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AUTOMORPHIC REPRESENTATIONS AND
LEFSCHETZ NUMBERS

By JURGEN ROHLFS (') anp BiraiT SPEH (?)

Introduction

Classically, automorphic functions are holomorphic functions on the upper half plane
X =SO(2)\SL, (R) together with a prescribed transformation rule, i.e., an action of a
subgroup I" of SL,(Z) on holomorphic functions on X. Given such a space of auto-
morphic functions there is the problem of determining its dimension. This problem can
be solved using the Riemann-Roch theorem. The formula for the dimension thus
obtained depends on topological invariants of the space X/I" and on an integer which
characterises the transformation rule. A more conceptual explanation of the connection
of the dimension with the topology of X/I' is given by Eichler-Schimura’s
isomorphism [Sh].

There is a well known generalisation as follows. Let G be a semisimple non compact
Lie group and I'=G a discrete subgroup of finite covolume, i.e. G/T" has finite volume
with respect to some left-invariant measure dg. Let L*(G/I') be the space of square
integrable functions with respect to dg. If now = is some irreducible unitary representa-
tion of G, then m is said to be automorphic with respect to I', if n occurs discretely with
finite multiplicity m (n, T') in L2(G/I"). Of course here L2(G/I') is considered as unitary
representation of G where G acts by left translation on functions. The classical situation
now can be recognized as follows: If G=SL, (R), if '=SL,(Z), and if = is a discrete
series representation having a certain lowest SO(2)-type which is determined by the
transformation rule, then m (n, I') coincides with the dimension of the space of auto-
morphic function with given transformation rule. Back in the general setting, we now
assume that w is some given unitary irreducible representation of G. Then the following
questions arise: '

Is © automorphic with respect to I, i.e. is m(n, I')>0?

Is m (m, ') related with topological invariants of G/I"?

What can be said on m (n, I'), if " shrinks to {1}?
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474 J. ROHLFS AND B. SPEH

There are some unitary irreducible representations of G which are intimately connected
with the topology of G/I'. These are the representations m of G such that
H' (g, T, n®V)#{0} for some V. Here g is the Lie algebra of G, f is the Lie algebra of
a maximal compact subgroup K of G, V is a finite-dimensional irreducible representation
of G and H (g, I, t®V) denotes the relative Lie-algebra cohomology of n®V. A
connection of multiplicities and topology is then provided by Matsushima’s formula

H' (K\G[T, V)= ¥, H'(g, }, n@V)" ™D

neG

Here we assume for simplicity that G/T" is compact and that I" is torsionfree. On the
left we have the cohomology of the space K\ G/I' in the sheaf of locally constant
sections —again denoted by V—of the vector bundle over KN\ G/I' associated to the
representation V. On the right we sum over all classes of irreducible unitary representa-
tions of G.

To exploit Matsushima’s formula one has to find at first a method which gives some
insight on the topological side. In particular methods which yield
H (K\GJT, V)#£{0} are desirable. One can deduce H (K\G/T, V)#{0 }from
Harder’s Gauss-Bonnet-Formula [Ha2] if and only if rank K=rank G, see [R—S1, 2]
for applications to multiplicities. In this paper we want to establish a method which
also works if rank K #rank G.

The method we use is inspired by the observation that H (g, f, t®V)={0} unless =
is equivalent to °m and V is equivalent to °V. Here 0 denotes the Cartan involution of
G corresponding to K and the left upper index 0 at a representation indicates the new
representation where ge G acts as 0(g) on the old representation space. So one can
hope that generally H (K\G/I', V)#{0}, if 0 also acts on the geometrical side. A
similar idea occurs first in [H 1] for SL,(C). To make this precise, let G, K, 6, V be as
above. Moreover we assume that G is connected, that I" is 0-stable arithmetic, torsion-
free, and that 0 acts linearily in a compatible way on V i.e. 8(gV)=0(g)08(V) for all
ge€G, veV. Then 0 acts as 6° on H(K\\G/T, V) and we define a Lefschetz number

L®, T, V)=Y (=1)itré'
i=0

Here tr @' is the trace of 8. We do not require that G/T" be compact. Our main result
now is as follows:

THEOREM. — If T is small enough (definition 2.8) and if V has a highest weight A
satisfying e P, (definition 3.1.1) then

L(6, T, V)=x((K\G/T)%.tr (6] V) 0.

Here y,(K\\G/T')% denotes the Euler-Poincaré characteristic of the fixpoint set (K\G/T')®
of 0 acting on K\ G/T and tr(0 | V) is the trace of 6 on V.
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AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 475

Applications are given in Proposition 4.8. In particular we prove

ProPOSITION. — Let G be a complex Lie group and V a representation having a regular
highest 6-fixed weight such that tr (OlV);éO. If T is cocompact and small enough then
there is up to equivalence exactly one irreducible unitary principal series representation T
of G which contributes to H (KN\G/I', V)#{0}. The multiplicity m(n, T';) of = in
L2(G/T',) grows at least as |(T'/T'y)°|if Ty is 6-stable and normal of finite index in T.

Here, of course |(I'/T,)°| is the number of fixpoints of 6 acting on I'/T;. We have
similar results for SL,(R), SL,(H), SO(n, 1), see 4.8.

Next, we explain roughly how the main result is proved. Essential is a Lefschetz
fixpoint formula

LT, V)= ¥ xFMmMuE]V),

yeHl (8, )

see 1.6. Here (K\G/T)?=F(y) is a finite disjoint union of connected components
F(y) parametrized by the classes y of the non abelian first cohomology H* (6, I') of 0
acting on I.  We denote by x(F(y)) the Euler-Poincaré characteristic of F(y) and by
tr (6, | V) the trace of 0 acting ““y-twisted” on V.

In 1.4 we prove that F(y) is a locally symmetric space of equal rank type, so in
particular y (F(y)) #0 and the sign of ¥ (F(y)) is determined by the dimension of F(y)
mod 4, seel.5.

In 2.8 we introduce the notion “I" is a small enough”. In particular a congruence
subgroup is small enough if in the definition of the congruence there occur enough prime
divisors. If I' is small enough we can show, that all % (F(y))>0, see 2.10 and that
tr (9|V) =tr (9,|V) is independent of yeH!(0, I'). To prove that x (F(y)) >0 we associ-
ate to ye H'(6, I') and all places v of Q a certain quadratic form B, (y) over Q,. Here
Q, is the completion of Q@ with respect to v. These quadratic forms have certain
invariants satisfying a product formula due to Weil. If now I' is small enough this
product formula forces a congruence mod 4 on the dimensions of the F(y), yeH! (6, I),
and therefore % (F(y))>0. At the end of paragraph 2 we give a sharp estimate of the
growth of L (6, I, V) if I shrinks to {1}.

In paragraph 3 we compute tr (0 | V). If O is inner this is done using Weyl’s character
formula. If 0 is outer we use Kostant’s character formula for disconnected groups and
reduce the computation of tr (9|V) to an application of Weyl’s character formula to
certain representations of G%. Here G%={ geG|00 g=g} where 0, is “the diagram
automorphism™ induced by 6, see 3.1. Our main result is tr ((-)IV);éO if V has an
extremal weight which satisfies a mild extra condition, see 3.2.5.

In 4.1 we finally can state our main result on the non-vanishing of L (0, I', V). Next
we define Lefschetz numbers for 0 acting on H' (g, f, t®V), compute these Lefschetz
numbers in 4.3, and prove the connection of L(0, I', V) with multiplicities in 4.7. In
analogy to Matsushima’s formula we obtain for cocompact I" the equation

L, I, V)= 3 m(8 m INdimH (g, f, ®V).

neG
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476 J. ROHLFS AND B. SPEH

Here m(0, n,I') is up to some sign conventions the trace of 6 acting on
Homg (n, L2(G/T')). We have to sum over all equivalence classes of irreducible ne G
such that n is equivalent to ®x. In 4.8 we give examples of groups G and representations
V such that at most one neG contributes to the above sum. In particular complex
groups G and representations V with 6-action and a regular extremal weight have this
property. Combining this with the main result on Lefschetz numbers 4. 1 the Proposition
stated above results.

There are many other results on multiplicities of representations in L?(G/I'). Without
any attempt to be complete we mention some of them and some typical methods of
proof. Often the connection with topology is exploited using an index theorem in the
sense of Atiyah and Singer. Here one applies the theorem of Riemann-Roch (classical:
G=SL,(R)), the Gauss-Bonnet theorem [R—S1], [R—S2], [Sa] or Dirac operators
[B—M] (rankgz (G)=1), [DG—W] (G/T" cocompact). The results obtained in this way
are mostly on multiplicities of discrete series representations. These methods give no non
trivial information if rank K #rank G. If rank (K) #rank (G) the methods of Lefschetz
numbers can be applied. There are results in [H 1], [R 2], [Le—S], [R —Sp3]. A different
approach to multiplicities is provided by the Selberg trace formula. Some typical
applications are in [L1], [L2], [J—L}], [Cl1], [CI12], [La—S]. An application of the
twisted trace formula due to Clozel, Delorme and Labesse has been announced in[La].

Notation

0.1 We use the standard notation N, Z, R, C, H for natural numbers etc; H denotes
the quaternions over R. If v is a place of Q then Q, is the completion of Q with respect
tov. In particular R=Q_.

0.2 If M is a set then |M| denotes its cardinality. If a group H acts on M we denote
by ME={meM|hm=nhforall heH}. If H=(h) is generated by one element we write
M"=MH", A left action of H on M is denoted by h(m) or hm or "m.

0.3 We say that a group H acts on a group G if it acts as a group of automorphisms
of Gi.e h(g,g,)="g,"g, for all heH, g,eG. If H acts on G we denote the first non
abelian cohomology set of this action by H'(H, G), see [Se]. If H=(h) we write for
the cohomology H!(h, G). A cocycle then is an element geG such that g"g=1 and
cocycles g,, g, are equivalent if there is an ae G such that g, =a~'g,"a. By definition
H! (h, G) consists of equivalence classes of cocycles.

0.4 If V is a representation of a group G we write the action of geG on veV as
vi>gv. Let 0 be an automorphism of G. We say that V is a representation with 6-
action if there is given a Cy,eGL(V) such that C,(gv)=0(g)Cyov for all geG,
veV. Often we also write 0 instead of C,.

0.5 If G is a Lie group then always g denotes its real Lie algebra and go.=g® C its
R

complexification. The complexification of an automorphism 6 of g always is again
denoted by 6. For roots, weights, Weylgroups etc. we always use standard notation
and give some explanations when a symbol appears for the first time.
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1. Fixpoints of 0 and Lefschetz numbers

We use the notation given in the introduction. In particular G denotes a connected
non compact semi-simple Lie group, 0 a Cartan involution on G with set of
fixpoints K. Let X=K\G be the associated symmetric space and I'=G a 0-stable
arithmetically defined torsion free subgroup. We do not require that X/I" be
compact. Let V be a finite dimensional complex irreducible representation of G on
which 0 acts in a compatible way. With the same letter V we denote the associated vector
bundle over X/T" and the sheaf of locally constant sections of this vector bundle. Then 0
acts on the sheaf-cohomology

0': HI(K\G/T, V) » H(K\G[T, V)

and by definition L(6, T, V):=) (—1)'tr6° where tr6' is the trace of 6. Since
i=0

dim H (K\G/T, V) < o this definition makes sense and L (6, I, V)eZ. It is well known

that there is a 0-equivariant isomorphism

H (K\G/T, V) SH' (T, V)

where on the right we have abstract group cohomology, [B—W].

In this paragraph we explain how L (0, T, V) depends on the fixpoint set (X/I')® and
give a useful parametrisation of the connected components of (X/I')? is terms of the non
abelian cohomology H!(6, I'). For G=SL,(R) resp. G=SO(n, 1)(R)° this has been
done in [R 1] resp. [R —S 3].

1.1. Construction of fixpoints. — If yeT is a cocycle for H! (6, I') then y®y=1. We
have a y-twisted action on G and T given by 6,(2)=v0(g)y™', g€G, and a y-twisted
action on X given by x—°xy~!, xeX. Therefore 6, induces on X/I' the action of
0. Define X (y):=X®% and I'(y):=I% Then X(y) is connected and non empty, see
[He:1.13.5, 13.3]. We get a natural map

X (/T () > (X/D)°.

Since I is torsionfree this map is injective. Its image is denoted by F(y) and depends
only on the cohomology class determined by y in H!(6, I). We note that F(y) is a
closed submanifold of X/T.

Now we can describe the fixpoint set (X/I")® as follows

1.2. PrOPOSITION. — We have a decomposition

X/Mm’= U F(y

yeul@, n
into a finite disjoint sum of connected components.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



478 J. ROHLFS AND B. SPEH

Proof. — The argument given in [R 1] for G=SL,(R) extends to our situation.
QED.

We want to understand X (y) for yeI'. Consider y as an element of G. If aeG and
E=a"'ya, X(§):={xeX|°xE '=x} then X(§)a '=X(y). ThereforeX(y) depends
up to translation in X only on the image of y in H! (6, G).

Let T be a maximal torus in K and denote by Wy the Weyl group of T in K. Since
0 acts trivially on T we have H* (6, T)=,T:={teT|[t*=1}. Of course W acts on ,T.

1.3. ProposiTioN. — The inclusions T ¢ K G induce bijections

,T/Wg S HY (8, K) S H (6, G).
Proof. — The argument given in [R1:1.4] extends verbatim and yields

H! (6, K) SH!(6, G). It is well known that K consists of conjugates of T and that
two elements of T which are conjugate in K are conjugate by an element in the normalizer

of Tin K. Therefore H! (6, T)/Wyx > H!(6, K).
QED.
Let teG be a cocycle, i.e. t°t=1. We denote the involution g - t0(g)t™ !, geG, by
0, Introduce X (f):={xeX/’xt '=x}.

1.4. CoroLLARY. — If te,T then 6, preserves K and X (f) —K*\G%. Moreover G*
contains T and T is a compact Cartan subgroup of G*.

Proof. — We have an exact sequence of pointed sets with 6,-action

1-K-G-X-1.

Hence we get an exact sequence

1-K%-G%X (1) >H' (8, K) » H'(8, G).

Using 1.3 and twisting we see that the last arrow is a bijection. Hence the first claim
holds. Since 6, acts trivially on T we get TcG* Now G*={geG/t0(g)t '=g}.
Therefore 0 acts on G* as a Cartan involution and this action is given by conjugation
with teTcG% This means that @ is inner on G*. From [He], IX, 5.7, we deduce
that G* has a compact Cartan subgroup. Since T<G® and since T is maximal in K
we see that T is a Cartan subgroup of G*.
QED.

We now can apply Harder’s Gauss-Bonnet formula [H 2] and get

1.5. CorOLLARY. — The Euler-Poincaré characteristic % (F (y)) of F(y), yeH' (8, I),
is not zero. If d(y):=dimF (y) then d (y) is even and (—1)*"'2 is the sign of x (F (7).

Proof. — Since I'(y) is an arithmetically defined subgroup of G% the claim follows
directly from [H 2] provided that G% is semi-simple. In general G®% is reductive. Since
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1.4 holds, the center of G* is compact. Therefore we can view X (y) as a symmetric
space associated to a semisimple group and [H 2] also applies to this situation.

QE.D.

Recall that 0 acts on the representation V in a compatible way i.e. 0 (gv)="g°%, veV,
geG. If yel, y*y=1 we can define an action of 6, on V by 6, (v)=7.6(v). We write
'T for the group I' with the 6,-action given by 0, 0)=y'yy" !, yeI'. Then 'T and 0,
act on V in a compatible way. Observe that the action of 6, on V depends up to
conjugacy on the class represented by y in H! (6, GL(V)) only. In particular the notion
tr (6, | V) for the trace of 8, on V where yeH! (8, I') makes sense.

We recall the following result which is contained in [R —S 3, R 3].

1. 6. ProposiTioN(Lefschetz fixpoint formula). — With the notation introduced above we
have

LB, L, V)= ¥ x(F)t®,|V).

yeH!' @, )

2. Nonvanishing of Euler-characteristics

In this paragraph we show that the Euler-Poincaré-characteristic of the fixpoint set
(X/I)® is positive if I’ G (Z) is small enough. For this we write

XD)= ¥ x(F)

yeH! (o, I)

and show that all y(F(y)) are positive. Using 1.5 we have to prove that
dimF(y)=0mod4 for all yeH!(y, I). To obtain this we associate to y a quadratic
form B(y). One can do this also locally over Q, and one gets invariants satisfying a
product formula due to Weil. At the infinite place the invariant we obtain is the
signature mod8 of B(y). If now I' is a sufficiently small congruence subgroup the
product formula forces a fixed signature mod 8 to B(y) from which we can read off our
desired congruence for dim F (y).

To carry out the arithmetical argument, we describe in 2.0 how arithmetic subgroups
I' of connected Lie groups G actually arise. We construct I' as a subgroup of a
semisimple algebraic group G defined over @ such that G is a quotient with compact
kernel of G(R)°, the connected component of the real points of G. In G we work with
an involution 0 defined over Q which induces our Cartan involution 6 on G.

2.0. PreLiMINARIES. — (i) Let G/Q be a semisimple algebraic group defined over
Q. Choose a rational embedding G o SLy for some NeN. Then we write G(Z) for
G(@) NSL,(2). All groups commensurable to G(Z) are called arithmetic
subgroups. It is known, see [B 1] that this notion does not depend on the embedding
G s SLy.
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480 J. ROHLFS AND B. SPEH

(ii) Let U be an R-linear compact normal subgroup of the connected component
G(R)° of G(R). Then we have an exact sequence

1-U>G(RP°DG -1

where G is a R-linear connected Liegroup. If T=G(R)° is an arithmetic subgroup,
then p(I') =G also is called arithmetic. Observe that if I' is torsionfree then UNT'={1}
and we can identify I" and p(I).

(i) Let G be connected, R-linear and semisimple and 6 a Cartan involution on
G. We want to establish the existence of 0-stable arithmetic subgroups I'cG. For
this we use a contruction due to Borel [B3]. To construct G as in (ii) it suffices to
work on the level of Lie algebras. Let g be the Lie algebra of G. Then there exists a
6-stable Q-subalgebra g, =g such that g,®@R=g, see [B3]. Let {,®p,=g, be the Cartan
decomposition of 0 on g,. Let E be a totally real number field with [E: @]=2. Choose
ueE that o (u)<O0 for all except one embedding o, of E into R. Put L:=E( \/ﬂ).

0. =, ®E®_/up,® Ecg,®L.
E OQ \/— OQ 0

gg is a Lie algebra over the field E, g ® L=g,®L and gy ® Rxg® ) I®ip. On gg
E e

LE )
we have an E-rational involution 8;: X@® /uY - X@® — _/uY, which induces the Cartan
involution 6 we started with on the first factor of gy ® R and “conjugation” on the
Q
other factors.

Let H be the simply connected group defined over E corresponding to gz. We denote
by 6z:H —>H the involution corresponding to 6; on gz and we put G=Resg|oH,
0=Resg | g 0 Where Res denotes Weil restriction. Then 6 is a Q-rational involution of

~G. We have as in 0.2 an exact sequence

1-U->G(RP°SG- 1.

The involution given by 8 on G (R)? factors through p and induces the Cartan involution
0 on G.

Since 0 is defined over Q there exist 0-stable arithmetic subgroups of G(Q), in fact,
' N O(T) is O stable arithmetic if I'= G (Q) is arithmetic. If I is O stable and arithmetic,
then T" contains a O-stable torsion-free congruence subgroup. Minkowski shows [M],
that in the setting of (i) a congruence mod 4 suffices.

Borel shows [B 3] that the groups I' constructed above are cocompact. We will use
this in paragraphe 4. The classical groups and their most obvious realisations over Q
usually give rise to non cocompact 0-stable arithmetic groups.

(iv) Let G be any semi-simple algebraic group defined over Q@ and assume that
6:G(R) — G(R) is an involution of the real Lie group G(R). Then o acts isometrically
on the space of maximal compact subgroups of G(R). Using [He], 13.5, we see that
there is a maximal compact subgroup K = G (R)? stabilized by 6. Let U be the maximal
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compact normal subgroup of G(R). Then o preserves U and induces an involution on
G:=G(R)°/U. Observe that if 8, is the Cartan involution corresponding to K then o
and 8, commute.

2.0 (v). DeFiNiTION. — Let 0: G — G be an involution defined over Q. If the involution
induced by 8 on G [G as in (iv)] is a Cartan involution we call 8 Cartan-like.

We note that involution constructed in (iii) is Cartan-like. Obviously an involution
conjugate in Aut G to a Cartan-like involution is Cartan-like. If G is Q-simple and if
G (R) contains a nontrivial compact normal factor, then no Cartan involution of G(R)
is defined over Q. However, as (iii) shows, it can happen that there exists a Cartan-like
involution over Q. A detailed investigation of Cartan-like involutions will appear
elsewhere.

(vi) For the rest of paragraph 2 we assume that 6:G—- G is a Cartan-like
involution. Let K= G(R) be a maximal compact subgroup with corresponding Cartan
involution 6, such that 6 and 6, commute on G(R). Put X=K\G(R). We denote
the Cartan involution induced by 0 and 6, on X by 6.

2.1. Next we define global and local invariants for classes in H! (6, G(R)). For this
let F be one of the fields Q, R, Q,. It te G(F) represents a class in H'(8, G(F)), i.e.
t°t=1, then we have the t-twisted action 6, on G (F) given for ge G (F) by

0,(g)=t0(g)t™*

and this action induces an action denoted by the same symbol on the F-Lie algebra g(F)
of G(F). Here of course g(F)=g ® F where g=g(Q) is the Q-Lie algebra of G. Since
o

6, acts as an isometry of the Killing form B, the eigen spaces of 9, in g(F) are orthogonal
with respect to B. Denote by g(F)(t) the set of 0-fixed elements in g(F). Then
B | g(F) (¢) is a non degenerate bilinear form. If ' =a~!t0(a) represents the same class
in H! (0, G (F)) then conjugation with a€ G (F) induces an isometry

Ad(a): g(F)() - g(F) ().

Hence the isometry class of the quadratic space Bg(t):=(g(F) (1), B|g(F) (t)) depends
only on the class of ¢ in H! (0, G (F)).

2.2. LeMMA. — The inclusion K = G (R) induces a bijection

H'(8, K) > H' (6, G(R)).

Proof. — The argument given in [R 1] holds in our situation.
" QE.D.
Recall that a quadratic form g on a Q-Vector space V can be diagonalised over R
with r factors 1 and s factors —1 on the diagonal. We write sign g=r—s and call r—s
the signature of g. The signature depends only on the isometry class of g®R in VR R.
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482 J. ROHLFS AND B. SPEH
2.3. LemMA. — Let teG(R) represent a class in H'(0, G(R)) and let
X(t):={xeX/0(x)t'=x} be the set of fixpoints of 8, on X. Then
2dim X (t) =dim g(R) () + sign (Bg (¢)).

Proof. — Using 2.2. we can assume that teK. Then 6, and 6, commute, see
2.0(iv). Hence we have an eigenspace decomposition

g(R) (O =To+po

of g(R)(¢) with respect to the 0,-action on g(R)(z). Since 0, is the Cartan involution
corresponding to K we have that B|f0 is negative definite and B|p0 is positive
definite. The result now follows immediately.

Q.E.D.

Let W(F) be the Grothenendieck-Witt ring of quadratic forms over F, see [Sch].

2.4. DEFINITION. — Denote by Bg: H! (0, G (F)) — W (F) the map sending a cohomology
class t to the class of Bg(t)=(g(F)(?), Blg(F) (). If F=Q we write B instead of Bg
and if v is a place of Q we write B, instead of By and B, instead of B,

We observe that the inclusions Q o @, induce obvious Hasse maps h in cohomology
and of the Witt rings. Therefore we have a commutative diagram

H'(8 G(Q)>]H'@ G(Q,)
lB ’ lﬂBv
w@ S [IW@)
Next, we recall Weil’'s product formula for invariants of quadratic forms, see
[Sch: Chap. V].

2.4. Suppose that (g, V) is a Q-rational quadratic space. Then for every place v of
Q there is defined a GauP sum v,(q) with values in the eight’s root of unity. If v=o00
then y_ (q) =¢*9"@ where e=(1+1i)/ \/f is “the” primitive eight’s root of unity. Weil’s
product formula says

[Tv.(@=1

Here v, (q) depends only on the class of (q®Q,, V®Q,).

2.5. LEMMA. — Consider the Hasse map

[Th,=h:H'(8, G(Q) - ]H' (8, G(Q)).

If t, t € G (Q) represent classes in H' (0, G(Q)) and if h,(t)=h,(t") for all v# co then
dim X (£)=dim X (t') mod 4.
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Proof. — Using Weil’s product formula and the commutative diagram given above
we get from our assumption.

Yo (B(8) =74 (B().

We now wuse 23. Since dimg(Q,)(t)=dimg(Q,)(t) for primes, we have
dim g(Q) (¢')=dim g(Q) (¢) and

2dim X (¢)—2dim X (¢") =sign By () —sign B () =0mod 8

by Weil’s formula. Hence our claim holds.
Q.E.D.

Next we produce a §-stable congruence subgroup I' = G(Q) such that for every prime
p the classes te H'! (6, I') all have the same invariants v,(B,(¢)). For this we need some
local cohomological results.

2.6. Recall that we have an embedding G =SLy over Q. Denote by K, (j) the kernel
of the canonical map

SLx(Z,) > SLn(Z,/p'Z,)

and by sly(Z,) the set of N x N matrices with coefficients in Z, and trace zero. Then
the usual exponential series of matrices induces a bijection

exp: pP'sly(Z,) > K, ()

if p>2andj=1orif p=2and;j=2.
We write g(Q,) for the Q,-Lie algebra of G(Q,) considered as a subset of the N x N-
matrices with coefficients in Q,. Then we get an induced bijection

exp: piSlN(Zp) n g(Qp) - rp (’)’
where I', () =K, () NG (@,).

2.7. LeMMA. — Let U,=G(Z,) be an open 6-stable subgroup. Then there exists an
open 9-stable normal subgroup V, of U, such that the map

H'(Q, V,) > H'(§, U))

induced by the inclusion V, g U, is trivial.

Proof. — Since U, is open there is a j such that I',(j)<U. Choose j=1 if p#2 and

jz2 if p=2. Define V,=T,(j+1)NOT,(+1) and V,:= N uV,u"'. Then V, is
ueUp
open normal in U, and @-stable.
If ve V, represents a class in H(6, V,) thenv0(v)=1, i.e. 0()=v"1. Using 2.6 we find
an Xep'*'sly(Z,) N g(Q,), expX=v and exp(—X)=0(v). Put c=exp(—X/2). Then
cel,(»NOI,() and O(c)=exp(—0X/2)=exp(X/2) since 6X=—X. Therefore
¢ 'v8(c)=1i.e. vis a coboundary in U,.
Q.E.D.
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Our embedding G  SLy has been choosen without care with respect to the 6
action. Therefore O will not preserve all G(Z,):=G(Q,) N SLy(Z,). But of course
there exists a finite set S, of primes such that G, 8 and the embedding are defined over
Zs, Enlarging S, we assume that 2€S,. Then 0 preserves G(Z,) for all p¢S,. If S
is a finite set of primes containing S, we define

r©)=6@n I1V,x 1 6(,.

peS pé¢s

Then I'(S) is a B-stable congruence subgroup of G(Z).

2.8. DEFINITION. — We call a 9-stable arithmetic subgroup T' =G (Q) small enough if
the image under the natural map

[1h,: H'(8, ) >[[H!(6, G(Q,)

is trivial.

2.9. LeMMA. — If S is big enough, then I'(S) (as defined above) is small enough and
torsion free.

Proof. — We start with I'(S,). According to [B-S] the set H! (0, ['(S,)) is finite. If
yeH (0, T'(Sy)) and if there is a prime p such that h(y)#1 consider S=S,U{p}
and T'(S). Then I'(S) is a subgroup of I'(S,) and for all yeH'(0, I'(S)) we have
h,(»)=1. Therefore vy is not in the image of H'(0, I'(S)) in H! (6, I'(Sy)). After finitely
many of such steps we arive at a I'(S) such that all classes of H' (8, ['(S)) are trivial at
all finite primes. By construction I'(S) is a subgroup of the full congruence subgroup
mod 4 of SLy(Z). This congruence subgroup is known to be torsionfree see [M]. Hence
I"(S) is torsion free.

Q.E.D.

2.10. Proposition. — If T is small enough and torsion free, then y ((X/T)% >0.

Proof. — Using 2.5 we see that all fixpoint components have the same dimension
mod4. Therefore our claim follows from 1.5 since 0 induces the Cartan involution 0
on X.

QE.D.
Remark. — (i) The examples given in [R 1] and [R-S3] show that sometimes very low
congruences suffice to produce a small enough I
(i) Even if I is small enough the image of H'(@, I') in H!(8, G(R)) is non trivial in
general, see for example [R1]. Therefore we have to expect that (X/I)® contains
components of dimension bigger than zero.

(i) If T is as in 2.10 then for I'°:=G(R)° NT the conclusion of 2.10 holds as
well. In the setting of 2.0 (ii) we can consider I'° as a subgroup of G. In paragraph 4
we will use such I'’s.
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If we evaluate the Lefschetz number L(0, I', V) as explained in 1.6, then there are
factors tr (Q,]V). We now show that under quite general circumstances tr((;),lV) does
not depend on yeH! (9, I).

2.11. LeMMA. — If there is a prime p such that the natural map

h,: H! (Q, r) - H! (Qa (_}(Qp))

b
is trivial, then tr(Q,|V)=tr (Q|V) for all yeH' (9, T).
Proof. — The representation p: G(R)° - G — GL(V) extends to a representation pg

of G(C) on GL(V). IfL,[L:Q]<oo, LcC is a splitting field of G, there is a L-rational

representation p, of GxL on a L-Vectorspace V, with an action of 6 such that pg is
@

obtained by extension of scalars from L to C. Then 0, acts on V, and
tr((_)yl V)=tr (9, | Vo). Let w be a place of L extending p. Then 6, acts on V,® L,, and
L

tr(6,|V)=tr(8,| Vo ® L,). By assumption the composition of canonical maps
L

H'(6, I k30 (6,G(@,)) »H'(8, G(L,)) > H' (8, GL(V,®L,))
L

is trivial. 'We have observed, see 1.6, that tr (0, | Vo ® L,,) only depends on the cohomol-
ogy class determined by y in H!(6, GL(V, ®LLW)). Since this class is trivial
tr (0, | Vo®L,)=tr(0 | Vo®L,)=tr(0 | V,) and ou: claim holds.

: - QE.D.

2.12. PrOPOSITION. — Suppose that I' =G (Q) is small enough and torsionfree. If T';
is 0-stable arithmetic and normal in T then

|L(8, Ty, V) |Z[(T/T)°|[tr (8] V) |-

Proof. — We have L(6, T, V)= ) x(F (7)) tr(9|V). Here we use that I'; is
yeH! (0, I'y)
small enough, we use 1.7 and 2.11. Using 2.10 we have y(F(y))>0 for all
yeH'(6, T;). Now I'/T; acts on X/I'; and (I'/T;)® acts as a permutation of the
components F (y) of (X/T';)®. Therefore Zy (F(y)) is divisible by |(I'/I‘1)°| and our claim
holds.
QE.D.

Remark. — If T is chosen with more care, which means that I" has to be smaller in a
certain way than “small enough”, then one can show

|L(e’ rh V) |=|(r/r1)e||L(e: I, V)l

Therefore the crude estimate in 3.12 gives the right order of growth for L(6, I'y, V) if
I'; shrinks to {1}.
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3. The trace of a Cartan involution on a finite dimensional representation

Assume that G is a real linear semi-simple Lie group without compact factors and 6 a
Cartan involution acting on an irreducible complex finite dimensional representation V
of G in a compatible way, i.e. 8(gv)=0(g) 0 (v) for all geG, veV. In this paragraph
we compute tr (0 | V), the trace of 8 on V, and show that tr(0 | V) #0 if the highest weight
of V lies in a certain big sublattice of the lattice of weights.

3.1. FORMULATION OF THE MAIN RESULT. — Before we can do so, we have to introduce
some notation and we have to collect some easy observations.

3.1.0. Preliminaries. — Assume that G is as above with Cartan involution 6.

(i) If V is an irreducible representation of G admitting an action of 6 in two ways
given by Cie GL(V), i=1,2 then for all ge G, ve V we get C} C2(gv)=gCi C3v. Since V
is irreducible and (Ci)>=1 we get Cj=+C2. That is: if V admits an action of  this
action is unique up to sign.

(i) If V is an irreducible representation of G we have a new action of geG on veV
given by g.v=0(g)v. We denote this new representation by ®V and observe that if V
admits a 0-action given by C,eGL(V) then C,:V—-°®V is an equivalence of
representations. Conversely, if C:V -V is an equivalence of representations then
C(gv)=0(g)Cv and C?=q Id, since V is irreducible. Therefore Cy= + \/&C defines a
0-action on V.

(iii) Let t®p be the Cartan decomposition of the real Lie algebra g of G with respect
to 0. We choose a fundamental Cartan subalgebra h=t@Pa in g, i.e. t is a Cartan
subalgebra of f, denote by b it’s complexification in go=g®C and choose a 6-stable

R

Borel subalgebra b — g containing .. Now an irreducible representation V of G is
uniquely determined by its highest integral dominant weight AeP in the weight lattice P
determined by h.. The Cartan involution 8 acts on P and using (i) we see that V
admits a 0-action if and only if 8(A)=A. We now fix the action of 8 on V with highest
weight A =0\ by the requirement that 0 acts identically on highest weight vectors.

(iv) Let be be 0O-stable as in (ii). We have the rootspace decomposition
gc=bc® Y. g, with system A* <A of positive roots determined by be. Let ay, ..., o

acA
be a basis of A*. Then there exists exactly one automorphism 6, of g with the
following properties

(@) 8o |bc=0]be

(b) If 8 (o) =0y then 6, | g,,=1d| g,

If O (o) #a then 6, |g,,=0]g,,

The existence and uniqueness of 6, follows from [Bou], Ch. VIIL, § 4, Thm. 2(i). The
automorphism 6, has the properties 6,0=00,, 6,=0, i.e. 8, is defined over R, and 6,

preserves be.  This essentially follows also from Thm. 2 loc cit. One has to use that 6
is defined over R. We call 6, the diagramm automorphism determined by 6.
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3.1.1. DerFINITION. — We use the notation established above.
(i) A root aeA is called non compact if

0 # (ga + 900 (u))oo CpC

(i) Let be Py: ={AeP°/(A, a)/(a, @) € Z for all non-compact roots aeA }.

Remark. — (i) If =8, is the outer automorphism determined by 0, then Py=P® since
there are no non compact roots. If 0 is inner then 6,=1Id and our definition of a non-
compact root is just the usual one. We have 2 P°cPycP® since 2(A, a)/(a, o) e Z for
all LeP.

(ii) Since 0 acts on b it acts on W(ge, bc) and this action is trivial if 6 is inner on
gc. Denote by W? the fixpoints of the 6-action on W. Then W® acts on P,

(iii) If woe W is the element of W mapping A* to —A™ then w,e W®. Hence the
highest weight A of irreducible representation V is in P, if and only if the lowest weight
woA is in P, 'We will use this in paragraph 4.

(iv) The geometric meaning of LeP, is as follows. Assume that LeP? is integral
dominant with respect to b and let V, be the corresponding irreducible representation
with highest weight .. If we W® then w is integral dominant with respect to *b¢, the
w-conjugents of be. Let V,,, be the corresponding irreductible representation. Put a
6-action on V, resp. on V,, as explained in 3.1.0 (iii). These actions depend on b¢
resp. on *be. Then AeP, if and only if the natural equivalence of representations

V,5V,, is 0-equivariant. This statement will become clear on the following
pages. Since we will not need this observation we don’t give a formal proof.

We will prove the following statement in 3.2 and 3.3.

3.1.2. PROPOSITION. — Assume that AeP, is the highest weight of V. Then
tr (6] V)>0.

Remark. — We believe that the sufficient condition AeP, is also necessary for
tr (6] V) #0.

3.1.3. A reduction. We decompose g=g, X . .. X g, where g; are simple non-compact
R-Lie algebras. Then 6=0,x ... x0, where 6, is a Cartan involution of g, An
irreductible representation V of g then is a product V;®...®YV,, where the Vs are
irreductible and V admits a 0 action if and only all Vs do. Since b and b are also
decomposed we fix the 6;-action on V; according to 3.1 (iii). We have

tr (0 | V)= [] tr (6, | V). Therefore we may assume that g is simple over R.
i=1

3.2. THE TRACE OF AN INNER CARTAN INVOLUTION. — We assume that 0 is an inner
automorphism of g¢.
3.2.1. Preliminaries. — (i) Since 0 is inner g contains a compact Cartan subalgebra

b=t in the notation of 3.1 (iii). Since 0 stabilizes be and b there is a 6yt such that
0=exp 2mi ad 0,.
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(i) If V, is irreducible with a highest weight vector v#0, if 0#X, g, are root vectors,
aeA, if A* denotes the system of positive roots given by b then 0 acts as

B(X_y,- - - X g, v)=exp 27i{ -\, 90>9(X_a,.1). X ), ocijeA",

see 3.1 (iii).
(iij) Denote by Ay the set of roots aeA* such that g,cf. and denote by Wy

the subgroup of W generated by refections at these roots. Denote
WX¥={ueW/Af cuA*}. Then one has a well known bijection

Wy x WS W given by (s, u)— su

(iv) Let A be an integral dominant weight with respect to hc=tc and b.. We write
p=(1/2) ¥ oaandpg:=(1/2) Y o If ue WX then u(A+p)—pg is integral dominant
aeAt aeAﬁ
with respect to t; and N\ be.. We denote by V,
highest weight u (A + p) — px.

uo+py-pg the irreducible fe-modules of

3.2.3. ProprosiTION. — We use the notation established in 3.2.1.
If V is irreducible of highest weight A then

tr(0|V)=2"" Y exp2miuk—A, 6,) dimV,

uewk

u(A+p)—px

where l=| AT\ Ag | is the number of non-compact positive roots.
Proof. — We use Weyl’s character formula and get
tr(8|V)=exp 2mi{ —A, 85 tr(2mify|V)
Y detwexp2ni{w(A+p)—p, 0o+1)

weW

=exp 2mi{ —A, 0,) lim
P < 0>:-.o Y. det wexp 2mid{ w(p)—p, 6o+t
weW
where t+ 0, € h¢ is regular.

We write w=su with se Wy, ue WX and use that
exp 2misu(A+p), 90>-—jexp 2nidu(A+p), 00

which holds since (a, 0, )€Z for aeAg. Moreover we have
exp 2ni{u(p)—p, 8o y=det u. To see this we recall that if t: =|uA* N —A*| then
(—1'=detu. Butu(p)—p=—2B, BecuA* N —A*. Since A{ cuA™ all the p’s are in
A*N\Ag. Since (B, 6, ) €1/2+7Z the claim holds. Therefore we have

Y det wexp 2ri{ w(A+p)—p, 0p+1t)

weW

= ) exp2miul, 6> Y detsexp2mi{su(rA+p)—p,t).

ue WK se W
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For the denominator of Weyl’s character formula we get

Y. detwexp2nidw(p)—p, 0p+t>= [] (1—exp2mi —a, 8o+t ).

weW acAt

Since { —a, 0, >eZifaeAf and ( —a, 0, >e1/2+ Z if ae A —A™, the last expression
is equal to

[T —exp2mi<—a,t)) [] (I+exp2ni{—a,t))

ueAﬁ' aeA*\ Aﬁ'

and by the denominator formula of the Weyl character formula for f; the first part of
the last expression is

exp2mi<—pg ty », detsexp2mi{spg, t).

se Wk

If we now substitute our formulas in the equation for tr (9|V) and compute the limit
for t » 0 using the Weyl dimension formula over f. for the representations V,
the result we claimed follows.

u(A+p)—pK

QED.

3.2.4. LEMMA. — We have Ae Py if and only if exp 2mi{ wh—A, 0, > =1 for all we W.

Proof. — Assume that AeP,. If s,e W is the reflection determined by aeA*, then
{sgA—=N, 8, >=C2(\, w)/(a, @), B,>. We have (a, 0,>€Z for all acAg. If ais a
non-compact root and if AeP, then <({2(A, a)/(a, o), 6o >€Z. Therefore
exp 2mi{s,A—\, 0, >=1 for all aeA*. Suppose now that w=s,u where w,
ueW. Then u(AM)eP, and <(s,ul—A, 0,>={s,uh—ur+ur—A, 6,)>. Hence by
induction on the length of w we get exp 2ni{ wA—2A, 0, >=1for all weW. If conversely
exp 2ri{wA—2A, 0, >=1 for all weW, this holds in particular for s,, If a is a non-
compact root this exactly means that (A, a)/(o, ®)eZ since <(a, 8,>=1/2
‘mod Z. Therefore LeP,.

QED.

3.2.5. CoroLLARY. — If A€ P, then tr(6|V)>0.

3.3. THE TRACE OF AN OUTER CARTAN INVOLUTION. — We assume throughout that g is
an R-simple Lie algebra and that 0 is outer on g.. In case that g is a complex simple
Lie algebra considered as a real Lie algebra the trace of a Cartan involution on a
representation can be computed in a few lines. However the method we use to handle
the absolutely simple case applies as well to a complex g, so that we don’t separate these
cases.

3.3.1. Preliminaries. — (i) Recall that h=tDa, t=h NI, acp and that | is a funda-
mental O-stable Cartan subalgebra. We have ho =be where be is a 0-stable Borel sub-
algebra and dim a=1 since 0 is assumed to be outer on g.
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(i) If Q=hZ denotes the root lattice of g, and T: =Hom, (Q, C*) the corresponding
complex maximal torus in the adjoint group for gc, we have a sequence

1T — Aut(ge, b, be) — Aut(D) - 1,

see [Bou], V, III, § 5, n°2. Here D denotes the Dynkin diagram for gc, Aut(D) its
group of automorphisms and Aut(gc, be, be) the group of automorphisms of the Lie
algebra g leaving b and b stable.

Let 6, be the diagram automorphism associated to 0 in 3.0 (iv). Since €(08,)=¢0
there is a t,eT such that 8=int(ty)o0,. Since int(%t,)=0,0=00,=int(t,) we have
to€ T,

Finally we observe that 0 acts on g and induces here the inner automorphism given
by int(t,).

(iii) If g is a simple complex Lie algebra with Dynkin diagram D° then D=D° | D°

(disjoint union), g¢ 3 g x g and 0, acts on g¢ by switching the copies of g.

If g is absolutely simple then g¢ is of type A, 1=2, D, =4 or E4 with the obvious
involution 6, on the associated diagram.

Now we can explain the idea of our proof. We consider V as a representation of the
disconnected group Gx{1,0}. We use Kostant’s character formula and express
tr(0 ] V) as a quotient of two Weyl character formulas for certain representations of g2
evaluated at t,, see 3.3.1 (ii). For this we need some results on g% which are essentially
well known, see [C], Chap. 13 and [Bou], Ch. VIII, § 7. Exercises (13). Therefore we
give only a sketch of a proof.

3.3.2. ProrosITION. — Let g2: =g% and bh¢ resp. tc be as in 3.3.1 (). Then
(i) The Lie algebra g2 is semisimple with Cartan subalgebra tc =bh.
(i) The restriction res: bk — t% = (h*)% induces an isorphism

W(gc bc)eo - W(Qg, te).

(i) If T denotes the complex torus corresponding to b in the adjoint group of g, then
T is connected.

(iv) If Le PP is a O4-invariant weight of Y¢, then res A is a weight of tc.

Proof. — Statement (i) is proved in Bourbaki, loc. cit. and statement (ii) appears up
to some identifications in Carter loc. cit. Let Q be the root lattice of g.. Then 8, acts
on Q and the root lattice of g2 is Q/(1—0,)Q, see Bourbaki’s exercise. Since
TP =Hom;, (Q, C*)°¢~Hom;(Q/(1—6,) Q, C*) canonically, and since 8, acts as a per-
mutation of the simple roots corresponding to b the Z- module Q/(1—8,) Qis free. This
means that T% is a connected torus and (iii) holds. Bourbaki, loc. cit., gives formulas
which allow to express the coroots for g2 and t¢ in terms of coroots for gc and he. From
this (iv) follows easily.

QED.
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Remark. — Assume that g is absolutely simple. Then Bourbaki’s exercise gives the
type of g2 as follows. If g¢ is at type A,;, Azi—1, Dysy, Eg then g2 is of type D,, C;,
B, F,.

3.3.3. LEMMA. — Let p be half the sum of positive roots in be and denote by p° half
the sums of positive root of tc in g2 N be. Then py: =p—p° is an integral dominant weight
of t¢.

Proof. — Our claim is obvious if g is a complex simple Lie algebra. If g is absolutely
simple our claim is easily checked using the explicit description of coroots given in
Bourbaki’s exercise.

QED.

3.3.4. ProposITION. — We use the notation introduced above and denote the irreducible
representation of g¢ with extremal weight py resp. A+py by U, resp. U, ... Then 8
acts on U, and U, , ., we have tr(8|U, ) #0 and

tr (0| Uy 4 p)

v @V= <m0

w

Proof. — We recall that =int (t,) 6, acts on g2 =g¢° as int(t,). Since Ty, is connected
see 3.3.2 (ii) we can find a 1€ such that exp 2mity=t,eT%. To prove that
tr(6|U,,N);é0 we apply 3.2.4 for A=res p—p®=py. We have to consider ( wA—A, Ty )
for we W, W=W (g, bo).

Here we use 3.3.2 (ii). Now

wh—A=wres p—wp®—res p+p°=— Y resa+ Y o
acAt aeAt
w(@<0 w(@<0

Here A* resp. A" is the system of positive roots determined by b resp. be N g2. Since
g2=tc+ Y (8,+8e,) M a2 all roots in A* occur as restrictions of roots in A*. Therefore

aeA

the above sum is orthogonal to t, and using 3.2.4 we have tr(0 | U, #0.

We choose hete such that t,+h is regular in he. Then 6,: =exp (2ni ad 15+ h) acts
without fixpoints in the unipotent radical of bg, i.e. 0, is regular in the sense of
Kostant [K], p. 377.

Then by Kostant’s character formula

Y setwexp2ni{w(A+p), To+h)>
we W0
Y. detwexp2mi{wp, To+h)

wew?

tr(0| V)= lim tr(6,| V)= lim exp 2mi{ —A; 7o)
K0 P

Here we abbreviate W°=W?¢,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



492 J. ROHLFS AND B. SPEH

We now use Weyl’s character formula for the occuring nominator-and-denominator,
apply 3.2.3 and our claim follows if we take in account our normalization of 8-actions
on representations, see 3. 1.0 (iii).

QED.

3.3.5. CoroLLARY. — If the highest weight \ of V is in Py, then tr(6|V)>0.

Proof. — By definition a non-compact root a of A is exactly a root with non-trivial
restriction res o to tc such that res a is non compact with respect to 0 in g%. Hence
we can apply 3.2.5. We get tr(0 | U, +o) #0 and our claim follow from 3.3.4.

QED

4. Main result and applications

This paragraph contains our main result: Theorem 4.1 which says that L(0, I', V)
does not vanish in general. In 4.7 we compute L(6, I, V) in terms of multiplicites and
(g, f)-cohomology of irreducible representations. Here I is assumed to be
cocompact. We apply these results in 4.9 and obtain non-vanishing for multiplicities
of unitary representations of a group G with rank (K)#rank (G). These results are
almost as satisfactory as the corresponding ones for discrete series representations if
rank (K) =rank (G). In particular here the case of complex groups is covered.

We combine 1.6, 2.10 and 2.11 and get as a main result:

4.1. THEOREM. — Let G be a connected semi-simple Lie group with Cartan involution
0. Let V be an irreducible finite dimensional representation with 8-action having a highest
weight in Py (definition 3.1.1). If T is small enough (definition 2.8) then

L(6,T, V)=x((K\ G/ tr (6] V)>0.

Next we give an analog of Matsushima’s formula, i. e. we express L(6, I', V) in terms
of multiplicities and (g, f)-cohomology of unitary irreducible representations.

4.2 (i). Let V be as above with 0-action given by a linear mapCy:V — V. The letter
n always denotes an unitary irreducible representation of G. Let

H' (g, f, t®V) be the relative (g, f)-cohomology

of the representation 1 ® V of G. Here and in the following we do not distinguish in
our notation a representation, the space on which the representation acts, the representa-
tion on the underlying set of C*-vectors or the induced infinitesimal representation on
the underlying (g, f)-module.

(ii) If m is unitary and irreducible we denote by °m the representation space of =
together with a new action, where geG acts as 0(g). We write ® ~ o for unitary
equivalence of representations. Then © ~ °r if and only if & admits a 6-action, see 3. 1.

We write C,:n — °n for the equivalence. We observe that C, is unique up to sign
since 7 is irreducible. If convenient we identify m with its unitary equivalence class
neG. In particular we then write n="r instead of 1 ~ °r.
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(iii) We recall the definition of a 8-action on H (g, I, t®V), see [R-S 3: 2. 2], assuming
that n=°n. Let C,=n— % be as in (ii) and Cy:V >V as in (i). Then C:=C,® Cy
is an equivalence t® V-¥%n® V). Now H'(g, I, n®V) is computed from a complex
Hom, (A *p, n ® V), see [B-W: ], and we define a homomorphism 6’ of this complex by

O'w)(X;, A AX;):=C (WO X;) A AB(X)))
where X; A A ineA‘p,e acts a usual on p, i. e. 0(X;)=—X; and
weHom,(Aip, t® V).

The map induced by 6 in (g, )-cohomology again is denoted by 6° and the trace of 6
on cohomology is denoted by tr @',

We define
—1)'ue if n=°x
Lerov=] & "
0 if mw#m

Since our equivalences C, and Cy are unique up to sign |L(9, T®YV) l €N is well defined.

4.3. ProposITION. — For all ne G we have
IL@r®V)|= ¥ dmH' (gt r® V)=:dimH (g, , =®V).
i=0

Proof. — There is nothing to prove if H (g, {, t®V)=0. So let us assume that
H'(g, f, t®V)#0. Thanks to Vogan and Zuckerman [V-Z], 5.3, then n~ A, (}),
n ~ %1, where q = gg is a certain O-stable parabolic subalgebra containing a 0-stable
Cartan algebra he and where A is a certain character of the Levi component of q with
X|I)c= —1v. Here v is the lowest weight of V. Since H (g, f, t® V) #0 we have

H'(g,f,A,(}) ® V)=Hom,(A'p,A, (M) ® V),

see [B-W], 1.3.1.

Now in A, (M) there is a lowest E-type u(q, A) which occurs exactly once, see [V-Z], 6.1,
and as in [V-Z], 3.7, there is an isomorphism induced by the inclusion p(q, A) = A,(})

Homy(A'p, A,()) ® V) 5 Homy (A" p, p(¢,)) ® €)

Here ® C picks up the lowest weight space of V.

But our C,: A (M) - °A, () has to preserve p(q, A) and acts up to sign as the identity
on p(q, A). The map C, acts identically on the lowest weight space of V. Hence our
claim holds.

Q. E.D.
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Remark. — If 6=x6"x"*, xeK then |L(6, 1® V)| =|L(6’,n® V)|. In particular
if rank K=rank G then 0 is inner and L(6, n® V)=y(n ® V) is the Euler-Poincaré
characteristic of H (g, f, r®V). Of course here we choose C,=Id and Cy=Id.

4.4, (i) Let qusp(G/I“) be the space of cuspidal square integrable functions on G/I,
see [H-Ch]. We consider L2, (G/T) as a left G-module and unitary representation of
G. If neG, then it is well known that the multiplicity

m (n, T)=dim Homg (n, L2, (G/T))

cusp
is finite and

Li(G/D)= & w0
neG

as unitary representation. Here @ means: completed direct Hilbert sum.
(ii) If m=°m we define an action of 6 on TeHomg(w, L2, (G/T)) by

cusp
0(T)(a)(g)=T(C,(a))(0(g)), aem, geG/T. Here C,:n—°rnisasin4.1 (ili). The trace
of 8 acting on Homg (n, L2,,,(G/T)) is denoted by m (6, m, I'). We put m(6, x, I)=0
if ms#%n.
(iii) We have a natural injective map
1: m® V® Homg(n, L2, (G/T)) - L%, (GI®V

cusp cusp

sending a®@v®T to T(a) ®@v. The image of this map can be identified with the
isotypical component of n in L2, (G/I') tensored with V. Since 6 acts on G/I" and in

a fixed way on V we have an action of 6 on L2, (G/T) ® V.

cusp
We observe that t is equivariant if the left sides carries the 6-action which is the
product of the actions described above, see [R-S3], 2.3. 1.

(iv) We define Hy,, (T, V):=H'(g, £, L2, (G/T) ® V).
Since 0 acts on Lf“sp(G/F) ® V) there is again a 6-action on H, (T, V). The

cusp

Lefschetz number of this action is denoted by L, (8, I', V). Using (ii) and the argument
given in [B-W], Chap. VII, we easily arrive at

4.5. ProposITION. — We use the notation explained above. Then

Lo ® T, V)= Y m @, m,T)L6, 1 ® V).

neG

Observe that there are only finitely many non zero contributions and that only n’s
with ©="°r contribute.

4.6. We want to compare L., (0,I',V) with the topologically defined Lefschetz
number L (0, I, V) of paragraph 1. At first we recall that there is a natural 0-equivariant
isomorphism

H'(g,},C*(G/N ® V) SH (K\ G/T,V)=H'(T, V)
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see [B-W], VIL, §2, and [R-8$3], 2.1.1. Let *L2 (G/T)=LZ2,,(G/T)NC>(GT).

Then the inclusion “L2 (G/T)s C*(G/T) induces a 6-equivariant map
H::usp (T, V) > H' (T, V). Borel [B3] shows that the last map is injective. If we define
Lyg;s (6, T, V) in the obvious way on a 6-stable complement of H_,,, (I, V) in H'(T, V), we

get a formula
L(es T, V) = Lcusp(09 T, V) + LEis(e’ T, V)

Little is known about Lg, (8,T, V), see however [R-S3], 2.4.1, [R2] and [Le-S]. We
will pursue this further elsewhere. If G/I" is compact then L2, (G/T)=L?(G/T) and
L(6,T,V)=L,,,(6,I',V). We will give applications of this identity in 4.8.

We now choose C,, see 4.2 (iii), such that L(8,n® V)=dimH'(g, [, t®V). Then
combining 4.1, 4.3, 4.4, 4.5 and 4.6 we obtain.

4.7. PrOPOSITION. — In the setting of 4.1 let G/T" be compact. Then
L(6,T,V)= ZA m(0,n,I)dimH (g, , t®V)>0.

neG

We have an obvious consequence:

4.8. COROLLARY. — In the setting of 4.7 there is at least one neG with n="°n such
that m(n, I')>0.

Of course we now can conclude that © occurs in L2(G/T), if there is at most one n
such that L(6,t® V)# {0}. The following result shows that this argument often
applies.

4.9. PROPOSITION. — Assume that V is an irreducible representation with a regular
highest 8-invariant weight.

(@) If G=SL,,,;(R), SO2n+1,1)(R)°n=1; SL,(H), n=2, or if G is a complex Lie
group there is up to equivalence exactly one irreducible unitary representation © so that
H (g, f, n®V)# {0}.

(ii) If G=SL, ,(R), n=1, there are exactly two representations which have non trivial
Lie algebra cohomology with V-twisted coefficients.

Proof. — Our claims on SL, (R), n>2, are proved in [Sp]. For G=SO(2n+1,1)(R)°,
see [R-S3], 1.3.

Assume now that g is a complex Lie-algebra. Choose fcg a compact real
form. Then g=C ® f and conjugation with respect to f is a Cartan involution 6 on

R

g. We have a natural isomorphism
8c=®C=CRI®CSgxg
R R R
mapping z;, ® X ® z, to (z, 2z, xX; 2, 2, ® X), z;€C, Xl Then g = g ® 1 is identified

with {(X, 6X)/X eg} and the complex extension of 0 acts on g @ g mapping (x,, x,) to
(x5, x;). Wechoose t, a Cartan subalgebrainf. Then h=t® C=t+it = gis a Cartan
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subalgebra of g and b 3 {(X,0X)/Xebh} as subalgebra of gxg. We put a=it and
identify a with {(x, —x)/xea}. Since 0h=Dh we can identify hc with hx}p in
gxg. Choose a Borel subalgebra b of g containing ). Then b x b is a Borel subalgebra
in g x g with corresponding system of positive roots A* {JA™* if A* is the positive system

determined by bin g. We have W (ge, hc) > W (g, h) x W(g, b) and

W (8, be)® > W (g, b).

If now V is an irreducible representation of g. with highest weight (A, p) ehg& then
V=V, ® V, where V, resp. V, are irreducible of g with highest weight p resp. . Assume
that 0 acts on V. Then p=A. We denote also by (A, A) the character induced on | by
(A, ). Then (A, A) is trivial on it. We denote the unitarily induced representation
determined by b and (A, A) on G by X (A, A).

We observe that X (A, A) has the same infinitesimal character as V and that

see [B-W], 111, § 3.

By a result of Zelobenko [Z] all other unitarily induced principal series representation
with the same infinitesimal character are unitarily equivalent to X (—A, —A). But accord-
ing to [V-Z], 6.2, 6.3, since (A,A) is assumed to be regular, all irreducible ©’s with
H' (g, f,m ® W) {0} are unitarily induced principal series representations. Hence our
claim holds.

Now suppose G=SL,(H) where H means quaternions. For geG put 8g='g 1.

Here the bar denotes the canonical antiinvolution on H. We have a maximal 0-stable
torus

H= {(ZI,Z,Zz,Z, . .,Z”,Z—n)/ZiEC*, l—[ |Zil =1}
i=1

diagonally in G. The natural inclusions S'= {zeC*/|z| =1} = C* and R* = C* give
a decomposition H=TA where T=(S!)" and A =(R*)". The upper triangular matrices
in G make up a parablic subgroup P with Levipart SU(2)" sitting blockwise on the
diagonal. :

Let @ p be the Cartan decomposition corresponding to 6. Then a 8-invariant weight
A in b gives by restriction a weight on t. which we can write A=(A,,...,7,) in
correspondence to the decomposition T=(S!)". The Weyl group W (A) =Nk (A)/Z¢ (A)
of A, K=Sp,, acts as the group S, of permutations of the factors of T. This is easily
seen by inspection. Denote by =, ; the irreducible representation of SU(2) with highest
weight A, Then according to [E] the unitarily induced representation

IRy, .., A)=Indf(1,, ® ... ®m ®1)
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is irreducible and if V’ is the contragredient representation of the irreducible representation
V of G with highest weight A then H' (g, £, I(A, .. .,A) @ V)=A'a®C# {0}.

Now G has up to conjugacy just one B-stable Cartan subgroup. Since A is regular
every unitary  with H (g, T, t ® V;)# {0} has to be of the form I(y,,...,pn,). Here
we use [V-Z], 6.2, 6.3. Since then I(p,, . . .,p,) and V' have to have the same infinitesi-
mal character, ({4, - . ., 4,) is a permutation of (A,, ...,A,). But since this permutation
can be realized by an element in W (A) we get from [K-Z], Thm. 14.2 that I(n,,...,pn,)
and I(A,, ..., A,) are unitarily equivalent. Hence our claim holds.

QE.D.

Remark. — The other classical groups which are not of equal rank and have not been
dealt with in 5.8 are of the form SO(p, q) where p and g are odd. It is known that for
SO(p, q), p=q>1, there is more than one class of representations with non trivial
cohomology.

Observe that the two representations which occur for SL, ,(R) in 4.9 are constituents of
one irreducible representation of SL,, (R), = { AeGL,(R)/det A= +1}; see [Sp]. Since

SO(21) \ 8Ly > O(2m) \SL;, (R) ,

we get that if one of these representations contributes to H' (g, f, L2(G/I') ® V) then both
do and with the same multiplicity. Here we assume that the diagonal element
(1,...,1, —1) of SL,(R), normalizes I'.

4.10. PrROPOSITION. — Assume that G, V and T are as in 4.7 and denote by & one of
the representations described in 4.8. Then

(i) m(x@, I)>0.

(ii) If T'y is O-stable, normal in T and arithmetic then there is a constant a(I')>0
depending on T such that m (n,T';)2 |(T/T,)°|a(I).

Proof. — The first claim follows from 4.7 and 4.8. To prove the second claim
observe first that the Cartan involution for G as described in 4. 8 actually is “the outer
automorphism. Hence 3.1.2 applies and tr(9|V);é0. Then the second claim follows
using 2.12.

QED.

Remark. — (i) If T is chosen with more care, we even have m (n,I';) = ](F/I" )° | m(m, ).

(i) We do not know whether |(I'/T';)°| gives the right order of growth for m (x,T,),
see 2.12: remark.

REFERENCES

[B1] A. BOREL, Introduction aux groupes arithmétiques, Paris, Hermann, 1969.

[B2] A. BOREL, Stable Real Cohomology of Arithmetic Groups II, In: J. HANO et al. Eds. Manifolds and
Lie groups (Progress in Math. Vol. 14, Boston, Basel, Stuttgart: Birkhéuser, 1981, pp. 21-25).

[B3] A. BOREL, Compact Clifford-Klein Forms of Symmetric Spaces (Topology, Vol. 2, 1963, pp. 111-122).

[B-M] D. BarBascH and H. Moscovicl, L2-Index and the Selberg Trace Formula (J. Funct. Anal., Vol. 53,
N° 2, 1983, pp. 151-201).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



498 J. ROHLFS AND B. SPEH

[B-S] A. BOREL and J.-P. SERRE, Théorémes de finitude en cohomologie galoisienne (Comment. Math. Helv.,
Vol. 39, 1964, pp. 111-196).

[B-W] A. BoreL and N. WALLACH, Continuous Cohomology, Discrete Subgroups and Representations of
Reductive Groups (Annals of Math. Studies, Princeton, University Press, 1960).

[Bou] N. BOURBAKI, Groupes et algébres de Lie, Paris, Hermann, 1968.

[C] R. W. CARTER, Simple Groups of Lie Type, London, New York, Sydney, Toronto, J. Wiley & Sons
1972.

[Cl11] L. CLozEL, On Limit Multiplicities of Discrete Series Representations in the Space of Automorphic
Forms (Invent. math., Vol. 83, 1986, pp. 265-284.

[C12] L. CLOZEL, On the Cuspidal Cohomology of Arithmetic Subgroups of SL(2n) and the First Betti
Number of Arithmetic 3-Manifolds (Duke. Math. J., Vol. 55, 1987, pp. 475-486).

[DG-W] D. DE GEORGE and N. WALLACH, Limit Formulas for Multiplicities in L?(I'\ G) (Ann. of Math.,
Vol. 107, 1978, pp. 133-150).

[E] T. J. ENRIGHT, Relative Lie Algebra Cohomology and Unitary Representations of Complex Lie Groups
(Duke. Math. J., Vol. 46, 1979, pp. 513-525).

[H1] G. HARDER, On the Cohomology of SL, (D), In: Lie Groups and their Representations (Proc. of the
Summer School on Group Repres., London, Hilger, 1975, pp. 139-150).

[H2] G. HARDER, A Gauss-Bonnet Theorem for Discrete Arithmetically Defined Groups (Ann. Scient. Ec.
Norm. Sup., (4), 1971, pp. 409-455).

[H-Ch] HARISH-CHANDRA, Automorphic Forms on Semisimple Lie Groups (Lecture Notes in Math., Vol. 62,
Berlin, Heidelberg, New York, Springer Verlag, 1968).

[He] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces New York, San Francisco,
London, Academic Press, 1978.

[3-L] H. JACQUET and R. P. LANGLANDS, Automorphic Forms on Gl(2) (Lecture Notes in Math., Vol. 114,
Berlin, Heidelberg, New York, Springer Verlag, 1970).

[K-Z] A. W. Knarp and G. J. ZUCKERMAN, Classification of Irreducible Tempered Representations of
Semisimple Groups (Ann. of Math., Vol. 116, 1982, pp. 389-501).

K] B. KOSTANT, Lie Algebra Cohomology and the Generalized Borel-Bott Theorem (Ann. of Math., Vol. 74,
1961, pp. 329-387).

[L1] R. P. LANGLANDS, Dimensions of Spaces of Automorphic Forms (Proc. Symp. Pure Math. IX, A M.S.,
1966, pp. 253-257).

[L2] R. P. LANGLANDS, Basse Change for Gl(2), Annals of math. studies, Princeton, University Press,
1980.

[La] J.-P. LABESSE, Cusp Cohomology for Arithmetic Groups, Lecture at the Conference Darstellungstheorie
reduktiver Lie-Gruppen und automorphe Darstellungen, Mathematisches Forschungsinstitut Oberwol-
fach, 1987.

[La-S] J.-P. LABESSE and J. SCHWERMER, On Liftings and Cusp Cohomology of Arithmetic Groups (Invent.
math., Vol. 83, 1986, pp. 383-401).

[Le-S] R. LEE and J. SCHWERMER, The Lefschetz Number of an Involution on the Space of Harmonic Cusp
Forms of Sl; (Invent. math., Vol. 73, 1983, pp. 189-239).

M] H. MINkKOWSKI, Gesammelte Abhandlungen I, Leipzig, Berlin, Teubner.

[R1] J. ROHLFS, The Lefschetz Number of an Involution on the Space of Classes of Positive Definite Quadratic
Forms (Comment. Math. Helv., Vol. 56, 1981, pp. 272-296).

[R2] J. ROHLFS, On the Cohomology of the Bianchi Modular Groups (Math. Z., Vol. 188, 1985, pp. 253-
269).

[R 3] J. ROHLFs, Lefschetz Numbers for Arithmetic Groups (in preparation).

[R-S1] J. RoHLFs and B. SpeH, A Cohomological Method for the Determination of Limit Multiplicities (Lecture
Notes in Math., Vol. 1243, 1987, pp. 262-272).

[R-S2] J. RoHLFs and B. SPEH, On Limit Multiplicities of Representations with Cohomology in the Cuspidal
Spectrum (Duke Math. Journ., Vol. 55, 1987, pp. 199-211).

[R-S3] J. RoHLFs and B. SPEH, Representations with Cohomology in the Discrete Spectrum of Subgroups of
SO(n, 1)(Z) and Lefschetz Numbers, (Ann. scient. Ec. Norm. Sup., 4° série, T. 20, 1987, pp. 89-
136).

4¢ SERIE — TOME 22 — 1989 — N° 3



AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 499

[Sa] G. SAVIN, Limit Multiplicities of Cusp Forms (Invent. math., Vol. 95, 1989, pp. 149-159).

[Sch] W. SCHARLAU, Quadratic and Hermitian Forms, Berlin, Heidelberg, New York, Tokyo, Springer
Verlag, 1985.

[Sh] G. SHIMURA, Sur les intégrales attachées aux formes automorphes (J. Math. Soc. Japan, Vol. 11, No. 4,
1959, pp. 291-311).

[Se] J.-P. SERRE, Cohomologie Galoisienne (Lecture notes in Mathematics, No. 5, Berlin, Heidelberg, New
York, Springer Verlag).

[Sp] B. SpeH, Unitary Representations of Gl(n, R) with Non-Trivial (g, £)-Cohomology (Invent. math.,
Vol. 71, 1983, pp. 1-38).

[V-Z] D. VoGAN and G. ZUCKERMAN, Unitary Representations with Nonzero Cohomology (Compositio.
Math., Vol. 53, 1984, pp. 51-90).

[Z] D. P. ZELOBENKO, The Analysis of Irreducibility in a Class of Elementary Representations of a Complex
Semisimple Lie Group (Math. U.S.S.R. Izvestija, 2, 1968, pp. 105-128).

(Manuscrit regu le 2 mai 1988,
révisé le 5 janvier 1989).

J. ROHLFS,
Katholische Universitit Eichstitt,
Ostenstrasse 26-28, 8079 Eichstitt,

Fed. Rep. of Germany
and B. SPEH,
Department of Mathematics,
Cornell University,
Ithaca, N.Y. 14853 U.S.A.

Added in proof: The proof of Prop. 4.3.2 in [R-S 3] contains an error concerning orientations. The proof
can be corrected as follows: delete from the last five sentences of the proof the first four. After the last
sentence add: this equation implies that E (¢, 0)=0 iff ¢=0 (in the notation of 4.3.1). Hence the second
claim follows as in 4.3. 1.
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