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ON THE CHARACTERISTIC POLYNOMIALS
OF ORBITAL VARIETIES

BY ANTHONY JOSEPH

1. Introduction

1.1. This paper is a sequel to [19] and we shall retain the same notation though with
some modifications following ([7], [8]). Varieties and vector spaces will be nearly always
defined over the complex field C, and often considered as being over the real field R.

1.2. Let G be a complex connected simply connected Lie group with 9 its Lie algebra
and having the triangular decomposition c^nQ^On". Set b=I) © n and let B, N, H
be the subgroups of G corresponding to b, n, t). Identify g with g* through the Killing
form. Choose Meg* which is ad-nilpotent and let Oy (or simply, 0) denote the G orbit
in g* containing u. We call 0 a nilpotent orbit. We call a component C of 0 Pi n an
orbital variety.

1.3. Let L be a simple highest weight module. It is easy to show that the associated
variety l^(L) [resp. the vanishing cycle ^(L)] of L is a union (resp. sum) of orbital
varieties. Calculating this sum turns out to be a difficult task especially when one
discovers that ^(L) is not necessarily irreducible ([19], 10.1 and Tanisaki [30] or [20],
8.6-8.8).

1.4. A basic construction in [19] assigned to each orbital variety C a polynomial pc
in S (t)) called the characteristic polynomial of C. Let W denote the Weyl group for the
pair g, t). It was shown ([19], 3.1) that the pc, as C runs over the components of 0 Pi n,
span a W submodule of S(^)). It was conjectured ([19], 3.3) that this is just the
representation of W assigned to 0 by the Springer correspondence. This would have
had the important consequence that the pc would be linearly independent, as C runs
over all orbital varieties. Shortly afterwards this conjecture was proved by Hotta [14]
but only by a tedious comparison of matrix coefficients and detailed knowledge of the
Springer correspondence.

1.5. A factorization theorem which obtains from a basic result on Goldie rank
polynomials ([19], Sect. 5) relates the characteristic polynomial p y ^ assigned to ^(L)
to the Goldie rank polynomial associated to Ann L. The latter can be computed (up
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570 A. JOSEPH

to a scalar) from the Jantzen matrix ([18], 5.1) which is of course now known to be
given by the Kazhdan-Lusztig polynomials.

1.6. In [19], 9.8, we conjectured that pc can be computed from an analogue of the
Jantzen matrix introduced by Kazhdan and Lusztig ([22], Sect. 7) in their study of the
Springer correspondence. This would have implied Hotta's result and indeed is practi-
cally equivalent to it. In any case combining Hotta's result with a knowledge of the pc
gives via the remarks in 1. 5 an effective way of computing the associated varieties ^(L).

1.7. Following these ideas Kashiwara and Tanisaki [21], and independently
Ginsburg [11] showed that i^(L) can be computed by directly combining these two not
quite identical versions of the Jantzen matrix. Later Borho, Brylinski and MacPherson
([7], [8]) reproved Hotta's result by using and developing a further interpretation of
characteristic polynomials which they called character polynomials of cone bundles
(associated to orbital varieties). Finally Rossmann [25] gave a particularly nice interpret-
ation of the (inverse) of the Kazhdan-Lusztig geometric analogue of the Jantzen matrix,
obtaining a new and simpler proof of the Springer correspondence. He also established
the conjecture for p^ discussed in 1.6 though here was constrained to use Hotta's result.

1.8. The above mentioned results might be thought to imply a thorough understanding
of characteristic polynomials. Yet apart from Rossmann, the authors use a baggage of
heavy machinery from sheaf theory and consequently depart far from the elementary
approach which was a key point of [19]. Consequently one could well question, and as
we shall see with good reason, if a full understanding had been reached.

1.9. Identify the flag variety X : = G/B with the set ^ of all Borel subgroups of G. Let
^ denote the variety of all Borel subgroups whose Lie algebra contains M, equivalently
the fixed point variety for the action of one parameter group defined by u. Let Ay
denote the component group of u, namely the quotient of Stabo u by its connected
component. Then Ay permutes the irreducible components of ^y and after
Spaltenstein [28] the Ay orbits of components in ^y are in bijection with the components
of Oy 0 n. When [19] was being written we had also considered a dimension function q^
which could be assigned to a component of ̂  and indeed to any subset Z of X. It
was easily seen that q^ was independent of the choice of an irreducible component of ^y
in an Ay orbit and moreover it appeared to often coincide with a p^ This was discussed
with Bernstein and with Borho during their visit to the Weizmann Institute (June
1982). Bernstein immediately observed that q^ is asymptotically a polynomial (as a
consequence of coherent sheaf theory on the projective variety G/B). He further showed
that the top degree part gr q^ of^z is the image of the fundamental class of Z in the
cohomology ring of ^ identified via Borel's construction [5] with the W harmonic
polynomials on t)* and hence coincides (Corollary 6.7) with the degree polynomial c^
of Z. Via the very natural Hotta-Springer specialization theorem [15] it is then immedi-
ate that the gr q^: Z a component of ^y span the Springer representation assigned to
Oy (and by a counting argument using [28] that the distinct gr q^ form a basis).

1.10. An obvious and important goal is to interrelate the q^ and the pc
polynomials. One may interpret the Borho, Brylinski, MacPherson work ([7], [8]) as in
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particular achieving this goal. However, these authors use a very roundabout analysis
using on the one hand the deep consequences of the decomposition theorem for perverse
sheaves giving in particular the irreducibility of Springer's representation and on the
other hand the rather messy arguments of [19] to relate these polynomials.

1.11. In this paper we prove a second factorization theorem which relates the pc to
degree polynomials c^ for the components of the .̂ This uses the Berline-Vergne
integration method [4] which can be understood with only a knowledge of elementary
differential geometry. Their method was used in a particularly imaginative way by
Rossmann [25] to relate Harish-Chandra's character formula to the geometry of the flag
variety obtaining notably an action of the Weyl group which recovers the Springer
correspondence. For our convenience we use Rossman's formulation of the integration
formula. The main distinction with Rossmann's work is that we have to make do with
just one complex structure on G/B (whereas Rossmann uses G/B x G/B) and this leads
to a less natural theory. (A similar cutting down was also necessary in the proof of the
first factorization theorem ([19], Sect. 5 and [18], Sect. 4) and this was particularly
unnatural.) We also need to interpret (Sect. 5) our characteristic polynomials as
weighted Leiong numbers. This immediately gave a result which we had long thought
to be true, namely that the characteristic polynomials (and hence the Goldie rank
polynomials) are sums with rational coefficients ^0 of products of distinct positive
roots. Actually (once one knows this to be true!) it turns out that a natural generaliz-
ation of [19], 2.9, also gives this result using the original definition of characteristic
polynomials (Sect. 8). Moreover the latter method is quite an effective computational
tood in low rank. Again, it gives an important corollary concerning when certain
completely prime ideals are induced (8.7). By a result of Vogan ([32], Prop. 7.12) this
also gives information on the possible unitarity of representations of complex groups.
Although this information is not new (for example, Enright lectured at the Weizmann
Institute in June 1982 on a proof using the Dirac operator) the present analysis is
particularly neat.

Acknowledgements

I should like to thank J. Bernstein for discussions concerning dimension polynomials
and S. Kiro for some general remarks on questions in analysis. Some technical difficul-
ties of an earlier version of this paper were eliminated by a remark of M. Vergne. This
involved transporting —d(h) factors from our previous expression for the Hamiltonian
function /(2) to the measure T^. This gives integrals which converge as functions rather
than as distributions. I would like to thank her for this timely interjection.

2. Some basic constructions and notations

2.1. Let R denote the set of non-zero roots for the pair (9, 1)) and R4' (resp. S) the
set of positive (resp. simple) roots corresponding to the triangular decomposition defined
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572 A. JOSEPH

in 1.2. Set n= |R4" \ = dim^ n = dim^ G/B. Let P(R) [resp. P(R+), P(R)+ +] denote
the set of integral (resp. dominant, dominant and regular) weights. Let [e^\ aeR,
^ : a G S} be a Chevalley basis for the complex Lie algebra 9 and let z \—> z" denote
complex conjugation with respect to that basis. Define a Cartan involution 9 for g
by composing complex conjugation with the product of the Chevalley and principal
antiautomorphisms. S e t f = { x 6 9 | 9 ( x ) = x } , p = { x e 9 | 9 ( x ) = — x } , t = f ^ ^ a = P ^ | t )
which of course are real subspaces of 9. Let K, A, T be the real Lie Subgroups of G
corresponding to i, a, t. Set 1^= { x e i * |x(7i)=0, Vfc et} which we view as a subspace
of t via the Killing form on \ (which is a real compact semisimple Lie algebra). Similarly
b1 c= g* identifies with n.

2.2. Note that {f^:aeS} and { f ( ^ + ^ _ J , (^-^?_J:aeR} form R bases for t and t1

respectively. Define a linear map (l+9):n-^t-L by (l+9)(z)=z+9(z).
Writing

z= Z ^a: aeR^
a e R '

we obtain

(l+9)(z)= ^ ^-^)+^(^+^)
a e R '

where x^=rez^, j^=imz^. Consequently 1+9 is bijective. It translates a complex
subvariety of n into a real even dimensional subvariety of t1 with no homological
boundary. (Indeed the set of singular points is a closed subvariety of complex codimen-
sion ^ 1 and any smooth point is interior.)

2.3. Recall that the cotangent bundle T*(X) of the Hag variety X=G/B identifies
with G x a n. Since 1 + 9 is bijective and commutes with the action of T we obtain
a map © ^ X T ^ - ^ G x B n by setting ©(fe, x)=(k, (l+9) - l(x)). Via the Iwasawa
decomposition G=KAN it follows that © is bijective and gives a further realization of
T*(X) (due to Borel). Writing g=kan, x=(l +9)anz : zen, we have O"1^, z)=(fe, x)
and moreover if gzen, then (l+9)(^z)=fex. The map n : (g, z)i-^z of G x ^ n onto
Gn [resp. n' : (fe, x)\-^kx of Kx^ t 1 onto Kt1] is called the moment map. The above
calculation shows for every subset Y c= K x yt1 one has ^"(Y) c= t1 if 71 (©(Y)) c= n. Of
course we may also identify G x ^ n (resp. Kx-rt1) with the subvariety {gB,gn\geG}
of G/Bxg (resp. {kT, ki-L\keK} of K/Txf*) and then n (resp. 71') is just projection
onto the second factor so is a closed mapping as X is projective. However, whilst n is
birational obviously n' is not. The latter will not cause difficulty here because we only
apply TT" to the images of conormals of B orbits.

2.4. Recall the Bruhat decomposition

X= ]J X(w) : X(w)=BwB/B.
w e W
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CHARACTERISTIC POLYNOMIALS OF ORBITAL VARIETIES 573

Let Y (w) denote the conormal corresponding to the B orbit X (w), that is

Y(w) : = {(&wB, f o ( n n w n ) | f c £ B } cG/Bxg.

Let 0(w) denote the unique dense nilpotent orbit in the irreducible algebraic set
G(nr iwn) and let C(w) denote the Zariski closure of 7i(Y(w)) H0(w) in 0(w). By
the remark in 2.3 one has n (Y (w)) = C (w) where the latter denotes the Zariski closure
in n. Also C(w)= { f o ( n n wn) | f ceB} which is irreducible. The embedding x\->(x, 0)
of X (w) into Y(w) carries X(w) into Y(w). In particular CyB, O)eY(w) if and only if
j^w (Bruhat order). We remark that the map wh^O(w) of W into the set of nilpotent
G orbits in g* was introduced by Steinberg [29]. It is known to be surjective ([29].
Sect. 3); but except in gl(n) and some other special cases its fibres are unknown. Again
every orbital variety is some C(w) ([19], Sect. 9); but it is not known which C(w) are
distinct.

2.5. Given M a complex (or real) smooth irreducible algebraic variety, viewed
as a C°° manifold, let ^(M) denote the space of complex valued C°° functions on M
and ^(M) the space of C°° vector fields on M. Set ^o(M)=^r(M),

00

2^ (M) = © ^(M), where for each m = 1, 2, . . ., ̂  (M) denotes the space of exterior
m=0

differential m forms on M. Let d : ̂ (M) -> ̂ +i((M) denote the usual exterior deriva-
tive and for each xe^l(M) define the contraction map c(x) : ̂ +i(M) -»^(M) by
(c(x)o)) (xi A X2. . . A xj=o)(x A Xi A . . . A x^). Then the x-equivariant derivative
d^ : ̂ (M) ->Q^(M) is defined as d^=d-\-c(x) and satisfies ^==J^ where J^ is the
Lie derivative. Consequently we have a cohomology theory on x invariant forms, an
important observation due to Berline and Vergne [4]. An element ae^^(M) is called
symplectic if it is closed and non-degenerate (forcing M to be even dimensional and in
this respect all our varieties will be considered as being real). Given that ae^^(M) is
closed we say that xe^^M) is Hamiltonian if there exists a function (called a Hamil-
tonian function) f^ such that c(x)o-+ 4/^=0. Observe this implies that ^((j+/^)=0
and hence that ^(0+^=0, V m = l , 2, . . ., where the product is in the even part of
^*(M). Since this is a commutative subalgebra of ^(M) we have omitted A. Given
m e M let T^(M) denote the tangent spane of M at m.

Given (p : M -^ N a C°° map of C°° manifolds, let (p* : T^(M) -^T<p^(N) denote the
Jacobian of (p defined by ((p^x)(/)=x(/o(p) and (p* the pull-back ^*(N)-^*(M)
defined through < (p* (co)^, . > = < co<p ̂ , (p* ( . ) >. One checks that d commutes with the
pull-back (p* and so if ae^*(N) is closed, then so is (p*(a)e^*(M). Again take
^^(N) and suppose xe^M) satisfies .y<p(^=(p*(xj, V m e M (for example if
.yeLieH, for an equivariant map (p of H manifolds) then (p*(c(j)o))=c(x)cp*((o), for
all co e ̂  (N). Consequently, if y is Hamiltonian relative to a e Q)^ (N) with Hamiltonian
function/, then x is Hamiltonian relative to (p*(a) with Hamiltonian function f° (p.

Finally, if M is a homogeneous space, say M=K/T then Q>1(M) is generated over
^(M) by an image of f=Lie K (in this case f itself).

2.6. Fix i^et* regular [i.e. (?i, a) ^0, VaeR] and extend i ' k to an element of I* via
linearity and the condition ^(t^) =0. Following Borel [5] we define a K invariant closed
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574 A. JOSEPH

2-form CT^ on K/T through

^(x,y)(k^=([x,y},k^

Vx, yet, keK. Moreover x e f i s Hamiltonian with respect to c^ having Hamiltonian
function f[1^ (k T) : = < x, k \ >. The form o^ is non-degenerate for A, regular.

2.7. Consider the Cartesian co-ordinates x ^ y ^ - . y . e R ' 1 ' on i1 defined in 2.2.
Consider het as a vector field on t1 (or on i). Noting the relation [h, ej=a(7i)e, and
recalling that a (h) is pure imaginary for all a 6 R + we obtain

, „ „,/ 8 - 8 \
h= S a(/i) z,—-z.— ,

c,̂  \ ^« ^a/

V • n^( 8 8 \= L <aW ^a—-^— .
,6R+ \ .̂ ^/

^_j v / i « ' o i - a _

a^ \ ^a ^a

Set t , = { A e t | f a ( 7 i ) ^ 0 , VaeR} . From now on fix fcet,. Observe that

T . := E (l/foc(/i))^A^
a e R "

is a T invariant symplectic form on t1 which pulls back via the decomposition f = t © t 1

to a T-invariant closed two-form on t which we shall also denote by T^. Moreover, with
respect to T^ one checks that h is a Hamiltonian vector field on t1 (or on I) with
Hamiltonian function

/(2)=-1 S (^+^2).
2 a e R +

2.8. Recall that we have an embedding (fe, x)^(feT, kx) of Kx^ t 1 into
K/T x I. Under this map the closed two-form 5^ ̂  : = c^ + T^ defined on K/T x f by 2.6,
2.7 pulls back to a closed two-form on the cotangent bundle T* (X) =K x ̂ i^ and which
we shall also denote by Z^ ̂ . Moreover with respect to the diagonal action of K on
K/T x I the above map is K equivariant and so from 2. 5 it easily follows that each h e i
viewed as a vector field on T* (X) is Hamiltonian with respect to 5^ ^ and has Hamiltonian
function

A,.(^)=<^^>-1 S (x^2)
2 a^

where x^ y ^ : oceR'^ denote the co-ordinates of the image of the point kael under the
projection onto t1 defined by the decomposition t = i © t1.

2.9. Compared to Rossmann ([25], I, Sect. 2) we seem to be forced into less structure
here. Thus 2^ ^ is only T invariant, we only claim the vector fields coming t are
Hamiltonian and that E^ ^ is closed (but not necessarily symplectic).
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3. Factorization via integration

3.1. Let Y(w) c= T*(X) or simply, Y be the conormal of a B orbit (2.4) viewed as a
real subvariety of Kx-rt1 . Then Y (or Y) is In dimensional and has no boundary in
homology. We wish to consider integrals of the form

I^(h):=-1 f e^h^a)^^. VXe t * , ^e t
nl jy

where /„ ̂  and £^ are defined by 2.8. Since K/T is compact the only possible non-
convergence comes from integration over I*. However, here the convergence is ensured
by the exponential decay implied by our choice of/^. We conclude that this (and
similar integrals below) converge.

To evaluate this and similar integrals we use an integration lemma of Berline and
Vergne [4] in the form proposed by Rossmann ([25], 3.1). For completeness we state
the result needed below.

Let M be a real C°° manifold [eventually either T*(X) or t1 viewed as real manifolds]
and F an irreducible 2 m dimensional real algebraic subvariety (eventually always coming
from a complex algebraic variety) with no boundary in homology; but possibly with
singularities. Fix h e ̂ 1 (M), co e ̂ * (M), (p e ̂ i (M). Assume
(1) h has finitely many zeros on M.
(2) F is tangential to h.
(3) ^(D=O.
(4) (p is h invariant and (p(^i) vanishes only on the zeros of h.

Take any zero p of h. Assume there exists a co-ordinate system (xy) on M around p
such that

(5) CPW=Z^+^(Z^)
j j

and
(6) The ball Bg(^) of radius s>0 around p is h invariant.

Condition (3) generally forces co to be inhomogeneous. Indeed it relates in particular
the 2m component co^ to its zero component ©o. Here (and elsewhere) we shall use

o) to mean co^.
Jr Jr

Finally to ensure convergence we assume that M admits an increasing sequence of
compact submanifolds M^ : 5 e 1̂ stable under h whose union is M. [In T* (X) take the
inverse images under n of closed balls in I of radius 5 centered at the origin.] Writing
9=(p/(p(/i) we further assume that

(7) lim ] 9(rf9yco=0, V/=0, 1, 2, . . .
s -- oo JQ (r n Ms)
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The integration lemma asserts the truth of the following formula

^(-irzcoo^lim 4nf (^cpr.fco^-irSoo^lim 4nf
Jr p e ->• o £ JrJr p e ->• o £ J r n B g ( p )

We sketch briefly the proof. Let M" denote the complement in M of the zeros
of h. On M' the one-form 9=(p/(p(/i) is defined and satisfies ^9=l+r f9 by definition
of d^ and d^9=0 by (4) and 2.5. Using (3) one checks the key identity
(^=d^(Q(d^Q)~1 w) defined on M". Set F^FOM, and choose 5 sufficiently large to
ensure that Bg(p) c: M^, \/p. Then by (1)

f co=liml: f d,(Q(d,6)-1^
Jrs s ^ o p Jrs\rsnBg(p)

= - l i m ^ [ e^e^co+l Q^QV'W
e -> o p J^ ( rnBe(p) ) Jars

by the equi variant Stokes' lemma ([4], 1.4) using that F has no boundary in homology
and (2), (6) to ensure that Bg(/?) H F and F^ are tangential to h needed for the hypothesis
of that lemma. Expanding (^9)~1, using (5) to replace (p(/i) by £2 and applying Stokes'
lemma we obtain

r m r—iy'-i / r \
e^e)-1^ ^ —^~( W^ (^4

Ja ( rnBg(p ) ) j=o £ \ J r n B g ( p ) /

up to terms that can be ignored in the limit e -> 0. As noted in Rossmann ([25], Sect. 3)
only the term with j = m is non-vanishing in the limit [essentially because the volume of
r 0 Bg(/?) goes like c2^. By (7) the integral over OF^ vanishes in the limit 5 -> oo. This
proves the lemma.

3.2. Let C be a (complex) quasi-affine irreducible subvariety of n viewed as a real
irreducible subvariety of t1 (via 2.2) of dimension 2 m : m = dim^ C. Assume that C is
T invariant.

Fix heiy and consider the 1 form

^ > h ' ' = T. -TTT^a^a-.VA)
a^ a(n)

on t1. From the formula (2.7) for h viewed as a vector field we conclude that (p^ is h
invariant and

^w= s (^+^2).
(X6R +

For o0, let Bg denote the closed ball in t1 of radius e centered at the origin (with
respect to the above Euclidean co-ordinates).
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Viewed as a function on t^, it is clear that (p, and hence (d^^ are rational in h.

LEMMA. — The integral

J c W ^ - ^ f e x p f 1 ^ (x^y2^m [ J c \ 2 ̂  )

converges and coincides mth the rational function

(-ly" f
lim -^ (W

e -̂  0 £ Jc n Be

on t,..
The above integral is computed by the method described in 3.1. First we check

conditions (1)-(7). Since h has only a zero at the origin condition (1) holds. Since C
is T invariant any hei is tangential to C so condition (2) holds. Let co^e^*(t1) be the
form

o^exp^+T,).

Then by 2.7 one has ^0)^=0 so condition (3) holds. Condition (4) with (p, above
have already been verified. In the coordinates (x^, y^) condition (5) holds trivially and
condition (6) is easily checked. Condition (7) is a trivial consequence of the exponential
factor exp /(2) in G),, taking M^ to be the closed ball of radius 5; with respect to the
Euclidean metric defined by x^ y^ : aeR4 ' .

Since

JcW= co,
Jc

the conclusion of 3.1 gives for all h e iy

(-\Y r
JcW=lim (-^- (d^r

e -)> 0 8 Jc n Be

as required.

3.3. Recall that the Euclidean volume Vol B"1 of the 2m ball B^ of radius s is just
(s^Ti^/m! Thus had we been able to replace i/a(h) by —(l/7t), the rational function
in the conclusion of 3.2 would take the form

^youcrm)
s -o VolB"

which is just the Leiong number of C at the origin. It obviously vanishes if 0 ̂  C and
takes the value 1 if C is non-singular at 0. More generally it is determined by the
multiplicity of an appropriate Hilbert-Samuel polynomial. (See 5.4.)
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578 A. JOSEPH

In section 4 we obtain an expression for the above rational function which may be
viewed as a weighted Leiong number. For the moment we observe that up to the factor
( — i n^ it may be written in the form

(*) ———J Z n^h)a^
11 a (n ) \UcR+ U /

a e R

where f"[ is the product of the roots in R+\U and
u

au=lim VoH^f n^A^).e-> 0 VOlJBg JcnBe<xeU

Despite the similarity with our previous expression, a^ is not itself a Leiong number
and in fact does not even take integer values (see Sect. 8). Again there does not seem
to be any way of computing a^ from Hilbert-Samuel polynomials.

Nevertheless Oy^O, so we conclude that the numerator in (^) is a positive sum of
products of distinct positive roots.

3.4. FixweWandsetC°(w)=7i(Y(w))nO(w). Since n(Y (w))={b(nC\ wn) \beB}
and has the same closure as C(w) it follows from ([27], Chap. 1.5, thm. 6) that C°(w)
contains an open subset of C (w). For each u e C° (w) set Z^ (w) = n ~1 (u) p| Y (w) which
we may identify with a subvariety of X and hence of ^. Under the second identification
one has Z^^c^^ji-1^). Let Z^(w) denote the closure of Z^(w) in .̂ Let
(StabeM)o denote the identity component of Stab^M and set A^=(StabeM)/(StabGM)o
which is a finite group acting on the set of irreducible components of .̂ In what
follows we shall sometimes omit w and we use a left superscript to denote conjugation
of B by an element of G.

LEMMA. — For all ueC°(\v),
(i) dime Z^(w)=dimc ^=dimcX-(l/2) dimcO(w).

(ii) Z^(w) is a union of irreducible components of^ belonging to a single Ay orbit.
There exists C^viOcC^w) Zariski open in C(w) such that
(iii) Z^(w) is irreducible, for all ueC°°(\v).
(iv) The image of the fundamental class o/[Zy(w)] o/ZJw) in H*(^, C) is independent

of the choice ofueC°°(w).
(i) One has (dropping C) that

dim ̂  ̂  dim Z^ ̂  dim Y - dim C, by [27], Chap. 1.6, thm. 7

=n-dimC=n- - dim 0=dinic^, by [28].

(ii) Observe that Y c= G x g C and so Zy c= G x gC 0 n ~ 1 (u). Yet

Gx^C^}n~l(u)={gB\g-lueC}
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which from the discussion in the fourth paragraph of [28] is exactly an Ay orbit of an
irreducible component of ^y. By (i), this proves (ii).

For (iii) observe that

ZO C TD-' /- /a» ID' bwrs L, ̂  T) ty ==•[£> e^yl-D = £>, b(=D^

Following Steinberg we define

S^(0)=={(v,gB,gwB)\veO^}gn^}g^vn,geG}cOx^x^.

Consider the projection of S^(0) onto 0 defined by the first factor. By [19], 9.3 (ii)
the inverse image M of u is an Ay orbit (for the diagonal action) of an irreducible
component of ^y x ^y. Take geG/B such that ueg(n 0 wn). Then the inverse image
of ^B in M under the first projection equals { ̂ B | u egb\v n} = ̂ -1 y. (Note here that
g~1 ueC°.) If ^B belongs to only one component of ^y which holds on an open set Q
of ^y then the asserted property of M implies that ^-ly and hence Z^-iy is
irreducible. It follows that Zy is irreducible on the set obtained from
{gBeQ\g~luen^}wn} by taking the inverse image of p ^ : G-^G/B and applying the

PI
quotient map g ^—>g~l M. This is just p^ (p^ 1 (0)) H C° and is open in C°. Hence (iii).

(iv) Since gn~l=K~l(gu) we have 9 (G x gC C\ n ~1 (u)) = G x gC pi n ~1 (gu). It follows
that g takes the irreducible components of CxpCn^"^) (which are also irreducible
components of ^J to the irreducible components of Gx^CP\n~l(gu). Since G is
connected this action does not change the images of their fundamental classes in
H*(^, C). Moreover since GxgC C^n'1^) is a single Ay orbit of irreducible com-
ponents, and of course Ay is a subquotient of G, all these images are the
same. Combined with (ii) and (iii) this proves (iv).

3.5. To apply 3.4 to the computation of fy(h) we first note that it is possible to
interchange freely our two pictures concerning T*(X) and the moment map. This is
because n (Y) c= n and we have a commutative diagram of maps

Y ^ C
e t 1(1+9)

Y- ^ C

defined in 2.2, 2.3.

3.6. Let ^f denote the set of all W harmonic polynomials on S(t)). We recall that
^ is spanned by homogeneous polynomials on I)* and that one has a direct sum
decomposition S(I)) =Jf © I+ S(^) where I+ denotes the augmentation ideal of S^)^

Let Z be a closed irreducible sub variety of K/T. After Borel ([5] see also [25], II,
Sect. 7) the integral

Cz(^) : = exp c^
Jz
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depends only on the image of the fundamental class [Z] of Z in H* (^, C) and the map

/ r \
[Z] (—»• ( ^ i—^ exp a^ j

\ Jz /

extends linearly to an isomorphism of H* (^, C) onto Jf.
Now fix weW. Set r=dinicX-(l/2) dimc0(w). From the above and 3.4 we

obtain

COROLLARY. — The function

^}->c^Ck) : = exp CT^= — (T[
JZy(w) ^Jz^w)

fs independent of the choice ofueC00^) anrf 15 a W harmonic polynomial of degree r.
3.7. We may now prove the main result of this section. Fix weW and set Y=Y(w),

C = C (w), Z^ = Z^ (w). Define 1̂ , Jc as in 3.1, 3.2. Set r = dim^ Z^.

PROPOSITION. — The integral 1̂  ̂  converges and as a function of 'k it satisfies

^(w)W=^(^)Jc(w)W+0(?l r+ l).

One has

w:^1^^^^^,
"UY

=z —^—f rf e^^^a^-3
,=o ^-s)!s!j^Y)Uz« J

=i 7——f p'^f ^^^^Ixr5
s=o (^-s)!s!j^Y)L Jz, J

We claim that in the above sum only the term 5=r contributes to order ^r in X.
Indeed for a term to be non-vanishing we must have n—s^n—r because n — r is half the
real dimension of TI;(Y)=C° and terms not satisfying this will make no contribution
because of integration with respect to T^. To show that 5^r, it is enough to recall that
(j^ and f^\ are linear in ^.

Finally the only dependence on ^ comes from the integral over Z^. Hence we can
take ueC00 since the complement of C00 in 7i(Y)=C° is of measure zero (because C00

is Zariski open in the irreducible algebraic set C°). Since exp/j^kT^exp^, f e ^ >
and a{ is homogeneous of degree r in X, expanding the exponential we conclude by 3.6
that

I'Y^U^W^+O^1)-

Since n (Y) and C differ only by sets of measure zero, the required conclusion is obtained.
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3.8. The proof of the above factorization result follows closely the analysis of
Rossmann ([25], Sect. II, 7), with some technical differences arising because here we are
dealing with conormals of B orbits in X rather as in Rossmann with conormals of G
orbits in X x X.

4. Comparison of factors

4.1 (Notation 3.7). We now compute l^(h) in another way. This will allow us to
compare the factors c^, Jc^). A similar comparison technique occurred in the thesis
work of D. King [23]. It was used in an essential way in the work of D. Barbasch and
D. Vogan [3] in [19], Sect. 5, in [19], 5.1 and in Rossmann ([25], Sects II, 7-9). Our
method of computation follows Rossmann using RL (notation 3.2).

4.2 First we construct a K invariant Riemannian metric ^ on ICx^t1 as the pull-
back of a K x K invariant Riemannian metric on K/T x I under the K equivariant map
defined in 2.8. The latter will just be the product of metrics defined on K/T and
I. The existence of such a metric is pretty obvious; but we shall describe it anyway.

Given ^eil* a dominant integral weight, let V^ denote the simple 9 module with
highest weight vector v^ of weight Xo. The map g^lgv^o] of G into PV^ factors to
a map of G/B into P V^ which is an embedding if A-o is regular. Take ̂  regular. The
pull-back of the Fubini-Study metric on PV^ which is Riemannian and GL(V^) invari-
ant ([12], pp. 30, 31) gives the required metric on K/T = G/B. It is the metric °which is
the real part (see [12], p. 28) for the Kahler form on K/T for which OQ is the imaginary
part. It is obviously non-degenerate at the base point T (for X,o regular).

On t we take the constant metric defined by the negative of the Killing form (which is
negative definite on t and I invariant). The pull-back of the product metric (which is
non-degenerate) is K invariant, positive and non-degenerate at any point ^e(T, t1).

4. 3. Fix Aet, considered as a vector field on T*(X). Then (fe, a)eK x^i1 is a zero
of h if and only if (ad k ~ ̂  h e t and [(ad k ~ ̂  h, a] = 0. Since h is regular, so is (ad k ~~ ̂  h
and thus the latter condition implies that a=0. Again since h is regular one has
Kh H t=W/i (where the groups act by the adjoint action). We conclude that the zeros
of h on T*(X) form the finite set {(y, 0) \yeW}. Observe also that/^ ̂ , a) takes the
value exp < h, y ^ > at (y, 0).

4.4. Fix hei,. The function xh-^(/i, h)(x) on Kx^i1 is h invariant, takes positive
values and vanishes exactly on the finitely many zeros of h. Thus for 8>0 the set
Pe : ={xeKx^il\^(h, A)(x)<e2} is h (even T) invariant and for s sufficiently small
decomposes into a disjoint union of ^-invariant open neighbourhoods BJjQ : yeW of
the zeros of h in Kx^ viewed as a real 4n dimensional C°° manifold6 Take the h
invariant partition of unity defined by these neighbourhoods and patch together an h
invariant 1 form (p, on T*(X) by taking (p, (^ = ̂  (/z, Q outside P, and on the above
neighbourhood of (y, 0) an h invariant 1 form to be constructed later (4.6); but which
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we assume for the moment satifies

(*) ^(^(^llxip+^llxll2)

in terms of local (Euclidean) co-ordinates around (y, 0). We can of course assume that
around (y, 0) that

^(h, h^W^x^+o^x^2)

and so we could have taken (p^(^)=^(/!, ^) everywhere. However, this is not the most
convenient choice.

4. 5. PROPOSITION. — For each w e W the integral Iy (w) converges on \)y to the function

h^ ^ (-irexp^^lim -^!
y e W s -- 0 £ Jy

_, (̂ )"
y e W s^ 0 £ JY(w)nBe(y)

We apply 3.1 to the quadruple (h, Y(w), co^, (p^) where h^iy, co^=exp(/^ ̂ ,+S^ /,) and
(p^ is defined in 4.4. Condition (1) of 3.1 was verified in 4.3. Condition (2) holds
because Y(w) is T invariant hence tangential to h. Moreover, Y(w) has no homological
boundary. Again ^co^=0 by the construction of 2.6-2.8. This verifies condition
(3). Condition (4) holds by construction. Condition (5) is just (^) of 4.4. Condition
(6) follows from the h invariance of Y(w) and the Bg(^) : ̂ eW. Condition (7) follows
from the exponential factor in CD/, and the specific choice of (p^ outside Pg. Since

I'Y(.)W= ^
JY(W)

the conclusion of 3.1 gives

I'Y(.)W= Z (-l)"exp<;i,^> lim-^f (OW
y e W e - ^ O C jY(w)nBg(y)

as required.

4.6. We now compute the limits occuring in 4.5. This follows Rossmann ([25], I,
Sect. 3) with some slight differences coming from our use of conormals of B
orbits. Using Rossmann's notation we let EUy(X(w)) denote the Euler number of the
variety X(w) at the point y. This is defined as follows. As it is a local concept it is
enough to consider an irreducible variety U of C" of complex dimension d and that the
point in question to be the origin 0. Let Vc=(C")* be the corresponding conormal
variety. Let q=(q^ . . . ,^), p=(p^ . . . , / ?„ ) denote co-ordinates in C" and (C")*
respectively, and set Bg = { (q, p) \ \ q |2 + \p |2 ̂  s2 }. Then

Et^(U) : =(-1)"-^ lim \ \ I 1 ^ (dq, A dq,-dp, A ,̂)T.
e^ 0 8 JvnBgL 2 7 1 1 j=l J
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As in the case of the Leiong number (see 5.3) a limiting argument shows that E^o(U)
may be expressed as an integral over the tangent cone to V at (0, 0) and is an integer,
vanishes if O^U, equals 1 if OeU is a non-singular point. All this is discussed in
Rossmann ([25], I, Appendix). We expect the EUy(X(\v)) to be non-negative. For the
moment one knows that the inverse of the A matrix (see 4.7) has entries ^0. This is
because by [25], II, Section 12 and [21] these determine multiplicities of certain characteris-
tic cycles. Then a Kazhdan-Lusztig type inversion property should relate these two sets
of integers. In any case positivity is not needed here.

Let I (\v) denote the reduced length of w e W. We have the

LEMMA. — For all y, w G W one has

1 f OTnYf lV(w)+Hy)
(**) h- ̂  W--(2nl)-1) E^(X(.)).

e - O £ J y ( ^ ) n B e ( y ) [ [ (a, h)
a 6 R +

Fix yeW such that (^O)eY(w). Choose local (complex) co-ordinates
^ : ae -j^R" around ^BeG/B and extend these to local canonical co-ordinates q^
p ^ : ^e-y~lR+ around Z y : =(y, 0)eT*(G/B) exactly as in Rossmann ([25], I, Sect. 3)".
One has (expfc)(^, p^=(ea(h)q„ e-^^p,) and so (exp h)(q^ p^=(e-awq„ e^^p,) since
a(/i) is pure imaginary.

We should eventually like to apply ([25], I, _Lemma 3.4). For this we must show
that for any differentiable arc (q(t\ p(t)) on Y contained in Y for t>0 and passing
through Zy=(^(0), /?(0))=(0, 0) at t=0 one has ^(0).^(0)=0 (where prime denotes
differentiation and dot the obvious scalar product obtained by summing over —j^R''').

Consider the canonical one-form

^=p.dq

on T*(G/B). The one-form \|/ vanishes on any conormal, hence on Y. This translates
to p (t). q' (t) = 0. Differentiating with respect to t and setting t = 0 gives p ' (0). q' (0) = 0
as required.

Now in the neighbourhood B,(y) ofzy in T*(X) defined in 4.4 we take

^= S -^^P.)(dq^dp^
ae-,-^ a^)

(Here we recall that hei^.) Then on Y

^W=E(^+^)(^+^)

=h+^112=11^112+lhll2+^(hl|2+||^||2)
by [25], I, Lemma 3.4, which we can now apply. Hence (p^ satisfies (^) of 4.4. From
the above transformation properties of ^, p^ we also see that (p^ is h invariant. Thus the
above formula for (p^ can then be used in computing the left hand side of (i^k). Since
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d\|/==^d/^ A ri^ vanishes on Y we have

f_lV(y)+» _
(Ap,)"= v / „, ( Z (^. A dq^-dp^ A ̂ )r.

n a(/i) ^-y-i^
aeR '^

Recalling that X(w) has complex dimension ?(w), substitution gives the required conclu-
sion

4.7. Let us define the matrix A with entries

A(w,.y)=(-l)^ w )- f ( y )EMy(X(w)).

Combining 4. 5 and 4.6 we obtain

COROLLARY. — For each w e W, one has

l^.)W=—27^ ZA(w,^<^>
n ̂  y e w

on t«.

4.8. We need one further observation to apply this to 3.7 to obtain the result
announced in 4.1. Namely that the Euler numbers EUy(X(\v)) coincide with those
computed by conormals of G orbits in X x X. This is because of the well-known relation
between B orbits in X and G orbits in X x X. (It is also noted in [25], I, Sect. 4.) Now
the involution (x, y) \-> (j, x) on X x X carries the G conormal defined by w to the G
conormal defined by w~ 1 and the point defined by y to that defined by
y ~ 1 . Consequently EUy.^(X(^v~l))==EUy(X(w)) and so A(w, y)=A(w~\ y~1). [We
remark that a similar property holds for Verma module multiplicities for an essentially
similar reason ([16], 5.4).] Set m = dim^ C (w). We have already seen (3.2) that Jc ̂  (h)
can be written in the form

(*) Jc^W^^^^'^

a e R '

for some homogenous polynomial /?c(w) °^ degree n—m. Comparison of 3.7 and 4.7
shows (as in say [19], 5.1) that

THEOREM. — For all w e W one has

Pc(^v)=c^v~l

up to a non-zero scalar.

4.9. It follows from the work of Rossmann (explicitly [25], II, Cor. 5.2, Sect. 10,
eq. (9)) that A(w, y) is exactly the entries of the matrix used in [19], Conj. 9.8. It
implies as in Rossmann ([25], II, Sect. 8) that c^ and pc^ are determined (up to scalars)
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by the formula given in [19], Conj. 9.8. Of course we already know this for c^ from
Rossmann ([25], II, Thm. 8.2).

Finally, we remark that because of the irreducibility of Springer's representation,
Schur's lemma implies that the scalar in the conclusion of the theorem depends only on
0 (w). Here we must also use the fact that C (w) == C (w') implies the equality pc ̂  =pc (w')
(and not just their proportionality as in the case of the Goldie rank polynomials q^
occuring in [18], Sect. 5. 5, Remark 1).

The fact that the above scalar depends only on the orbit 0(w) was also noted by
Rossmann ([25], II, Sect. 10, eq. (13)) in an equivalent form. At first this may seen an
innocuous fact hardly worthy of special note, in fact it is extremely curious and the
demanding reader should really question its validity. The point is that the c^ (or the
PC(W)) are overdetermined by the A(w, y) coefficients (they have to coincide for several
different w) and so this independence reflects a property of these coefficients. This was
already true for the Goldie rank polynomials ([18], Sect. 5) and reflected a property of
the entries a (w, y) of the inverse Jantzen matrix. However, in the latter case the resulting
polynomials q^ which are directly determined by this matrix can be proportional and
not equal. This fact forces the A and a matrices to be distinct [outside sl(n)]. For
example in type B^ there is one left-cell ^ of W for which the q^ : we^ (must be
proportional but) differ by a factor of 2. Exactly here we get a distinction in the A
and a matrices and which eventually leads to an extra nilpotent orbit not occurring as
an associated variety of the integral fibre of primitive ideals ([17], Sect. 9).

5. Characteristic polynomials and weighted Leiong numbers

5.1. We now relate the rational function Jc(h) '. heiy obtained from the conclusion
of 3.2 to the rational function r^ defined in [19], 2.4. Such a relation may already be
anticipated from the discussion in 3.3.

5.2. Our stategy is to recompute Jc(^) using again 3.1; but this time by first introduc-
ing new variables. Here we identify t, t* through the Killing form and make the
substitution h= —i[i with |LI a dominant integral regular weight. Thus |Li(a) is a positive
integer for all aeR^ Now introduce new (complex) co-ordinate functions ^ : oceR4'
on n by taking ^ to be an ^i(a) th root of z^. As we shall see we can apply 3.1 as
previously.

5.3. Before going further let us recall the way to compute the Leiong number at a
point w in a complex irreducible affine algebraic variety C viewed as real variety of twice
its complex dimension.

Let I(C) denote the ideal of definition of Cc=A"(C). Let A(C) (or simply. A)
denote the algebra of regular functions on C which of course identifies with
C[zi, z^, . . ., z"]/I(C). Given weC, let m^ (or simply, m) denote the maximal ideal
corresponding to w. For all se^J set gr^A^^m'+HQ^m^+^C)), where
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m°=A. We define

gr^(A) : = © gr,(A),
s=0

which is a graded ring.
We can describe gr^(A) in a second way which makes clear that it is finitely

generated. Namely for each/eI(C)\{0} we let gr/denote the lowest degree term in
the expansion of/as a homogeneous polynomial in the variables z - — w , : 7 = l , 2 , . . ., n
and set gr I(C)={gr/ | /eI(C)}. Then C[zi, z^, . . ., z"]/grI(C) is isomorphic as a
graded ring to gr^(A). This construction also makes it evident that Spec gr^(A) is just
the tangent cone T^(C) at m ([27], p. 79).

Since gr^ (A) is finitely generated the function

s^dimcgr^(A),

is polynomial for all s sufficiently large (the Hilbert-Samuel polynomial, [2], 11.2).
Furthermore this function takes the form

es"1'1f (s ) = ———— + lower order terms in 5,
(m-1)!

where m = dim^ C and e is a positive integer, depending on w and C, called the multiplicity
of/. We denote it by mult^(C) and call it the multiplicity of C at w.

Now view C as a real 2m dimensional variety by setting Xj=rezp ^•==imz^ :7=1, 2,
. . ., n and substituting for x? y? in the expression for I(C). For each s>0 let Bg(w)
denote the closed (In) ball centered at weC of radius 8 (with respect to the Euclidean
norm on IR2" defined by the above co-ordinates). Let B^ denote the closed 2m ball of
radius £ (centered at the origin). Set

n

TI = ^ dXj A dyj.
j= i

Then (l/m!)T^ is the volume element for 2m dimensional analytic sub variety D of R2"
and we may define

V o l D - f r ^ f expT,.
^!JD JD

(For more details see [12], p. 32.)
Consider the function

Mc^s)^01^01^.
VolB"
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THEOREM. — The function L(C, w, c) takes positive values and is increasing
in e. Furthermore

lim L(C, w, £)=mult^(C).
e -^ 0

/^ f5 ca/ferf ̂  Leiong number ofC at weC.
It is difficult to find a clear and simple proof of this remarkable result in the literature,

let alone to find out to whom it is due. A rough proof occurs in [12], pp. 390-391. For
the purposes of this section we only need the case when w=0 and I(C) is already graded
[equivalently with A(C) and To(C) are isomorphic as graded rings]. Then the limiting
process is trivial and we may also view C as a projective variety of dimension m— 1. In
this case the result can be read off from [24], 5.22 and 6.25. The limiting process is
also considered in Thie ([31], Sect. 2, 3) though in more generality than needed here or
in 4.6.

5.4. From now on we shall assume that w is the origin (which we can do without
loss of generality except with respect to the remarks concerning whether A (C) is a graded
ring). Introduce an n tuple k==(k^ , k^, . . ., fe») of positive integers. A monomial
z^ z1^. . .z1^ will be said to have k-degree 5 if ^k^.=5. A polynomial will be said to be
k-homogeneous if it is a sum of monomials of the same k-degree. An ideal
IcC [zi, z^, . . ., zj will be said to be k-homogeneous if it is generated by k-homogeneous
polynomials.

We make a brief digression to discuss a generalization of the Leiong number which
does not work. For each s let m^ denote the ideal generated by the k-homogeneous
polynomials of k-degree ^ 5. Exactly as in 5.3 we may introduce a k-graded ring by
setting g^A^^m^+HC^/m^^+HC)) and

00

gr(A)= © gr(A)^.
s=0

Exactly as before gr (A) is finitely generated and we let mult^(C) denote the multiplicity
of the associated Hilbert-Samuel polynomial. Now set

" 1Tfe= ^ —dXj^dyj
j-i k]

and define L(C, 0, £, k) as before; but replacing T^ by T^. One can show that
L(C, 0, £, k) satisfies the first conclusion of theorem 5. 3 and one can ask if

(*) lim L (C, 0, £, k) = mult^ (C) ?
e -> 0

Actually, this fails, already for the variety defined by the equation z^=zj. In this case
multo(C)=2. Close to the origin C ressembles 2 discs approaching the z^-plane
z^ =0. It follows that only the integration over dx^ A dy^ contributes and so we conclude
that left hand side of (^) is just 2/k^. This equals the right hand side if 2 k ^ ̂ 3 k^; but
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otherwise the right hand side equals 3/fei. However we shall show that (-^) holds if
I(C) is fe-graded. In this case the limiting process is trivial; but otherwise it does not
seem that this more general result is on obvious consequence of theorem 5.3 or can be
proved in a similar way to that result.

5.5. Now return to the situation described in 5.2. Recall in particular that C is a
complex T stable irreductible quasi-affine subvariety of n and that ih=[ieP(R)++.

PROPOSITION. — The integral

Ji^ffexp-1 ^ (x^y2^^
JcL 2 ^+ J

converges to (-Ini^muh^C), where k is the n-tuple defined by ^^(o^aeR^
To compute the integral we substitute for the co-ordinates ^^z^^ discussed in

5.2. This must be done (as usual) in three places. First in C which means that in the
ideal of definition Ic=C[z]: ^[^aeR^ of C we must replace z^ by ^(ot) to obtain a
new ideal F c= C [w]. However, doing this leads to overcounting. Indeed for each point
w e C we obtain

n ^)
aeR"^

solutions in the ^ variables (since C is algebraically closed). This introduces the above
factor as a denominator in the expression for Jg.

Second and third, we must introduce this substitution in the integrand and in
Tfc. However, instead we can simply recompute h as a vector field in these new co-
ordinates. A brief calculation gives

, Y^ /., 8 ^ 8 \
h- Z [ ^ ^ - ^ - )

a^ \ 8^ ^J

V ^ 8 8 \= Z [ b - ^ ~ a ^ ^ }
a^ \ 9a. ^J

where ̂  = a^ + iby Now we can transport the above change of variables into the relation
^^=0 (with co,, as in 3.2) without upsetting its validity. Now consider the 1-form

(p=f ^ (a^db^-b^da^)
aeR'1'

which is obviously h invariant. Furthermore

(pW= Z (^+^2).
a e R +

Let Bg denote the ball centered at the origin of radius e with respect to the co-ordinates
^ b^
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As in 3.2 we can now check that RL applies. By its conclusion we obtain

(-1)"" f
lim^H (^cpr.( ]~[ H^J^lim^" f

a 6 R + e ^ 0 s JcaeR '^ e ^ 0 b J C n B g

Since

d(p=2i Z (da,Adb^=2i^
(X6R +

we conclude from 5. 3 that

Jg= ^fmul^C)n ^(a)
a^

where multo (C) is computed with respect to the ̂  variables. It remains to show that

(*) ^^^^mult^C)n ^(^
where the right hand side is computed with respect to the z^ variables. Let p denote
the denominator of the left hand side.

It is clear that C [w] is a free rank p module over C [z] with generators

g,:= ?! ^ ^ e { l , . . . , f e , } .
a^

Set A =C [z]/I, A'=C K]/F. Then the image of the gi generate A' over A. If this were
not a free generation, we should have

(**) Z^eF
i

for some ?i not all in I. Given zeC let ̂ : l^e {1, 2, . . ., k, } denote the p possible co-
ordinates in the ^ variables corresponding to z. Now det gi(^)^0 by the linear inde-
pendence of the characters of the appropriate product of cyclic groups. Then from
(lAn^r) we conclude that P^(z)=0, V J and since z was arbitrary Pj£l, V ? which is a
contradiction. Hence, A' is a free rank p module over A.

Since I(C) is k-homogeneous we may identify gr A^) with the fe-homogeneous polyno-
mials of A;-degree s in the z^ variables and gr A, with the homogeneous polynomials of
degree s in the ^ variables. Taking account of our first observation we conclude that

s+p s s

p Z dim gr A(^ ^ dim gr A; ̂ p ^ dim gr A^
J = i .7=1 J= l

which implies (^).
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5.6. Comparison of 3.2 and 5.5 shows that the above analysis establishes (^) of
5.4 when I (C) is fe-graded.

5.7. We now obtain the main result of this section.

THEOREM. — For each orbital variety C H n the polynomial pc defined by 4. 8 (^) and
3.2 coincides with the characteristic polynomial ofC defined in [19], 2.4.

From the definition of r^ in [19], 2.4 it is immediate that

rcO^mImult^C)

where k is the n-tuple defined in 5. 5. Recalling that the characteristic polynomial of C
is just y*c times the product of the positive roots, the result obtains from 5.5 and
substitution in 5.4 (^) using (as usual) that P(R)+ + is Zariski dense in t)*.

5.8. Combining 4.8, 5.7 and the remarks in 4.9 we obtain a proof of [19],
Conj. 9.8. This implies Hotta's theorem [14] and avoids the use of any sheaf theory
which one should always try to do.

6. Dimension polynomials

Section 6.1-6.6 are derived from very rough notes taken in discussions with Bernstein
during June 1982. The first part 6.1-6.5 would probably be considered quite standard,
whilst the second 6.6 is a little less so. The results are of computational interest and
go beyond the considerations of fixed point varieties.

6.1. (Notation 2.1, 4.2). Let Z be a subset of the flag variety X. Given XeP(R)+ ,
we have a map g \-> gv^ of G into V^. Set Vz = {zv^ : z e Z } and q^ (^): = dim^ C Vz. We
call q^ the dimension function of Z. Here C Vz denotes the C-linear span of Vz which
is obviously a bizarre thing to consider. Yet V^: ={/eV? |/(a)=0, VaeVz} is a
subspace of V? so we way anticipate one should consider V?/V^.

6.2. Let KQ : G -> G/B denote the natural projection. For each subvariety V of G,
let A(V) denote the ring of regular functions on V. We view each ^-eP(R) as a linear
function on b by setting X(n)=0 and we let ^ denote the character on B obtained
from 'k via the exponential map. We then have a G-equivariant sheaf (9 (k) on X defined
by local sections through

^(U,^^))={/£A(7^o- l(U))| /(^)=^(fc)/(^VfceB,^GG}.

The structure sheaf (9^ on X identifies with ^(0). The sheaf ^P(X) is a locally-free (9^
module of rank 1 and may be identified with a G-equivariant line bundle on X.

Suppose ^^(R)^ Then each /eV? defines a global section on (DCk) through the
map g^(gv^ /> of G into C. The Bott-Borel-Weil theorem [35], a very simple proof
of which can be found in [9], asserts that the map V?-^F(X, ^(^)) so obtained is
bijective.
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For any subset ZcX we have q^=dim V^/V^. It follows that <?z=<?z and so we can
assume that Z is a closed subvariefy of X without loss of generality. This will be done
in the sequel.

6.3. Let Zc=X be a closed subvariety. The ideal sheaf J^z of Z is defined by local
sections though

r(u,j^)={/er(u,^)|/(znu)=o}.
Then the structure sheaf (9^ of Z identifies with the quotient sheaf ^x/-^z and so is
obviously a coherent ^x module.

For each ?ieP(R) define the sheaf (9^\ =^)®^z on Z. Right exactness of
the tensor product gives a surjective map 0(X) -^^W-

Since ^P(^) is ample for ^^(R)'^ and since them fold tensor product ^(^w of
(9Ck) over (9^ identifies with ^(mX), we conclude from Serre's theorem (concerning the
Hilbert-Samuel polynomial [31], p. 15.3) applied to the projective variety X that the map
F(X, ^))->F(Z, (9^W) with kernel {/eF(X, (?W) |/(Z)=0} induced on global
sections is surjective for X very dominant. This gives the

LEMMA. — For ^eP(R) very dominant

r (z, ^z w) = r (x, (9 w/{ fe r (x, o w) | / (Z) = o} ̂  v?/Vz.
In particular q^Ck) =dimcF(Z, ^z(^)) for ^ very dominant.

6.4. Let K(X) [resp. Ko(X)] denote the Grothendieck group of locally free (resp. and
G equi variant) sheaves (or vector bundles) on X. Let R(B) denote the Grothendieck
group generated by the algebraic B modules over C. We have an isomorphism
ZP(R)^R(B) via the map ^-i-^ and an isomorphism R(B)-^Ko(X) via the map
F -^ G x a F. Also (for the Hag variety X) the forgetful homomorphism Ko(X) -^ K(X)
is surjective. (For more details on this, see [8], Sects. 2, 4.)

Finally, by [6], p. 106, every coherent sheaf on the projective variety X admits a finite
free resolution by locally-free sheaves of length ^n=dim^X.

6.5. Let ^ be a coherent sheaf on X. Define the Euler characteristic ^( ̂ ) of ^ by
oo

X(^)= Z (-lydimcH^X,^).
1=0

Let p denote the half sum of the positive roots and let II denote Weyl's dimension
function on t)* namely

nw= n ̂
,6R+ <P . a >

which we recall is W harmonic. It is immediate from the Bott-Borel-Weil theorem [9]
that

X((P(X))=n(^+p), V^eP(R).
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Set ^'()i)=^(X)(x)^^. Since ^(5i) is locally free, the functor ^-.^(X) is
eaxct. So from a locally free resolution of ^ we obtain locally free resolution of
^ (X). Let [^] denote the image of ^ in the Grothendieck group of coherent sheaves
on X. By 6.4 there exists a finite set I( J^) cP(R) and integers njf such that

W= Z <[^)]
H 6 I ( ̂ )

and by tensoring with <P(X) that

[^W]= E <[^+^>], V?.eP(R).
pel(^)

Finally we remark that as in 6.3 one has H^X, ^ (^))=0, V f > 0 for X,eP(R) very
dominant.

Given Z as in 6. 3 we use n^ [resp. I (Z)] to denote njf [resp. I (^)] with ̂  = (9^. In
view of 6. 3 we obtain the

PROPOSITION. — Lei Zc^X be a closed subvariety. Then

qzW= S ^noi+^+p),
H 6 I (Z)

/or a?? ^eP(R) very dominant. The latter extends to a W harmonic polynomial on Z.

6.6. Recall that K(X) inherits a ring structure by tensoring over ^x ^d that
H*(X): ==H*(X, C) admits a ring structure via the cup product. After Borel [5] the
first Chern class c^ (^(^eH^X) of ^P(^) identifies with <j^ and the map ^-^a^ extends
to ring homomorphism of S(l)) onto H*(X) with kernel I+ (notation, 3.6). Here the
cup product is just the exterior or wedge product on exterior forms. Since there are no
terms in odd dimension, H*(X) is commutative and we omit the wedge. We also recall
that the isomorphism J'f==S (I))/I+ ^>H*(X) which results, is an isomorphism of graded
rings up to doubling of dimensions. Given aeH*(X) non-zero, let gr a denote its lowest
degree component.

Let T| : H* (X) -> H* (X) denote the isomorphism induced by Poincare duality. If Z is
a closed subvariety in X of complex dimension m we denote by [Z] its fundamental class
inH^(X). One has

r|[Z,nZ,]=ri[ZJr|[Z,]

where [Z^ C^ Z^] is viewed as an algebraic cycle (f. e. multiplicities are counted).
Let ch : K (X) -> H* (X) denote the functorial homomorphism defined by the Chern

character. For the flag variety ch is an isomorphism (see [8], 4.1 for example). The
following result was pointed out to me by J. Bernstein.

THEOREM. — Let Z be a closed subvariety ofX. Then

grch[^]=Tt[Z].

4'2 SERIE - TOME 22 - 1989 - N° 4



CHARACTERISTIC POLYNOMIALS OF ORBITAL VARIETIES 593

We first establish the assertion when Z is irreducible and of complex
codimension 1. Then Z is given by a single homogeneous equation which for 'k suffi-
ciently dominant can be assumed to define a global section/of d)(X). This gives an
exact sequence

a ̂  fa

0-^x -^ ^)-^z-.0.

We conclude that [̂ ] = [(9 (X)] - [^J and so applying the Chern character map we obtain

ch[^]=ch[^(X)]-ch[^J
= e^(Q ̂  - e^(e ̂ \ by say ([10], p. 56)

and so gr ch [^] = c, ((9 (?i)) = T| | (Z) by say ([10], Prop. 2, p. 141).
For the general case it suffices to show that

gr ch [(9^ , zj = §r ch [^J gr ch [^]

for closed subvarieties Z^, Z^ of X intersecting properly with Z^ a divisor, as the result
then obtains by induction on codimension and primary decomposition. (The result for
Z=X is trivial.)

Now recall that X is smooth and assume that

m: =codim (Z^ 0 Z^) =codim Z^ +codim Z^

(proper intersection) and that codim Z ^ = l (Zi is a divisor). Let Torfx(^ .) denote
the fth derived functor of the tensor product functor ^r®^-. By Krull's theorem
([27], Thm. 5, p. 58) we have the primary decomposition

s

W [ZinZJ= ^ n,[V,]
J=l

where the V, are irreducible, dim V^.=dim(Zi Pi Z^) =dim Z^-1. Then by Serre ([26],
p. 145-146, Prop. 1(3) and remarque 2) and because Z^ is a divisor, which implies the
vanishing of the higher Tors, one has

(2) ^(-^[Torfx^^)^ ^ ̂ ,
i=o 7=1

Now take resolutions of ^:f=l, 2 by locally free sheaves ̂ '. Then we can write
[^z^Sn^t^7] : f=l , 2, n^eZ, and we obtain by the bi-additivity of the alternating
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sum of the Torfx (., .) that
00

S (-l)'[Tor?x(^,^)],
1=0

= ^ (-l)l^l)42)[Torfx(^,^)],
i. j, fc

=Z n^2^®^]-
j, fc

Applying the Chern character map this and (1) and (2) give

ch [^ , zj = S n^ n^ ch [ J^] ch [ ̂ fc]

=ch[^]ch[^].

Applying gr proves the required assertion.

6.7. We can now relate the dimension q^ and degree

'k\—>c^('k)= exp (ĵ
Jz

polynomials for any sub variety Z of X. Here Z can be assumed closed without loss of
generality. Both are W harmonic polynomials on t)*. For any polynomial /?eS(t)) let
gr p denotes its leading homogeneous part.

COROLLARY. — Let Z be a subvariety ofX. Then Cz=gr q^.
Set m = dime Z. Then

(1) c ^ = 1 [^=± f^r|[Z],
^Uz ^Ux

1 f m 1 f.=— a^=—
m!Jz m!Jx

by the definition of Poincare duality. By 6. 5 we can write

[^z]= E <[^)]
U e I (Z)

and then by 6.6,

Ti[Z]=gr( ^ ^^)-
U e I (Z)

—n—w
= ^ ^Z-?!^.

nei(z) ^(n-m)!

Here we have noted that terms of degree <n—m must cancel. Now by [18], 2.3 (i) the
first non-vanishing term in the expansion

E n^
H 6 l ( Z )
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is always W harmonic. The remarks in 6. 6 concerning the map [i \-> a then imply that

(2) ^ <^=0, V;<n-m.
H e I (Z)

Now we may substitute the expression for T|[Z] in (1) since higher order terms are
eliminated by the definition of the integral. Given p e S (t)), let p^ e e^f denote its harmonic
part defined by the direct sum decomposition in 3.6. Let (notation 6.5) ©x denote the
image of n in H*(X). Then identifying (), t)* through the Cartan inner product gives

c^)=—————— S n^f^a—,
m!(n-m)! ^KZ) - J x

and so

(3) c^)=——————( ^ ^^^-^(P) fcox.
m!(n-m)! ^KZ) Jx

[Here we have used that II(p)=l to obtain the correct normalization.) Now for all
vel)* one knows that

(4) ^ (-l^wv^Jf
W € W

and so

(5) ^^^-^ S (-^(^pr^p^v).
| W | ^ew

Taking v=p in (4) and use of the Weyl denominator formula gives that

(6) ^'T^T n "•
I vv I aeR+

From 6. 5 and (5), (6) we obtain

Iwl
^^.rrn—^( s n?((^l+^+p)n)')(p)n! 11 (a, P) ne i (Z)

. -n +a e R "
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and by (2) (using that Jf is graded, so gr and b| commute) we conclude that as a
polynomial in X

Iwl
^ z W — — — ' , ' — , ( Z ^^^-^(P)(n-m)! m! H (a, p) ^i(z)

a 6 R +

-T&f^'^-
a^ ^X

Jx

Consider the special case when Z is reduced to the base point BeG/B. For any
embedding i^ : X q; PV^eP(R)++ one has deg B=l, whilst ^(^=1, V?leP(R) + +

trivially. We conclude that the scale factor in the above expression equals 1. This
establishes the corollary.

6.8. Combined 4.8, 5.7 and 6.7 achieve the goal described in the
introduction. Indeed fix we W and let p^^ denote the characteristic polynomial of the
orbital variety C(w). Choose MeC(w) such that Zy(vv): =K~l(u) is irreducible [which
is possible by 3.4 (hi)] and let q^ ̂  denote the dimension polynomial of Zy (w) c= G/B.

THEOREM. — Up to non-zero scalar depending only on 0(w), one has

^c(w)=gr^(w-1). VweW.

We remark that by 6.6, the right hand side above represents the image of [Zy(w~1)]
in H^ ̂  (X): m = dim Z^ (w ~1). Consequently by the Hotta-Springer specialization
theorem [15] these polynomials span the Springer module H^^J^ associated to the
nilpotent orbit 0(w) containing u. Of course this is also true of the degree polynomial;
but we had felt that the dimension polynomial is easier to visualize and to compute. In
particular when Z is a Schubert variety the dimension polynomial is given by the
Demazure character formula [1]. However, as the referee was quick to point out, these
degree polynomials can be deduced from ([34], 4.1) or by setting Y=0 in [33], p. 51,
proposition. Moreover, at least for the moment, these calculations are easier than the
proof of the Demazure character formula. By Rossmann ([25], II, Thm. 8.2) the degree
polynomials for the irreducible components can also be computed from the matrix A
with entries A(w, ^):w, yeW of Euler numbers. (For the moment the latter are not
known completely.)

7. Comparison with the results of Borho, Brylinski, MacPherson ([7], [8])

7.1. Fix weW and define 0(w), C(w) as before. Fix ueC(\v) and set
D^ (w) = K ~1 (u) U G x B C (w). One easily checks that GD^ (w) = G x g C (w). The latter
is referred to as an orbital cone bundle in [7], 2.1, and it is shown that the characteristic
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classes of the distinct orbital cone bundles for 0(w) form a basis for Springer's representa-
tion in H^(^^ : m=n-dimcC(w). We shall in particular obtain another proof of
this assertion. The key observation is the following curious fact.

7.2. LEMMA. — For all weW and all ueC°(\v) one has A^Z^w'^D^w).
Set E^(\v)={geG\g~lueB(n^}\vn)}. This is just the inverse image in G of the

closed subvariety B (n 0 w n) = C (w)=C°(w) under the map g ^->g~1 u. Under the natu-
ral projection Up : G -> G/B one has Up (E^ (w))=D^(w). From Spaltenstein ([28], fourth
paragraph) we further see that D^(vv) is a single A^ orbit of components of ^y. By 3.4
(ii) this also holds for A^(w~1) so it suffices to show that Z^(w~1) c: Dy (w). In fact

Z^w-^TC-^HY^-1)

= { & w - l B | f c - l M 6 n n w ~ l n }
^fcw'^Bl^w'^ '^Mennwn}
c=7io(E,(w))=D,(w),

as required.

7. 3. Fix w e W and let /?c denote the characteristic polynomial of C (w). Let c^ denote
the degree polynomial of D^(w).

COROLLARY. — For each orbital variety C, one has c^ =pc, up to a non-zero scalar,
depending only on 0.

This follows from 7.1, 4.8 and 5. 7 if we recall that by 3.4 and 3. 5 c^=Cy if Z^(x)
and Z^ (y) lie in the same Ay orbit. This latter fact can also be seen using the dimensional
polynomial and 6. 7.

7.4. The above result can be read off from [8], 4.7 and [7], Theorem 3.2. It implies
the result we wished to prove in 7.1. Although it would seem to be more natural than
4.8 and 5.7 where we are obliged to make explicit reference to weW, this is not
really so. Indeed the proof by Borho, Brylinski and MacPherson of 7.3 is extremely
roundabout as we explained in the introduction. A main difficulty is that pc is not
obviously W harmonic (and need not be if C is not orbital) whereas the degree polynomial
CD is always W harmonic for any closed subvariety of G/B.

8. A positivity lemma and some examples

8.1. It follows from 5. 7 and 3. 3 that the characteristic polynomial of an orbital variety
C is a sum with positive coefficients of products of distinct positive roots. Moreover by
[19], 5.2, this also holds for the Goldie rank polynomials, a fact which we had long
since thought to be true; but which is completely unobvious from say [18], 5.1 even
knowing explicitly the Jantzen matrix via the Kazhdan-Lusztig polynomials. [Similar
remarks apply to the degree polynomials which by 4. 8, 5.7 also have this property when
Z is an irreducible component of a fixed point set ̂  (however it is not known if this
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holds for more general Z).] Here we give a second proof of this positivity property
of pc.

8.2. Let C be any closed irreducible H stable subvariety of n and define its characteris-
tic polynomial pc as in [19], 2.3. Take any oceR'^ and let m, denote the subspace of n
generated by the e^: peR'^N^a}. Consider the intersection CHi^a as an algebraic
cycle.

LEMMA:

_ f Pc tf c c m^
^Cnma~ } ,,(̂  a/?c otherwise.

This is proved exactly as in [19], 2.9; apart from the sign error occurring there!

8.3. Retain the above notation. Fix any ordering o^, o^, . . ., a^ of the positive
roots. Set rrtf=m^. Let L denote a chain C=Ci, C^, . . ., C^ of H stable closed
irreducible sub varieties of n by taking C;+i to be an irreducible component of C^Om^
and let ^ denote the set of all such chains. Let n^ denote the multiplicity of C^+i in
c, n m,.

Set

A £ = ( n ^ ) n ^
\i=l / i|Ci=Q+i

which is a product of codim^C distinct positive roots with a positive integer
coefficient. From the definition [19], 2 .3of^c l t follows that/^o} l s tne product of the
positive roots. This gives the

COROLLARY. — For each H stable closed, irreducible subvariety C of n one has

pc- E A£.
LeoS?

In particular pc is the sum of products of distinct codim^C positive roots with non-negative
integer coefficients.

Notice that the result cannot depend on the ordering of R'^ which is not a priori
obvious but which is a familiar phenomenon in intersection theory.

8.4. Take g==sl (n+l) with S ={001,002 , . . . , a ^ } the standard choice of simple
roots. For all f < 7 = { l , 2 , . . ., n+1} set

j'-i
^ij= Z ^ and ^J=^OCf/

Take n=3 and consider the orbital variety C with ideal of definition
I(C)== < ^12, ^23, ^13^24—^23^14 >. Then C is a complete intersection and by say
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[8], 4.16 one has

pc = Oi 03 (oii + 2 02 + 03).

On the other hand, taking the ordering {oi , 03, o^, . . . } of R+ we see that |^f| =2
and correspondingly pc is the sum of the two terms Oi 03 (Oi + 02), Oi 03 (o^ + 03). Again
C can be viewed as a codimension 1 sub variety m^ 0 Tn<x3. Then the integrals occurring
in 3.3(^) correspond to taking U a subset of cardinality 1 in {02, o^+a^, 02+03,
01+02+03}. By the symmetry each of these integrals must be equal, whilst their sum
is just multo(C)=2. Hence they are all equal to 1/2 and we obtain from S.S^) that

1 , ,
PC = - a! ̂ 3 { ^2 + a! + ̂ 2 + ̂ 2 + ̂ 3 + a! + ̂ 2 + ̂ 3 }

=0103(01+202+03)

as required.
Now take n = 4 and consider the orbital variety C for which

I(C)=<6?i2, 6?34» ^45. ^35» ^13^24-^23^14. ^14 ̂ 25-^24 ^15» ^13 ̂ 25-^23 ̂ 15 >

which is not a complete intersection (and so cannot be computed from [8],
Prop. 4.15). Applying 8. 3 we obtain

PC = ̂ l OC3 04 (03 + 04) [(Oi + 02) (Oi + 2 02 + 2 03 + 04) + (02 + 03) (02 + 03 + 04)].

Up to the scale factor of 1/12 this agrees as it should in $1(5) [and conjecturally in
5l(n+l)] with the Goldie rank polynomial occurring in the third line of [17],
Thm. 11.4(iii).

If we wish to apply 3.3(^) we have to compute 15 integrals which by symmetry
occur in 3 sets for which each member of a given set has the same value. View C as a
subvariety C' of m^ n^as riiito^^^s+o^- Then the 15 possible subsets U of
R + \ {Oi , 03, 04, 03 + 04 } break up into a corresponding collection of three sets. These
have, for example, members {02, Oi + 03 }, { 02, Oi + 02 + 03 }, { 02, 02 + 03 }
respectively. If the corresponding integrals are denoted by Ii, 12, 13 then comparison
of 3 .3( a < ( ) with our previous expression for p^ gives Ii=0, 12 =1/6, 13 =1/3, that is for
example

lim VTR2 (dx^ A ^2) (dx^ ̂ 3 A ^2 +a3) = .
e ^ O VOlBg Jc 'nBg -5

However, we did not attempt to verify this directly.

8.5 One can ask if it is possible to verify directly that p^ as defined by 4 .8 (^ )
satisfies 8.2 by direct computation. Ironically, this is extremely difficult, though it is
intuitively plausible. The trouble is that it fails in general. Namely if C is a complex
irreducible locally closed algebraic subvariety A"(C) and P is a hyperplane, then the
integral Jp ^ c over tne algebraic cycle P H C can be quite unrelated to Jc (consider the
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case when C is defined by the equation z^=zj and intersect with the hyperplane
Z2=0). One needs, for example, that C and P are stable under a non-trivial action of
C* (as in 8.2) so one can apply 5. 5.

One may also ask if it is possible to show directly that pc as defined by 4.8(^)
satisfies [19], 2.6. Here we recall that this and [19], 2.9, led to the action of W on the
space spanned by characteristic polynomials of orbital varieties.

In fact the analogue of [19], 2.6, can be proved by an analysis along the lines of
Sect. 4 where G is replaced by the parabolic subgroup P^ => B defined by a e S. We
leave the details to the reader; but remark that to make a precise comparison with
[19], 2.6, one needs to check that the factor z occurring in [19], 2.6, is just the degree of
the moment map (p, v) i—> v of P^ x g m^ onto P^ m^.

8.6. By 8.3 and [19], 5.2, every Goldie rank polynomial p^ can be expressed as a
positive linear combination of products of distinct positive roots. Let Suppj?^ c= B
denote the simple roots which occur in such an expression for p^. We show that this
positivity has an important consequence for when a primitive ideal corresponding to a
regular integral central character can be completely prime.

Let L(X) : ^et)* denote the simple highest weight module with highest weight ^ ,—p
and set J(^)=Annu(g)L(^) which is primitive ideal. Now fix K regular [i.e. (X, a) ^0,
VaeR] and integral [i.e. ^eP(R)]. For each B' c= B, let WB' denote the unique longest
element of the Weyl group Wg/ generated by the ^ : aeB'.

THEOREM. — Assume that J(w^) : weW is completely prime. Set B'=Supp^. Then
2 (a, ^)/(a, a) = 1 for all a e B' and J (w ̂ ) = J (wg w^/ K).

Let P(R)+ denote the dominant elements of P(R) and set

^Oi)=rkU(9)/J(wH) : nePCR)^

where rk denotes Goldie rank. Now set n^:=2(a, |^)/(a, a) : aeB which is a non-
negative integer for all ^leP(R)+ . The above positivity property of p^ implies that
p^([i) ̂ p^^) if n^ ̂  n^', V a e B with a strict inequality if n^ < n^' for some aeB'. We
conclude that n^=l , for all aeB' and that p^(^)=Q if n^=0 for some oceB'. Set
R '^ZB'QR, R^^R 'HR '^ and let^e' denote the product of roots in R^. It is well-
known that the second conclusion above implies that p^ divides p^. (By the polynomial
character of Goldie rank, the above vanishing corresponds to the Borho-Jantzen degener-
ation to the a-wall and then from the reflection functor across the a-wall we obtain
saP^v=~P^ ^or a^ a eB'—hence the required assertion.) Yet p^ is a W harmonic
polynomial and py is the highest degree W harmonic polynomial satisfying
Supp/^^B7. Hence p^=py up to a non-zero scalar. Again from [18], 5.1, and well-
known properties of the Jantzen matrix (or Kazhdan-Lusztig polynomials) one has
;?B'(^)=rk(U(g)/J(wBWB'|.i)) : ^^(R)'^ up to an overall non-zero scalar. By [18], 5.5,
this implies the assertion of the theorem.

Remarks. — The second assertion of the theorem should extend to the non-integral
(regular) case; but the arguments run into difficulties because one cannot translate in an
arbitrary fashion to the walls. Indeed if we let B^ denote the corresponding simple root
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system, then it is false that the 2(n, a) /(a, a) : aeB^ take arbitrary integer values on
^+P(R). In particular the first assertion of the theorem is always false if Supp/^
cannot be conjugated into B. The result fails miserably for X non-regular. The diffi-
culty in the proof is that Supp^ contains not only those aeB for which /^(^)=0
when n^=0, but also those aeB for which n^=0.

8.7. Retain the above notation. Then L(\v^^'k) is just the module induced from
the one dimensional representation C^^,^_p of the parabolic subalgebra p^. defined
by B": = - WB B'. We obtain the

COROLLARY. — Assume XeP(R)+ +. J/J(wX) : weW is completely prime, then J(w^)
15 an induced ideal.

APPENDIX

Index of notation

Symbols appearing frequently are listed below in order of appearance (or where they
are first defined).

1 . 1 . C, R.

1.2. G, Q, n, t), n-, b, B, N, H.
1.4. W.
1.9. ,̂ ̂ .

2.1 . R, R\ S, n, P(R), P(R)+, P(R)++, ̂ , ̂  9, I, p, t, a, K, A, T, t1, b1.
2.2. z^, x^y^.
2.3. X,T*(X), ©,n,n\
2.4. X(w),Y(w),0(w),C(w).
2.5. ^,^c(x),^.
2.6. a,,/̂ .
2.7. T,,/<2).

2.8. ^,^A,h'
3.1. I^(A).
3 .2.JcW,B,
3.4. C°(w),Z,°(w),Z,(w),A,
3.6. ^,I+,Cz,c,.
4.1. V,,^.
4.6. E^(Y).
4.7. A(w^).

4.8. ^c.
5.3. mult^(C).
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5.4. mult^(C).
6.1. ^
6.2. To,^),^x.
6.3. ^z(^).

6.4. K(X),Ke(X) ,R(B) .
6.5. 7W,n,n^I(Z).
6.6. Ci, r|, ch.
7.1. D,(w).
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