oAo.
We now explain how to construct L^. Complex conjugation c induces an automor-

phism of G^(l) which hence preserves G^,(l) and induces an automorphism of
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W=G^ (1)/G^(1). Let m be the prime-to-^-part of the conductor of \|/~1 (p and con-
sider the character ̂  : G^ (m) -> 0 [[W x W]] defined by

81 K, w)^-1^)^-1, w)eO[[WxW]] for (^ w)eG^(m)xW,

which induces an algebra homomorphism e^ : 0 [[G^ (m)]] -> 0 [[W x W]]. Let 1̂  be
the image of the Katz measure |LI in 0 [[G^ (m)]] under E^. Then by definition, we see

r
^l(P,Q)= £p,Q^=^(8p,Q).

^GOO (H)

Similarly, we can construct L^ L^ and L$. For example, to construct Z^, we use the
morphism

£2 : Goo (C «r c)-1 (p)) ̂  0 [[W x W]]

given by s^ ft, w) = (\1/° c) ~1 (p) (Q (w "c, w), and then we see L^ = s^ (n) for ^ on
Goo (C ((\|/° c)~1 (p)). To construct L~, we consider the morphism for (£~ == C (\|/~):

e: G^ ((£-) ̂  0 [[W]] given by e (^ w) = v|/-1 (^° c) (Q w-1 w°.

Then L~ =s(n) for ^ on G^ (C(\)/-1 (\|/°c)). Similarly, we can define L-*.
We now finish the proof of Theorem I. For a given character P : W -> 0 x, the map

ip : 0 [[W]] -> 0 [[W x W]] -> 0 [[W]] given by ip (h) = P®id (1 ®/z) is an automorphism of
0 [[W]], where P(x)id is an algebra homomorphism induced by the character:

W x W -^ 0 [[W]] which takes (w, nQ to P (w) w\

Let L be the image of ^ under ((\|/°c)~1 (p)^. Then we see easily that
Z/2 ̂ p=P®id(Z/2)=ip(Z/). Thus the n-invariant of Z/2 and the specialization L^ p are
equal to that of L and are independant of P. Here the n-in variant of X e 0 [[W]] or
0 [[W x W]] is by definition the maximal exponent of the prime element tij e 0 which
divides X. Similarly, L^ p= P®id (Z^) has ^-invariant equal to that of (\)/~1 (p)^ (n). It
is easy to see that the Euler factor ^ has trivial n-in variant in 0[[Wx\V]]. Suppose
that one of the prime factors P of L~ in 0[[W]] outside p divides Z^ (for one of
z= 1, 2). Then | P (P) | p -> 0 as P approaches a zero of P. Write G,=W Pm so that X
is prime to P. Then we can let P approach to a zero of P without letting X(P, Q) be
identically zero as a function of Q. Since Q i—> L^ (P, Q) is nothing but L^ p, writing
^P^G^^P for ^(Q)^^^ Q). the ^-invariant of Z^p becomes arbitrary large if
P approach to a zero of P outside the zero of X. This is a contradiction because the
H-invariant of Z^p is independent of P. Thus inside 0[[W(M) xW(M)]]OOzQ, L is
prime to L^L^. Since each factor of ^F is of the form 1-91-1 (Q)vk^(p^1 (Q) or
1-9F1 (Q)(v|^((p^1 °c))(Q), the same argument shows that L~ is also prime to ^F.
Namely we have proven Theorem I:

THEOREM 8.2. - L~ divides H in 0 [[W]]®zQ=Ao®zQ. Moreover if one can choose
the character (p so that the ^-invariant of L^L^ is equal to 0, then A(M/F; £)L~ divides
H in \ofor A(M/F; (£) in (8.15).
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