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FIXED POINTS OF POLYNOMIAL MAPS
I. ROTATION SUBSETS OF THE CIRCLES

BY LISA R. GOLDBERG (1)

ABSTRACT. — We give a combinatorial analysis of rational rotation subsets of the circle. These are invariant
subsets that have well-defined rational rotation numbers under the standard self-covering maps of S1. This
analysis has applications to the classification of dynamical systems generated by polynomials in one complex
variable.

0. Introduction

Late in the 1800's, Poincare showed that every homeomorphism of the circle has a
well defined rotation number which measures asymptotically, the average distance each
point is moved by the map. Since its inception, this concept has played a fundamental
role in the theory of dynamical systems in one and two dimensions.

This article focuses on dynamical systems generated by the standard d-fold self-
coverings of the circle S1. We give a combinatorial classification of rational rotation
subsets of S1. By definition, these are invariant subsets that have well defined rational
rotation numbers. For rf==2, these sets are always periodic cycles, and they arise in a
variety of different contexts ([B], [Bu], [GH], [GLT], [VI], [V2]). Other points of view
that are not, to my knowledge, in the literature, have been taught to me by Charles
Tresser.

There is an important application of rotation sets to the problem of classifying
dynamical systems generated by polynomials in a single complex variable. A repelling
fixed point of a degree d polynomial admits a set of external arguments
© = { OQ, . . ., 0^_ i } which constitute a degree d rotation subset of the circle [DH]. This
application will be explored at length in a joint project with John Milnor, that makes up
Part II of this work.
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1. Notation and Definition

Parametrize the unit circle S1 by the interval [0, 1). Let d^2 and consider the d-Md
covering map

fd : 9 \—> dQ mod 1

Let m and n be non-negative integers satisfying O^m^n. We will adopt the conven-
tion throughout that an indexed subset ©= {9o, . . ., 9^_ i} of S1 satisfies

o ^ e o < . . . < 9 ^ i < i .

DEFINITION. - A finite subset ©= { 60, . . ., 9^_i } of S1 is a degree d m/n-rotation set
if /^)=e^modifor/=0, . . . , ^ - L

In general the numbers m and n need not be relatively prime, so that m/n = kp/kq for
some k^ 1 with p and q relatively prime. In this case, we say that the rotation number
of the set © is p / q . It follows that the set © is a union of k cyclic orbits which are
regularly interspersed, each of which has the order type any orbit of the rotation
Q^Q-^-p/q mod 1. Hence, each of these k cyclic subsets of © will be called a degree d
p/q-rotation cycle.

Remark. - Most finite sets invariant under /^ are not rotation sets. Consider the 4-
cycle generated by the angle 1/5 whose base 2 expansion is .00110011...

To begin our analysis, we isolate the special case of rotation number zero. Here a
rotation set is any non-vacuous set of fixed points of the map /^. There fixed points
are precisely the angles jl(d- 1) with 0^j<d- 1.

2/3 2/5 3/8

Fig. 1. - Three Quadratic Rotation Sets.

4CSER1E - TOME 25 - 1992 - N° 6



FIXED POINT OF POLYNOMIAL MAPS. I 681

Henceforth, we will assume 0<p<q.

LEMMA 1. — For q^2, the q-cycles under f^ are in one-to-one correspondence with orbits
of period q under the one-sided d-shift.

Sketch Proof. - Label the d arcs obtained by removing the points [ifd} from S1

counterclockwise from 0 with the digits 0, 1, . . ., d- \. Let 9 be a period q periodic
point for/^. If 6eS1 is not a fixed point of/^, let y (9 )£{0 , . . ., d-\} denote the
label of the arc containing 9. Define the word

^=y(9)yae) . . . yC^-^e).
The base d expansion of G^ is then given by 0= .aaaaa... D

2. Existence and Uniqueness of Rotation Sets

As we will see below, rotation sets with all possible rotation numbers exist in all
degrees <^2; furthermore, quadratic rotation sets are completely classified by their
rotation numbers. This is not true in higher degrees, as is indicated by examples in
Figure 2. Two of the rotation sets in Figure 2 can be distinguished from the remaining
three by the number of elements they contain, however a finer invariant is needed to
distinguish all five examples. For each degree d rotation set, we will record the deploy-
ment of the elements with respect to the fixed points of the map f^.

Fig. 2. - The Five Cubic Rotation Sets with Rotation Number 1/2.

DEFINITION. — Let

©-{^ ...^n-l}

be a finite subset of S1. The degree d deployment sequence of © is the nondecreasing
sequence of non-negative integers (5-2, . . ., ^-i), where s, is the number of 6/s in the
interval [0, i/(d- 1)).

The cubic rotation sets in Figure 2 have deployment sequences

(2, 2), (3, 4), (1, 2), (1, 4), (0, 2)

respectively. (Thus the proportion s ^ / s ^ of angles in the upper half-circle is 1, 3/4, 1/2,
1/4, 0 respectively.)
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Remarks:
1. The last entry ^_i is just the cardinality of ©. In the case of a rotation set, it is

always a product kq with 1 ̂ k^d- 1. (Compare Corollary 6.)
2. This invariant contains no information for d= 1. (It is just the single number (q).)
3. The degree d deployment sequence of a rotation set locates the components of the

set with respect to the fixed points of f^ not with respect to the /^-preimages of 0.
Therefore it does not, a priori, determine the base d expansions of the components.

LEMMA 2 (Uniqueness). — A degree d rotation set is completely determined by its
rotation number p / q together mth its deployment sequence

Q^s^s^...^.,=kq.
The proof depends on the interplay between the fixed points of/^ and its preimages

of zero.

1/4

3/4
Fig. 3. — Intervals of Advancing and Retreating for 14.

DEFINITION. - A point 9eS1 is advancing if /d(9)>9, retreating if /d(9)<9.
(Remember that all angles are reduced modulo 1 so as to lie in the half-open interval
[0, 1).

Proof of Lemma 2. - For 7=!, . . . . d-\, let U .̂ denote the arc ((7- l)/(d- 1),
jl(d— 1)). Each arc U^ contains exactly one/^-preimage of zero j / d that divides it into a
pair of subarcs

"—(^•i)
4eSERIE - TOME 25 - 1992 - N° 6



FIXED POINT OF POLYNOMIAL MAPS. I 683

u'--^)-
These are labeled to reflect the fact that (/'- \)l(d-1)<9</(9)<1 on Uy adv and

9</(9)<9<7/(rf-l)onU,^.
Let ©={9o , . . ., Ofcg- i} be a degree dkp/kq-rotsition set with deployment sequence

(^i, ̂  • • • ? sd-l=lcq). Since © is a ^/^-rotation set, /^ advances 9o, . . ., 9^_^_i
and retreats the other 9^s. IfO^i^kq-kp-1, then

and if q—p^i^q— 1,

n - T T -^-1 7V/7-1 ^9^U,,,- ,̂̂ c:̂ ^J

.̂  7 W7 7+1\9^U,^=
\d d-\ \d' d

so that the location of the 9^s vis-a-vis the/^ preimages of 0 is determined. Now, as in
Lemma 1, the action of/^ yields the base d expansions of the 9^s. D

We now turn to the question of existence. An examination of the proof of Lemma 2
gives an algorithm for constructing angles from the data consisting of a rotation number
p / q , and a candidate deployment sequence (s^ . . . . ^-1=^). It is not difficult to
check that the angles 9^ resulting from this construction satisfy

0^9o^. . .^_,<l .

However, these inequalities need not be strict, so the angles 9^ will not be distinct in
general. We give below, a necessary and sufficient condition for strict inequality, and
hence for existence of a set of a set angles fitting the given combinatorial data.

Let © = { 9o, 9i, . . ., Q^q-1} c S1 be disjoint from the fixed points of/^. The comple-
ment of © in S1 consists of kq arcs AQ, A^, . . . . A^_i labeled so that the arcs A, is
bounded by 9, and Qi+^^kq- We define the weight co(Af) of the arc A, to be the
number of/^ fixed points is contains. Note that the length, /(A^) of A, equals the
difference 9^-9, when i<kq- 1 and equals 1 +9o-9^_i when i==kq- 1.

LEMMA 3. - Let © = { 9 o , 9^, . . ., 9^_i} be a degree d rotation set with rotation
number p / q and complementary arcs Ao, A^, . . ., A^_i. Then the following equation
holds:

W ^(A.)=/(A^^J+O)(A,)

Furthermore, the map f^ carries A .̂ homeomorphically onto ^i+^pmodkq if and only if the
weight CD (Af) is zero.

Proof. - The image of an arc A, under/^ covers the (disjoint) arc ^i+kpmodkq and

then winds some number N times around the circle. It is easy to check that each of
these circumnavigators of S1 in A, contains a unique fixed point of/^. Therefore,
N=o)(A,). D
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We can solve these linear equations (^) for the angles /(A,) as functions of the critical
weights co (A^). If we sum these equations over a residue class modulo k, we obtain the
equation

<^-1)(/(A,)+/(A,^)+ . . . +/(A,^^_^))=co(A,)+co(A^,)+ . . . +O)(A,^_,))

for each i between 0 and k-\. That is, the total angular width of these q sectors is
directly proportional to the total weight. In particular, at least one of these q sectors
must contain a fixed point of f^. (More directly, if the co(A^^) were all zero, then
each of these sectors would map homeomorphically onto a sector with strictly greater
length, which is impossible.)

LEMMA 4. — For each i between 0 and k— 1, the q-fold sum

o>(A;)+co(A,+,)+ . . . +(O(A,+^_^

must be strictly positive. In other words, each of the arcs A; either contains a fixed point,
or is mapped homeomorphically by an iterate of f^ onto an Aj that does contain a fixed
point. D

Remark. - In the sequel to this article, we will show that the weight co (A^.) is equal
to the number of critical points contained in an associated region of the dynamical plane
of a polynomial map. (Compare Part II, § 2.)

An equivalent formulation of Lemma 4 in terms of deployment sequences is the
following. Fix any p / q 1=- 0.

LEMMA 5. — A sequence O^s^ ^s^, ^ . . ., ^^_ ^ = kq is realized by a degree d rotation
set if and only if every residue class modulo k is realized by at least one of the s^s.

COROLLARY 6. — We have k^d— 1. That is, a degree d rotation subset with rotation
number p / q contains at most (d— 1) q points. D

We summarize the results from this section as

THEOREM 7. — A degree d rotation subset of the circle is uniquely determined by its
rotation number and its deployment sequence. Conversely, a lowest terms fraction p / q and
candidate deployment sequence

Q^s^s^...^s,_,=kq

determine a rotation subset ofS1 only if every class modulo k is realized by at least one of
theses. D

COROLLARY 8. - Quadratic rotation cycles are in one to one correspondence with the
set of rational numbers modulo one. D
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3. Counting Rotation Cycles

Recall that the number of ways to deploy q indistinguishable balls in N labeled boxes

is equal to the binomial coefficient ( ).
\ q )

PROPOSITION 9. - The mapfa has ( q ) rotation cycles with rotation number p / q .

Proof. - The conditions of Theorem 7 are satisfied for every candidate deployment
sequence (5-1, s^ . • • , ^ - 1 = ^ ) corresponding to a rotation cycle. Consequently, the
number of/^-rotation cycles in degree d is precisely to the number of ways to deploy q
indistinguishable balls in d- 1 labeled boxes. D
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