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FIXED POINTS OF POLYNOMIAL MAPS.
PART II. FIXED POINT PORTRAITS

By Lisa R. GOLDBERG anp Joun MILNOR

ABSTRACT. — Douady, Hubbard and Branner have introduced the concept of a “/imb” in the Mandelbrot
set. A quadratic map f(z)=2z%+c belongs to the p/q-limb if and only if there exist g external rays of its Julia
set which land at a common fixed point of f, and which are permuted by f with combinatorial rotation number
2/9€Q|Z, p/g#£0. (Compare Figure | and Appendix C, as well as Lemma 2.2.) This note will make a
similar analysis of higher degree polynomials by introducing the concept of the “fixed point portrait” of a
monic polynomial map.

Introduction

The object of this paper is to classify polynomial maps in one complex variable in
terms of the external rays which land at their fixed points. To each monic polynomial
we assign a fixed point portrait, which is a list of the angles of the rational external rays
which land at the various fixed points. (See Section 1 for details). Except in the
three appendices, we consider only polynomials with connected Julia set. The paper is
organized as follows:

Section 1 contains a more detailed outline of subsequent sections, as well as an
overview of the relevant concepts from complex dynamical systems. (A basic reference
for this is [M2].)

Section 2 defines the rational type T of a fixed point z as the set of all angles of
rational external rays which land at z. In the terminology of Part I, such a rational
fixed point type T = Q/Z is an example of a rotation set.

Section 3 shows that the d—1 fixed rays cut the plane into some number of basic
regions, each of which contains exactly one fixed point or fixed parabolic basin
(= “‘virtual fixed point™).

In section 4, we introduce the fixed point portrait of a polynomial. By definition, this
is the collection {T,,...,T,} consisting of all rational types T;# of its fixed
points. We outline a set of combinatorial conditions that a fixed point portrait must
satisfy, and we formulate our Main Conjecture 4.2: These necessary conditions are also
sufficient. In other words, we conjecture that every “candidate” fixed point portrait
satisfying certain combinatorial conditions can actually be realized by a polynomial
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52 L. R. GOLDBERG AND J. MILNOR

whose filled Julia set is connected. This conjecture has recently been proved by Poirier
[Pol].

Sections 5, 6, 7 are devoted to establishing Conjecture 4.2 in the special case of a
degree d polynomial which has d distinct repelling fixed points. Our proof relies on the
study of the critical portrait of a polynomial: This is our name for a basic concept
which was introduced and studied in the thesis of Yuval Fisher. (For a more detailed
presentation, see [BFH].) Fisher gives a set of necessary and sufficient conditions for a
collection of sets of angles to be the critical portrait of some critically pre-periodic
polynomial. Section 4 summarizes basic facts about critical portraits, and recalls theo-
rems from Fisher’s thesis that we use.

Section 6 describes an algorithm that determines the fixed point portrait of a polynomial
from its critical portrait.

Section 7 contains our main result. For each fixed point portrait {T,,...,T,}
consisting of d distinct non-vacuous rational types where d is the degree, if the appropriate
conditions are satisfied, we construct a compatible critical portrait satisfying Fisher’s
conditions. It then follows by Fisher’s thesis that each such fixed point portrait can be
realized by some critically pre-periodic polynomial.

Section 8 discusses further questions and problems.

The paper concludes with three appendices. Appendix A extends the exposition to
polynomials whose Julia sets may not be connected. Appendix B considers the transition
between different fixed point portraits as we vary the polynomial within parameter space,
and Appendix C applies these ideas to prove known results about parameter space in
the degree two case.

The authors want to thank A. Douady for suggesting the circle of ideas studied in
this paper.

1. Overview

Let /:C - C be a polynomial map of degree d=2, and let K=K (f) be its filled Julia
set, consisting of all ze C for which the orbit of z under f remains bounded. To simplify
the discussion, we will assume that f is monic, and that K (f) is connected, or equivalently
that the Julia set J=0K is connected. (For a discussion of the case where K (f) is not
connected, see the three Appendices.) It follows from this assumption that the comple-
ment C\ K (f) is isomorphic to the complement of the closed unit disk D under a unique
conformal isomorphism

¥: C\D-C\K(/)
which is asymptotic to the identity map at infinity; and furthermore that
1 V() =f(V(z)) forall zeC\D.
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FIXED POINTS OF POLYNOMIAL MAPS. II 53

For each angle teR/Z, the external ray R, = C\K (f) is defined to be the image
under ¥ of the half-line

(1, )" ={re?"":1<r<oo}

which extends from the point 2" ¥ out to infinity in C\\D. It follows from equation (1)
that f(R)=R,. In particular, note that f(R,)=R, if and only if t is a fraction of the
form j/(d—1). In this case, R, will be called a fixed ray. Similarly, some iterate of f
maps R, onto itself if and only if t is rational with denominator prime to d. In this case,
R, will be called a periodic ray. Note that ¢ is rational if and only if some image f°"(R,)
is periodic.

We are interested in the limiting values of an external ray R, as r decreases to 1. By
definition, the ray R, lands at a well defined point @, whenever this limit exists and is
equal to g, Such a landing point always belongs to the Julia set J=0K. Putting
together results due to Douady, Hubbard, Sullivan, and Yoccoz, we have the
following. (Compare [M2]. For definitions, discussion and further references, see
Section 2.)

THeoreM 1.1. — If fis a polynomial of degree two or more, with K (f) connected, then
every periodic external ray R, lands at a well defined periodic point

a,= lim ¥ (re?" ") e IK.(f),

r—1

which is either repelling or parabolic. Conversely, every repelling or parabolic periodic point
of f is the landing point of a finite number (not zero) of external rays, all of which are
necessarily periodic with the same period.

More generally, every rational external ray R, lands at a well defined point of the
Julia set. The landing point q, is either periodic or pre-periodic according as the angle
te Q/Z is periodic or pre-periodic under multiplication by d. Now consider an arbitrary
fixed point f(z)=z.

DerFmNiTioN 1.2. — By the rational type T=T(f, z) of a fixed point z of a monic
polynomial f will be meant the set of angles of the rational external rays of K (f) which
land at z. In other words, T (f, z) is the finite subset of Q/Z consisting of all rational
numbers ¢ modulo 1 for which the landing point a, of R, is equal to z.

The possible fixed point types fall into three distinct classes, which we briefly describe
below. (For further details see Part I, as well as Section 2,)

We will say that a fixed point f(z)=z is rationally invisible if there are no rational
rays at all which land at z, so that the type T is vacuous. Such a point is either
attracting, or Cremer, or is surrounded by a Siegel disk. We will largely ignore such
points, concentrating rather on the “rationally visible” points.

A fixed point has rotation number p=0 if it is the landing point of at least one of the
fixed rays R ;). In this case, the type T is some non-vacuous subset of the set of
fixed angles {0, 1/(d—1), ..., (d=2)/(d—1) } It will follow from Theorem 7.1 that all
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2 224 w(2-w)/4, w=emi/

Fig. 1. — Julia sets for two quadratic maps in the 1/3-limb.
The external rays to the two fixed points have been plotted.
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27

a7

Degree d =2

Fig. 2. — Schematic diagram for the fixed point portrait corresponding to Figure 1.
Fixed points are indicated by heavy dots. The location of the critical point is indicated by a star.

2971 —1 such subsets can actually occur. Fixed points of rotation number zero always
exist, and will play an organizing role in our discussion.
Finally, if T is non-vacuous and does not consist of fixed angles j/(d—1), then it is

uniquely determined by three invariants, namely the cardinality #T, the combinatorial
rotation number

0#p=p/qeQ/Z,

and the deployment of the elements of T with respect to the fixed angles j/(d—1). Here
we can take 0<p/g<1 to be a fraction in lowest terms. The cardinality #T can then
be expressed as a product of the form kg with 1<k<d—1. Thus we can number the
elements of Tas 0<t5< ... <f,_; <1, withd=¢t,,,,(mod 1). Finally, the deployment
of the elements of T with respect to the fixed angles can be described, for example, by
specifying the cardinality s;= # (T N [0, j/(d— 1))) of the intersection of T with each half-
open interval [0, j/(d—1)). When k> 1, the resulting sequence 0<s, < ... Ss,_,=kq is
subject to certain mild restrictions. (See Part 1.)
The principal concept which we propose to study is the following.

DEerFINITION 1.3. — The fixed point portrait of a monic polynomial is the collection of
types of its rationally visible fixed points. Thus two monic polynomials f and g of degree
d have the same fixed point portrait if and only if there is a one-to-one correspondence
between the rationally visible fixed points of f and the rationally visible fixed points of g
which preserves the type.

As examples, Figure 1 shows the Julia sets for the quadratic polynomials
fi@=22+e2"Bz and  f,(2)=z>+i.

These have the same fixed point portrait, which consists of the type T,={0} with
rotation number zero and the type T,={1/7, 2/7, 4/7} with rotation number 1/3. This
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Fig. 3. — Four cubic Julia sets, each with one fixed point of rotation number 1/2.
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portrait is indicated schematically in Figure 2. Figure 3 shows the Julia sets for four
cubic polynomials. Each of these has one fixed point of rotation number 1/2. The
right center Julia set also has one rationally invisible fixed point; while the other three
have two distinct fixed points of rotation number zero. Figure 4 shows schematic
diagrams for these four fixed point portraits. Note that the last portrait can be described
as the union of the first two.

DerintTION 1.4, — Tt is often convenient to compactify C by adding a circle of points
at infinity, with one point lim re?™" corresponding to each angle reR/Z. We denote

r— +w
this compactified plane by ©, and denote the circle at infinity by 0©~R/Z.

In order to understand a general fixed point portrait, first consider the fixed points of
rotation number p=0. These are precisely the landing points of the d—1 fixed rays
Rju-1)- Suppose that there are n such fixed points, and let T, ..., T, be their
types. Thus the T, are disjoint non-vacuous sets with wunion equal to
{0, 1/(d—1),...,(d=2)/[(d-1) } Evidently 1<n<d—1. Note that any two of these
sets T, are “unlinked”, in the following sense.

DEeFNITION 1.5. — We will say that two subsets T and T’ of the circle R/Z are unlinked
if they are contained in disjoint connected subsets of R/Z, or equivalently if T’ is
contained in just one connected component of the complement R/Z\T. (In particular,
T and T’ must be disjoint.) If we identify R/Z with the boundary of the unit disk, then
an equivalent condition would be that the convex closures of these sets are pairwise
disjoint. As an example, if T and T are the types for any two distinct fixed points of
/, then evidently T and T’ are unlinked.

The d—1 fixed rays R; ., will cut the complex plane into m=d—n connected open
subsets, say U,, ..., U,, which we will call basic regions. Compare Figure 5, which
illustrates the degree six case with m=n=3 and with

2 1 3 4
T,={0,2% T,={_4 T,={I, -0
{5} ’{5} 3{55}

To simplify the discussion, let us assume for now that the d finite fixed points of f are
all distinct. The following will be proved in Section 3.

LemMA 1.6. — With this hypothesis, each basic region U; contains at least one critical
point of f, and exactly one fixed point of f.

Let T; be the type of the fixed point in the region U;. This fixed point may be
rationally invisible, so that T;=(J. However, if T;# ¢ then it has a well defined
rotation number p,/q;, which is an arbitrary non-zero rational modulo 1. In order to
describe which fixed point types T; are possible for given U; and given rotation number,
we need further definitions.

By the critical weight 1<w(U;)<d—1, we mean the number of critical points of f,
counted with multiplicity, which are contained in the region U,. Closely related is the
angular size o (U;) of U; at infinity, which is defined as follows. We think of U, as a
region in the circled plane ©, and define o (U;) to be the length of the intersection of dU,
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degree d=3

3/8 1/8 3/4

38 118

112 0 >/<

172 —— 0

1/4

3/8 1/8

~

1/2 0

X |k

3/4

Fig. 4. — Schematic diagrams for the fixed point portraits of Figure 3.

with the circle at infinity, 0©=~R/Z. By definition, the circle at infinity has total length
equal to 1. Thus the sum of the angular sizes of these m=d—n regions is ) a(U)=1,
while the sum of the critical weights is Y w(U)=d—1. Note that the inter-
section 0U; N\ d© corresponds to a union of non-overlapping intervals
L;=[j/(d—1), (j+ 1)/(d—1)], each of length 1/(d—1), in R/Z.

LeMMA 1.7. — The number of critical points w(U),) is equal to the number of intervals
I;, 0=j<d—1 which are contained in the boundary of U; at infinity. Thus the angular
size is given by o (U)=w(U)/(d—1). When the critical weight w=w (U,) equals one,
there is one and only one possible fixed point type T; with given rotation number p|q which
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1/5

2/5

4/5

Fig. 5. — Partial schematic diagram for a typical map of degree d=6. In this example, the five fixed rays
cut the plane into three “basic regions” U,, each of which contains exactly one interior fixed point (indicated
by a solid dot), and as many critical points (stars) as boundary fixed points.

can be placed in the basic region U,. However, when w=2 there are q+ 1 possible types
of cardinality q, and q types of cardinality 2 q.

Compare Part I, as well as Section 2. For each fixed higher value of w, one can show
that the number N of distinct types can be expressed analogously as a polynomial N, ()
of degree w—1 in q. Note that the number of possible types is completely independent
of the numerator p, the degree d, and the precise shape of the region U;. It depends
only on the denominator g and the weight w. The proof in Part I shows more explicitly
that each type T; is uniquely determined by its rotation number, together with the
cardinalities of the various intersections T; M I;. Of course only w of these intersections
can be non-vacuous.

Example. — 1If the d—1 fixed rays R;,_,, all land at distinct points, then there is
only one basic region U,, and its critical weight is w=d—1.

The main result of this paper, Theorem 7.1, gives a complete characterization of just
which fixed point portraits can occur, providing that we assume that the d fixed points
are all distinct and rationally visible. Our proof depends essentially on work by Yuval
Fisher and by Bielefeld-Fisher-Hubbard, which is developed in Section 5.

2. Classification of fixed points

We continue to assume that f is a monic polynomial map of degree d=2 with K (/)
connected. Recall that the dynamics of f'in a neighborhood of a fixed point f(z)=z is
controlled by the eigenvalue or multiplier f' (z). The fixed point is said to be repelling if
| f'(2)|>1, attracting if |f'(z)|<1, and to be parabolic if f'(z) is a root of
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unity. Combining arguments of Douady, Hubbard, Sullivan, and Yoccoz, we have the
following. (Compare 1.1.)

LemMA 2.1. — A fixed point is rationally visible (that is, admits at least one rational
external ray) if and only if it is either repelling or parabolic.

Proof Outline. — In the attracting case the point z cannot be rationally visible since z
is in the interior of K (f). Similarly, if there is a Siegel disk around z, then z cannot be
rationally visible. If f’(z) is any point on the unit circle, which is not a root of unity
(in particular, if z is a Cremer point), then an argument of Douady and Sullivan shows
that no rational external ray can land at z. Compare [Su], [DH2], p.70. On the other
hand, if z is repelling then an unpublished argument of Douady and Yoccoz shows that
at least one rational external ray lands at z (compare [Pe]); and it is not difficult to
adapt their methods to prove the corresponding statement in the parabolic case. (See
M2].) O

For the rest of this section, we consider only fixed points which are rationally visible.

LEmMMA 2.2. — If at least one rational external ray lands at the fixed point z of f, then
there are only finitely many external rays landing at z, and all are rational and are permuted
by f.  More precisely, if we number these rays as R, ;, where

0<1(0)<...<t(n—1)<1,

then there is a unique residue class m modulo n so that f maps each ray R, onto R,
with i'=i+m (mod n).
In practice, we may think of the indices i as integers modulo n, and simply write

S(R, (i)) =R, (i+m)

By definition, the ratio m/n in Q/Z is called the rotation number p(f, z). Here m and
n need not be relatively prime. We will usually write the rotation number as a fraction
p/q in lowest terms, where m=kp and n=kq, and where k=1 is the greatest common
divisor. Note that the collection T (f, z) of external rays landing at z then splits up
into k subsets of ¢ rays, where each of these subsets is permuted cyclically by f. The
integer k=1 can be described as the number of cycles of external rays which land
at z. The set T=T (f, z) is called the zype of the fixed point z.

Remark. — Here k<d—1. (Compare [Part I], Cor. 6.) The following more general
inequality has been pointed out to us by Jeremy Kahn (U. C. Berkeley): The number of
cycles of external rays landing at any periodic point satisfies k < hd, where h is the period.
This inequality is not sharp. His proof is based on Thurston laminations [Thl].

Caution. — By definition, our rotation numbers are always rational. Of course an
infinite subset of R/Z may well have a rotation number which is well defined but
irrational. (Seee Figure 16, and compare [Ve].) Such rotation numbers are briefly
concidered in the three Appendices, and are surely worthy of further study. One step
in this direction, a study of irrational rotation sets, has been carried out by A. Poirier
(unpublished).
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Proof of Lemma 2.2. — Clearly the map f carries each ray R, landing at z to a ray
f(R,)=R,; landing at z. Furthermore, since f is a local diffeomorphism near z, this
correspondence must preserve the cyclic order of these rays around z, which is the same
as the cyclic order of the corresponding angles te R/Z. First suppose that the zero ray
R, lands at z. Then we claim that any other ray R, which lands at z must also be
mapped into itself by f, and hence must satisfy td=¢ (mod Z), or in other words have
the form ¢=j/(d—1). For otherwise the successive images f(R)=R,, f(R,)=R,.,...
would satisfy either 0<r<t'<t’<...<lor0<...<t'<t <t<1; since cyclic order is
preserved by f. In either case, the angles of these successive images would tend to a
limit of the form j/(d—1). But this is impossible, since j/(d— 1) is a repelling fixed point
of the map ¢+ td (mod 1). Thus the rays which land at z are all rational, and there
are at most d— 1 of them.

Now assume only that some arbitrary rational ray lands at the fixed point z. After
applying the map f a sufficient number of times, we may assume that the angle ¢ of this
ray has denominator prime to the degree d. In other words, we map assume that this
ray R, is periodic under f, with period say q. Let F be the g-fold iterate /°9, of degree
d% so that R, is fixed by F. Evidently ¢ has the form j/(d?—1). Now consider the
conjugate polynomial map w— A !F(Aw), where A=e?>"% This fixes the zero ray;
hence the argument above shows that at most d?—1 external rays of F, or equivalently
of £, land at the point z, and that the corresponding angles are all rational, of the form
j/(d®—1). Further details are straightforward, and will be left to the reader. [

We can restate Lemma 2.2 in the language of Part I of this paper as follows. Recall
that a finite subset of R/Z with well defined rational rotation number is called a rational
rotation subset.

COROLLARY 2.3. — The type T (f, z) of any rationally visible fixed point z is a rational
rotation subset of the circle.

A complete combinatorial classification of rotation subsets T < R/Z may be found in
Theorem 7 of Part I. Such rotation subsets exist for all rotation numbers in all degrees
d=2. Furthermore: The rotation subset T is uniquely determined by its rotation number
p/q and its cardinality kq, together with the “deployment” of its elements with respect to
the fixed angles j/(d—1). When k>1, this deployment is subject to certain
restrictions. More explicitly, for small values of the degree d we have the following.

Degree 2. — The rotation number p/ge Q/Z\ {0} is a complete invariant.

Degree 3. — There are 2¢g+ 1 possible types T for each rotation number p/g#0. - A
convenient complete invariant is the ratio s,/k, which can be any integer or half-integer
between zero and ¢q. Closely related is the ratio s,/kq, which measures what fraction of
the elements of T lie between 0 and 1/2. As examples, for the four maps of Figure 3
with a fixed point of rotation number 1/2, this fraction s,/kq is respectively 1/2, 1, 1,
and 3/4.

Similarly, in higher degrees, the analogous ratios
0=s,/kq< ... Ss54_,/kq<1
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form a complete invariant. Here s;/kq measures what fraction of the elements of T lie
between zero and i/(d—1). See Part I for details.

In the parabolic case, there is a very close relationship between multiplier and rotation
number, which we explain in the next Lemma.

Lemma 2.4. — If z is a parabolic fixed point with multiplier f'(z)=e*"'"/, then the
rotation number p (f, z)€ Q[Z is equal to p/q.

Remark. — In the case of a repelling fixed point, the rotation number p/q is not
precisely equal to the argument of the corresponding multiplier f'(z) in most
cases. However, the still unpublished Yoccoz inequality asserts that log f* (z) must lie in
a certain open disk D, in the right half-plane. By definition, D, has radius log(d)/(kq)
where kq is the number of rays landing at z, and this disk is tangent to the imaginary
axis at the boundary point 27ip/q. (Compare [Pe].) In particular, suppose that we fix
p/q and choose a sequence of maps f; for which the multiplier f7(z;) at some repelling
fixed point of rotation number p/g converges towards the unit circle. Then it follows
that these multipliers f7(z;) must converge towards the points e?™Pl4. Thus Lemma 2.4
can be described as an easy limiting case of the Yoccoz inequality.

Outline Proof of 2.4. — According to the Leau-Fatou Flower Theorem, for some
integer r21 there exist rqg simply connected regions U,, .. .,U,,, numbered in counter-
clockwise order around z, so that f(V,) = V; with j=i+rp (mod rg), and so that an orbit
under f converges towards z (without actually hitting z) if and only if it eventually lands
in one of the V,. Compare [M2], [Bl], §3. Evidently any external ray which lands
at z must be disjoint from these V,. However, since f is an orientation preserving
homeomorphism near z, an argument similar to the proof of Lemma 2.2 shows that the
combinatorial rotation number for these external rays cannot be different from the
combinatorial rotation number p/q for these petals. [J

To conclude this section, let us supplement the discussion in Part I, Lemma 3 by
describing how rotation sets and their associated external rays are related to critical points
and fixed points. Let z be a rationally visible fixed point of type T={1t,, ..., %, } and
rotation number p/q, where 0=t,<t,<...<t,_; <1 and n=kgq, with n>1. Then the
external rays R, divide the circled plane © into n pie slices S,, . . ., S, which we will call
sectors. 'The boundary 0S; consists of the two rays R,,_| and R, together with an arc
A, on the circle at infinity 0©O~R/Z. It is sometimes convenient to set f,=f,+1, so
that the difference ¢,—¢;_; measures the length of this arc A; even when i=n. We will

call this length the angular size 1(S;) of the sector S;. Thus 0</(S;) <1, with Y /(S)=1.

DEerINITION. — By the critical weight w(S;), we mean the numer of critical points of f
within S; counted with multiplicity, so that Y w(S;)=d—1. This integer w(S;)=0 can
also be described in three other quite different ways:

(1) w(S)) is equal to the number of fixed rays R;,,;, which are contained in the
sector S; (where fixed rays forming part of the boundary of S; are to be counted with

weight 1/2). In other words, it is the number of points ¢ in the interval [¢;_,, ¢,) satisfying
dt=t mod 1.
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(2) w(S;) is the integer part of the product I(S)d, where the ‘angular size”
[(S)=t,—t,_; measures the length of the boundary at infinity of S,.

(3) w(8S)) is equal to the number of fixed points or “virtual fixed points” which are
contained inside the sector S;. (See 3.2.)

We will prove (1) and (2) in this section, and (3) in 3.4.

LEMMA 2.5. — The critical weight w(S,) is equal to the number of fixed rays R ,_,
which are contained in S;. Here, in the special case of rotation number zero where the
two boundary rays of S; are fixed rays, these two boundary rays are to be counted
with weight one half. If the weight w(S,) is zero, then the polynomial map f carries S;
homeomorphically onto the sector S;, where j=i+kp mod kp. On the other hand, if
w(S;)>0 then f carries S; onto the entire plane ©.

Since there are exactly d—1 fixed rays, this description gives the correct total count

Y w(S)=d-1.

REMARK 2.6. — If there is a critical point in the sector S;, then there must be at least
one critical value in the sector S;, where j=i+kp mod kq. For otherwise, every one of
the d branches of f~' would be well defined and smooth throughout S;, which is clearly
impossible.

Proof of 2.5. — Suppose that we traverse the boundary dS; in three steps: first out to
infinity along the ray R, then along the arc A; and then back to the fixed point along
R,, The image of this loop under f will first follow the boundary of the corresponding
S; out along the ray R, , and along A;. But then it will continue all the way around
the circle for some number N of times, where dl(S;)=1/(S;)+ N, before returning to the
fixed point along R,j. As noted in Part I Lemma 3, this N is the number of fixed points
at infinity in A;. In fact, as ¢ increases from ¢,—a/d to t;—(a—1)/d the image df mod 1
increases from ¢; through #;_, and ¢, to ¢;+ 1 (assuming that ¢;<¢,_, to fix our ideas). By
the intermediate value theorem there must be a fixed point as this image varies between
t;_, and ¢,

Let us round off the corners of S; so that S, has a smoothly turning tangent vector,
which rotates through one full turn as we circumnavigate this boundary. Evidently the
tangent vector of the image of dS; under f will rotate through N+ 1 full turns. It follows
easily that there are exactly N critical points, counted with multiplicity, in the interior of
S, O

The proof shows also that
2.7 dl(S)=1(S)+w(Sy)

with j=i+kp mod kp as above. (This is of course just a mild restatement of Lemma 3
of Part I.) In particular, w(S,) is equal to the integer part of dI(S;), which proves the
statement (2) above. In the special case of rotation number zero, note that
equation (2.7) reduces to the formula

2.9 @=1DIS)=w(S).
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3. Counting fixed points

In this section we consider all of the fixed points of the polynomial map f of
degree d. The first step is to consider the landing points of the d—1 external rays
R;/4-1) which are fixed by f. Suppose that n of these landing points, say z,, . . ., z,, are
distinct. Then the rays R;,_,,, together with their landing points, cut the plane of
complex numbers into m=d—n basic regions, which we will denote by U,, ...,U,, in
some arbitrary order. Here 1=m=<d—1. We can roughly locate the critical points
of f, and also the m remaining fixed points, as follows. As in Section 1, the critical
weight w(U,;) will mean the number of critical points in U,, counted with multiplicity.

Recall that ©stands for the compactification of the complex numbers by adding a circle
0©x~R/Z of points at infinity. This circle at infinity has length + 1 by definition. The
boundary of U; in this completed plane is made up out of a finite part consisting of
rays R;,_;), and also a union of one or more arcs on the circle at infinity. (Compare
Figure 5.)

LemMma 3.1. — The critical weight of each basic region U, is equal to the number of
fixed points (necessarily of rotation number zero) on the finite part of 0U,, or to d—1
times the length of that part of 0U; wich which lies on 0©.

Proof (See the proof of 2.5). — Let N be the number of fixed points on the finite
part of dU,. As we traverse the boundary of U,, starting at one of these finite fixed
points, we first travel out along a ray R;,,_,), then traverse an arc of angle 1/d—1) at
infinity, and then come in to the next fixed point along R;,)—-1) This pattern is
repeated N times. The image of dU; under f has a similar description. The only change
is that each arc of dU; M 0© of length 1/(d—1) is mapped to an arc which wraps all the
way around the circle, so as to have total length d/(d—1)=1+1/(d—1). Let us round
off the corners of 0U; so as to obtain a smooth curve whose tangent vector has winding
number +1. Evidently the tangent vector of the image of this curve under f will have
winding number N+ 1. It then follows easily that the number of critical points w(U,)
enclosed by this curve must be equal to N. [

If the d finite fixed points of f are all distinct, then we will show that each basic region
U, contains exactly one interior fixed point. More generally, we will modify this
statement so that it remains correct even when there are multiple fixed points. However,
to do this we will need some definitions.

A fixed point f(z,) =1z, is said to have multiplicity p if the Taylor expansion of f(z) —z
about z, has the form

f(z2)—z=a(z—zy)*+ (higher terms),

with a#0 and p=1. The sum of the multiplicities of the fixed points is always equal
to the degree d. By definition, z, is a multiple fixed point if p=2, or equivalently if the
multiplier f” (z,) is equal to 1. Such a multiple fixed point is the center of a Leau-Fatou
flower with p—1 attracting petals, each contained in an immediate parabolic basin. (See
for example [M2].)
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DeFINITION 3.2. — Each one of these p— 1 immediate basins, mapped onto itself by f,
about a fixed point of multiplicity n=2 will be called a virtual fixed point of f. (More
generally, any immediate parabolic basin which has period p under f may be called a
“virtual periodic point” of period p.)

Since the equation f(z)—z=0 has exactly d roots, counted with multiplicity, the total
number of fixed points and virtual fixed points for f in the finite plane C is always equal to
the degree d. For our purposes, virtual fixed points are very much like rationally
invisible fixed points: neither one makes any contribution to the fixed point portrait. In
fact the following seems very likely:

CoNJECTURE. — Any virtual fixed point can be converted to an attracting fixed
point by a small perturbation of the polynomial, without affecting the fixed point
portrait. Further, we conjecture that it is possible to choose this perturbed polynomial
so that, when restricted to its Julia set, it is topologically conjugate to the original
polynomial on its Julia set.

The following is an important topological restriction on the distribution of fixed points.

THEOREM 3.3. — Each one of the basic regions U, contains exactly one interior fixed
point or virtual fixed point.

Evidently a fixed point has a well defined non-zero rotation number if and only if it
is rationally visible and interior to some U,. As an immediate consequence of 3.3, we
see that: Each basic region U; contains at most one rationally visible interior fixed point.

A more or less equivalent fixed point theorem can be stated as follows. As in 2.5,
consider a “sector” S; bounded by two external rays which land at a common fixed
point.

COROLLARY 3.4. — The total number of fixed points and virtual fixed points in S; is
equal to the critical weight w=w (8S)).

Proof (assuming 3.3). — The fixed rays Ry/y_1), - - s Rgsw—1y@—1) Which lie in §;
land on some number n<w of distinct fixed points, and cut out w—n distinct basic
regions which are strictly contained in S;. Since each of these contains exactly one fixed
point or virtual fixed point, the conclusion follows. [

Before proving 3.3, let us state one further consequence, which has been pointed out
to us by A. Poirier.

COROLLARY 3.5. — Let V be any bounded invariant Fatou domain for the polynomial f,
that is any bounded component of C\J (f) which is mapped to itself by f. Then any fixed
point on the boundary 0V must be either parabolic or repelling, with rotation number
zero. There cannot be any Cremer point on the boundary.

Proof (assuming 3.3). — First recall that the region V must be either a Siegel disk, or
the immediate basin of an attractive fixed point, or an immediate basin of a parabolic
fixed point. (See for example [M2], 13.) In the first two cases, V contains an interior
fixed point, while in the parabolic case it contains a virtual fixed point. Evidently V
must be contained in some basic region U;. Hence it follows from 3.3 that any fixed
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point on the boundary of V must also be in the boundary of U, The conclusion
follows. O

The proof of 3.3 will depend on the following ideas.

DEerINITION 3.6. — Let A<= C be a topologically embedded closed disk with
interior A. A map f:A—C will be called weakly polynomial-like of degree d if
f(OA) N A=F, and if the induced map on integer homology

fo: Hy @A, 00)=Z —H,(C, C\{z,N=Z

is multiplication by d. Here z, can be any base point in A.

Remark. — If fis holomorphic, and satisfies the sharper condition that f(6A) N A= ¢,
then it is called polynomial-like. Compare [DH4]

LEmMMA 3.7. — If f:A - C is weakly polynomial-like of degree d, with isolated fixed
points, then each fixed point f(z;)=z; can be assigned a Lefschetz index 1(f, z;)€ Z which
is a local invariant, so that the sum of these Lefschetz indices is equal to the degree d.

As an example, if fis a polynomial of degree d and if A is a large disk centered at the
origin, then f|A is polynomial-like of degree d, and the Lefschetz index is +1 at a simple
fixed point and p at a p-fold fixed point. Thus the sum of the indices is equal to d, as
expected.

Proof of 3.7. — For presentations of the Lefschetz Fixed Point Theorem, see for
example [Brn], [DGr], [Gr] or [Ji]. In the case of an interior fixed point, the Lefschetz
index can be defined as the local degree of the map z+ f(z) — z at the fixed point. That
is, if U is a small neighbourhood of z;, then the induced homomorphism

(f—identity),: H, (U, UN\{z})—H,(C, C\{0})

is multiplication by 1. If there are no boundary fixed points, then the sum of these
indices is the degree of

(f—identity),: H, (A, dA) - H,(C, C\{0}).

But the identity map of A is homotopic to the constant map z+>z,, so this sum of
indices is equal to d.

If there are boundary fixed points, then we can first modify the map in a neighborhood
of each one so as to push all of the fixed points inside, and then apply the construction
above. The resulting index does not depend on the local modification, since the global
degree cannot change. [

Proof of 3.3. — Let U; be one of the regions of 3.1, and let A be the topological disk
which is obtained by intersecting U; with a large round disk centered at the origin. Then
it is easy to check that f restricted to A is weakly polynomial-like of degree
w+1=w(U)+1, and that it has exactly w boundary fixed points. If U; contains no
virtual fixed point, then we will show that each of these boundary fixed points has
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Lefschetz index +1. Therefore, it will follow from 3.7 that there must be an interior
fixed point as well.

First consider a boundary fixed point z; which is repelling, | /' (z;)|>1. Then a small
open disk D, centered at z; maps diffeomorphically onto a strictly larger disk. Let A;
be that component of AN D, which has z; as boundary point. Then the closure A; is a
relative neighborhood of z; in A, and the map f restricted to A; is weakly polynomial-
like of degree +1, with unique fixed point atz; Hence by 3.7 the local index
1(f]4, z)=1(f|A4,, z;) is equal to +1, as asserted.

Now suppose that z; is a parabolic fixed point. Then by 2.4 the multiplier /" (z;)
must be equal to +1. The two external rays of dU; which land at z; must be contained
in a common repelling petal as they approach z;, since otherwise U; would contain an
attracting petal or “virtual fixed point”, contrary to our hypothesis. In this case, we let
A; be one component of the intersection of A with a small repelling petal
at z;. Proceeding just as above, we again see that the Lefschetz index is +1.

To complete the proof, we must consider the basic regions which do contain virtual
fixed points. If there are v such regions, then each of the remaining m— v basic regions
contains as interior fixed point by the argument above. Here m=d—n where n is the
number of fixed points of rotation number zero. Thus we have accounted for at least
n+ (m—nv)+v=d distinct fixed points or virtual fixed points. Thus all such points have
been accounted for, and no one of these basic regions can contain more than one fixed
point or virtual fixed point. [

Recapitulating and summarizing the results of Sections 2 and 3, we have the following
two statements, which follow easily from the discussion above.

THEOREM 3.8. — For any ‘‘sector”, or more generally for any region S bounded by two
external rays R, and R, landing at a common fixed point, where t<u=t+1, the following
four numbers are equal:

(1) the critical weight w(S), that is the number of critical points in S counted with
multiplicity;

(2) the number of fixed rays in S (where a fixed ray on the boundary of S is counted
with weight 1/2);

(3) the greatest integer less than the product d.l(S)=d.(u—1t);

(4) the number of fixed points plus virtual fixed points in the interior of S.

By definition, a “basic region” is bounded by some number of fixed rays, and contains

no fixed rays in its interior.

THEOREM 3.9. — Every basic region U,; contains exactly one interior fixed point or
virtual fixed point. Furthermore, the following three numbers are equal:

(1) the critical weight w(U,),
(2) the number of fixed points on (the finite part of) 0U,,
(3) the product (d—1).1(U,).
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4. Fixed point portraits

We are now in a position to give a conjectured description of all possible fixed point
portraits. Recall from 1.3 that the fixed point portrait for a polynomial f which has k
rationally visible fixed points is the collection

P={T,,....T,}

consisting of the types of these rationally visible fixed points. Here 1 £k<d. Assembling
previous results, we have the following.

THeOREM 4.1. — If 2={T,, ..., T,} is the fixed point portrait for some polynomial
map of degree d, then the following four conditions must be satisfied.

Pl. Each T; is a rational rotation set. In particular, it has a well defined rotation
number p;/q;.

P2. The T; are disjoint and pairwise unlinked.

P3. The union of those T; which have rotation number zero is precisely equal to the set
{0, 1/(d—-1),...,(d=2)/(d— l)} consisting of all angles which are fixed by the d-tupling
map.

P4. Each pair T;#T; with non-zero rotation number is separated by at least one T, with

zero rotation number. That is, T; and T; must belong to different connected components
of the complement (R|Z)\T,.

Proof. — P1 follows from 2.3, P2 follows from 1.5, P3 is clear from the discussion
in Section 1 or above, and P4 is an easy consequence of 3.3. [

MAIN CONJECTURE 4.2. — These necessary conditions are also sufficient. In other
words, given sets T, satisfying these four conditions, there exist a polynomial of degree d
whose filled Julia set is connected having { T;} as fixed point portrait.

In the special case where k=d (so that the d fixed points are distinct and rationally
visible) a proof will be given in Section 7. A proof in the general case has recently been
given by Poirier [Pol]. (See also [HJ].)

In order to illustrate 4.2, let us look at the low degree cases.

Degree 2. — In this case, we always have T;={0}. If there is also a fixed point
with rotation number p/q#0, then the resulting fixed point portrait might be denoted
by the symbol 2 (p/q). A corresponding centered polynomial map is said to belong to
the p/gq-limb of the Mandelbrot set. If the other fixed point is invisible (as for z+>z?)
or is only a virtual fixed point, then we could use the symbol # (e). Such maps are
said to belong to the central core of the Mandelbrot set. For further details, see
Appendix C.

Degree 3. — Here there are two subcases. If the rays R, and R, land at distinct
points, then we have T;={0}, T,={1/2}, and there is at most one further fixed
point. If this further fixed point is distinct and rationally visible, the corresponding
portrait might be indicated by the symbol £ (p/q; s,/k). (Compare the discussion
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following 2.3.) Here g=2, p is relatively prime, and s,/k is an integer or half-integer
between zero and gq. With this notation, three of the portraits of Figure 4 would be
represented by the symbols 2 (1/2; 1), 2(1/2; 2) and 2 (1/2; 3/2) respectively. If the
third fixed point is rationally invisible (as for z+ z3), or is virtual (as for z+»> z3 —z%+2),
then some notation such as £ (e;) might be used.

On the other hand, if R, and R,,, land at a common point of type T,={0, 1/2},
then these two rays divide the plane into an upper half and a lower half. Each of these
two halves must contain a fixed point or virtual fixed point. If the upper half contains
a fixed point of rotation number p/g and the lower half a fixed point of rotation number
P'/q’, then the symbol 2 ((p/q)/(p’/q")) might be used. If either the top or bottom fixed
point is rationally invisible or is only a virtual fixed point, then the corresponding
rotation number should be replaced by a heavy dot. For example, with this notation,
the right hand portrait of Figure 4 would be written as £ (1/2/e); while the portrait for
the map z~>z3+z with two virtual fixed points, or the map z+z3+(3/2)z with two
superattracting fixed points would be written as & (e/e).

5. Critical portraits: Fisher’s thesis

This section will develop a complementary concept of “critical portrait” for certain
polynomial maps. The exposition is based on the work of Yuval Fisher and of Bielefeld-
Fisher-Hubbard, and will omit most proofs. (See [Fi] and [BFH].)

In Section 6 we will show that the fixed point portrait of a polynomial is uniquely
determined by its critical portrait, whenever the latter is defined. In fact, we describe
an algorithm that effectively computes the fixed point portrait of a polynomial whose
critical portrait is given. These results will be used in Section 7 to construct polynomials
with specified fixed point portrait.

HypoTHEsis. — We will assume that f is a monic polynomial of degree d=2 with the
property that each critical point is the landing point for at least one external
ray R,. Choose some fixed numbering for the distinct critical points o, . . .,®,, and
let p; be the multiplicity of the critical point ;. Thus p;21 for each j, and the sum
Y u; is equal to d—1.

DEFINITION. — By a critical portrait for f we will mean a sequence @={0,,...,0,}
where each ®; = R/Z is a finite set of angles satisfying three conditions:

(1) Each ray Ry, with O € ®;, must land at the critical point ®;.

(2) Any two angles in the same ®; must be congruent modulo 1/d, so that ®; maps to a
single point under the correspondence 6+ db (mod 1).

(3) Each ©; must have (the largest possible) cardinality #©;=p;+ 1.
Thus for any two angles 6, ne®), the corresponding rays Ry and R, must have the
same image R, under the map f. Since the correspondence z+ f(z) preserves external
rays, and is exactly (u;+1)-to-one in a neighborhood of ®; (with the point w; itself
deleted), if follows that ®; is precisely the set of all external rays which land at the
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critical point ®;, and which map to one common ray R,y landing at the critical value
f(®)). Consequently, the map f possesses a unique critical portrait if and only if each
critical value f(®;) is the landing point of one and only one external ray.

The elements of ®,U...U®, will be called the preferred critical angles, and the
corresponding R, the preferred critical rays. Following Fisher, the pair (f, ®) is called
a marked polynomial. Evidently any critical portrait {@®,, ..., ®,} must satisfy the
following three conditions:

C1. The ©; are pairwise disjoint and unlinked. (See 1.5.)
C2. Any two angles in the same ©®; are congruent modulo 1/d.
C3. The cardinalities of these sets satisfy #@®;=2 and

Y (#0,-1)=d-1.

By definition, any collection of sets of angles satisfying these three conditions will be
called a formal critical portrait. Fisher’s Thesis is concerned with formal critical portraits
which satisfy the following further condition:

C4. Each critical angle 6e®, U. ..U ®, is strictly preperiodic under the map 6+ do
(mod 1). In other words, each such 0 is rational, and the denominator of 8 is never
relatively prime (!) to the degree d.

His main theorem asserts that a formal critical portrait satisfying C4 is actually realized
by a polynomial map f with J=J(f) connected if and only if it satisfies one further
condition C5, which will be described below. Fisher’s method is constructive, and has
been implemented on a computer by Bielefeld, Fisher and Hubbard as the so-called
“spider algorithm”. An example of this procedure is illustrated in Figures 6 and 7: If
we start with the degree 3 critical portrait which is illustrated schematically in Figure 6,
then the spider algorithm yields the cubic polynomial of Figure 7.

Remark. — Fisher’s work is based on Thurston’s theory of post-critically finite rational
maps. Hence condition C4 is essential for his proofs, although his results may actually
be true in much greater generality.

Consider a marked polynomial with critical portrait {®, ..., ®,}. The critical rays
Ry, 8€©®, U. ..U ©,, together with their landing points ®;, cut the plane C up into d
regions Q, with boundary. In particular, they cut the Julia set J of f up into d compact
connected subsets J,, .. .,J;, where J,=JNQ,. These d sets are nearly disjoint, in the
sense that each intersection J, M J, consists of at most a single point, which is necessarily
one of the critical points ®;.

LEMMA 5.1. — The map f carries each of these d subsets J, homeomorphically onto the
entire Julia set J.

This can be proved by first checking that f is univalent on the interior of each
region Q,, and maps the closed region onto the entire plane © In fact the boundary

(*) For the case of angles 6 which are allowed to the periodic, see [Po2].
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13/30
172 0
23/30 L, 26/33
Fig. 6. — Diagram for the cubic critical portrait
4 26 13 23
O={{—, — 4 <{—, — >
{{33 33} {30 30}}
4733
3/8
178
13730
Jl
12
172
I3
23730 26733

Fig. 7. — Julia set for the associated polynomial
223 —(.309+ .3961) z—(.216— .9951).
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0Q, maps to a loop which simply traverses the circle at infinity d©, with a detour first
in and then out along each preferred external ray leading to a critical value f(w;). Here
o; ranges over those critical points which belong to the boundary of Q- the associated
critical values f(w;) are all distinct. Details will be omitted. [

Lemma 5.2. — If Condition C4 is satisfied, then this partition of J has the following
much sharper property: Given an arbitrary sequence pg, py, . . . of indices between 1 and d,
there exists one and only one point z=z (py, p;, - - .) which belongs to the intersection

Jpomf~1Jp1 mf_z‘]pzm' v

or equivalently satisfies f°"(z)el o, JOr every n20.

Remark. — Here the requirement that the angles 6€®, are rational is surely
essential. A well known conjecture asserts the existence of polynomials with locally
connected Julia sets having Siegel disks. A corresponding critical portrait would satisfy
conditions C1-C3 but not C4. Evidently any two points on the boundary of such a
disk must have the same symbol sequence.

Proof of 5.2 (with help from Ben Bielefeld). —We will make use of the Thurston
orbifold metric associated with f. Since f is post-critically finite without attracting orbit,
this is a conformal Riemannian metric which is defined throughout C, with singularities
exactly at the post-critical points of . It is expanding, in the sense that for any curve
segment y the length L (f(y)) with respect to this metric of the image curve is strictly
larger than the length L(y). (See for example [DH3] or [M2], § 14.5.) If we restrict
to some compact subset of C, then we can make the sharper statement that there exists
a constant ¢>1 so that

L(f(y)zcL®)

for every curve in the subset. In fact, let us work with the compact region M consisting
of all zeC for which G(z)<1, where G is the canonical potential function (Green’s
function) which vanishes on the filled Julia set K (f).

Let M’ be the compact surface with boundary which is obtained by cutting open this
region M along each of the preferred external rays landing at critical values, and along
every forward image of such a ray. Condition C4 guarantees that there are only finitely
many such cuts. (Thus each point along such an external ray corresponds to two
distinct boundary points of M'.) The landing points of these rays correspond to
boundary points at which M’ is usually not smooth. In fact, if more than one such ray
lands at one post-critical point, then M’ will consist locally of two or more connected
surfaces with boundary which have been pasted together at this common boundary
point. However, in spite of the metric singularity and the non-smoothness of the
boundary at these landing points, these boundary curves have finite length with respect
to the orbifold metric. (More generally, using the expanding condition, we see that the
length of any external ray in the compact region M is finite and uniformly bounded.)
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Corresponding to the decomposition C=Q, ... UQ, there is a decompositon
M'=M; U. ..U Mj, where each non-vacuous intersection M, N"M;=Q,NQ, M con-
tains only a critical point and one or two external rays landing at this critical point. The
intersections J Y M, =J N Q, are the sets J, described earlier. These sets M;, have been
constructed in such a way that there is one and only one branch

it M -M,

of f~* which is defined throughout M’ and takes values in M,. To see this, recall that
f maps the subset Q, onto C, and that the restriction f]Q, is one-to-one on the interior
of Q, and at the critical points, and is two-to-one on the rest of the boundary (which
consists of pairs of external rays landing at critical points). If we slit the plane along
external rays landing at post-critical points, then the forward map f is no longer well
defined. For example rays landing at co-critical points do not have well defined
images. However, the inverse branches are well defined, for whenever an image ray
f(R) is unslit it follows that R is unslit. The branch of ™! on M’ which takes values
in M, gives the desired map £, *.

Define the distance p (z, z') between two points of M’ to be the infimum of the lengths,
with respect to the orbifold metric, of rectifiable paths joining z to z’ within M'. Note
that /' is strictly distance reducing: In fact every curve of length L in M’ maps under
fr ! to a curve of length <L/cin M, = M. Hence the iterated image

-1

o oS D=L NN N,

is compact and non-vacuous, with diameter less than diam (J)/c"*!. Taking the limit
as n — oo, we obtain the required unique point. [

CoroLLARY 5.3. — Still assuming C4, each J, contains a unique fixed point of f.
This follows by taking po=p,=...=p. O

The sequence p,, p;, - - - of 5.2 will be called an itinerary for the point z with respect
to the partition {J,...,J;}. If there is no critical point in the orbit
{z,f(2),f°%(2),...}, then evidently this itinerary is uniquely determined
by z. However, if z is pre-critical, that is if there is at least one critical point in its
orbit, then z has more than one itinerary.

Corresponding to this partition of the Julia set into nearly disjoint closed subsets
J,,...,J,; there is a partition of the circle R/Z into nearly disjoint closed subsets
L,,...,L,, each of total length 1/d. By definition, L, consists precisely of those angles t
such that the ray R, lands on some point of J,. In many cases, each L, will consist of
one or more closed intervals. However, if one of the critical points in J, has higher
multiplicity, so that three or more preferred external rays land at this point, then the
corresponding L, will also have isolated points.

More generally, let ®={®,,...,0,} be an arbitrary formal critical portrait. First
consider two points ¢ and ¢’ in the complement

RIZ\(©,U...UO,).
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By definition, ¢ and ¢ are “unlink equivalent” if they belong to the same connected
component of R/Z\ @; for each j, so that the k+1 sets

0,,...,0, {11}

are pairwise unlinked. (Compare 1.5.) Let LY, ..., LY be the resulting “unlink equiva-
lence classes” with union R/Z\(®, U. ..U ®,). It is easy to check that each Lg is a
finite union of open intervals with total length 1/d. Now define L, to be the union of
the closure L) together with all of the sets ©®; which intersect this closure. Thus L;
consists of I:?, which is a finite union of closed intervals, possibly with finitely many
isolated points adjoined, as explained above. As an example, consider the critical

Fig. 8. — A degree S critical portrait.

portrait sketched in Figure 8. Here the set L, consists of three closed intervals as
shown, together with one isolated point at the bottom of the circle.

We will say that the sequence p,, py, ... is an itinerary for the angle te R/Z under the
map ¢+ dt (mod 1) if the orbit t=t,+> ¢, ... satisfies the condition that t,eL, for
each n=0. Evidently each angle ¢ has at least one itinerary, and this itinerary is uniquely
defined if and only if no ¢, belongs to the set ®, U. ..U ®, of critical angles. Using
these ideas, Fisher gives a precise criterion in order to decide when two rays land at a
common point. We assume that C4 is satisfied, so that all critical orbits are strictly
pre-periodic, and we assume that he Julia set is connected. Let s and ¢ be two angles,
and let s=sy+>s,— ... and 1=ty ;... be their orbits under the map ¢+ dt
(mod 1). Since the itinerary of any angle 6 under the d-tupling map must be compatible
with the itinerary of the landing point of the corresponding ray R, under f, Lemma 5.2
takes the following form.

LEMMA 5.4. — The two rays R, and R, land at a common point of the Julia set J if and
only if they have some itinerary in common, or in other words if and only if, for each n=0,
there exists an index p, for which both s,eL, andt,eL, .
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Fisher’s fifth condition is needed in order to guarantee that distinct ®; correspond to
distinct critical points of f:

Cs5. If 0€®, and 0'e®; with h#j, then we require that 6 and 8’ do not have any
itinerary in common.

If all five conditions are satisfied, then he calls {®,, .. .,®,} a “polynomial determin-
ing family of angles”. [Here is an example to show that condition C5 is independent of
the other four conditions. In degree d=4 let ©®,={1/60, 46/60}, ®,={19/60, 34/60 },
and ®;={1/16, 5/16}. Then C1 through C4 are satisfied, but C5 is not.]

DeriniTIONS. — Following Branner and Hubbard, we define the degree d connectedness
locus to be the compact set consisting of all monic centered degree d polynomials with
connected Julia set. The polynomial f will be called critically pre-periodic if the orbit of
every critical point is strictly pre-periodic. That is, each such orbit eventually hits a
periodic cycle, but no critical point itself lies on a periodic cycle.

e can now state Fisher’s main Theorem.
Wi tate Fisher’ Th

THEOREM 5.5. — If a formal critical portrait satisfies all of the conditions C1 through
C5, then there is one and only one polynomial f in the degree d connectedness locus which,
when suitably marked, realizes this critical portrait. Furthermore this polynomial f is
critically pre-periodic.

It follows, according to Douady and Hubbard, that f has locally connected Julia set,
and has the property that all periodic orbits are strictly repelling. (See for example
[M2]; 11.6, 14.4 and 17.5.) In particular, f must have d distinct repelling fixed points.

6. From critical portrait to fixed point portrait

Given a critical portrait ®@={ @,, ..., ®,} satisfying Fisher’s five conditions, he
constructs a unique associated polynomial fe%, which is critically pre-periodic, and
hence has d distinct repelling fixed points (Theorem 5.5). In principle, we can determine
the fixed point portrait of f from the given data. In fact it follows easily from 5.4 that:

LeMMA 6.1. — The fixed point type T; of the unique fixed point which lies in the set
J; = J is just the set of all angles whose orbit under the d-tupling map lies strictly within
the corresponding set L; = R[Z.

In this section, we will describe how to effectively compute this fixed point portrait.
Our analysis depends on some facts about monotone maps of the circle which we briefly
review. (Compare [De], [dM].)

By definition, a continuous self map ¢:R/Z — R/Z is monotone if some, and hence
any lift ®:R — R is non-decreasing. Every monotone map ¢ of degree 1 has a well
defined rotation number

mod 1

p@)= tim 20

n— o n
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which is independent of the choice of R and of the lift @ of ¢.

LEMMA 6.2. — If ¢:R/Z — R/Z is monotone of degree 1, then:
(1) Each ¢~ (1) is either a point or a closed interval in R|Z.
(2) The rotation number p(9) is rational if and only if 4) has a periodic point.

(3) If p($)=p/q, then every periodic point of ¢ has period q and rotation number plq,
or in other words corresponds to a fixed point of the map t+— ®°4(f)—p for suitable choice
of the lift ®. Furthermore, every orbit under § is either itself periodic or tends asymptoti-
cally to an attracting or one-sided attracting periodic orbit.

Proof. — If ¢:R/Z — R/Z is monotone of degree n>1, then it is easy to check that
each pre-image ¢ ! (f) = R/Z has n distinct connected components. Specializing to n= 1
we obtain assertion (1). The proofs of assertions (2) and (3) are essentially the same as
for circle homeomorphisms. Details may be found in [De] and [dM]. O

Fix d=2 and let ® be a degree d formal critical portrait. In other words, we tempor-
arily assume only conditions Cl, C2, C3. As in Section 5, let LY,...,L? be the
corresponding unlink equivalence classes, with union equal to R/Z\(®;U...U ©)).
We associate to each LY a monotone map ¢; from the circle to itself. (Compare
Figure 9.)

L L Ly Ly L3
Fig. 9. — Graphs of ¢,, ¢, and ¢, for the critical portrait of Figure 6.
The repelling periodic points 0, { 1/8, 3/8} and 1/2 are indicated by heavy dots.

LEMMA 6.3. — For each LY there is one and only one continuous map ¢; from R|Z to
itself which is given by the formula

¢;()=dt (mod 1)  for ¢ in the closure of LY,

and is constant on each component V of the complement R|Z\LY. Furthermore, this map
¢, is monotone of degree one. In particular, it has a well defined rotation number.

The proof is immediate. We need only note that the two endpoints of each such
complementary interval V necessarily belong to the same set ®;, and hence share a
common value of d¢f (mod 1). The resulting map is piecewise linear, with slope d>1
throughout the open set Lj?, and with slope zero throughout the complement
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R/Z\L; This map has degree 1, since the various components of L; have total
length 1/d. O

Using these piecewise linear maps rl)j, we can compute the fixed point portrait of f as
follows. Let z; be the unique fixed point of f which lies in the subset J; < J.

LEMMA 6.4. — With fas in 5.5, the angles of the external rays which land at the fixed
point z;€J; are exactly the repelling periodic points of the associated circle map ¢ I

The proof, based on the following lemma, will give an effective procedure for computing
these periodic points.

DerINTION. — It will be convenient to say that a periodic point ¢°4(t,) =1, is ultra-
attracting if the map ¢°? is constant throughout some neighborhood of .

Note that ultra-attracting orbits are very easy to find: Every ultra-attracting orbit must
intersect some component V of the complement R/Z\L}). To locate such an orbit of
period q, we can simply start at any point of V and iterate the map q times. We will see
that these ultra-attracting orbits can then be used to locate the repelling orbits, which
according to 6.4 are those of primary interest.

LeEMMA 6.5. — Suppose that conditions C1 through C4 are satisfied. Then each mono-
tone map ¢j satisfies the following conditions:

(a) The rotation number of ¢j is a rational number p;/q;.

(b) Every periodic point is either repelling or ultra-attracting.

(¢) These two types of periodic points alternate around the circle, and the number k of
orbits of each type satisfies 1 <k<d—1.

(d) Every point of the circle is either periodic or pre-periodic. In fact, any orbit which is
not actually periodic must eventually land on an ultra-attracting periodic orbit.

Proof. — Recall that there are finitely many disjoint intervals, say V,,...,V,, on
which ¢; is constant, and that ¢; coincides with the d-tupling map outside of the union
V,;U...UV,. Letus fix some interval of constancy V,. Since the endpoints of each
V, are preperiodic under the d-tupling map by C4, it follows that the forward orbit of V,
under §; is finite. In fact this orbit either hits some interval of constancy V, twice and
thereafter must repeat periodically, or else hits V, ...V, for a last time and thereafter
coincides with an eventually periodic orbit under the d-tupling map. [Actually, by
assertion (d) the latter case cannot occur.]

This proves that ¢; has a periodic point. Hence ¢; has rational rotation number p;/q;
and every periodic orbit has period g;, by Lemma 6.2. Since the slope of the gq;-fold
iterate of ¢j is alternately zero and d% > 1, we see that every periodic orbit must be either
ultra-attracting, or repelling, or mixed — ultra-attracting on one side and repelling on
the other. However, using condition C4 we see easily that such mixed cases cannot
occur. This proves assertions (a) and ().

Since the graph of 7+ ®%%(s)—p; crosses from above the diagonal to below the
diagonal at every ultra-attracting periodic point, and from below to above at every
repelling periodic point, these two types of periodic point must alternate around the
circle. Evidently the number k of ultra-attracting orbits is dominated by the number r
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of intervals of constancy V,. There are at most d—1 such intervals, since they are
disjoint and each one has length at least 1/d. This proves assertion (c).

By 6.2(3), every orbit under ¢; is either periodic, or tends asymptotically to an
attracting periodic orbit. However our attracting periodic orbits are all ultra-attracting,
so such a non-periodic orbit must actually land on an ultra-attracting orbit after finitely
many iterations. [J

Proof of 6.4. — We now suppose that conditions C1 through CS5 are satisfied, so that
there is an associated map f in the connectedness locus. We can compute the associated
fixed point portrait, which we will write simply as {T,, ..., T,}, as follows. According
to 5.4, the type T; of the fixed point which belongs to the compact set J; = J consists of
all angles ¢ whose orbit under the d-tupling map lies completely within the corresponding
closed set L; = R/Z. Using 6.5, we see that this type consists of the repelling periodic
orbits of ¢;. There are at most d—1 such orbits, and they all have the same rational
rotation number, say p;/q;, [

Remark 6.6. — Recall that the fixed point type T; is the set of repelling periodic
points of the monotone map ¢j. The argument above shows how to compute the
rotation number of ¢j, and the number of points in T;, and also shows how to locate
these points approximately. To actually compute these repelling periodic points, it is
probably easiest to iterate the inverse function ¢ 1, since the points of T, are strongly
attracting fixed points of ¢j“"i. As a check, one can use the fact that these points are
all rational numbers of the form m/(d% —1).

If p;/q;=0, then the type T; is precisely the set of all angles i/(d—1) contained in L;. If
Pj/q; is non-zero, then each of the fixed angles i/(d— 1) must be contained in one of the
components V of R/Z\L; In this case, the deployment sequence of T; could be
determined, without computing its actual elements, as follows. For each such
component V we must check whether the graph of the constant function ®%i—p; on V
crosses the diagonal, or lies strictly above or strictly below the diagonal. Further, we
must compute all of the ultra-attracting periodic orbits by starting in each component
of R/Z\L; and iterating g; times. Now, proceeding as in 6.5, we can locate each point
of T; with respect to the fixed angles i/(d—1), and hence compute the associated
deployment sequence.

Examples. — A formal critical portrait in degree 2 takes an especially simple form; it
consists of a single subset ®, ={6, 6+(1/2)} of R/Z where 0<6<1/2. Condition C4
says that 8 must be rational with denominator divisible by 4 (so that 8+ (1/2) also has
even denominator), and condition C5 is trivially satisfied. The sets L; and L, are the
closed intervals [0—(1/2), 6] and [0, 6+ (1/2)] modulo 1. The map ¢j is the doubling
map mod 1 on L, and takes the constant value 26 on the complementary interval. The
corresponding rotation numbers are p; =0 and p,#0 respectively. Evidently the corre-
sponding fixed point portrait has the form

{0}, T(r/9)}

where T (p/q) is the unique quadratic rotation cycle with rotation number p/q#0.
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The possibilities are of course much more diverse in degree 3. (Compare Figures 3,
4, as well as the discussion following 4.2.)

7. Realizing fixed point portraits

Recall that a polynomial map is critically pre-periodic if every critical orbit is eventually
periodic, but no critical point actually lies in a periodic orbit. In Section 5 we described
Fisher’s characterization of the critical portraits of critically pre-periodic maps, and in
Section 6 we showed how to compute the corresponding fixed point portraits. This
section will exploit these results to prove the following.

THEOREM 7.1. — A collection #={T,, ..., T,} of exactly d non-vacuous subsets of
Q/Z can actually occur as the fixed point portrait of some critically pre-periodic polynomial
of degree d if and only if it satisfies the four conditions of Theorem 4.1, that is:

Pl. Each T; is a rational rotation set.
P2. The T; are disjoint and pairwise unlinked.

P3. The union of those T; which have rotation number zero is precisely equal to
{0, 1/(d—1),...,[d=2)/d-1)}.

P4. Each pair T;#T; with non-zero rotation number is separated by at least one T, with
zero rotation number.

In fact Theorem 4.1 asserts that these four conditions are necessary for any fixed
point portrait. In the critically pre-periodic case, there must be d distinct repelling fixed
points, so the number of sets T; in & must be equal to d.

Conversely, suppose that we start with a collection £, of d non-vacuous subsets
satisfying all of these conditions. We will call such a 2, a ‘“‘candidate fixed point
portrait”. Then we will construct a critical portrait ® which satisfies Fisher’s five
conditions, and hence determines a critically pre-periodic polynomial f. The construction
will be carried out in such a way that the associated fixed point portrait 2 (f) is equal
to the given candidate portrait £, thereby completing the proof of 7.1. It should be
noted that this construction is not at all unique: there are infinitely many different ®
which would do the job. Hence, there are infinitely many different critically pre-periodic
polynomials with any given fixed point portrait.

The essence of the construction lies in the case where & has d—1 distinct rotation
number zero fixed points. A fixed point portrait with this property will be called
elementary. We first consider the elementary case, and then adapt the argument to the
general case.

An elementary fixed point portrait takes the form

{45
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where T={t,,...,8,-,} is a degree d rotation set with non-zero rotation number
plq. Here k<d—1, and T can have any deployment sequence

0S5, <5,=<...<s5_1=kgq

such that every residue class mod k is realized by at least one of the s;. (Compare
Part I, Lemma 5.)

We recall definitions and notation from Part 1. The subset T = R/Z divides its comple-
ment into kq arcs Ao, A,,...,A,,_; labeled so that A; is bounded by ¢ and
li+1modkg Lhe length of A;is denoted by /(A;). Here the whole circle has length 1, so
that Y /(A;)=1. The weight w(A,) is, by definition, equal to the number of points
h/(d—1) fixed by the map ¢+ dt mod 1 which are contained in A;. Thus Zw(Ai)=d— 1.

Let j(i)=i+kp mod kq, so that the d-tupling map carries the end points of the
interval A; onto the end points of the interval A;;,. According to formula (2.7) or
Part I, Lemma 3, we have

dl(Ay)= I(Aj (i)) +w(A).

It follows that the d-tupling map carries A; homeomorphically onto A, if and only if
w(A;)=0. Since w(A,) is an integer and 0</(A;)<1, the following is an immediate

consequence.

LEMMA 7.2. — The product dl(A,;) necessarily lies strictly between w(A;) and
w(A)+ 1. Hence the weight w(A,) is equal to the integer part of this rational number
di(A). If 0e€A, is sufficiently close to the left hand endpoint t,, it follows that A, contains
precisely w(A;)+ 1 angles of the form 0+ (h/d).

Choosing 6 A, even closer to ¢, if necessary, we can further suppose that the interval
(¢,,0] is disjoint from any of the p/q rotation cycles in degree d (since there are only
finitely many such cycles), and from any points of the form (p/(d— 1)) — (k/d).

Let iy, i, . . ., I, be those indices for which the weight w(A,) is positive. For each
j=1,...,m, choose OjeA,-j subject to the following two conditions:

©1. The point 6; is sufficiently close to the left endpoint 7, in the senses mentioned
above.

©2. Under iteration of ¢t+—dt mod 1 the point 0; eventually maps to a fixed point
p/(d—1) which is contained in this same interval A, .

Note that these conditions can always be satisfied, since the backward orbit of any point
p/(d—1) under the map ¢+ dr mod 1 is dense in R/Z. Forj=1,2,...,m, let

h
®j={ej+ a:hzo’ 1, . -3W(Aij)}

be the set of all angles of the form 6;+ (h/d) which are contained in the interval A, .

This construction is illustrated in Figure 10. Here the candidate fixed point portrait
2,=1{{0}, {1/4}, {12}, {3/4}, {69/124, 97/124, 113/124}} of degree d=5 is indicated
with solid lines. The set T in this case has rotation number 1/3, and cuts the circle
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into arcs A;, A,, A; of weights 3, 1, 0 respectively. Corresponding sets
0= { 0,0,+1/d,...,0,+w/d }, constructed as above, are indicated by dotted lines. (Only
the first set ®, has been labelled in the figure.) We will see that this schematic diagram
can be realized by an actual polynomial map having a critical point of multiplicity 3 in
the upper sector S;, a simple critical point in the lower left sector S,, and no critical
point in S;. The main step in the proof is as follows.

0+2/d

0+1/d

0+3/d

Fig. 10. — Construction of ®; in the elementary case.

LEMMA 7.3. — The collection @ = { 0,,0,, ..., ®m} as constructed above, satisfies all
of the conditions C1 through C5 of Section 5, and hence determines a unique critically pre-
periodic polynomial f of degree d.

In fact it is straightforward to check that @ satisfies the conditions C1 through
C4. The proof that it satisfies C5 will depend on a subsidiary lemma. Let
{LY,...,L3} be the decomposition of

R/Z\(©,U...U©,)
into d unlink equivalence classes, as discussed in Sections 5 and 6.

Lemma 7.4. — Each L? contains precisely one of the fixed point types T; of the given
portrait Z,={{0}, {1/d-1},....,{([d—-2)/d-1}, T}.

Proof of 7.4. — Since 2, is elementary, the unlink equivalence classes determined by
O take a special form: Exactly d— 1 of the L? are open intervals (8 + (h/d), 0+ ((h+ 1)/d)),
while the d-th is the union of the remaining m disjoint intervals. Each of these d sets
has total length 1/d. Furthermore, the last set L contains the specified rotation set T,
with rotation number p/g#0. Since O satisfies conditions C1 through C4, Lemmas 6.3
and 6.5 imply that there is a well defined rotation number associated with each
L?. The last set LY has rotation number p/g#0, and hence cannot contain any point
k/(d—1) with rotation number zero. Since none of the other L? is long enough to
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contain more than one such point, we conclude that the points k/(d— 1) must lie in
distinct intervals LY, .. .,LI_,. O

Proof of 7.3. — To verify that @ satisfies condition C5, we must show that the sets
0,4, ...,0, have distinct itineraries. But condition @2 implies that the d-tupling map
sends these m sets eventually to distinct fixed points k/(d— 1), and these fixed points lie
in distinct intervals LY by 7.4. Thus all of Fisher’s conditions C1 through CS5 are
satisfied. O

Proof of 7.1 in the “elementary” case. — In 7.3, we have used Fisher’s Theorem to
show that @ is the critical portrait of a unique critically pre-periodic polynomial f. It
remains to show that the corresponding fixed point portrait £ (f) is equal to the required
portrait #,. From Lemma 7.4 we conclude that the fixed rays R;,_;, have distinct
itineraries with respect to the sets L, and so land at distinct fixed points of f by
Lemma 6.1. No other rays can land at these points, since we have accounted for all of
the rays of rotation number zero. Similarly, the rays R, with teT have a common
itinerary and hence land at a common fixed point of f. This proves that the fixed point
portrait 2 (f) has the form

(o457}

where T’ is a rotation set containing T. To complete the proof of Theorem 7.1, we
need only show that T" must be precisely equal to T.

Suppose to the contrary that T’ were strictly larger than T. Then some of the intervals
A; complementary to T must be split by T’ into two or more subintervals. For each
such A;, let A; be the rightmost of these subintervals. Thus Aj is an open interval of
the form (¢, ¢;, ;) with ' e TN A;. We claim that the weight w (A/) of such a subinterval
must be zero; or equivalently (by 7.2) that the length /(A;) must be strictly less than
1/d. 1In fact, if A; itself has weight zero, then this is clear. But if A;=A,; has weight
w>0, then we have inserted a set @;={6,0+(1/d),...,0+(w/d)} of ® into the
arc A;. By the construction of 6, the point ¢ cannot lie to the left of 8. (Condition
©1.) Furthermore, since T’ is unlinked with ©®;, ¢ cannot lie between 0 and
0+ (w/d). Hence ¢ must lie in the open interval (0+ (w/d), tin). This interval has
length less than /(A;)— w/d, which is less than 1/d by Lemma 7.2. Therefore, the subarc
A has length less than 1/d, and hence has weight zero as asserted. It follows that A]
maps homeomorphically onto another arc of the same form under the d-tupling
map. (Compare 2.5.) Similarly, this image arc must have length less than 1/d, even
though it is strictly longer than A;. Continuing this construction ¢ times, we return to
our starting point and conclude that A] is strictly longer than itself, which is
impossible. This completes the proof of 7.1 in the elementary case.

The proof in the general case is essentially the same; however the bookkeeping is a
little more complicated. The rotation sets T; split the circle into equivalence classes
U,,...,U,, where two points of R/Z\(T,U...UT, belong to the same U, if and
only if they belong to the same component of R/Z\T, for every j. Note that each such
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U, must have exactly one T; with non-zero rotation number intersecting its boundary:
There cannot be more than one by P4, and there must be at least one since otherwise
there could not be d distinct sets T,. (Compare 3.3.)

Evidently this U, is contained in just one arc A; of the complement R/Z\T;. In fact
either U,=A,, or else U, can be obtained from this complementary arc A; by removing
one or more (possibly degenerate) intervals of the form [a/(d— 1), b/(d—1)] = A;, where
a<b. The weight w of this set U, can be defined as the number of such missing
intervals. If w>0, we can choose a point 6 near the left end of U, exactly as in the
argument above. These points 8 e U, for different sets U, must be chosen so that their
orbits under the d-tupling map end up on different rotation sets T;e #,. Given such a
choice of 0, let ®, be the set of all angles of the form 6+ (p/(d— 1)) which are contained
in U,. Just as in the argument above, this set has cardinality #®,=w(U,)+1. The
resulting critical portrait ®={®,, ...,®,} satisfies Fisher’s five conditions, and hence
determines a critially pre-periodic polynomial /. Again, it can be shown that the associ-
ated portrait £ (f) is equal to the given #,. Details will be left to the reader. [

0+2/d

6+3/d

Fig. 11. — Construction of @, general case.

This construction is illustrated in Figure 11 for the candidate fixed point portrait

1 1 3 I 5 69 97 113
90= Os_a ~ - (> a0~ ( PR EYE T .

4 2 4 24" 24 124 124 124
Here one of the fixed points of rotation number zero of Figure 10 has been replaced by
a fixed point of rotation number 1/2. The rays to the three rotation number zero fixed
points, indicated schematically by heavy lines, now cut the plane into two ‘“basic
regions”. Each of these contains a unique fixed point, which necessarily has non-zero
rotation number. The rays to all five fixed points cut the plane into a number of regions,

and correspondingly cut the circle into the same number of equivalence classes. In this
example, two of these regions have critical weight zero, two have critical weight one,
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and the remaining region has critical weight two. The construction of a compatible
critical portrait, with just one critical point in each region of positive weight, is illustrated
by the dotted lines in the figure.

8. Further discussion

The proof in Section 6 leaves open the problem of establishing Conjecture 4.2 in the
case of a portrait £ which contains fewer than 4 non-empty rotation sets, so that some
of the fixed points must be rationally invisible or virtual. However Poirier has carried
out a complete proof, based on Hubbard trees. (Compare [DH2].) As in the case of
Fisher’s Theorem, these provide an indirect way of invoking Thurston’s theory of post-
critically finite rational maps. To each candidate fixed point portrait, Poirier constructs
a unique simplest possible Hubbard tree which is critically periodic, and whose associated
polynomial is shown to have the required fixed point portrait.

An alternative approach, suggested by Hu and Jiang [HJ], would be based on
Thurston’s method of laminations [Th1].

Still another interesting method would be to build up more complicated polynomials
starting with the “elementary” ones by an “intertwining” or “marriage” construction.
(Compare [Bi].) Given two monic polynomials of degrees d, and d,, we would like to
construct a new polynomial of degree d, +d,—1 by cutting each dynamic plane open
along its zero ray, and then pasting the two planes together along these rays. It would
then be necessary to make further cuts along the iterated pre-images of these zero rays
and to put a compatible conformal structure on the resulting topological map. Finally,
it would be necessary to prove that the resulting polynomial map has the expected fixed
point portrait. This would surely be a useful construction, but we do not know how to
carry it out.

There are a number of other loose ends which are left open by this paper. For
example, it would be useful to develop the concept of critical portrait for polynomials
which are not critically pre-periodic. Also, it would be useful to develop the concept of
an irrational rotation set. (Compare [Ve].) This might be helpful in understanding
Siegel disks or Cremer points. Recent work of Yoccoz emphasizes the importance of
understanding not only fixed points, but also all of the iterated pre-images of fixed
points. Another natural problem would be to understand how the fixed point portrait
for the n-th iterate f°" behaves as we increase the integer n.

Here is a final basic problem. (Compare Appendix C.) In the degree d connectedness
locus %, let €,(£) be the subset realizing some given fixed point portrait 2. Is this
subset contractible; or even connected? lIs its closure a cellular set (i.e., is it the intersection
of a strictly nested family of cosed topological cells)?
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Appendix A.
Disconnected julia sets

It is frequently useful to consider polynomials which do not belong to the connectedness
locus. (See for example [Atl, At2].) This appendix will briefly describe fixed point
theory for such polynomials. For a more complete treatment, see [DH2].

Let f: C — C be an arbitrary monic polynomial map of degree d=2. Even if the filled
Julia set K (f) is not connected, we can define external rays, as the orthogonal trajectories
of the level curves for the Green’s function or canonical potential function

G(2)= lim d "log* | f°"(2).

n — ©

This function G is smooth, harmonic, strictly positive outside of K (f), and tends to
zero as we approach K (f). If K(f) is not connected, then this potential function will
have critical points outside of K(f). In fact G is critical precisely at the pre-critical
points of f, that is at all points which are critical for some iterate f°"=f>. . .°f. Whenever
K (f) [or equivalently J (f)] is not connected, there must be at least one critical point of
f outside of K(f), and hence infinitely many critical points of G outside
of K(f). Evidently critical points of G lead to bad behavior in the external rays. On
the other hand, if K (f) is connected, then it contains all of the pre-critical points, and
none of this deviant behavior can occur.

Every degree d polynomial g is conjugate to the d-th power map near infinity. That
is, there exists a conformal isomorphism z+ @ (z), defined throughout a neighborhood
of infinity, which satisfies ¢ (g(2))= ¢ (2), with log|¢ (z)|=G(z). In general, there are
d—1 distinct possible choices for ¢. However, in the case of a monic polynomial f,
there is one preferred ¢ (z) which is asymptotic to z as |z| - co. Thus we can label
each external ray by an angle te R/Z, just as in Section 1.

As we follow such an external ray R,, starting out near infinity and working inward
by analytic continuation, it may happen that it hits a critical point of G, or equivalently
a pre-critical point of f. If this happens, then two or more external rays crash together
at this point, and then bounce off in the same number (two or more) of new directions,
so that there is no single well defined continuation. However, we can still define the
left hand limit ray R,_ and the right hand limit ray R,,. For this purpose, it is convenient
to parametrize the subset R, = C. In fact we can use the potential function G (z)>0 as
a canonical parameter along each R,. Hence we can define R,,, for example, as the
pointwise limit of the parametrized curve R, as s > ¢, s>¢. These two limit rays R,
and R,_ are no longer smooth everywhere, but have abrupt changes in direction at all
pre-critical points: one turns always to the left while the other turns always to the
right. (Compare Figures 14 and 16 below.) Note again that this behavior occurs
whenever the Julia set J of fis not connected.

If the angle ¢ is rational, then just as in [DH2], p. 70 the ray R,, or the two limit rays
R,, and R,_ (if R, bounces off a pre-critical point), tend to well defined limit points in
K (f) as the parameter G (z) tends to zero. We will say that the ray or limit ray lands
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at the limit point g, or a,, in K(f). If this landing point is fixed under f, then just as
in Lemma 2.2 there is a well defined rotation number in Q/Z.

In general, as we follow such a ray in from infinity, its set of accumulation points will
be a compact and connected subset of J. Here is an important special case: If the Julia
set J of f is totally disconnected, then every smooth ray, and also every left or right limit
ray, must land at a single well defined point of J. For in this case, any connected set of
accumulation points in J must reduce to a single point.

DerINITION A. 1. — Let £ = R/Z be the set of all of the angles of external rays which
crash on critical or pre-critical points of f. Clearly X is a countable dense subset of the
circle, whenever it is non-vacuous. Let us construct a Cantor set Cy out of the circle
R/Z by cutting the circle open at all points of £. In other words, each point € X is to be
replaced by two distinct points 6~ <o, and the union C;=R/Z\Z)U{c~ } U{c" }is
to be topologized as a (locally) ordered set.

LemMA A .2. — If the Julia set J is totally disconnected, then the correspondence t+ a,
which assigns a landing point to each angle in R|Z\X extends to a continuous mapping
from this Cantor set Cyg onto the Julia set J. Hence every point of the Julia set is the
landing point of at least one ray or limit ray.

Proof. — The image of Cy in J is a compact fully invariant subset, and hence must
coincide with the full Julia set. O

CorOLLARY A.3. — Each fixed point z, of f is the landing point of one or more such
rays. These rays are permuted by f, preserving their cyclic order; hence they have a well
defined rotation number.

However this rotation number need not be rational: It can be any element of the circle
R/Z. (Compare Appendix C.)

Appendix B.
“Transition between fixed point portraits

The concept of fixed point portrait turns out to be a fairly robust one. That is,
the fixed point portrait of a polynomial usually does not change as we perturb the
polynomial. However, there are exceptions, as detailed in the discussion below.

All of our polynomials are to be monic of some fixed degree d. As in the preceding
Appendix, we do not necessarily assume that our Julia sets are connected. Let z, be any
fixed point of the polynomial f,. If the multiplier A,=f7 (z,) satisfies A, #1, then for
all fin some neighborhood of f,, the implicit function theorem implies that we can solve
the equation f(z)=z for the fixed point z=z(f) as a holomorphic function of f, with

z(fo) = zo-

LemMma B.1. — Suppose that ])»0|>1 so that z, is a repelling fixed point, and suppose
that some rational external ray R,=R,(f,) lands at z,. Then for any f sufficiently close
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to fy, the corresponding ray R, (f) lands at the corresponding fixed point z(f). In particu-
lar, it follows that the rotation number p (f, z(f)) at the fixed point z (f) remains constant
as f varies through some neighborhood of f,,.

Remark B.2. — We cannot weaken the hypotheses of this Lemma. For example, if
zo is a parabolic fixed point, or more generally any fixed point with |A,|=1, then within
any neighborhood of f; this fixed point can become a parabolic or repelling point with
any rotation number p’ which is sufficiently cose to p(fy, zo). In particular, there are
infinitely many possible choices for p’. Similarly, within any neighborhood of f,, the
fixed point can become an attracting or Cremer point or the center of a Siegel disk, and
hence rationally invisible.

Outside the connectedness locus, it may well happen that a repelling fixed point admits
an external ray R, with ¢ irrational. [See Figure 16. This case cannot occur when K (f)
is connected by Theorem 1.1.] Here again, the rotation number p(f, z(f)) can take
on infinitely many distinct values within any neighborhood of f;,. Similarly, whenever a
left or right limit ray lands on z,, the rotation number can change within any neighbor-
hood of f,, (Fig. 14).

Proof of B.1. — By the Koenigs Linearization Theorem (see for example [M2]), there
exists a local coordinate {=h(z) near z, so that i (f,(z))=MAh(z) for all z and so that
h(zy)=0. Since the angle ¢ is rational, and since the external ray R,(f;) lands at the
fixed point z,, it is easy to check that ¢ is periodic under the d-tupling map, say with
period q. (Compare 1.1.) Therefore, we can choose a segment of R,(f,) which joins
some point z' to f949(z'), and which lies completely within the domain of 4. These
conditions will still be satisfied if we perturb f,, slightly, and it follows that the correspond-
ing ray R,(f) for the perturbed map f must land at the corresponding fixed point
z(f). O

Recall that the type T (f, z) is the finite set consisting of all rational angles 1€ Q/Z for
which R, lands at z. Thus Lemma B.1 asserts that

T, 2(f) = T (fo» 20)s

whenever the appropriate hypotheses are satisfied. In the degree two case it follows
that these two sets are equal, since one quadratic rotation set cannot properly contain
another. It is natural to ask whether T (f, z(f))=T (f,, z,) in all cases. The following
shows that this is not true.

Example B.3. — The polynomial f, (z) = z+z (z— 1) has connected Julia set, and has a
repelling fixed point of rotation number zero and type T={1/2} at the origin. However,
polynomials f(z)= (1 +¢) f, (z) arbitrarily close to f, have a fixed point of strictly larger
type T={0, 1/2} at the origin. This phenomenon can be explained as follows. The
polynomial £, has a parabolic fixed point of type T={0} at z=1. As we perturb f,,
multiplying it by 1+¢, there is a “parabolic implosion” of the filled Julia set. For the
perturbed polynomial, the parabolic fixed point splits into two complex fixed points, and
the zero ray squeezes between them and continues all the way to the origin. '
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3/8 174

Fig. 12. — Above: Julia set for f(z)=z3—z+ /—4/27; the 1/8 and 3/8 rays land on a parabolic
period 2 orbit. Below: After an arbitrarily small perturbation of f, these rays land at a repelling fixed
point.

Figure 12 shows a similar example for a repelling fixed point of rotation
number 1/2. In this case the type jumps from {1/4, 3/4} to {1/8, 1/4, 3/8, 3/4} under
an arbitrarily small perturbation. We show next that such examples are essentially the
only possible ones.

Let ¢ be a rational angle, and suppose that for polynomials f arbitrarily close to f, the
external ray R,(f) lands at the fixed point z(f). We want to analyze the possible
landing points for the external ray R,(f;). According to [DH2] this ray must either
bounce off a pre-critical point, or land on a parabolic or repelling periodic point. We
claim that this last case cannot occur, unless R,(f;) lands at the fixed point z,=z(f,)
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itself. For if R,(f;) lands on a repelling point z, #z,, then Lemma B.1 implies that
R,(f) must stay bounded away from z(f) for allf near f, contradicting our
hypothesis. This proves the following.

LemMA B.4. — Fix some rational angle t, and suppose that, for polynomials f arbitrarily
close to f,, the external ray R,(f) lands at the fixed point z(f). Then either:

(1) the ray R,(f,) lands at the corresponding fixed point z,,
(2) R, (f,) bounces off some pre-critical point, or else
(3) R,(fy) lands at some parabolic periodic point z, #z,.

Remark. — In case (3) above, we conjecture that the period of the point z; must be
equal to the period ¢ of the angle ¢+ under the d-tupling map. The following Lemma
implies at least that z, must be either a fixed point or a period ¢ periodic point.

LemMA B.5. — If a collection of q angles forms a rotation cycle of period q, and if the
corresponding rays R,(f) do not bounce off pre-critical points, then these rays must land
either at a single fixed point or at q distinct points.

Proof. — Let 0<t(l)<...<t(q)<l be the elements of the rotation cycle, and let
Zy, - . ., Z, be the corresponding landing points. By hypothesis, the d-tupling map permu-
tes these angles 7 (i) cyclically, while preserving their cyclic order. If z, =z, or z, =z,
then it follows easily that z; =z,=...=z,. On the other hand, if z, =z, with 2<h<q,
then the rays R, ;, and R, cut the plane into two halves, one containing R, ,) and the
other containing R, ,,,. But these last two rays must land at a common point, so it
follows that z, =z, and hence z;,=z,= ... =z, [

Appendix C.
The Mandelbrot set

This appendix will describe the ‘classical” theory of limbs in the Mandelbrot
set M. (Compare [Br], [BD], [D2], [At2].)

Let 2,=C be the quadratic parameter space consisting of all polynomials of the form
f(2)=z2+c, and let M=%, = 2, be the compact subset consisting of those polynomials
with connected Julia set (Fig. 13). Note that every fe M is a polynomial map having one
and only one fixed point with rotation number zero, namely the landing point of the
ray Ro=R, (f). If the remaining fixed point is distinct, and is the landing point of at
least one rational ray, then it has a well defined rotation number p=p/q+#0 in Q/Z by
Lemma 2.2.

DerFNITION. — Whenever fe M has a fixed point of rotation number p/g#0, we say
that f belongs to the p/g-limb M (p/q) = M. Otherwise, if there is no such fixed point,
we will say that f belongs to the central core M () < M.

This last set is quite easy to describe explicitly. It will be convenient to use the notation
F, for the unique map in 2, which has a fixed point with multiplier f” (z) equal to A. A
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¥
18/31 9/3
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Fig. 13. — Degree 2 parameter space picture, with dM emphasized.

brief computation shows that
) F,(2)=z%+¢, with ¢ = %?\. 2-2),

and that the two fixed points z=(1/2) A and z=1—(1/2) A of F, have multipliers equal
to A and 2—A respectively. The set

M?(Q)={F,:|A|<1}

forms an open topological disk consisting exactly of those polynomials F,eM which
possess an attracting fixed point. Similarly, the F, with A on the unit circle are those
which possess an indifferent fixed point. As A=e>"" traverses the unit circle, the
corresponding values ¢, =e>""(2—e?")/4 traverse a cardioid, and it follows easily that
the closure

M(Q)={F,: 1|1}

is a closed topological disk bounded by this cardioid. The set M (<) itself can now be
described as the interior M° (), together with all boundary points F., 5 . for which ¢
is either irrational or zero.

Now consider any polynomial f(z)=z2+c¢ which does not belong to M. Then the
Julia set J(f) is totally disconnected. Such an f has two distinct fixed points, each with
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a well defined rotation number by Corollary A.3. Again, at least one of these two
fixed points must have rotation number zero. We let p (f)eR/Z be the rotation number
of the other fixed point. More generally:

Dermvirion C.1. — For any fe#, which does not belong to the central core M (Q),
let p(f)eR/Z be the unique number such that 0 and p(f) are the rotation numbers of

the two fixed points of f. (Thus we set p(f)=0 only if both fixed points have rotation
number zero.)

If feM\M (), then p(f) must be a rational number p/q#0, and, as noted above,
we say that f'belongs to the p/g-limb. If f¢ M, then the number p (f) can be any element

(3] o RN
£ el
\3 .a?
¢
I
©
IS
9 N
¢ 6
\tq‘h“,
e ~
{,(‘ ™ & ﬁﬁ.}
Q}J e\:)
s o
[4 h]
1 1%
el [}
8 J
L9 .
I () &0 9
S J) ‘1. }J
S Low D <

Fig. 14. — Julia set for a polynomial f(z)=2z>+0.4 which belongs to the ray R, (M) in parameter space. The
right hand limit ray Ry, (f) bounces off infinitely many pre-critical points as it spirals in to the upper fixed
point. Both fixed points have rotation number zero.

of R/Z. The case p(f)=0 is illustrated in Figure 14. This case occurs whenever the
constant f(0)=c is real with ¢>1/4. An example with p(f) rational and non-zero is
shown in Figure 15, and an example with p (f) irrational is shown in Figure 16.

Up to this point, we have considered external rays only in the dynamic plane
C\K (/). Following Douady and Hubbard, we can consider external rays also in the
parameter plane Z,\ M. Again these can be described as the orthogonal trajectories
of a suitable “canonical potential function”, which now vanishes precisely on the Mandel-
brot set M. Every polynomial fe?,\M belongs to some unique external ray
R,(M). Here the angle ¢ is characterized by the fact that the corresponding ray R, (f)
in the dynamic plane passes through the critical value f(0)=c. (See [DH1] or [DH2].)
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o Y

Fig. 15. — Julia set for a polynomial f(z)=z2+1.1i which belongs to the “wake” of the (1/3)-limb
in parameter space. (Compare Figure 1.) Here fe R, (M) with 7~ . 1870.

LemMma C.2. — For a polynomial fe?, which does not belong to M, the rotation
number p (f) depends only on the external ray R,(M) which contains f. Furthermore, the
correspondence t+— p (f) defines a map from the circle R|Z to itself which is continuous
and monotone of degree one.

Proof. — Since the ray R,(f) passes through f(0), it follows that the two pre-images
of this ray, namely R, , (f) and R, ;,, (f) must crash together at the critical point 0. As
in Lemma 5.2, these two rays (truncated at the critical point) cut the plane into two
halves, and hence partition the Julia set into two subsets J, and J,. In the present case
however, the intersection J, M J, is vacuous, since the critical point is not in the Julia
set. It follows that every point of J(f) has a unique itinerary

(Gos i1, - )€ ] {0, 1}

0<n<w

with respect to this partition, and that frestricted to the Julia set is topologically conjugate
to the one sided 2-shift (iy, iy, ...)>(iy, i, ...). As in Lemmas 6.2 through 6.4, we
can compute p(f) as the rotation number of an associated monotone circle map o,
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Fig. 16. — Quadratic Julia set with fixed point of rotation number (_/5—1)/2. Here t=.70980344. The
corresponding rotation set is a Cantor set obtained from R/Z by removing open intervals of lengths 1/2,
1/4, 1/8, ...

which is defined by

2u(mod 1) for 22us(1+1)/2
t otherwise.

w(u)s{

Further details of the proof are straightforward. O

If a polynomial f(z)=z>+c has a fixed point of rotation number p/qg, then the g rays
landing at this point cut the complex plane into g complementary sectors. According
to Corollary 2.3 and Part I, the angles belonging to these rays comprise the unique
quadratic rotation set T (p/q) with rotation number p/q. Denote by S, the narrowest of
these complementary sectors, that is the one whose angular width is smallest, and let
S,=f°"(S,) be its n-th forward image for 0Sn<g—1. It follows from Lemma 2.5 that
the sequence of angular widths /(S,), /(S,), ..., [ (S,-,) forms a geometric progression
with ratio 2 and sum 1; hence /(S,)=2"/(2—1). Here the widest sector S,_; contains
the critical point, and the narrowest sector S, contains the critical value. (See 2.6.)

DerFiNiTION. — Let 0<0_(p/q) <8, (p/q)<1 be the angles of the two external rays
spanning the sector S,. Thus each 0, (p/q) is a rational number of the form m/(27— 1),
and the difference 0., (p/q)—0_ (p/q) is equal to 1/(29—1).
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DermniTioN. — If p(f) takes a rational value p/q#0 for f¢ M, then following Atela,
we say that f belongs to the wake of the (p/q)-limb.

Lemma C.3. — A polynomial f belonging to the external ray R,(M) belongs to the
(p/q)-wake if and only if the angle t lies in the closed interval [0_ (p/q), 0. (p/q)].

Proof. — As noted above, for any polynomial having a fixed point of rotation number
p/q, the critical value must lie in the narrowest sector S,. Hence its external angle ¢
must lie in the corresponding interval. Conversely, if ¢ lies in this narrowest interval of
R/Z\T (p/q), then both of its two pre-images must lie in the corresponding widest
interval of R/Z\T (p/q). Thus every element of the rotation set T (p/q) lies on just one
side of the associated critical portrait {#/2, (t+1)/2 } Therefore, the corresponding rays
land at a single fixed point of /. [J

Remark C.4. — The special case of Lemma C.3 in which ¢ is one of the two end
points 0 (p/q) is of particular interest. In this case, the external rays correspond to the
angles in T (p/q) all crash into pre-critical points of f. However, the left and right limit
rays exist. One of these two sets of limit rays lands on the required fixed point, while
the other lands on an orbit of period gq.

Remark C.5. — Evidently these intervals [0_(p/q), 0. (p/q)] are pairwise
disjoint. Note that their union contains Lebesgue almost every point of the circle. In
other words, the sum

(©) Y y@-n

0<p/g<1

of their lengths is equal to one. To prove this, we consider the auxiliary sum

@) Y o2

O0<m<n

If we sum first over » and then over m, we see that this auxiliary sum is equal to

Y. 27m=1. On the other hand, if we sum first over all pair 0<m<n with some
m>0

given ratio m/n, expressed as a fraction in lowest terms as p/q, we obtain
27942724427344  =1/(29—1). Now summing over all such ratios p/q we obtain
the required expression (3). It follows that: For Lebesgue almost every polynomial
f(2)=z%+c in the complement of the Mandelbrot set, the rotation number p(f) is
rational. Veerman has proved the sharper assertion that the set of angles ¢ which
correspond to irrational rotation numbers under the correspondence ¢—p (f) of C.2 is
a set of Hausdorff dimension zero. Douady and Sentenac (unpublished) have shown
that every such angle ¢ is a transcendental number.

Now suppose that we fix some number pe(0, 1) and sum these lengths 1/(2¢9—1) only
over those intervals [0_ (p/q), 0. (p/q)] for which p/g<p. Evidently the sum must be
equal to 0, (p) whenever p is rational. We take this formula as a definition when p is
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irrational:

©) b.(p= ) 1@-.

0<p/g=p

The function 0, is monotone and continuous from the right, being the inverse of the
correspondence ¢+— p (f) of C.2 in the sense that

0, (x)=sup {£e(0, 1):p(R,(M))=0}.

There is an associated function 8_ (p)=1—0, (1 —p) which is continuous from the left,
and coincides with 0, (p) whenever p is irrational.

Proceeding to manipulate this expression (5), just as in the discussion above, we see
that 0, (p)= ) 27" which yields the following nicely convergent series expansion.

O<m=Zpn

CoroLLARY C.6. — For every pe(0,1) we have
0, (p)= Y [pn)27",
n=1

where [pn] stands for the largest integer <pn.

In the rational case p=p/q, note that this sum must itself be a rational number of the
form A/(27—1).

Let us take a closer look at external rays in parameter space. We next prove an
important result of Douady and Hubbard.

THeoREM C.7. — If teQ|Z is rational with odd denominator, then the external ray
R, (M) for the Mandelbrot set lands at a well defined polynomial fe M, which possesses a
parabolic periodic orbit. More precisely: the corresponding ray R,(f) in the dynamic
plane lands at a parabolic periodic point in the Julia set J(f).

Remark. — 1If t is rational with even denominator, then Douady and Hubbard show
that R,(M) lands at a critically pre-periodic polynomial f, and furthermore that the
corresponding ray R, (f) lands at the critical value f(0)eJ(f). We will not try to give
a proof of this. For arbitrary values of ¢ there is no known proof that R, (M) necessarily
lands.

Proof of C.7 (We are indebted to discussions with Hubbard.) — We must compare
external rays R,(M) in parameter space with external rays R,(f) for the Julia set
J(f). Recall from [DHI1] or [DH2] that a polynomial f(z)=z2+ ¢ belongs to the external
ray R, (M) in parameter space if and only if the corresponding ray R, (f) in the dynamic
plane passes through the critical value f(0)=c. Let f,€M be any accumulation point
for the ray R,(M). According to 1.1, the corresponding external ray R, (f,) necessarily
lands at a periodic point z,€J (f,) which is either parabolic or repelling. Suppose that
this point were repelling. Then according to B.1, for any polynomial f(z)=z*+c¢
sufficiently close to f;, the corresponding ray R,(f) would land at a periodic point z (f)
close to z,. In particular, this ray R,(f) could not bounce off any pre-critical point
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for . But if we choose any f belonging to R,(M), then the ray R,(f) does bounce
off some pre-critical point of f. (In fact it bounces off infinitely many. Compare
Figure 14.) For the angle ¢ is periodic under the doubling map, with period say g, and
it follows that the forward image /° @~ (R, (f)) bounces off the critical point zero. Since
such an fe R, (M) can be chosen arbitrarily close to f, this yields a contradiction.

Therefore, z, must be a parabolic periodic point for f,. Since the ray R,(f,) is fixed
by the g-fold iterate f94, it follows from 2.4 that its landing point z, must be a fixed
point of multiplier + 1 for 4.

There are only finitely many polynomials f(z)=z2+ ¢ for which f°7 possesses a fixed
point of multiplier one. In fact, the set of all such ceC forms an algebraic variety,
which is certainly not all of C. Since the set of all limit points of R,(M) in M is
connected, and is contained in this finite set, it follows that R, (M) must land at a single
uniquely defined point feM. 0O

Recall that F, denotes the unique polynomial in £, which has a fixed point of
multiplier A.

THeOREM C.8. — If either t=0_(p) or t=0, (p), then the associated ray R,(M) in
parameter space lands at the point F, ; ., on the cardioid IM (V) = M.

Proof in the rational case. — We first suppose that p is a rational angle p/q. Then
each r=0,(p/q) is a rational number of the form #4/(27—1), with odd
denominator. Hence R,(M) lands at some point f,e M by Theorem C.7, and further-
more the ray R,(f;,) lands at a parabolic periodic point of f;,. The orbit of the unique
critical point for f, must converge to this parabolic orbit; and it follows that f, cannot
have any Siegel disk or Cremer point, and cannot have a disjoint parabolic orbit. (See
for example [M2], § 11.) First suppose that f;, belongs to the cardioid IM (). Then
Jo has the form F, ;) Where n must be precisely equal to p/q, since otherwise f,
would have a Siegel disk, Cremer point, or disjoint parabolic fixed point. (Compare
Lemma 2.4.)

Now suppose that f, lies outside the cardioid, and hence has a repelling fixed point
with rotation number p'/q’'#0. We must have p’/q’ #p/q, since the ray R, (f;) of rotation
number p/q lands on a parabolic orbit. According to Lemma B. 1, it follows that every
fe#, which is sufficiently close to f, also has a fixed point of rotation number p'/q’. But
this is impossible, since by construction there are points fe R, (M) arbitrarily close to f,
with a fixed point of rotation number p/q. This proves C.8 in the rational case.

Before continuing with the proof of C.8, let us prove a closely related result, which is
a sharper form of Lemma C.3. Evidently the two rays R,_,, (M) and Ry, (,,) (M),

together with their common landing point Fe,; ; « iy, Cut the plane 2, into two halves.

LemMa C.9. — One of these two complementary components, together with the common
boundary

Ry (o M) U { Fexy 2 n 19190} U Ro, (51 M),
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consists precisely of all maps fe P, which possess a fixed point of rotation number p/q. The
other complementary component consists of all f which do not have a fixed point of rotation
number p/q.

Proof of C.9. — For f¢M, this follows from C.3. For any fe M which possesses a
repelling fixed point, it follows from Lemma B.1, together with the rational case of
C.8. Finally, for f in the closure of the central core M(SP), it follows from
Theorem 1.1. [0 '

The proof of C.8 continues as follows. We now suppose that p is irrational, so that
0. (p)=06_(p). Choose rational numbers o< p<p which are arbitrarily close to p, and
let a=0, (0)<t<b=0_(B). Then the ray R,(M) lies in a region bounded by the rays
R,(M), R,(M) and a short segment of the cardioid. Using Lemma C.9, we see that
any limit point must either be on this cardioid segment or on a limb M (p/q) with
a<p/g<P. Since a and P can be arbitrarily close to p, the conclusion follows. [

CoroLLARY C.10. — The various limbs M (p/q) are disjoint compact connected sets,
while the intersection M (p/q) N M (<) consists of a single point F , on the cardioid.

exp (2 nip/q

CorOLLARY C.11. — Let M°(XQ) be the open set conmsisting of maps in M with an
attracting fixed point. The correspondence fr— p(f) of Definition C.1 extends to a con-
tinuous mapping from the complement 2,\M° () onto the circle R|Z, taking the values

p(Fexp 2 1ri11))= n

on the boundary cardioid.
Proofs are easily supplied. [
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