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AUTOMORPHIC REPRESENTATIONS AND
LEFSCHETZ NUMBERS

BY JURGEN ROHLFS (1) AND BIRGIT SPEH (2)

Introduction

Classically, automorphic functions are holomorphic functions on the upper half plane
X=SO(2)\SL2(IR) together with a prescribed transformation rule, i.e., an action of a
subgroup r of SL^(Z) on holomorphic functions on X. Given such a space of auto-
morphic functions there is the problem of determining its dimension. This problem can
be solved using the Riemann-Roch theorem. The formula for the dimension thus
obtained depends on topological invariants of the space X/r and on an integer which
characterises the transformation rule. A more conceptual explanation of the connection
of the dimension with the topology of X/F is given by Eichler-Schimura's
isomorphism [Sh].

There is a well known generalisation as follows. Let G be a semisimple non compact
Lie group and r<=G a discrete subgroup of finite covolume, i.e. G/F has finite volume
with respect to some left-invariant measure dg. Let L2(G/^) be the space of square
integrable functions with respect to dg. If now K is some irreducible unitary representa-
tion of G, then n is said to be automorphic with respect to r, if n occurs discretely with
finite multiplicity m (n, F) in L2 (G/F). Of course here L2 (G/F) is considered as unitary
representation of G where G acts by left translation on functions. The classical situation
now can be recognized as follows: If G=SL2(R), if rcSL^Z), and if n is a discrete
series representation having a certain lowest SO (2)-type which is determined by the
transformation rule, then m (n, F) coincides with the dimension of the space of auto-
morphic function with given transformation rule. Back in the general setting, we now
assume that n is some given unitary irreducible representation of G. Then the following
questions arise:

Is K automorphic with respect to F, i. e. is m(n, F)>0?
Is m (7i, F) related with topological invariants of G/r?
What can be said on m (71, F), if F shrinks to { 1}?
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474 J. ROHLFS AND B. SPEH

There are some unitary irreducible representations of G which are intimately connected
with the topology of G/F. These are the representations n of G such that
H* (g, I, 7C0V) + {0} for some V. Here g is the Lie algebra of G, I is the Lie algebra of
a maximal compact subgroup K of G, V is a finite-dimensional irreducible representation
of G and H'(g, t, TiOOV) denotes the relative Lie-algebra cohomology of 7i®V. A
connection of multiplicities and topology is then provided by Matsushima's formula

H-(K\G/F, V)= ^ H-(g, t, TrOY)-^ n

neG

Here we assume for simplicity that G/F is compact and that F is torsionfree. On the
left we have the cohomology of the space K\G/r in the sheaf of locally constant
sections—again denoted by V—of the vector bundle over K\G/F associated to the
representation V. On the right we sum over all classes of irreducible unitary representa-
tions of G.

To exploit Matsushima's formula one has to find at first a method which gives some
insight on the topological side. In particular methods which yield
H'(K\G/F, V)^{0} are desirable. One can deduce H' (K\G/F, V) + {0 }from
Harder's Gauss-Bonnet-Formula [Ha 2] if and only if rank K=rankG, see [R—S1, 2]
for applications to multiplicities. In this paper we want to establish a method which
also works if rank K ̂  rank G.

The method we use is inspired by the observation that H"(g, I, 7i(g)V)={0} unless n
is equivalent to ̂  and V is equivalent to ̂  Here 9 denotes the Cartan involution of
G corresponding to K and the left upper index 9 at a representation indicates the new
representation where geG acts as Q(g) on the old representation space. So one can
hope that generally H'(K\G/F, V)^{0}, if 9 also acts on the geometrical side. A
similar idea occurs first in [H 1] for SL2(C). To make this precise, let G, K, 9, V be as
above. Moreover we assume that G is connected, that F is 9-stable arithmetic, torsion-
free, and that 9 acts linearily in a compatible way on V i.e. 9(^V)=9(g)9(V) for all
geG, ueV. Then 9 acts as 91 on H^K^G/F, V) and we define a Lefschetz number

00

M^r.v)^^!)1^1.
1=0

Here tr 91 is the trace of 91. We do not require that G/F be compact. Our main result
now is as follows:

THEOREM. — If F is small enough (definition 2.8) and if V has a highest weight K
satisfying XePe (definition 3.1.1) then

L(9, F, V)=/((K\G/r)°).tr(9|V)^0.

Here 5c(K\G/F)9) denotes the Euler-Poincare characteristic of the fixpoint set (K\G/F)0

ofQ acting on K\G/F and tr(91 V) is the trace ofQ on V.
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AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 475

Applications are given in Proposition 4.8. In particular we prove

PROPOSITION. — Let G be a complex Lie group and V a representation having a regular
highest Q-fixed wight such that tr(9|V)^0. If F is cocompact and small enough then
there is up to equivalence exactly one irreducible unitary principal series representation n
of G which contributes to H'(K\G/r, V)^{0}. The multiplicity m(n, r\) of n in
L2(G/^^) grows at least as \ (^/^^)Q\if^^ is 6-stable and normal of finite index in F.

Here, of course [(r/Fi)9] is the number of fixpoints of 9 acting on r/r\. We have
similar results for SL^(R), SL^(H), S0(n, 1), see 4.8.

Next, we explain roughly how the main result is proved. Essential is a Lefschetz
fixpoint formula

L(9,r,V)= ^ x(F(y))tr(9jV),
YeH^e.D

see 1.6. Here (KN^G/r^^UF^Y) is a finite disjoint union of connected components
F(y) parametrized by the classes y of the non abelian first cohomology ^(9, F) of 9
acting on F. We denote by x(F(y)) the Euler-Poincare characteristic of F(y) and by
tr(9y | V) the trace of 9 acting "y-twisted" on V.

In 1.4 we prove that F(y) is a locally symmetric space of equal rank type, so in
particular ^(F(y))^0 and the sign of x(F(y)) is determined by the dimension of F(y)
mod 4, 5^1.5.

In 2.8 we introduce the notion 'T is a small enough". In particular a congruence
subgroup is small enough if in the definition of the congruence there occur enough prime
divisors. If F is small enough we can show, that all 7(F(y))>0, see 2.19 and that
tr (91 V) = tr (9^ | V) is independent of y e H1 (9, F). To prove that ^ (F (y)) > 0 we associ-
ate to ye ̂ (9, F) and all places v of Q a certain quadratic form B.,(y) over Q,,. Here
Q^ is the completion of Q with respect to v. These quadratic forms have certain
invariants satisfying a product formula due to Weil. If now r is small enough this
product formula forces a congruence mod 4 on the dimensions of the F(y), ye ̂ (9, F),
and therefore 7(F(y))>0. At the end of paragraph 2 we give a sharp estimate of the
growth of L(9, F, V) if F shrinks to { 1}.

In paragraph 3 we compute tr(91 V). If 9 is inner this is done using WeyPs character
formula. If 9 is outer we use Kostanfs character formula for disconnected groups and
reduce the computation of tr(9[V) to an application of Weyl's character formula to
certain representations of G90. Here GQo={geG\Qog=g} where 9o is "the diagram
automorphism" induced by 9, see 3.1. Our main result is tr(9|V)^0 if V has an
extremal weight which satisfies a mild extra condition, see 3.2. 5.

In 4.1 we finally can state our main result on the non-vanishing of L(9, r, V). Next
we define Lefschetz numbers for 9 acting on H'(g, I, 7t®V), compute these Lefschetz
numbers in 4.3, and prove the connection of L(9, r, V) with multiplicities in 4.7. In
analogy to Matsushima's formula we obtain for cocompact r the equation

L(9, r, V)= ^ m(9, 7i, r)dimH'(g, t, TI®V).
neG
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476 J. ROHLFS AND B. SPEH

Here m (9, n, F) is up to some sign conventions the trace of 9 acting on
Hom^Tc, L2(G/^)). We have to sum over all equivalence classes of irreducible n eG
such that K is equivalent to ̂  In 4.8 we give examples of groups G and representations
V such that at most one neG contributes to the above sum. In particular complex
groups G and representations V with 9-action and a regular extremal weight have this
property. Combining this with the main result on Lefschetz numbers 4.1 the Proposition
stated above results.

There are many other results on multiplicities of representations in L2 (G/F). Without
any attempt to be complete we mention some of them and some typical methods of
proof. Often the connection with topology is exploited using an index theorem in the
sense of Atiyah and Singer. Here one applies the theorem of Riemann-Roch (classical:
G=SL2(iR)), the Gauss-Bonnet theorem [R-S1], [R-S2], [Sa] or Dirac operators
[B-M] (rankiR(G)=l), [DG-W] (G/F cocompact). The results obtained in this way
are mostly on multiplicities of discrete series representations. These methods give no non
trivial information if rank K^rankG. If rank (K)^ rank (G) the methods of Lefschetz
numbers can be applied. There are results in [H I], [R 2], [Le - S], [R - Sp 3]. A different
approach to multiplicities is provided by the Selberg trace formula. Some typical
applications are in [LI], [L2], [J-L], [Cl I], [C12], [La-S]. An application of the
twisted trace formula due to Clozel, Delorme and Labesse has been announced in [La].

Notation

0.1 We use the standard notation N, Z, R, C, H for natural numbers etc; H denotes
the quaternions over R. If v is a place of Q then Qy is the completion of Q with respect
to v. In particular lR==Qoo.

0.2 If M is a set then | M [ denotes its cardinality. If a group H acts on M we denote
by M" = { m e M | hm = h for all h e H}. If H = < h > is generated by one element we write
Mh=MH. A left action of H on M is denoted by h(m) or hm or hm.

0.3 We say that a group H acts on a group G if it acts as a group of automorphisms
of G i. e. h(g^g^)=hg^ hg'i for all heH, g^oG. If H acts on G we denote the first non
abelian cohomology set of this action by H^H, G), see [Se]. If H = < / i > we write for
the cohomology H^h, G). A cocycle then is an element geG such that ghg=^ and
cocycles g^ g^ are equivalent if there is an aeG such that g^=a~1 g^a. By definition
H1 (h, G) consists of equivalence classes of cocycles.

0.4 If V is a representation of a group G we write the action of geG on veV as
v^->gv. Let 9 be an automorphism of G. We say that V is a representation with 9-
action if there is given a CeeGL(V) such that Ce(^)=9(g)Ce^ for all geG,
ueV. Often we also write 9 instead ofCe.

0.5 If G is a Lie group then always 9 denotes its real Lie algebra and 9c=9® C its
R

complexification. The complexification of an automorphism 9 of g always is again
denoted by 9. For roots, weights, Weylgroups etc. we always use standard notation
and give some explanations when a symbol appears for the first time.
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1. Fixpoints of 9 and Lefschetz numbers

We use the notation given in the introduction. In particular G denotes a connected
non compact semi-simple Lie group, 9 a Cartan involution on G with set of
fixpointsK. Let X=K\G be the associated symmetric space and Fc:G a 9-stable
arithmetically defined torsion free subgroup. We do not require that X/F be
compact. Let V be a finite dimensional complex irreducible representation of G on
which 9 acts in a compatible way. With the same letter V we denote the associated vector
bundle over X/F and the sheaf of locally constant sections of this vector bundle. Then 9
acts on the sheaf-cohomology

91: H1 (K\G/F, V) -> H1 (K\G/r, V)

oo

and by definition L(9, F, V):= ^ (-iytr91 where tr91 is the trace of 91. Since
1=0

dim H* (K\G/F, V) < oo this definition makes sense and L (9, F, V) e Z. It is well known
that there is a 9-equivariant isomorphism

H'(K\G/F,V)^H*(F,V)

where on the right we have abstract group cohomology, [B—W].
In this paragraph we explain how L(9, F, V) depends on the fixpoint set (X/F)9 and

give a useful parametrisation of the connected components of (X/T)9 is terms of the non
abelian cohomology H^, F). For G=SL^(IR) resp. G=SO(n, 1)(R)° this has been
done in [R 1] resp. [R - S 3].

1.1. Construction offixpoints. — If yeF is a cocycle for H^, F) then ^^=1. We
have a y-twisted action on G and F given by 9,y(g)=y9(^)y~1, g^G, and a y-twisted
action on X given by xi-^xy"1, xeX. Therefore 9^ induces on X/F the action of
9. Define X(y):=X 9Y and r(y):=r\ Then X(y) is connected and non empty, see
[He: 1.13.5, 13.3]. We get a natural map

X(y)/r(y)-^(X/F)9.

Since F is torsionfree this map is injective. Its image is denoted by F(y) and depends
only on the cohomology class determined by y in H^, F). We note that F(y) is a
closed submanifold of X/F.

Now we can describe the fixpoint set (X/F)9 as follows

1.2. PROPOSITION. — We have a decomposition

(X/F)^ U F(y)
yeH^e.n

into a finite disjoint sum of connected components.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



478 J. ROHLFS AND B. SPEH

Proof. — The argument given in [R 1] for G=SL^(R) extends to our situation.
Q.E.D.

We want to understand X(y) for yeF. Consider y as an element of G. If aeG and
^a-^a, X(^:={xeX\Qx^~l==x} then X(yfl - l=X(y) . Therefore X (y) depends
up to translation in X only on the image of y in H1 (9, G).

Let T be a maximal torus in K and denote by W^ the Weyl group of T in K. Since
9 acts trivially on T we have H1 (9, T) = ̂  : = { t e T 112 = 1}. Of course W^ acts on ^.

1.3. PROPOSITION. — The inclusions T <^ K c; G induce bijections

.T/WK^H^.K^H^G).

Proof. — The argument given in [R 1:1.4] extends verbatim and yields

H1 (9, K) ̂  H1 (9, G). It is well known that K consists of conjugates of T and that
two elements of T which are conjugate in K are conjugate by an element in the normalizer

of T in K. Therefore H1 (9, T)/WK ̂  H1 (9, K).
Q.E.D.

Let t e G be a cocycle, i. e. tQt=\. We denote the involution g -> 19 (g) t~l, g e G, by
9(. Introduce X (t): = { x e X^x t~1 == x }.

1.4. COROLLARY. — If t e aT then 9, preserves K and X (t) ̂ -K^G^. Moreover G9'
contains T and T is a compact Carton subgroup ofG^.

Proof. — We have an exact sequence of pointed sets with 9(-action

1^K^G-^X->1.

Hence we get an exact sequence

1 ̂  K0'^ G°< -> X (t) ̂  H1 (9,, K) -^ H1 (9,, G).

Using 1.3 and twisting we see that the last arrow is a bijection. Hence the first claim
holds. Since Q, acts trivially on T we get TcG^. Now G^={g€:G|t6(g)t~l=g}.

Therefore 9 acts on G61 as a Cartan involution and this action is given by conjugation
with teTcG91. This means that 9 is inner on G8'. From [He], IX, 5.7, we deduce
that G6' has a compact Cartan subgroup. Since TcG^ and since T is maximal in K
we see that T is a Cartan subgroup of G^.

Q.E.D.
We now can apply Hardens Gauss-Bonnet formula [H2] and get

1.5. COROLLARY. — The Euler-Poincare characteristic x(F(y)) of F(y), ye ̂ (9, F),
is not zero. If d (y): = dim F (y) then d (y) is even and ( -1/(y)/2 is the sign of ̂  (F (y)).

Proof. — Since F(y) is an arithmetically defined subgroup of G^ the claim follows
directly from [H 2] provided that G°Y is semi-simple. In general G^ is reductive. Since
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AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 479

1.4 holds, the center of G^ is compact. Therefore we can view X (y) as a symmetric
space associated to a semisimple group and [H 2] also applies to this situation.

Q.E.D.
Recall that 9 acts on the representation V in a compatible way i.e. Q(gv)=QgQv, i;eV,

geG. If yeF, y9y= 1 we can define an action of 9y on V by 9,y(iQ==y. 6(v). We write
^T for the group r with the 9y-action given by Qy(y)=yQyy~l, yeT. Then T and 9^
act on V in a compatible way. Observe that the action of 9,y on V depends up to
conjugacy on the class represented by y m H1 (9, GL(V)) only. In particular the notion
tr(9^ [ V) for the trace of 9y on V where yeH1 (9, F) makes sense.

We recall the following result which is contained in [R — S 3, R 3].

1.6. PROPOsmo^(Lefschetz fixpoint formula). — With the notation introduced above \^e
have

L(9,F,V)= ^ x(F(Y))tr(9jV).
yeH^e, D

2. Nonvanishing of Euler-characteristics

In this paragraph we show that the Euler-Poittcare-characteristic of the fixpoint set
(X/r)° is positive if rcG(Z) is small enough. For this we write

X((X/r)°)= ^ 5C(F(y))
yeH^e, D

and show that all x(F(y)) are positive. Using 1.5 we have to prove that
dimF(y)==Omod4 for all yeH^y, F). To obtain this we associate to y a quadratic
form B(y). One can do this also locally over Qy and one gets invariants satisfying a
product formula due to Weil. At the infinite place the invariant we obtain is the
signature mod 8 of B(y). If now F is a sufficiently small congruence subgroup the
product formula forces a fixed signature mod 8 to B (y) from which we can read off our
desired congruence for dimF(y).

To carry out the arithmetical argument, we describe in 2.0 how arithmetic subgroups
r of connected Lie groups G actually arise. We construct r as a subgroup of a
semisimple algebraic group G defined over Q such that G is a quotient with compact
kernel of G(1R)°, the connected component of the real points of G. In G we work with
an involution 9 defined over Q which induces our Cartan involution 9 on G.

2.0. PRELIMINARIES. — (i) Let G/Q be a semisimple algebraic group defined over
Q. Choose a rational embedding G c> SL^ for some Nef^l. Then we write G(Z) for
G(Q)HSL^(Z). All groups commensurable to G(Z) are called arithmetic
subgroups. It is known, see [B 1] that this notion does not depend on the embedding
G ̂  SLN.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



480 J. ROHLFS AND B. SPEH

(ii) Let U be an IR-linear compact normal subgroup of the connected component
G([R)° of G((R). Then we have an exact sequence

l_,U-^G(R)°^G-. l

where G is a [R-linear connected Liegroup. If rc:G(IR)° is an arithmetic subgroup,
then p (F) <= G also is called arithmetic. Observe that if F is torsionfree then U P| F = { 1}
and we can identify F and p(F).

(iii) Let G be connected, R-linear and semisimple and 9 a Cartan involution on
G. We want to establish the existence of 9-stable arithmetic subgroups FcG. For
this we use a contruction due to Borel [B3]. To construct G as in (ii) it suffices to
work on the level of Lie algebras. Let 9 be the Lie algebra of G. Then there exists a
9-stable Q-subalgebra go c 9 sucn tnat 9o® ̂  = 9, see [B 3]. Let lo®Po = 9o be the Cartan
decomposition of 9 on go- Let E be a totally real number field with [E: Q] ̂  2. Choose
ueE that (j(u)<0 for all except one embedding OQ of E into 1R. Put L :=E( /u ) .

QE: =Io ® B© /upo (x) Ec=go0L.
Q v Q

gg is a Lie algebra over the field E, gg (g) L=c$o®L and ge ® IR^Q® ^ t©ip. On Qg
E <Q CT^CTO

we have an E-rational involution 9g: X © / M Y -^ X® — / u Y , which induces the Cartan
involution 9 we started with on the first factor of gg ® R and "conjugation" on the

Q
other factors.

Let H be the simply connected group defined over E corresponding to c .̂ We denote
by 9g: H -> H the involution corresponding to 9g on gg an(! we P11^ G = ReSg | (Q H,
9 = ROSE | Q 9g where Res denotes Weil restriction. Then 9 is a Q-rational involution of
G. We have as in 0.2 an exact sequence

1_,U-^G(R)°-^G-^L

The involution given by 9 on G(IR)° factors through/? and induces the Cartan involution
9 on G.

Since 9 is defined over Q there exist 9-stable arithmetic subgroups of G(Q), in fact,
r 0 9(F) is 9 stable arithmetic if rc:G(Q) is arithmetic. If F is 9 stable and arithmetic,
then r contains a 9-stable torsion-free congruence subgroup. Minkowski shows [M],
that in the setting of (i) a congruence mod 4 suffices.

Borel shows [B3] that the groups r constructed above are cocompact. We will use
this in paragraphe 4. The classical groups and their most obvious realisations over Q
usually give rise to non cocompact 9-stable arithmetic groups.

(iv) Let G be any semi-simple algebraic group defined over Q and assume that
a: G(tR) -> G((R) is an involution of the real Lie group G(1R). Then o acts isometrically
on the space of maximal compact subgroups of G(R). Using [He], 13.5, we see that
there is a maximal compact subgroup Kc=G(IR)° stabilized by a. Let U be the maximal

4'5 SERIE - TOME 22 - 1989 - N° 3



AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 481

compact normal subgroup of G(IR). Then CT preserves U and induces an involution on
G:=G(1R)°/U. Observe that if @o is the Cartan involution corresponding to K then CT
and 9o commute.

2.0 (v). DEFINITION. — Let 9: G -^ G be an involution defined over Q. If the involution
induced by Q on G [G as in (iv)] is a Carton involution we call 6 Cartan-like.

We note that involution constructed in (iii) is Cartan-like. Obviously an involution
conjugate in Aut G to a Cartan-like involution is Cartan-like. If G is Q-simple and if
G(IR) contains a nontrivial compact normal factor, then no Cartan involution of G(IR)
is defined over Q. However, as (iii) shows, it can happen that there exists a Cartan-like
involution over Q. A detailed investigation of Cartan-like involutions will appear
elsewhere.

(vi) For the rest of paragraph 2 we assume that 9: G -> G is a Cartan-like
involution. Let K<=G(IR) be a maximal compact subgroup with corresponding Cartan
involution 9o such that 9 and QQ commute on G(R). Put X=K\G([R). We denote
the Cartan involution induced by 9 and 9o on X by 9.

2.1. Next we define global and local invariants for classes in H^O, G(IR)). For this
let F be one of the fields Q, R, Qp. It teG(¥) represents a class in H^O, G(F)), i.e.
t6t= 1, then we have the t-twisted action 9^ on G(F) given for geG(F) by

Qt(g)=t6(g)t-1

and this action induces an action denoted by the same symbol on the F-Lie algebra g(F)
of G(F). Here of course g(F) =g ® F where 9=Q(Q) is the Q-Lie algebra of G. Since

Q

9( acts as an isometry of the Killing form B, the eigen spaces of 9^ in g(F) are orthogonal
with respect to B. Denote by g(F)(t) the set of 9-fixed elements in g(F). Then
B | g(F) (t) is a non degenerate bilinear form. If t'=a~1 t6(a) represents the same class
in H^O, G(F)) then conjugation with aeG(F) induces an isometry

Ad (a): g(F)(0-^(F)(0.

Hence the isometry class of the quadratic space Bp(t):=(Q(¥)(t\ B|g(F)(Q) depends
only on the class of t in H1 (9, G(F)).

2.2. LEMMA. — The inclusion Kc=G(tR) induces a bijection

H^K^H^GW).

Proof. — The argument given in [R 1] holds in our situation.
Q. E. D.

Recall that a quadratic form q on a Q-Vector space V can be diagonalised over IR
with r factors 1 and s factors — 1 on the diagonal. We write sign q=r—s and call r—s
the signature of q. The signature depends only on the isometry class of g®lR in V®1R.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



482 J. ROHLFS AND B. SPEH

2.3. LEMMA. — Let teG(R) represent a class in H^O.GW) and let
X (0: = { x e X/9 (x)t~l=x} be the set offixpoints of 9, on X. Then

2 dim X (0 = dim 9 (R) (Q + sign (B^ (0).

proo/. - Using 2.2. we can assume that (eK. Then 9^ and 9o commute, see
2.0 (iv). Hence we have an eigenspace decomposition

Q(R)(O=IO+PO

of 9(R)(0 with respect to the 9o-action on Q(1R)(0. Since 9o is the Cartan involution
corresponding to K we have that B|lo is negative definite and B[po is positive
definite. The result now follows immediately.

Q. E. D.
Let W(F) be the Grothenendieck-Witt ring of quadratic forms over F, see [Sch].

2.4. DEFINITION. — Denote by Bp: H1 (9, G(F)) -^ W(F) the map sending a cohomology
class t to the class of Bp(t)=(^(¥)(t\ B|g(F)(0). J /F=Q we write B instead of BQ
and ifv is a place ofQ we write B^ instead o/B^ and By instead ofB^.

We observe that the inclusions Q c; Q^ induce obvious Hasse maps h in cohomology
and of the Witt rings. Therefore we have a commutative diagram

^(^GW^W^GW)

[B v l^

W(Q) ^ nW(Q.)
v

Next, we recall Weil's product formula for invariants of quadratic forms, see
[Sch: Chap. V].

2.4. Suppose that (q, V) is a Q-rational quadratic space. Then for every place v of
Q there is defined a Gaup sum y^(q) with values in the eights root of unity. If v=co
then y^ O^e"^"^ where e=(l +Q/./2 is "the" primitive eight's root of unity. Weil's
product formula says

n^)^
v

Here y^(q) depends only on the class of (q(SQy^ V^Qi,).

2.5. LEMMA. — Consider the Hasse map

n^^H^, G(Q)) ^FlH^e, G(Q,)).
v v

Ift, feG(Q) represent classes in H^O, G(Q)) and ifh^(t)=h^(t/)for allv^co then

dim X (0 = dim X (f) mod 4.
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Proof. — Using Weil's product formula and the commutative diagram given above
we get from our assumption.

Yoo(B(0)=Yoo(B(Q).

We now use 2.3. Since dimg(Qp)(r)=dimg(Qp)(0 for primes, we have
dim 9 (Q) (Q = dim 9 (Q) (t) and

2 dim X (t) - 2 dim X (Q = sign B[R (Q - sign B(R ( t ' ) = 0 mod 8

by Weil's formula. Hence our claim holds.
Q. E. D.

Next we produce a 9-stable congruence subgroup F<=G(Q) such that for every prime
p the classes teHl(Q, F) all have the same invariants Yp(Bp(^)). For this we need some
local cohomological results.

2.6. Recall that we have an embedding GcSLN over Q. Denote by K (/) the kernel
of the canonical map

SL^Zp^SL^Zp/^'Zp)

and by sly(Zp) the set of N x N matrices with coefficients in Zp and trace zero. Then
the usual exponential series of matrices induces a bijection

exp: p^sWp)^Kp(i)

if p>23indj^\ orifp=2 andj^2.
We write g(Qp) for the Qp-Lie algebra of G(Qp) considered as a subset of the N x N-

matrices with coefficients in Qp. Then we get an induced bijection

exp: pj SIN (Zp) U 9 (Qp) -> Fp (/),

where r,(j)=K,(j)r}G(Qp).

2.7. LEMMA. —Let Up<=G(Zp) be an open Q-stable subgroup. Then there exists an
open Q-stable normal subgroup Vp of\Jp such that the map

H^V^H^e,^)

induced by the inclusion \p ^. Up is trivial.
Proof. - Since Up is open there is a j such that rp(j)cz\J. Choose j^l if p^2 and

7^2 if/?=2. Define V;=rp(/+l) 00^0+1) and Vp:= U uTpU-1. Then Vp is
ueUp

open normal in Up and 9-stable.
If v e Vp represents a class in H1 (9, Vp) then u 9 (u) = 1, i. e. 9 (v) = v~1. Using 2.6 we find
an X e^'-^1 s^ (Zp) U 9 (Qp), exp X = i; and exp (- X) = 9 (i;). Put c = exp (- X/2). Then
cerp(/)nerp(/) and 9 (c) = exp (-9 X/2) = exp (X/2) since 9X=-X. Therefore
c~lvQ(c)=l i.e. v is a coboundary in Up.

Q. E. D.
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Our embedding G c^ SL^ has been choosen without care with respect to the 9
action. Therefore 9 will not preserve all G(^-p)^=G(Qp)C^SL^(Zp). But of course
there exists a finite set So of primes such that G, 9 and the embedding are defined over
Zgo. Enlarging So we assume that 2eSo. Then 9 preserves G(Zp) for all pi So. If S
is a finite set of primes containing So we define

r(s)=G(Q)nT\^px^G(zp).
p e S p ^ S

Then F(S) is a 9-stable congruence subgroup of G(Z).

2.8. DEFINITION. — We call a 6-stable arithmetic subgroup rc=G(Q) small enough if
the image under the natural map

Y\h,: H^n-nH^G^))
p P

is trivial.

2.9. LEMMA. — IfS is big enough, then F(S) (as defined above) is small enough and
torsion free.

Proof. - We start with F(So). According to [B-S] the set H^O, F(So)) is finite. If
yeH^O, F(So)) and if there is a prime p such that /i(y)^l consider S=SoU{/?}
and F(S). Then F(S) is a subgroup of F(So) and for all yeH^Q, F(S)) we have
hp(y)=\. Therefore y is not in the image of H1 (9, F (S)) in H1 (9, F (So)). After finitely
many of such steps we arive at a F(S) such that all classes of H^, F(S)) are trivial at
all finite primes. By construction F(S) is a subgroup of the full congruence subgroup
mod 4 of SL^(Z). This congruence subgroup is known to be torsionfree see [M]. Hence
r(S) is torsion free.

Q. E. D.
2.10. Proposition. — IfF is small enough and torsionfree, then ^((X|^)Q)>0.
Proof. — Using 2.5 we see that all fixpoint components have the same dimension

mod 4. Therefore our claim follows from 1.5 since 9 induces the Cartan involution 9
onX.

Q. E. D.

Remark. — (i) The examples given in [R 1] and [R-S3] show that sometimes very low
congruences suffice to produce a small enough r.

(ii) Even if F is small enough the image of H^O, F) in H^O, G(R)) is non trivial in
general, see for example [R 1]. Therefore we have to expect that (X/T)9 contains
components of dimension bigger than zero.

(iii) If r is as in 2.10 then for r°:=G(lR)0 OF the conclusion of 2.10 holds as
well. In the setting of 2.0 (ii) we can consider r° as a subgroup of G. In paragraph 4
we will use such F's.
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If we evaluate the Lefschetz number L(9, F, V) as explained in 1.6, then there are
factors tr(9y|V). We now show that under quite general circumstances tr(9jV) does
not depend on yeH^O, F).

2.11. LEMMA. — If there is a prime p such that the natural map

h,: ^(9,0^^(9,0(0^))

is trivial, then tr (6, | V) = tr (91 V) for all y e H1 (9, F).
Proof. — The representation p,:G(IR)° -^G->GL(V) extends to a representation ^

of G (C) on GL (V). If L, [L: Q] < oo, L c= C is a splitting field of G, there is a L-rational
representation [IQ of GxL on SL L-Vectorspace Vo with an action of 9 such that ̂  is

<Q
obtained by extension of scalars from L to C. Then 9^ acts on Vo and
tr (9y | V) = tr (9y | Vo). Let w be a place of L extending p. Then 9^ acts on Vo ® L^ and

L

^(OY | V) =tr(9y | Vo ® L^). By assumption the composition of canonical maps
L

H1 (9, F) ̂  H1 (9, G(Q^)) ̂  H1 (9, G(LJ) -^ H1 (9, GL(VQ ® LJ)
L

is trivial. We have observed, see 1.6, that tr(9y | Vo (8 L^) only depends on the cohomol-
L

ogy class determined by y in Hl(9, GL(Vo®L^)). Since this class is trivial
L

tr (9y | Vo (8 LJ = tr (91 Vo ® L^) = tr (91 Vo) and our claim holds.
L L

Q. E. D.

2.12. PROPOSITION. —Suppose that rc=G(Q) is small enough and torsionfree. If r\
is Q-stable arithmetic and normal in F then

^r^l^r/r^llt^lv)!.
Proof. - We have L(9, Fi, V)= ^ /(F(y))tr(9|V). Here we use that Fi is

yeH^e, ri)
small enough, we use 1.7 and 2.11. Using 2.10 we have 7(F(y))>0 for all
yeH^^Fi). Now r/r\ acts on X/r\ and (r/Ti)9 acts as a permutation of the
components F(y) of (X/r\)°. Therefore £^(F(y)) is divisible by | (r/Fi)61 and our claim
holds.

Q. E. D.

Remark. — If r is chosen with more care, which means that r has to be smaller in a
certain way than "small enough", then one can show

^r^H^/r^l^r.v)!.
Therefore the crude estimate in 3.12 gives the right order of growth for L(9, r\, V) if
FI shrinks to { 1}.
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3. The trace of a Cartan involution on a finite dimensional representation

Assume that G is a real linear semi-simple Lie group without compact factors and 9 a
Cartan involution acting on an irreducible complex finite dimensional representation V
of G in a compatible way, i.e. Q(gv)=6(g) 6(v) for all geG, ve\. In this paragraph
we compute tr(91 V), the trace of 9 on V, and show that tr(91 V) ̂ 0 if the highest weight
of V lies in a certain big sublattice of the lattice of weights.

3.1. FORMULATION OF THE MAIN RESULT. — Before we can do so, we have to introduce
some notation and we have to collect some easy observations.

3.1.0. Preliminaries. — Assume that G is as above with Cartan involution 9.
(i) If V is an irreducible representation of G admitting an action of 9 in two ways

given by Ce e GL (V), i = 1,2 then for all g e G, v e V we get Ce1 Ce (gv) =g Ce1 Ce v. Since V
is irreducible and (Ce)2^ we get Ce= ±C^. That is: if V admits an action of 9 this
action is unique up to sign.

(ii) If V is an irreducible representation of G we have a new action of geG on veV
given by g.v=6(g)v. We denote this new representation by °V and observe that if V
admits a 9-action given by CeeGL(V) then CQ^-^V is an equivalence of
representations. Conversely, if C:V-^°V is an equivalence of representations then
C(gv)=Q(g)Cv and C2=^ Id, since V is irreducible. Therefore Ce= ±./aC defines a
9-action on V.

(iii) Let tQp be the Cartan decomposition of the real Lie algebra 9 of G with respect
to 9. We choose a fundamental Cartan subalgebra t)==t©a in g, i.e. t is a Cartan
subalgebra of I, denote by t)c it's complexification in gc^®^ and choose a 9-stable

D$

Borel subalgebra b<c <= gc containing ^' Now an irreducible representation V of G is
uniquely determined by its highest integral dominant weight ^eP in the weight lattice P
determined by t)c. The Cartan involution 9 acts on P and using (ii) we see that V
admits a 9-action if and only if 9(X) ='k. We now fix the action of 9 on V with highest
weight ^=9^ by the requirement that 9 acts identically on highest weight vectors.

(iv) Let be be 9-stable as in (iii). We have the rootspace decomposition
Qc^c® Z 9a mt^ system A'^cA of positive roots determined by b<c. Let o^ , . . . , a;

a E A

be a basis of A'1'. Then there exists exactly one automorphism 9o of c^ wlt^ the
following properties

(a) 9o|t)c=9|l)c
(b) If 9 (a,) = a, then 9o | ̂  = Id 19^
If9(a,)^a,then9o|9,,=9|9^.
The existence and uniqueness of 9o follows from [Bou], Ch. VIII, § 4, Thm. 2(i). The

automorphism 9o has the properties 9o9=99o, 9o=9o if€f ®o ls defined over R, and 9o
preserves b<c. This essentially follows also from Thm. 2 loc cit. One has to use that 9
is defined over R. We call 9o the diagramm automorphism determined by 9.
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3.1.1. DEFINITION. — We use the notation established above.
(i) A root a e A 15 called non compact if

O^+geo^)60^

(ii) Let be PQ: ^^eP8/^, a) /(a, a)eZ for all non-compact roots aeA}.
Remark. — (i) If 9=9o is the outer automorphism determined by 9, then Pe=P9 since

there are no non compact roots. If 9 is inner then 9o = Id and our definition of a non-
compact root is just the usual one. We have 2P0(=PeC:Pe since 2(X,, a) /(a, a)eZ for
all)ieP.

(ii) Since 9 acts on t)<c it acts on W(9c, t)c) 3Ln^ this action is trivial if 9 is inner on
9c. Denote by W6 the fixpoints of the 9-action on W. Then W6 acts on Pe.

(iii) If WoeW is the element of W mapping ^+ to —A4 ' then WoeW°. Hence the
highest weight 'k of irreducible representation V is in Pe if and only if the lowest weight
WQ ̂  is in PQ. We will use this in paragraph 4.

(iv) The geometric meaning of X-ePe is as follows. Assume that ^eP8 is integral
dominant with respect to b<c and let \\ be the corresponding irreducible representation
with highest weight ^. If weW6 then wX is integral dominant with respect to ^c, the
w-conjugents of b^. Let V^ be the corresponding irreductible representation. Put a
9-action on V^ resp. on V\^ as explained in 3.1.0 (iii). These actions depend on b^
resp. on ^c. Then ^ePe if and only if the natural equivalence of representations

V^ -> V^ ^ is 9-equivariant. This statement will become clear on the following
pages. Since we will not need this observation we don't give a formal proof.

We will prove the following statement in 3.2 and 3.3.

3.1.2. PROPOSITION.—Assume that ^ePg is the highest weight ofN. Then
tr(9|V)>0.

Remark. — We believe that the sufficient condition XePe is also necessary for
tr(9|V)^0.

3.1.3. A reduction. We decompose 9=91 x . . . x ̂  where 9 -̂ are simple non-compact
[R-Lie algebras. Then 9 = 9 i X . . . x9, where 9f is a Cartan involution of g». An
irreductible representation V of 9 then is a product V\(8). . . (8V,, where the V;'s are
irreductible and V admits a 9 action if and only all V»'s do. Since l)c and b<c are also
decomposed we fix the 9^-action on V^ according to 3.1 (iii). We have

5

tr(91 V) = Y[ tr(9f | V^). Therefore we may assume that 9 is simple over R.
1=1

3.2. THE TRACE OF AN INNER CARTAN INVOLUTION. — We assume that 9 is an inner
automorphism of 9^.

3.2.1. Preliminaries. — (i) Since 9 is inner 9 contains a compact Cartan subalgebra
t)=t in the notation of 3.1 (iii). Since 9 stabilizes b<c and I)c there is a 9oet such that
9=exp 27ii ad9o.
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(ii) If \\ is irreducible with a highest weight vector r^O, if O^X^eg, are root vectors,
aeA, if ^+ denotes the system of positive roots given by b<c then 9 acts as

9(X_^. . .X_^iQ=exp 27U< -5i, 9o>9(X_^). . .9(X_^, a^.eA^

5^ 3.1 (iii).
(iii) Denote by A^ the set of roots aeA4 ' such that 9a<=Ic an(! denote by W^

the subgroup of W generated by refections at these roots. Denote
^K = { u e W/AK <= M A + }. Then one has a well known bijection

WK x W^ ^> W given by (s, u) \-> su

(iv) Let ^ be an integral dominant weight with respect to I)c=tc an^ I>c* We write
p = (1/2) ^ a and p^: = (1/2) ^ a. If u e W1^ then M (X + p) — p^ is integral dominant

aeA'1 ' aeA^"

with respect to t<c and l^ H ^c- We denote by V^+p)_p^ the irreducible fc-^odules of
highest weight u (k + p) — PK<

3.2.3. PROPOSITION. — We use the notation established in 3.2.1.
J/V is irreducible of highest weight ^ tten

t^l^^^ i: exp27rf<u^-5i,9o>dimV,(^p)_^
ueW^

where /=|A+\AK' | is the number of non-compact positive roots.

Proof. — We use Weyl's character formula and get

tr(9|V)=exp27u<-X, 9o> tr(27ii9o|V)

^ det wexp27i i<w(^+p)-p , 9o+t>
=exp 2 7 t f < -^, 9o> lim w±^————————————————————

t ^ o ^ det wexp 27t f<w(p) -p , 9o+t>
W 6 W

where t + 9o e l)c is regular.
We write w=su with seW^, ueW'^ and use that

exp27tf<SM(X+p), 9o>=exp27tf<u(^+p), 9o>

which holds since < a , 9 o > e Z for aeAR". Moreover we have
exp 27u<u(p)-p, 9o>=det u. To see this we recall that if t: ^uA'^ 0 -^+ \ then
(-iy=det u. But u(p)-p=-£p, pewA'^ 0 -A^ Since A^CMA'^ all the P's are in
A+\AK. Since < P, 9o > e 1/2 + Z the claim holds. Therefore we have

^ det w exp 27t f<w(^+p)-p , 9o+0
w e W

= ^ exp 2ni(u'k, 9o> ^ det 5 exp 27cf<su(^+p)—p, (>.
U € W^ S 6 WK
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For the denominator of WeyFs character formula we get

^ de twexp27n<w(p)~p , 9o+t>= fl (1-exp 27u<-a, 9o+r».
W 6 W aeA 4 -

Since < - a, 9o > e Z if a e A^ and < - a, 9o > e 1/2 + Z if a e A^ - A +, the last expression
is equal to

fl (l-exp27u<-a, 0) ]~[ (1+exp 27U<-a, t»
a«=Aif aeA^Aif

and by the denominator formula of the Weyl character formula for tc the first part of
the last expression is

exp 2 TT f < — PK, 0 ^ det s exp 2 n i < s p ,̂ 0.
seWK

If we now substitute our formulas in the equation for tr (91 V) and compute the limit
for t->0 using the Weyl dimension formula over l^ for the representations Vy^+ )
the result we claimed follows.

Q.E.D.

3.2.4. LEMMA. — Wehave^GPeifandonlyifexplni^^'k-'k, O o > = l for all weW.
Proof. - Assume that ^ePe. If s,eW is the reflection determined by aeA^ then

<s^-X, 9o>=<2(X, a)/(a, a)a, 9o>. We have <a, 9o>eZ for all oceA^. If a is a
non-compact root and if ^ePe then <2(^, a)/(a, a), 9o>eZ. Therefore
exp 27c f<s ,X—^, 9o>=l for all aeA'*'. Suppose now that w=s,u where w,
MeW. Then M(^)ePe and (s^u'k-^, 9o>=<5,u^-M^+M^-^, 9o>. Hence by
induction on the length of w we get exp 2 TC f < w X - X, 9o > = 1 for all w e W. If conversely
exp 2 7 i f < w X — X , 9 o > = = l for all weW, this holds in particular for Sy If a is a non-
compact root this exactly means that (X, a)/(a, a)eZ since <a ,9o>=l /2
Icnod Z. Therefore ^ e Pe.

Q.E.D.

3.2.5. COROLLARY. —J/^ePe t/i^n tr(9|V)>0.

3.3. THE TRACE OF AN OUTER CARTAN INVOLUTION. — We assume throughout that 9 is
an R-simple Lie algebra and that 9 is outer on gc- I11 case ^at 9 is a complex simple
Lie algebra considered as a real Lie algebra the trace of a Cartan involution on a
representation can be computed in a few lines. However the method we use to handle
the absolutely simple case applies as well to a complex 9, so that we don't separate these
cases.

3.3.1. Preliminaries. - (i) Recall that l)=t©a, t=t)P|t, acp and that t) is a funda-
mental 9-stable Cartan subalgebra. We have ̂ c^c where be is a 9-stable Borel sub-
algebra and dim a^ 1 since 9 is assumed to be outer on 9^.
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(ii) If Q<=% denotes the root lattice of 9^, and T: =Homz(Q, C*) the corresponding
complex maximal torus in the adjoint group for 9^, we have a sequence

1 -^ T ̂  Aut (9c, be, l)c) ̂  Aut (D) ̂  1,

see [Bou], V, III, § 5, n° 2. Here D denotes the Dynkin diagram for 9^, Aut(D) its
group of automorphisms and Aut(9<c, be? ^)c) ^e group of automorphisms of the Lie
algebra 9^ leaving b<c and t)c stable.

Let QQ be the diagram automorphism associated to 9 in 3.0(iv). Since e(9o)=e9
there is a to^T such that 9=int((o)°9o. Since int(e%)=9o9=99o=int(ro) we have
toeT\

Finally we observe that 9 acts on 9^° and induces here the inner automorphism given
byint(ro).

(iii) If 9 is a simple complex Lie algebra with Dynkin diagram D° then D = D° U D°

(disjoint union), 9c ̂  9 x 9 an(! 9o acts on 9c by switching the copies of 9.
If 9 is absolutely simple then 9^ is of type A,, (^2, D(, 1^4 or Eg with the obvious

involution 9o on the associated diagram.
Now we can explain the idea of our proof. We consider V as a representation of the

disconnected group G x { l , 9 } . We use Kostant's character formula and express
tr(9|V) as a quotient of two Weyl character formulas for certain representations of 9^°
evaluated at to, see 3.3.1 (ii). For this we need some results on 990 which are essentially
well known, see [C], Chap. 13 and [Bou], Ch. VIII, § 7. Exercises (13). Therefore we
give only a sketch of a proof.

3.3.2. PROPOSITION. — Let 9^: = 9?? and I)c resp. tc be as in 3.3.1 (i). Then
(i) The Lie algebra 9^ is semisimple mth Cartan subalgebra 1^^%°.
(ii) The restriction res: % -> t^ (t)*)90 induces an isorphism

W(9ot)c)eo^W(9^tc).

(iii) If T denotes the complex torus corresponding to t)c in the adjoint group of 9<c, then
T60 is connected.

(iv) 7/XeP80 is a Qo-invariant weight o/l)o then res ^ is a weight ofi^.

Proof. — Statement (i) is proved in Bourbaki, loc. cit. and statement (ii) appears up
to some identifications in Carter loc. cit. Let Q be the root lattice of 9c. Then 9o acts
on Q and the root lattice of 9^; is Q/(l—9o)Q, see Bourbaki's exercise. Since
T^Hom^Q, C'^o^Hom^CMI^o)?, C*) canonically, and since 9o acts as a per-
mutation of the simple roots corresponding to b^ the Z- module Q/(l —9o) Q is free. This
means that T00 is a connected torus and (iii) holds. Bourbaki, loc. cit., gives formulas
which allow to express the coroots for 9^ and t^ in terms of coroots for 9^ and t)<c. From
this (iv) follows easily.

Q.E.D.
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Remark. — Assume that g is absolutely simple. Then Bourbaki's exercise gives the
type of Q^ as follows. If g<c is at type A^^ A^.i, D^+i, E^ then g^ is of type D ,̂ C ,̂
Bfc, F4.

3.3.3. LEMMA. — Let p fc^ W/ ̂  sum of positive roots in b^ and denote by p° half
the sums of positive root oft^ in g^ n be- Then p^: = p — p ° 15 an integral dominant weight
ofic'

Proof. — Our claim is obvious if g is a complex simple Lie algebra. If 9 is absolutely
simple our claim is easily checked using the explicit description of coroots given in
Bourbaki's exercise.

Q.E.D.

3.3.4. PROPOSITION. — We use the notation introduced above and denote the irreducible
representation ofc^ with extremal weight p^ resp. ^+PN by Up^ resp. U^+pisr- Then 9
acts on Up^ and U^+p^, we have tr(61 Up^,) ̂ 0 and

. îv)-"*6!"^.• «'(«l"»)
Proof. — We recall that 9 = int (to) QQ acts on g^ = c^° as int (to). Since T^ is connected

see 3.3.2 (iii) we can find a Toe9Ic ^^ ^at exp 27UTo=^oeTeo. To prove that
tr(9 |UpN)^0 we apply 3.2.4 for ^=res p—p°=pN. We have to consider < w X — ^ , To)
for weW\ W=W(gc, l)c)-

Here we use 3.3.2 (ii). Now

w ̂  — ̂  = w res p — w p° — res p + p° = — ^ res a + ^ a.
aeA'1 ' aeA'1 '

w (a) < 0 w (a) < 0

Here A'1' resp. A'1' is the system of positive roots determined by b^ resp. b^ H 9^. Since
9£=tc+ Z (9a+9ea) H 9^ all roots in ^+ occur as restrictions of roots in A^ Therefore

a e A

the above sum is orthogonal to TO and using 3.2.4 we have tr(91 Up^) 9^0.
We choose I)etc such that TQ+/I is regular in I)c. Then 9^: =exp (2 711 ad to+h) acts

without fixpoints in the unipotent radical of b^, i.e. 9^ is regular in the sense of
Kostant [K], p. 377.

Then by Kostant's character formula

^ set w exp 27i f<w(^+p) , TQ+/I>
tr(9|V)=lmitr(9/, |V)=lim exp27u<-^, To)21^0———————————————————.

h -^ o H ^ O ^ det w exp 2 n i < w p, T() + h >
W6W°

Here we abbreviate W^WY
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We now use WeyTs character formula tor the occurin^ nominator and denominator,
apply 3.2.3 and our claim follows if we take in account our normalization of 9-actions
on representations, see 3.1.0 (iii).

Q.E.D.

3.3.5. COROLLARY. — If the highest weight X, of V is in PQ. then tr (91 V) > 0.

Proof. — By definition a non-compact root a of A is exactly a root with non-trivial
restriction res a to t<c such that res a is non compact with respect to 9 in g80. Hence
we can apply 3.2.5. We get tr (9 [ U^ + p^) ̂  0 and our claim follow from 3.3.4.

Q.E.D

4. Main result and applications

This paragraph contains our main result: Theorem 4.1 which says that L(9, F, V)
does not vanish in general. In 4.7 we compute L(9, r, V) in terms of multiplicites and
(9, t)-cohomology of irreducible representations. Here r is assumed to be
cocompact. We apply these results in 4.9 and obtain non-vanishing for multiplicities
of unitary representations of a group G with rank (K) 9^ rank (G). These results are
almost as satisfactory as the corresponding ones for discrete series representations if
rank (K) = rank (G). In particular here the case of complex groups is covered.

We combine 1.6, 2.10 and 2.11 and get as a main result:

4.1. THEOREM. — Let G be a connected semi-simple Lie group mth Carton involution
9. Let V be an irreducible finite dimensional representation mth Q-action having a highest
weight in Pe (definition 3.1.1). IfY is small enough (definition 2.8) then

M^r.^xaKVG/r^t^lv^o.
Next we give an analog of Matsushima's formula, i. e. we express L(9, r, V) in terms

of multiplicities and (9, l)-cohomology of unitary irreducible representations.
4.2 (i). Let V be as above with 9-action given by a linear mapCy: V -> V. The letter

n always denotes an unitary irreducible representation of G. Let

H* (9, I, 7C®V) be the relative (9,1)-cohomology

of the representation n (g) V of G. Here and in the following we do not distinguish in
our notation a representation, the space on which the representation acts, the representa-
tion on the underlying set of C°°-vectors or the induced infinitesimal representation on
the underlying (9, t)-module.

(ii) If n is unitary and irreducible we denote by ^ the representation space of n
together with a new action, where g e G acts as 9 (g\ We write n ̂  a for unitary
equivalence of representations. Then n ̂  ̂  if and only if n admits a 9-action, see 3.1.

We write €„: n -> ̂ n for the equivalence. We observe that C^ is unique up to sign
since n is irreducible. If convenient we identify n with its unitary equivalence class
K e 6. In particular we then write n = ̂ n instead of n ̂  °7i.
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(iii) We recall the definition of a 9-action on H'(9, f, 7c(g)V), see [R-S3: 2.2], assuming
that TC = \. Let C, = n -> \ be as in (ii) and Cy: V -> °V as in (i). Then C: = C, ® Cy
is an equivalence n ® V -> "(TC ® V). Now H" (9, I, TI®V) is computed from a complex
Horn; (A *p, TC ® V), see [B-W: ], and we define a homomorphism 9" of this complex by

(O^KX,, A A x^:=c-l(^(Q(x^ A A e(x,̂ )))

where X^ A A X^GA1?^ acts a usual on p, i. e. 9(X^)= -Xj and

we Horn, (A1?, 7t®V).

The map induced by 91 in (9, l)-cohomology again is denoted by 91 and the trace of 91

on cohomology is denoted by tr 91.
We define

L(e..®v)= .?/-l)it^9• if -9"
0 if TÎ TI.

Since our equivalences C, and Cy are unique up to sign |L(9, n g) V) | e ̂ 1 is well defined.

4.3. PROPOSITION. — For all ned we have
00

|L(9,7t®V)|= EdimH^Ti^^dimir^^V).
1=0

Proof. - There is nothing to prove if H'(g, I, TC®V)=O. So let us assume that
H'(g, t, 7i®V) ̂ 0. Thanks to Vogan and Zuckerman [V-Z], 5.3, then n - A,(5l),
n ~ ̂  where q c= 9^ is a certain 9-stable parabolic subalgebra containing a 9-stable
Cartan algebra t)c and where ^ is a certain character of the Levi component of q with
>k I ^c = -Y- Here 7 is the lowest weight of V. Since H' (9, I, TC®V) ̂ 0 we have

H' (9,1, A, (?.) ® V) = Horn, (A' p. A, (^) ® V),

see [B-W], 1.3.1.
Now in \Ck) there is a lowest l-type n(q, ^) which occurs exactly once, see [V-Z], 6.1,^

and as in [V-Z], 3.7, there is an isomorphism induced by the inclusion n(q, 5i) c: A (?i)

Horn, (A' p, A, (K) ® V) ̂  Horn, (A* p, ^ (q, )̂ ® C)

Here (g) C picks up the lowest weight space of V.
But our C,: A,(X) -> ̂ (^ has to preserve n(q, ^) and acts up to sign as the identity

on n(q, ,̂). The map Cy acts identically on the lowest weight space of V. Hence our
claim holds.

Q. E. D.
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Remark. - If 9=x9* x~1, xeK then | L(9, n ® V) | = [ L(9', n ® V) |. In particular
if rank K= rank G then 9 is inner and L(9, 7r(g)V)=/(7t(g)V) is the Euler-Poincare
characteristic of H'(g, t, 7i;(g)V). Of course here we choose C^=Id and Cv==Id.

4.4. (i) Let L^sp(G/F) be the space of cuspidal square integrable functions on G/F,
see [H-Ch]. We consider L^gp(G/F) as a left G-module and unitary representation of
G. If 7t e G, then it is well known that the multiplicity

m (7i, r) = dim Hom^ (n, L^p (G/F))

is finite and

L^p(G/r)= © 7^^
neG

as unitary representation. Here ® means: completed direct Hilbert sum.
(ii) If 7T=e7l we define an action of 9 on Te Hornet, L^p(G/F)) by

9 (T) (a) fe) = T (€„ (a)) (9 fe)), a e 71, ^ e G/F. Here C,: 71 -^ ̂  is as in 4.1 (iii). The trace
of 9 acting on Hom^Ti, L^p(G/F)) is denoted by w(9, 71, F). We put m(9, 71, F)=9
ifn^n.

(iii) We have a natural injective map

T : n (g) V (g) HomG(7i, L^p(G/r)) -. L^p(G/r) ® V

sending a ® ^ ® T to T(a)(g)u. The image of this map can be identified with the
isotypical component of n in L^gp(G/r) tensored with V. Since 9 acts on G/F and in
a fixed way on V we have an action of 9 on L^p(G/F) ® V.

We observe that T is equivariant if the left sides carries the 9-action which is the
product of the actions described above, see [R-S3], 2.3.1.

(iv) We define H^p(F, V): =H' (9, f, L^p(G/F) ® V).
Since 9 acts on L^p(G/F)®V) there is again a 9-action on H'^p(r, V). The

Lefschetz number of this action is denoted by L^gp (9, F, V). Using (ii) and the argument
given in [B-W], Chap. VII, we easily arrive at

4. 5. PROPOSITION. — We use the notation explained above. Then

Leusp (9, F, V) = ^ m (9,7i, F) L (9,7i ® V).
neG

Observe that there are only finitely many non zero contributions and that only TC'S
with n = ̂ n contribute.

4.6. We want to compare L^sp(9,F,V) with the topologically defined Lefschetz
number L(9, F, V) of paragraph 1. At first we recall that there is a natural 9-equivariant
isomorphism

H- (9,1, C00 (G/F) (g) V) ̂  H- (K\G/F, V) =H- (F, V)
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see [B-W], VII, §2, and [R-S3], 2.1.1. Let "L^p(G/r)=L^p(G/r) nC°°(G/r).
Then the inclusion °°L^(G/r) q: C°°(G/r) induces a 9-equivariant map

n'cusp^^) -^H'(F,V). Borel [B3] shows that the last map is injective. If we define
Leis(9, F, V) in the obvious way on a 9-stable complement of H^p(F, V) in H' (F, V), we
get a formula

L (9, r, v) = L^p (9, r, v) + LE, (9, r, v).
Little is known about LE^.F.V), see however [R-S3], 2.4.1, [R2] and [Le-S]. We
will pursue this further elsewhere. If G/F is compact then L^(G/^)=L2(G/^) and
L (9, r, V) = Lcusp (9, r, V). We will give applications of this identity in 4.8.

We now choose C^, see 4.2 (iii), such that L(9,7i®V)=dimH'(g, t, 7i®V). Then
combining 4.1, 4. 3, 4.4, 4.5 and 4.6 we obtain.

4.7. PROPOSITION. — In the setting of 4 A let G/F be compact. Then

L(9,r,V)= ^ m(9,7c,F)dimH'(9, I, 7i(g)V)>0.
TieG

We have an obvious consequence:

4.8. COROLLARY. — I n the setting of 4.7 there is at least one neCj with 7t=97t such
that m(n, F)>0.

Of course we now can conclude that n occurs in L2 (G/F), if there is at most one 71
such that L(9,7ig)V)^{0}. The following result shows that this argument often
applies.

4.9. PROPOSITION.—Assume that V is an irreducible representation mth a regular
highest 6-invariant weight.

(0 J/G=SL^(R), 50(2n+l, l)(R)°n^l; SL^(H), n^2, or ifG is a complex Lie
group there is up to equivalence exactly one irreducible unitary representation n so that
H-(g , t ,7 i®V)^{9}.

(ii) J/G=SL2^((R), n^l , there are exactly two representations which have non trivial
Lie algebra cohomology with ̂ -twisted coefficients.

Proof. - Our claims on SL^ (R), n ̂  2, are proved in [Sp]. For G = S0(2 n +1,1) (R)0,
s^[R-S3], 1.3.

Assume now that 9 is a complex Lie-algebra. Choose l e g a compact real
form. Then 9 = C ® I and conjugation with respect to I is a Cartan involution 9 on

us
9. We have a natural isomorphism

9c=98)C=C(g)I(8)C^9xg
Of R TO

mapping Zi ® X ® z^ to (z^ z^ x X; Zi z^ (g) X), z, e C, X e t. Then g ̂  g ® 1 is identified
with {(X, 9X)/XGg} and the complex extension of 9 acts on g © g mapping (x^ x^) to
(^2, Xi). We choose t, a Cartan subalgebra in I. Then t ) = t ® C = t + f t c = g i s a Cartan
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subalgebra of 9 and t)^ {(X,9X)/Xet)} as subalgebra of 9x9. We put a=i t and
identify a with {(x, -x)/xea}. Since 9l)=t) we can identify l)c with t )xt) in
9x9. Choose a Borel subalgebra b of 9 containing 1). Then b x b is a Borel subalgebra
in 9 x 9 with corresponding system of positive roots ^+ U A4' if A4' is the positive system

determined by b in 9. We have W(9c, l)c) ̂  W(9,1)) x W(9,1)) and

W(9ol)c)°^W(9,l)).

If now V is an irreducible representation of 9^ with highest weight (^,, n) e t)g then
V = V^ ® V^ where V^ resp. V^ are irreducible of 9 with highest weight p, resp. X. Assume
that 9 acts on V. Then ^=X. We denote also by (X, X) the character induced on I) by
(^, ^). Then (X, X) is trivial on ft. We denote the unitarily induced representation
determined by b and (X, X) on G by X(^, ^,).

We observe that X Ck, K) has the same infinitesimal character as V and that

H'(9,I,X(-^-)i)®V)^A't®C

see [B-W], III, § 3.
By a result of Zeiobenko [Z] all other unitarily induced principal series representation

with the same infinitesimal character are unitarily equivalent to X ( — X, — 'k). But accord-
ing to [V-Z], 6.2, 6.3, since (^,^) is assumed to be regular, all irreducible 71's with
H'(9,f,7ig)W)^ { 0 } are unitarily induced principal series representations. Hence our
claim holds.

Now suppose G=SL^(0-0) where H means quaternions. For geG put 9^=^~1.
Here the bar denotes the canonical antiinvolution on H. We have a maximal 9-stable
torus

f — — - " 1
H=^(Zi ,Z i ,Z2 ,Z2 , .. .,Z^Z^)/Z,GC*, [I N= 1 ^

I f = l J

diagonally in G. The natural inclusions S^ {zeC*/ |z [ =1} c C* and R* <= C* give
a decomposition H=TA where T=(S1)" and A=(R^)". The upper triangular matrices
in G make up a parablic subgroup P with Levipart SU(2)" sitting blockwise on the
diagonal.

Let f © p be the Cartan decomposition corresponding to 9. Then a 9-invariant weight
^ in t)c gives by restriction a weight on t<c which we can write ^=(^-1, . . .,^) in
correspondence to the decomposition T=(S1)". The Weyl group W(A)=NK(A)/ZK(A)
of A, K = Sp,,, acts as the group $„ of permutations of the factors of T. This is easily
seen by inspection. Denote by TI .̂ the irreducible representation of SU(2) with highest
weight .̂. Then according to [E] the unitarily induced representation

I(^,. . . ,^)=Ind?(^®... (2)7^(8)1)
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is irreducible and if V is the contragredient representation of the irreducible representation
V of G with highest weight A, then H" (9,1,1 (A,i, . . ., ̂ ) (g) V) ̂  A' a ® C ̂  {0}.

Now G has up to conjugacy just one 9-stable Cartan subgroup. Since X is regular
every unitary n with H* (g, I, n ® V^) + { 0 } has to be of the form I(ui, . . .,|^). Here
we use [V-Z], 6.2, 6.3. Since then 1(^1,.. . ,^) and V have to have the same infinitesi-
mal character, (ui, . . ., ^L,) is a permutation of (X^, . . ., ̂ ). But since this permutation
can be realized by an element in W(A) we get from [K-Z], Thm. 14.2 that l(^i, . . ., Hn)
and I(^i, . . ., ̂ ) are unitarily equivalent. Hence our claim holds.

Q.E.D.
Remark. — The other classical groups which are not of equal rank and have not been

dealt with in 5.8 are of the form S0(p, q) where p and q are odd. It is known that for
S0(p, q\ p^q>l, there is more than one class of representations with non trivial
cohomology.

Observe that the two representations which occur for SL^ nW in 4.9 are constituents of
one irreducible representation of SL^ „ (R) + == { A e GLn ((R)/det A = ± 1}; see [Sp]. Since

SO(2n)\SL^)^0(2n)\SL^(R)+

we get that if one of these representations contributes to H" (9, f, L2 (G/F) ® V) then both
do and with the same multiplicity. Here we assume that the diagonal element
(1, . . ., 1, -1) of SL^(R)+ normalizes F.

4.10. PROPOSITION. — Assume that G, V and F are as in 4.7 and denote by n one of
the representations described in 4.8. Then

(i) m(7t,r)>0.
(ii) If r\ is Q-stable, normal in T and arithmetic then there is a constant a(r)>0

depending on F such that m (n, r\) ̂  | (F/r^)91 a (F).
Proof. — The first claim follows from 4.7 and 4.8. To prove the second claim

observe first that the Cartan involution for G as described in 4.8 actually is "the" outer
automorphism. Hence 3.1.2 applies and tr(9[V)^0. Then the second claim follows
using 2.12.

Q.E.D.
Remark. — (i) If r is chosen with more care, we even have m (n, r\) ̂  | (r/r^)91 m (TI, I").
(ii) We do not know whether [ (r/r\)9 [ gives the right order of growth for m (n, r\),

see 2.12: remark.
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Added in proof: The proof of Prop. 4 .3 .2 in [R-S 3] contains an error concerning orientations. The proof
can be corrected as follows: delete from the last five sentences of the proof the first four. After the last
sentence add: this equation implies that E((p, 0)=0 iff (p==0 (in the notation of 4.3.1). Hence the second
claim follows as in 4. 3.1.
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