Annales scientifiques de l'É.N.S.

F. LOESER

Fonctions zêta locales d'Igusa à plusieurs variables, intégration dans les fibres, et discriminants

Annales scientifiques de l'É.N.S. 4^e série, tome 22, n° 3 (1989), p. 435-471 http://www.numdam.org/item?id=ASENS 1989 4 22 3 435 0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1989, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www.elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. Éc. Norm. Sup., 4° série, t. 22, 1989, p. 435 à 471.

FONCTIONS ZÊTA LOCALES D'IGUSA À PLUSIEURS VARIABLES, INTÉGRATION DANS LES FIBRES, ET DISCRIMINANTS

PAR F. LOESER

Introduction

Soit K un corps local de caractéristique nulle. On étudie dans cet article les pôles d'intégrales de la forme

$$Z_{F}(s_{1}, \ldots, s_{k}) = \int_{\mathbb{K}^{n}} |f_{1}|_{\mathbb{K}}^{s_{1}} \ldots |f_{k}|_{\mathbb{K}}^{s_{k}} \varphi |dx|.$$

Dans cette expression, les f_i sont des polynômes appartenant à $K[x_1, \ldots, x_n]$ s'annulant à l'origine (ou des fonctions analytiques dans le cas archimédien), $F = (f_1, \ldots, f_k)$, φ est une fonction test à support compact (localement constante dans le cas p-adique, C^{∞} dans le cas archimédien), et |dx| désigne la mesure de Haar standard sur K^n .

On démontre de la même manière que dans le cas d'une seule fonction (k=1), en utilisant le théorème de résolution des singularités d'Hironaka ([A], [B-G], [I1]), que l'intégrale $Z_F(s_1, \ldots, s_k)$, a priori seulement définie pour $Re(s_i) > 0$, se prolonge analytiquement en une fonction méromorphe sur \mathbb{C}^k dont les pôles sont situés sur des hyperplans, et dans le cas non-archimédien que Z_F est une fonction rationnelle des variables q^{-s_i} , q étant le cardinal du corps résiduel. Il est utile de prolonger Z_F en une fonction

$$Z_{\mathbf{F}}(\omega_1, \ldots, \omega_k) = \int_{\mathbf{K}^n} \omega_1(f_1) \ldots \omega_k(f_k) \varphi |dx|$$

les variables $\omega_1, \ldots, \omega_k$ étant des quasicaractères, les propriétés précédentes restant valides dans ce cadre.

On appelle pentes du morphisme F les directions des hyperplans polaires des intégrales $Z_F(\omega_1, \ldots, \omega_k)$, φ décrivant l'ensemble des fonctions test. On note $\mathscr{P}(F)$ l'ensemble des pentes. C'est un ensemble fini.

On se propose dans cet article de relier $\mathscr{P}(F)$ à la géométrie du discriminant de F à l'origine. Le discriminant Δ_F de F est par définition l'image réduite par F du lieu critique de F. En général Δ_F peut être pathologique. Nous imposons donc à F la condition

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. - 0012-9593/89/03 435 37/\$ 5.70/ Gauthier-Villars

suivante : F est sans éclatement en codimension zéro. Cette condition entraîne en particulier que Δ_F est une hypersurface. Elle a été étudiée en détail par Henry, Merle et Sabbah dans [H-M-S]. Elle est vérifiée dans les cas suivants : k=1; le morphisme F est fini; les fibres de F sont des intersections complètes de codimension k ayant des singularités géométriquement isolées; F est de la forme (f, l) avec f quelconque et l une forme linéaire générale s'annulant à l'origine. On considère le (k-1) squelette de l'éventail associé au polyèdre de Newton à l'origine de Δ_F et l'ensemble $\mathscr{P}(\Delta_{F,0})$ des directions d'hyperplans associées à ce (k-1) squelette. Ce n'est un ensemble fini que pour k=2.

Le résultat principal de cet article est que sous une certaine hypothèse de finitude sur le morphisme F (le morphisme est « bon ») l'ensemble des pentes $\mathcal{P}(F)$ est contenu dans $\mathcal{P}(\Delta_{F,\,0})$. Nous montrons que dans le cas archimédien cette hypothèse est toujours vérifiée si F est sans éclatement en codimension zéro. Dans le cas non-archimédien nous ne savons montrer qu'elle est vérifiée que dans le cas où F est fini, et nous conjecturons qu'elle est vérifiée en général pour F sans éclatement en codimension zéro. De façon imagée cette hypothèse peut s'exprimer ainsi : après tout changement de base tel que l'image inverse du discriminant soit un diviseur à croisements normaux, les intégrales dans les fibres admettent des développements asymptotiques du type « singulier-régulier ».

Une des motivations initiales de ce travail est de déduire de la connaissance des pentes de F = (f, l) avec l une forme linéaire générale s'annulant à l'origine, des renseignements sur les pôles de l'intégrale Z_f . Dans le cas archimédien les pôles de l'intégrale $Z_f(s)$ sont de la forme $s_0 = \alpha - k$, avec α une racine du polynôme de Bernstein de f et k un entier positif, en particulier $\exp(2i\pi s_0)$ est une valeur propre de la monodromie locale. Dans le cas non-archimédien on a montré dans [Lo1] que si n=2 les parties réelles des pôles de Z_f sont des racines du polynôme de Bernstein de f. Il est naturel de conjecturer des énoncés analogues pour n quelconque (voir [Lo 2], [Lo 3] pour des conjectures précises); en particulier on conjecture que dans le cas p-adique, si s_0 est la partie réelle d'un pôle de Z_f , exp $(2i\pi s_0)$ est valeur propre de la monodromie agissant sur la cohomologie de la fibre de Milnor associée à un point de $f_{\tau} = 0$, f_{τ} étant un polynôme complexe obtenu en choisissant un plongement \u03c4 de K dans C. D'autre part, dans le cas p-adique, si $\pi: X \to K^n$ est une modification de K^n telle que $E = \pi^{-1}(f^{-1}(0))$ soit un diviseur à croisements normaux, les parties réelles des pôles de Z_f sont de la forme $-n_D/N_D$, avec D une composante irréductible de E et N_D (resp. n_D-1) la valuation de f (resp. |dx|) le long de D. Un problème important est de trouver un critère pour que $-n_{\rm D}/N_{\rm D}$ ne soit pas la partie réelle d'un pôle.

En utilisant notre résultat sur les pentes nous obtenons la conséquence suivante sur les pôles de Z_f . Pour simplifier son énoncé supposons ici que f=0 n'a que des singularités géométriquement isolées (l'énoncé général est donné en 1.8). Si F=(f,l) est « bon » (ce qui est conjecturalement toujours le cas) alors pour que α soit la partie réelle d'un pôle de Z_f il est nécessaire (à moins que $\alpha=-1$) qu'il existe une composante irréductible D de E telle que $\alpha=-n_D/N_D$ et telle que le rapport des valuations de f et de l le long de D soit la pente d'une face du polygône de Newton de F à l'origine (qui ne dépend que de f). D'après la description de la monodromie par les carrousels ([L]) un énoncé similaire vaut pour les valeurs propres de la monodromie. Ce résultat est donc un indice encourageant en faveur de la conjecture reliant les pôles de Z_f aux valeurs propres de la

monodromie, bien qu'il ne livre tout son sel que si l'on sait que tout morphisme sans éclatement en codimension zéro est « bon ».

Dans le cas archimédien C. Sabbah a montré dans [S1] que les pentes de F sont contenues dans un ensemble fini calculé à l'aide de variétés caractéristiques de systèmes différentiels. Dans le cas de deux fonctions (k=2) cet ensemble coïncide avec $\mathscr{P}(\Delta_{F,\,0})$. Si k>2 cet ensemble est moins aisé à décrire concrètement mais devrait être contenu dans $\mathscr{P}(\Delta_{F,\,0})$. La démonstration de C. Sabbah repose sur ses résultats sur les polynômes de Bernstein à plusieurs variables. Comme une telle approche n'est pas possible dans le cas p-adique, nous avons été amenés à en trouver une plus élémentaire (qui nous semble donc déjà intéressante dans le cas archimédien) qui soit adaptée au cas p-adique, et qui est celle utilisée dans cet article.

Cet article contient quelques autres résultats d'intérêt indépendant. Dans le cas archimédien, pour les morphismes sans éclatement en codimension zéro, on obtient un théorème d'existence de développements asymptotiques pour les intégrales dans les fibres (théorème 2.4). D'autre part, comme nous l'a suggéré C. Sabbah, on peut déduire du théorème sur les pentes des résultats sur la variation avec le paramètre t des intégrales Z_t , quand f_t est une famille de fonctions.

Une partie des résultats de cet article a été annoncé dans [Lo 3].

Remerciements

Je remercie C. Sabbah pour les nombreuses discussions que nous avons eues pendant la préparation de ce travail.

1. Le cas non archimédien

1.1. PRÉLIMINAIRES. — 1.1.1. Notations et conventions. — Soit K une extension finie de \mathbf{Q}_p d'anneau des entiers R, d'idéal maximal \mathscr{P} et de corps résiduel $R/\mathscr{P} = \mathbf{F}_q$. On note K^\times le groupe multiplicatif de K, R^\times le groupe des unités de R et $\hat{\mathbf{R}}$ le groupe des caractères continus de R^\times à valeurs complexes. On fixe une uniformisante π de R, et pour x dans K on note v(x) la valuation \mathscr{P} -adique de x, $|x| = q^{-v(x)}$ et $a(x) = x\pi^{-v(x)}$. On note μ la mesure de Haar sur K^n de masse totale 1 sur R^n pour $n \ge 1$. Si K^n est muni de coordonnées $x = (x_1, \ldots, x_n)$ on note |dx| la mesure μ et $|d^\times x|$ la mesure $(1/1 - q^{-1})^n |dx|/|x_1| \ldots |x_n|$ sur $(K^\times)^n$. Sur K^n on dispose de la norme $|x| = \sup_{1 \le i \le n} |x_i|$ pour $x = (x_i)_{1 \le i \le n}$.

On fixe une clôture algébrique \overline{K} de K. Si X est un schéma défini sur K on note X_K (resp. X_K^-) l'ensemble des points à valeurs dans K (resp. \overline{K}). Sur X_K on distinguera les ouverts de Zariski et les ouverts p-adiques de X vus comme espaces K-analytiques. On note A^n l'espace affine de dimension n sur K. On note $\mathcal{S}(K^n)$ l'espace des fonctions de Schwartz-Bruhat sur K^n , c'est-à-dire l'espace des fonctions à valeurs complexes localement constantes à support compact sur K^n .

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Un élément de N^k est dit primitif si ses coordonnées sont des entiers premiers entre eux.

- 1.1.2. Transformation de Mellin. -1.1.2.1. Soit $\Omega(K^{\times}) = \operatorname{Hom}(K^{\times}, C^{\times})$ le groupe des homomorphismes continus de K^{\times} dans C^{\times} (appelés quasicaractères). De l'isomorphisme $K^{\times} \simeq \mathbb{Z} \times \mathbb{R}^{\times}$ défini par $x \to (v(x), a(x))$ on déduit un isomorphisme $\Omega(K^{\times}) \simeq C^{\times} \times \hat{\mathbb{R}}$. Tout quasicaractère ω s'écrit de façon unique $\omega(x) = z^{v(x)} \chi(a(x))$ avec z dans C^{\times} et χ dans $\hat{\mathbb{R}}$. Le groupe $\Omega(K^{\times})$ s'identifiant au produit de C^{\times} par un ensemble discret dénombrable, il est naturellement muni d'une structure de variété analytique complexe. On écrit z de C^{\times} sous la forme q^{-s} , on note $\sigma(\omega)$ la partie réelle de s et $\Omega_+(K^{\times})$ l'ensemble des quasicaractères ω avec $\sigma(\omega)$ strictement positif.
- 1.1.2.2. DÉFINITION. Soit Λ une partie finie de C/Zl(q), $l(q)=2\pi i/\log q$, et soit m un entier strictement positif. $Z_{\Lambda, m}(\Omega(K^{\times}))$ est l'ensemble des fonctions Z à valeurs complexes sur $\Omega(K^{\times})$ telles que :
- (i) pour tout χ de \hat{R} il existe des nombres complexes $b_{\lambda, j, \chi}$ tels que, en notant Z_{χ} la restriction de Z à $C^{\times} \times \{\chi\}$, la fonction

$$Z_{\chi}(s) - \sum_{\lambda \in \Lambda} \sum_{j=1}^{m} \frac{b_{\lambda, j, \chi}}{(1 - q^{-\lambda} z)^{j}}$$

appartienne à $\mathbb{C}[z, z^{-1}]$.

- (ii) pour presque tout χ la fonction Z_{γ} est identiquement nulle.
- 1.1.2.3. DÉFINITION. Soit Λ une partie finie de $\mathbb{C}/\mathbb{Z}l(q)$ et soit m un entier strictement positif. $\mathscr{F}_{\Lambda, m}(\mathbb{K}^{\times})$ est l'ensemble des fonctions F à valeurs complexes définies sur \mathbb{K}^{\times} telles que :
 - (i) F est localement constante.
 - (ii) F(x) est nul pour |x| suffisamment grand.
 - (iii) Si |x| est suffisamment petit on a :

$$F(x) = \sum_{\lambda \in \Lambda} \sum_{j=1}^{m} \sum_{\chi \in \widehat{R}} a_{\lambda, j, \chi} \chi(a(x)) |x|^{\lambda} (\log |x|)^{j-1}$$

avec $a_{\lambda,j,\chi}$ des nombres complexes nuls pour presque tout χ .

1.1.2.4. Igusa a démontré que la transformation de Mellin établit une correspondance bijective entre $\mathscr{F}_{\Lambda,m}(K^{\times})$ et $Z_{\Lambda,m}(\Omega(K^{\times}))$:

Théorème 1.1.2.4. [I1], [I2]. — Si les éléments de Λ sont de partie réelle positive

(i) pour tout F de $\mathscr{F}_{\Lambda, m}(K^{\times})$, l'intégrale

$$MF(\omega) = \int_{K^{\times}} F(x) \omega(x) |d^{\times} x|$$

définit une fonction sur $\Omega_+(K^{\times})$ dont le prolongement analytique appartient à $Z_{\Lambda,m}(\Omega(K^{\times}))$.

- (ii) M établit une correspondance bijective entre $\mathscr{F}_{\Lambda, m}(K^{\times})$ et $Z_{\Lambda, m}(\Omega(K^{\times}))$.
- (iii) M⁻¹ est donné par

$$(M^{-1} Z)(x) = \sum_{\chi \in \hat{R}} (\text{Res}_{z=0} (Z_{\chi}(z) z^{-v(x)-1}) \chi(a(x))^{-1}$$

$$= \sum_{\chi \in \hat{R}^{\times}} l(q) \left(\int_{\sigma - l(q)}^{\sigma + l(q)} Z_{\chi}(q^{-s}) |x|^{-s} ds \right) \chi(a(x))^{-1}$$

pour $\sigma = \text{Re}(s) > 0$.

(iv) M induit la correspondance suivante entre $b_{\lambda,j,\chi}$ et $a_{\lambda,j,\chi}$:

$$b_{\lambda, j, \chi} = \sum_{l=j}^{m} e_{l, j} (-\log q)^{l-1} a_{\lambda, l, \chi^{-1}}$$

les e_{l, j} étant définis par l'identité

$$t^{l-1} = \sum_{j=1}^{l} e_{l,j} \frac{(t+j-1)(t+j-2)\dots(t+1)}{(j-1)!}.$$

1.1.2.5. Le résultat suivant nous sera utile. C'est une conséquence directe de la démonstration du théorème précédent.

PROPOSITION 1.1.2.5. — Soit F une fonction appartenant à $\mathcal{F}_{\Lambda, m}(K^{\times})$, les éléments de Λ étant de partie réelle positive. L'égalité 1.1.2.3. (iii) est vérifiée pour $|x| \leq q^{-e}$ si et seulement si pour tout caractère χ on a une égalité :

$$(MF)_{\chi}(s) = \sum_{\lambda \in \Lambda} \sum_{j=1}^{m} \frac{b_{\lambda, j, \chi}}{(1 - q^{-\lambda} z)^{j}} + P_{\chi}(z, z^{-1})$$

avec P, un polynôme de Laurent de degré en z strictement inférieur à e.

1.1.2.6. Ce qui précède peut être généralisé de la façon suivante aux fonctions de plusieurs variables. On considère K^k muni de coordonnées (x_1, \ldots, x_k) . On fixe des parties finies Λ_i de $\mathbb{C}/\mathbb{Z} l(q)$, $1 \le i \le k$, et m en entier strictement positif. On note Λ le produit $\prod_{1 \le i \le k} \Lambda_i$. On identifie $\Omega(K^{\times})^k$ à $(C^{\times})^k \times \hat{\mathbb{R}}^k$ en associant à $\omega = (\omega_1, \ldots, \omega_k)$ le

couple (z, χ) avec $z = (z_1, \ldots, z_k)$ et $\chi = (\chi_1, \ldots, \chi_k)$. On écrit $z_i = q^{-s_i}$. On définit alors $Z_{\Lambda, m}(\Omega(K^{\times})^k)$ comme l'ensemble des fonctions Z à valeurs complexes sur $\Omega(K^{\times})^k$ telles que:

(i) pour tout χ appartenant à \hat{R}^k la restriction de Z à $(C^*)^k \times \{\chi\}$ est de la forme

$$Z_{\chi}(s) = \sum_{I = \{1, \dots, n\}} \sum_{\lambda \in \Lambda_{I}} \sum_{j \in \{1, \dots, m\}^{I}} \frac{P_{I, j, \chi}(z_{\{1, \dots, k\} \setminus I})}{(1 - q^{-\lambda} z_{I})^{j}}$$

avec $\Lambda_{\rm I} = \prod_{i \in {\rm I}} \Lambda_i$, $(1 - q^{-\lambda} z_{\rm I})^j = \prod_{i \in {\rm I}} (1 - q^{-\lambda_i} z_i)^{j_i}$, $\lambda = (\lambda_i)_{i \in {\rm I}}$, $j = (j_i)_{i \in {\rm I}}$ et $P_{{\rm I}, j, \chi}$ un polynôme complexe en les variables z_i et z_i^{-1} , i n'appartenant pas à I.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

(ii) pour presque tout χ la fonction Z_{γ} est identiquement nulle.

De même on définit $\mathscr{F}_{\Lambda, m}((K^{\times})^k)$ comme l'ensemble des fonctions F à valeurs complexes sur $(K^{\times})^k$ telles que :

- (i) F est localement constante.
- (ii) F(x) est nul pour |x| suffisamment grand.
- (iii) pour |x| suffisamment petit on a une égalité

$$F(x) = \sum_{\lambda \in \Lambda} \sum_{j \in \{1, ..., m\}^k} \sum_{\chi \in \widehat{R}^k} a_{\lambda, j, \chi} \prod_{1 \le i \le k} \chi_i(a(x_i)) |x_i|^{\lambda_i} (\log |x_i|)^{j_i - 1}$$

avec $a_{\lambda,j,\gamma}$ des nombres complexes nuls pour presque tout χ .

Par la même démonstration que celle de 1.1.2.4 on obtient que la transformation de Mellin

$$MF(\omega) = \int_{(K^{\times})^{k}} F(x) \omega(x) |d^{\times}x|$$

établit une bijection entre $\mathscr{F}_{\Lambda, m}((K^{\times})^k)$ et $Z_{\Lambda, m}(\Omega(K^{\times})^k)$, les éléments de Λ_i étant de partie réelle positive.

1.1.3. Soit f un polynôme appartenant à $K[x_1, \ldots, x_n]$. On suppose que f s'annule à l'origine de K^n et n'est pas constant. Le lieu critique C_f de f est par définition le sous schéma de A^n défini par l'annulation des dérivées partielles de f.

Pour toute fonction de Schwartz-Bruhat φ sur Kⁿ l'intégrale

$$Z_{\varphi}(\omega) = \int_{K^{n}} \varphi(x) \omega(f(x)) |dx|$$

définit une fonction holomorphe sur $\Omega_+(K^*)$.

On considère également, pour t appartenant à $K^k \setminus f(C_{f,K})$, l'intégrale dans la fibre

$$I_{\varphi}(t) = \int_{f=t} \varphi \, \mu_t$$

avec μ_t le résidu de la mesure μ le long de f=t.

On rappelle le résultat suivant, dû à Igusa ([I1], [I2]) :

Théorème 1.1.3. — Si $C_{f,K}$ n'intersecte le support de φ que dans la fibre f=0, alors:

- (i) Z_{φ} admet un prolongement analytique en une fonction de $Z_{\Lambda, n}(\Omega(K^{\times}))$ pour un choix convenable de Λ , les éléments de Λ étant de partie réelle positive.
 - (ii) la fonction $|x|I_{\varphi}$ appartient à $\mathcal{F}_{\Lambda,n}(K^{\times})$ et $M(|x|/(1-q^{-1})I_{\varphi}) = Z_{\varphi}$.
- 1.1.4. Soit $F: A^n \to A^k$ un morphisme dominant défini sur K. On suppose que F s'annule à l'origine. On écrit $F = (f_1, \ldots, f_k)$ avec f_i appartenant à $K[x_1, \ldots, x_n]$. Soit φ une fonction de Schwartz-Bruhat sur K^n et $\chi = (\chi_1, \ldots, \chi_k)$ avec χ_i appartenant à \hat{R} .

L'intégrale:

$$Z_{\varphi, \chi}(s) = \int_{\mathbb{K}^n} \varphi \prod_{i=1}^k |f_i|^{s_i} \chi_i(a(f_i)) \mu$$

converge pour $Re(s_i) > 0$, avec $s = (s_1, \ldots, s_k)$.

Soit $\pi: X_K \to A_K^n$ une application K-analytique propre surjective de la variété K-analytique lisse X_K sur A_K^n vérifiant les conditions suivantes :

- (i) $\pi^{-1} \left(\bigcup_{i=1}^{k} f_i^{-1} (0) \right)$ est un diviseur à croisements normaux.
- (ii) la restriction de π à $X_{K}^{k}\pi^{-1}\left(\bigcup_{i=1}^{k}f_{i}^{-1}\left(0\right)\right)$ est un isomorphisme sur son image.

On note E^j , $j \in I$, les composantes irréductibles du diviseur $\pi^{-1} \left(\bigcup_{i=1}^k f_i^{-1}(0) \right)$, N_i^j la multiplicité de f_i le long de E^j et $N_0^j - 1$ la valuation de $\pi^*(\mu)$ le long de E^j . On a le résultat suivant, dû à Igusa ([I1], [I2]) quand k = 1, dont la démonstration s'adapte sans difficulté au cas k > 1.

Théorème 1.1.4. — L'intégrale $Z_{\varphi,\chi}(s)$ admet un prolongement analytique à \mathbb{C}^k en une fonction rationnelle de $q^{-s_1}, \ldots, q^{-s_k}$:

$$Z_{\varphi,\chi}(s) = \frac{P_{\varphi,\chi}(s)}{\prod_{i \in I} (1 - q^{-(N_0^i + \sum_{j=1}^k N_j^i s_j)})}$$

avec $P_{\varphi,\chi}(s)$ un polynôme en les variables q^{-s_i} , q^{s_i} . Les parties réelles des pôles de $Z_{\varphi,\chi}$ appartiennent à la réunion des hyperplans d'équation

$$\sum_{i=1}^{k} N_i^j \sigma_i + N_0^j = 0.$$

Il existe un voisinage p-adique U de l'image inverse de l'origine par F dans K'', tel que si le support de φ est inclus dans U, $Z_{\varphi, \gamma}$ est nulle pour presque tout χ .

Remarque. — Malheureusement on ne dispose pas pour k>1 d'analogue convenable de 1.1.3. En général, pour φ ayant son support contenu dans U, Z_{φ} n'appartient pas à $Z_{\Lambda, n-k+1}(\Omega(K^{\times})^k)$ pour Λ convenable.

On note $P(\varphi, \chi)$ l'adhérence dans \mathbb{R}^k de $\{(Re(s_1), \ldots, Re(s_k))/s \text{ pôle de } Z_{\varphi, \chi}\}$ et P la réunion des $P(\varphi, \chi)$. D'après le théorème P est une réunion finie d'hyperplans H_l , $l \in L$.

Chaque hyperplan H_l admet une unique équation $\sum_{i=1}^{r} a_i^l \sigma_i + a_0^l = 0$ avec $a^l = (a_i^l)_{1 \le i \le k}$ un vecteur primitif de \mathbb{N}^k et a_0^l un rationnel positif.

On note $\mathscr{P}(F)$ l'ensemble des a^l pour l décrivant L. Un élément de $\mathscr{P}(F)$ est appelé pente. En général $\mathscr{P}(F)$ dépend du corps K.

1.2. Polyèdres de Newton. - 1.2.1. Généralités. - Soit g un polynôme de $K[x_1, \ldots, x_k]$ s'annulant à l'origine. On écrit

$$g = \sum_{p \in \mathbb{N}^k} g_p x^p$$
 et $\sup (g) = \{ p \in \mathbb{N}^k / g_p \neq 0 \}.$

L'enveloppe convexe $\Gamma_+(g)$ de supp $(g) + \mathbb{N}^k$ dans \mathbb{R}^k est le polyèdre de Newton à l'origine de g. On appelle facette une face de dimension k-1 de $\Gamma_+(g)$ et on note $\Gamma(g)$ la réunion des facettes compactes de $\Gamma_+(g)$.

On note \langle , \rangle le produit scalaire standard sur \mathbb{R}^k . Pour a appartenant à $\mathbb{R}^k_{\geq 0}$ on pose

$$m(a) = \inf_{p \in \Gamma_+(g)} \langle a, p \rangle.$$

On définit la relation d'équivalence suivante sur $\mathbb{R}^{k}_{\geq 0}$:

$$a \sim a'$$
 si $\{p \in \Gamma_+(g)/\langle a, p \rangle = m(a)\} = \{p \in \Gamma_+(g)/\langle a', p \rangle = m(a')\}.$

Les classes d'équivalences sont des cônes convexes rationnels de sommet l'origine dans $(\mathbf{R}_{\geq 0})^k$. On les décrit de la façon suivante. Une facette δ de $\Gamma_+(g)$ possède un unique vecteur primitif orthogonal $x(\delta)$. On note $\mathscr{F}(g)$ l'ensemble de ces vecteurs. Les classes d'équivalences sont exactement les cônes

$$\sigma_{\mathbf{F}} = \left\{ \sum_{1 \leq i \leq m} \lambda_i x(\delta_i) / \lambda_i \in \mathbf{R}_{>0} \right\},\,$$

F décrivant l'ensemble des faces de $\Gamma_+(g)$, les δ_i , $1 \le i \le m$, étant les facettes contenant F. Il existe une partition $\mathscr S$ raffinant cette partition en cônes simpliciaux de la forme:

$$\sigma = \left\{ \sum_{1 \le i \le l} \lambda_i \, a_i / \lambda_i \in \mathbf{R}_{>0} \right\}$$

avec a_1, \ldots, a_l des vecteurs linéairement indépendants de $\mathscr{F}(g)$. Un tel cône étant donné, on choisit un sommet p de $\Gamma_+(g)$ tel que pour tout x de σ on ait $\langle x, p \rangle = m(x)$. On complète la famille (a_1, \ldots, a_l) en une base (a_1, \ldots, a_k) de \mathbf{R}^k telle que les $a_j, j > l$ soient des vecteurs de $\mathscr{F}(g)$ orthogonaux aux faces de $\Gamma_+(g)$ qui contiennent p. On obtient ainsi un cône $\tilde{\sigma} = \{\sum_{1 \leq i \leq k} \lambda_i a_i / \lambda_i \in \mathbf{R}_{>0} \}$. Bien sûr $\tilde{\sigma}$ n'est pas uniquement

déterminé par σ . On écrit $a_i = (a_i^i)_{1 \le i \le k}$ et on considère le morphisme :

$$\pi_{\tilde{\sigma}}: \begin{cases} K^k \to K^k \\ y_i \to x_i = \prod_{1 \leq j \leq k} y_j^{a_j^i}, & 1 \leq i \leq k \end{cases}$$

Par définition de la fonction d'appui m on a :

$$(1.2.1) (g \circ \pi_{\tilde{\sigma}})(y) = \prod_{1 \leq i \leq k} y_i^{\mathsf{m} (a_i)} g_{\tilde{\sigma}}(y)$$

pour $y = (y_i)_{1 \le i \le k}$, avec $g_{\tilde{\sigma}}$ un polynôme de $K[y_1, \ldots, y_k]$ vérifiant $g_{\tilde{\sigma}}(0) \ne 0$.

4° série - tome 22 - 1989 - n° 3

1.2.2. Le cas des courbes. — Supposons k=2, g est alors un polynôme de $K[x_1, x_2]$ s'annulant à l'origine. L'équation g=0 définit une courbe C. On note $C_{\overline{K}, 0}$ le germe formel de $C_{\overline{K}}$ à l'origine et $C_{\overline{K}, d}$, $d \in D$, les composantes irréductibles formelles de $C_{\overline{K}, 0}$. On supposera que $C_{\overline{K}, 0}$ est à singularité isolée. On note $m_{d, i}$ la multiplicité d'intersection à l'origine (éventuellement infinie) de $C_{\overline{K}, d}$ avec la droite $x_i=0$, et a_d le vecteur primitif de \mathbb{N}^2 proportionnel à $[m_{d, 1}, m_{d, 2}]$. On convient que si $m_{d, 1}$ [resp. $m_{d, 2}$] est infini a_d est le vecteur (1, 0) [resp. (0, 1)]. L'ensemble \mathscr{F} (9) admet la description suivante:

$$\mathscr{F}(g) = \{a_d\}_{d \in D} \cup \{(1, 0)\} \cup \{(0, 1)\}.$$

- 1.3. Morphismes sans éclatement en codimension zéro. Discriminant. 1.3.1. La notion de morphisme sans éclatement en codimension zéro a été introduite par Hironaka et étudiée en détail par Henry, Merle et Sabbah dans [H-M-S], pour un morphisme analytique complexe. Nous allons rappeler cette condition dans le contexte un peu différent qui est le nôtre.
- Soit $F: X = A^n \to Y = A^k$ un morphisme dominant défini sur K. Soit X^0 l'ouvert de Zariski dense de X sur lequel le morphisme est lisse. Sur X^0 on dispose du fibré conormal à F:

$$T_F^{\times} X^0 = \{(x, v)/x \in X^0, v \in T_x^{\times} X, v_{|T_x X_F(x)} = 0\},$$

 $T^{\times}X$ étant le fibré cotangent à X et $X_{F(x)}$ la fibre de F au point F(x). On note $P(T_F^{\times}X^0)$ le fibré projectif associé et C_FX l'adhérence dans $P(T^{\times}X)$ de $P(T_F^{\times}X^0)$. On dispose d'un morphisme naturel $\tau_F \colon C_F(X) \to X$.

Définition. — Soit $F: X = A^n \to Y = A^k$ un morphisme dominant défini sur K. On dit que F est sans éclatement en codimension zéro si le morphisme composé $(F \circ \tau_F)_{\overline{K}}: C_F(X)_{\overline{K}} \to Y_{\overline{K}}$ est à fibres équidimensionnelles de dimension constante.

Nous renvoyons à [H-M-S] pour d'autres définitions équivalentes. Donnons quelques exemples importants de morphismes sans éclatement en codimension zéro :

- (a) les morphismes finis
- (b) les morphismes dont les fibres géométriques sont des intersections complètes de dimension n-k et ont pour seules singularités des singularités géométriquement isolées.
- (c) dans le cas k=2, $F=(f_1, f_2)$ avec f_1 arbitraire s'annulant à l'origine et f_2 une forme linéaire générale s'annulant à l'origine.
- 1.3.2. Discriminant d'un morphisme sans éclatement. Soit $F: A^n \to A^k$ un morphisme dominant défini sur K s'annulant à l'origine. Le lieu critique C_F de F est le schéma défini par l'annulation de tous les mineurs d'ordre k de la matrice jacobienne de F. On note Δ_F l'image réduite de C_F par F (c'est une partie constructible de A^k) et $\Delta_{F,0}$ la réunion des composantes irréductibles de Δ_F auxquelles appartient l'origine.

Proposition 1.3.2. — Si F est un morphisme sans éclatement en codimension zéro, le discriminant Δ_F est purement de codimension 1 ou vide.

Démonstration. — On remarque tout d'abord qu'il suffit de démontrer l'énoncé analogue dans le cas analytique complexe local. Considérons un morphisme dominant F défini

sur un petit voisinage ouvert de l'origine à valeur dans un ouvert de \mathbb{C}^k , représentant un germe de morphisme sans éclatement en codimension zéro. D'après ([H-M-S], prop. 3.3) la restriction de F à \mathbb{C}_F est sans éclatement en codimension zéro et donc en particulier toutes les fibres sont de dimension n-k. C'est alors une conséquence du théorème de préparation de Weierstrass que l'image réduite de \mathbb{C}_F par F est ensemble analytique. En effet rappelons le résultat bien connu suivant :

LEMME. — Soit $f: A \to B$ un morphisme analytique entre germes d'espaces analytiques réduits. Si toutes les fibres de f sont équidimensionnelles et ont la même dimension alors |f(A)| est analytique.

Démonstration. — Si la dimension des fibres est zéro, c'est une conséquence facile du théorème de préparation. Si la dimension des fibres est d > 0, on plonge A dans $(\mathbb{C}^N, 0)$. Si x_1, \ldots, x_d sont d formes linéaires générales, le morphisme $F = (f(x), x_1, \ldots, x_d)$: $A \to B \times (\mathbb{C}^d, 0)$ est à fibres de dimension zéro, et par conséquent |F(A)| est analytique. Comme $|F(A)| = |f(A)| \times (\mathbb{C}^d, 0)$, il en est de même de |f(A)|.

On va démontrer le résultat par récurrence sur n-k. Si n-k est égal à zéro le morphisme F est fini et le résultat est connu.

Soit Δ_i une composante irréductible de Δ_F , p_i un point général de Δ_i , $F^{-1}(p_i)$ la fibre. On distingue deux possibilités.

- 1. $C_F \cap F^{-1}(p_i)$ a une composante irréductible de dimension non nulle.
- 2. $C_F \cap F^{-1}(p_i)$ n'a que des points isolés.

Dans le premier cas on considère une composante irréductible X_i de $C_F \cap F^{-1}(p_i)$ de dimension non nulle et x_i un point général de X_i . Soit l une forme linéaire générale s'annulant en x_i , U_i un petit voisinage ouvert de x_i et

$$F': \begin{cases} U_i \to \mathbb{C}^{k+1} \\ x \to (F(x), l(x)). \end{cases}$$

D'après [H-M-S] F' est sans éclatement en codimension zéro. On considère la variété polaire relative locale P_i , qui est par définition l'adhérence dans U_i du lieu critique de la restriction à $U_i \cap C_F$ de F', et le dirimant D_i , qui est par définition l'image réduite de P_i par F'. D'après [H-M-S] la restriction de F' à P_i est un morphisme fini sur son image D_i . Le discriminant Δ' de F' est égal à la réunion de D_i et F' ($C_F \cap U_i$). Une conséquence directe de la définition de morphisme sans éclatement en contience of (cf. [H-M-S], p. 241), est que P_i ne contient pas toute la fibre $F^{-1}(p_i) \cap U_i$. Soit z_i un point de $F^{-1}(p_i) \cap U_i \cap U_i$. Son image $F'(z_i)$ par F' appartient à $\Delta' \cap D_i$. La composante irréductible de Δ' qui contient $F'(z_i)$ n'est donc pas contenue dans D_i mais dans $F'(C_F \cap U_i)$. Par hypothèse de récurrence $F'(C_F \cap U_i)$ est une hypersurface et son image par la projection de C^{k+1} sur C^k est un voisinage ouvert de P_i dans Δ_i .

Dans le cas où $C_F \cap F^{-1}(p_i)$ n'a que des points isolés, on sait d'après le théorème de préparation de Weierstrass que C_F est fini sur son image par F au voisinage de p_i , et donc que C_F est de dimension au plus k-1 au voisinage de p_i . Mais d'autre part C_F est l'image inverse de la variété déterminantielle des matrices (n, k) dont tous les mineurs

d'ordre k sont nuls. Cette variété étant de codimension n-k+1 dans la variété des matrices (n, k), C_F est donc de codimension au plus n-k+1, d'où le résultat, au vu de ce qui précède.

- 1.4. FONCTIONS DE TYPE SINGULIER-RÉGULIER ET INTÉGRATION DANS LES FIBRES.
- 1.4.1. DÉFINITION. Soit U un ouvert p-adique non vide de K^n , Δ un sous-schéma réduit défini sur K de A^n et m un entier positif. Une fonction F définie sur $U \setminus \Delta_K$ à valeurs complexes est de type singulier-régulier d'ordre m, en abrégé S-R (m), le long de Δ si elle satisfait les conditions suivantes :
 - 1. F est localement constante sur $U \setminus \Delta_{\kappa}$.
- 2. Pour tout morphisme $\pi: Y \to A^n$ avec Y lisse irréductible de dimension n défini sur K tel que:
 - (i) π est défini sur K;
- (ii) $\pi^{-1}(\Delta)$ est un diviseur à croisements normaux dont toutes les composantes irréductibles qui contiennent un point K-rationnel sont définies sur K;
- (iii) le lieu critique de π est contenu dans $\pi^{-1}(\Delta)$; pour tout point p de $(\pi^{-1}(\Delta))_K \cap \pi^{-1}(U)$, si sur un voisinage W_p de p le support de $\pi^{-1}(\Delta)$ coïncide avec $y_1 \dots y_k = 0$, (y_1, \dots, y_k) faisant partie d'un système de paramètres $y = (y_1, \dots, y_n)$ défini sur K en p, on a alors pour |y| suffisamment petit:

$$F(\pi(y)) = \sum_{\lambda \in \Lambda} \sum_{j \in \{1, \dots, m+1\}^k} \sum_{\chi \in \widehat{\mathbb{R}}^k} a_{\lambda, j, \chi} \prod_{1 \le i \le k} \chi_i(a(x_i)) |y_i|^{\lambda_i} (\log |y_i|)^{j_i - 1}$$

avec $a_{\lambda,j,\chi}$ des nombres complexes nuls pour presque tout χ .

1.4.2. Intégration dans les fibres. — Soit $F: A^n \to A^k$ un morphisme dominant défini sur K qui s'annule à l'origine. Si t appartient à $K^k \setminus \Delta_K$, on note $|dx/dF|_t$ le résidu de la mesure |dx| le long de la fibre $(F^{-1}(t))_K$. Pour φ une fonction de Schwartz-Bruhat sur K^n l'intégrale dans la fibre de F est la fonction :

$$I_{\varphi}(t) = \int_{(F^{-1}(t))_{K}} \varphi \left| \frac{dx}{dF} \right|_{t}$$

définie pour t appartenant à $K^k \setminus \Delta_{\kappa}$.

Définition. — Un morphisme $F: A^n \to A^k$ dominant défini sur K et s'annulant à l'origine est bon au voisinage de l'origine s'il existe un voisinage p-adique U de l'origine dans A_K^n tel que la restriction de I_{ϕ} à $U \setminus \Delta_K$ soit de type singulier-régulier d'ordre n-k le long de $U \cap \Delta_K$, pour toute fonction de Schwartz-Bruhat ϕ .

Exemple:

Le morphisme F:
$$\begin{cases} K^2 \to K^2 \\ (x_1, x_2) \to (y_1 = x_1^2 x_2, y_2 = x_2) \end{cases}$$

n'est pas bon au voisinage de l'origine.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Cependant nous proposons la conjecture suivante :

Conjecture. — Si F: $A^n \to A^k$ est un morphisme dominant défini sur K, sans éclatement en codimension zéro et s'annulant à l'origine, alors F est bon au voisinage de l'origine.

Comme nous le verrons dans la deuxième partie l'analogue archimédien de cette conjecture est vérifié. D'autre part tout morphisme fini est bon au voisinage de l'origine d'après (1.4.3).

1.4.3. Morphismes finis.

PROPOSITION 1.4.3. — Tout morphisme fini $F: A^n \to A^n$ défini sur K s'annulant à l'origine est bon au voisinage de l'origine.

Démonstration. — Notons Δ_F le discriminant de F. Soit φ une fonction de Schwartz-Bruhat sur Kⁿ. Nous allons montrer que I_{φ} est de type S-R (0) le long de Δ_F . Vérifions la condition 1. Considérons x_0 appartenant à Kⁿ Δ_K . Comme x_0 n'est pas une valeur critique et φ est localement constante le cardinal de $(F^{-1}(x))_K \cap \operatorname{Supp}(\varphi)$ est constant au voisinage de x_0 , et donc également

$$I_{\varphi}(x) = \sum_{z_i \in (F^{-1}(x))_K} \left| \mathscr{I}(F)(z_i) \right|^{-1} \varphi(z_i)$$

∮(F) désignant le déterminant jacobien de F.

Montrons maintenant que I_{φ} vérifie la condition 2. Pour cela considérons $\pi: Y \to A^n$ vérifiant les hypothèses de 1.4.1, p un point de $(\pi^{-1}(\Delta))_K$ et $y = (y_1, \ldots, y_n)$ des coordonnées locales sur un voisinage W_p de p comme en 1.4.1. Soit X le schéma obtenu par produit fibré:

$$\begin{array}{ccc} X \to A^n \\ \downarrow & \downarrow^F \\ Y \stackrel{\pi}{\to} A^n \end{array}$$

et X obtenu en normalisant X:

$$\begin{array}{ccc}
\widetilde{X} & \stackrel{\widetilde{\pi}}{\to} & \mathbf{A}^n \\
\widetilde{F} \downarrow & & \downarrow F \\
Y & \stackrel{\pi}{\to} & \mathbf{A}^n
\end{array}$$

Pour y appartenant à $(Y \setminus \pi^{-1}(\Delta))_K$ on a

$$I_{\varphi}(\pi(y)) = \sum_{y' \in \pi^{-1}(\pi(y))_{K}} \left| \mathscr{J}(\pi)(y') \right|^{-1} \int_{\widetilde{F}^{-1}(y')_{K}} (\varphi \circ \widetilde{\pi}_{K}) \widetilde{\mu}_{y'}$$

avec $\tilde{\mu}_{y'}$ le résidu de la mesure $\tilde{\pi}_{K}^{*}(\mu)$ le long de $(\tilde{F}^{-1}(y'))_{K}$. Comme sur un voisinage p-adique de p, $|\mathcal{J}(\pi)(y)| = C |y_1|^{\alpha_1} \dots |y_k|^{\alpha_k}$ avec C une constante non nulle et α_i des

entiers, il suffit de montrer que

$$\widetilde{\mathbf{I}}(y) = \int_{(\widetilde{\mathbf{F}}^{-1}(y))_{\mathbf{K}}} (\varphi \circ \widetilde{\pi}_{\mathbf{K}}) \, \widetilde{\mu}_{y}$$

est du type demandé. D'après un résultat d'Abhyankar ([SGA 1] XIII 5.2 et XII 5.3), il existe un entier strictement positif N tel que l'image inverse par le morphisme

$$\lambda: \begin{cases} W_p \to W_p \\ (t_i) \to (y_i) = (t_i^N), & 1 \le i \le k \\ (y_i) = (t_i), & k < i \le n \end{cases}$$

de la restriction X' du revêtement ramifié normal \widetilde{X} à W_p est un revêtement non ramifié. On note $(K^{\times})^{(N)}$ l'ensemble des puissances N-ièmes d'éléments de K^{\times} et on choisit des μ_i de K, $i \in I$, tels que $K^{\times} = \coprod_{i \in I} \mu_i(K^{\times})^{(N)}$. Pour $j = (j_1, \ldots, j_n)$ de I^n on note λ_j l'application

$$\lambda_{j}: \begin{cases} W_{p, K} \to W_{p, K} \\ (t_{i}) \to (y_{i}) = (\mu_{j_{i}} t_{i}^{N}), & 1 \leq i \leq k \\ (y_{i}) = (t_{i}), & k < i \leq n \end{cases}$$

Par produit fibré on obtient un diagramme :

$$\begin{array}{cccc} \widetilde{\mathbf{X}}_{j} & \stackrel{\pi_{j}}{\rightarrow} & \mathbf{X}_{K}' & \stackrel{\pi_{K}}{\rightarrow} & \mathbf{A}_{K}^{n} \\ \mathbf{F}_{j} \downarrow & \mathbf{F}_{K} \downarrow & \mathbf{F}_{K} \downarrow \\ \mathbf{W}_{p, K} & \stackrel{\lambda_{j}}{\rightarrow} & \mathbf{W}_{p, K} & \stackrel{\pi_{K}}{\rightarrow} & \mathbf{A}_{K}^{n} \end{array}$$

 π' et F' étant les restrictions de $\tilde{\pi}$ et $\tilde{\mathbf{F}}$ à X'. Comme le revêtement $\tilde{\mathbf{X}}_j$ est non ramifié on a pour t appartenant à $\lambda_j^{-1}((\mathbf{W}_p \setminus \pi^{-1}(\Delta))_k)$

$$\widetilde{\mathbf{I}}(\lambda_{j}(t)) = \sum_{t' \in \lambda_{j}^{-1}(\lambda_{j}(t))} \left| \mathscr{J}(\lambda_{j}) \right|^{-1} (t') \int_{\mathbf{F}_{j}^{-1}(t')} \left(\varphi \circ \widetilde{\pi}_{\mathbf{K}} \circ \pi_{j} \right) \mu_{j, t'}$$

avec $\mu_{j,\,t'}$ le résidu de la mesure $(\pi'_K \circ \pi_j)^*\mu$ le long de $F_j^{-1}(t')$. Remarquons que $(\pi'_K \circ \pi_j)^*(\mu) = |\psi| F_j^*(\mu)$ avec ψ une fonction régulière sur \widetilde{X}_j dont le lieu réduit des zéros dans $(\lambda_j \circ F_j)^{-1}(0)$ est contenu dans l'image inverse par F_j du diviseur $t_1 \dots t_k = 0$. L'intégrale

$$\int_{\mathbf{F}_{i}^{-1}(t)} \left(\phi \circ \pi_{\mathbf{K}}' \circ \pi_{j} \right) \mu_{j, t}$$

est donc égale à une somme finie de termes du type

$$C |t_1|^{\alpha_1} \dots |t_k|^{\alpha_k}$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

les α_i étant des entiers. Pour conclure on remarque que la fonction caractéristique de $\gamma(K^{\times})^{(N)}$, pour γ dans K^{\times} , coïncide au voisinage de l'origine avec une fonction de $\mathscr{F}_{\Lambda,0}(K^{\times})$ pour Λ convenable.

1.5. ÉNONCÉ DU RÉSULTAT. — Soit $F: \mathbf{A}^n \to \mathbf{A}^k$ un morphisme dominant défini sur K et s'annulant à l'origine. Soit $\Delta_{F,\,0}$ le discriminant de F à l'origine (1.3.2). On suppose que $\Delta_{F,\,0}$ est une hypersurface [c'est le cas si F est sans éclatement en codimension zéro (1.3.2)]. Soit $\mathscr{F}(\Delta_{F,\,0})$ l'ensemble des vecteurs primitifs associés au polyèdre de Newton à l'origine de $\Delta_{F,\,0}$ (1.2.1). On note $\mathscr{F}(\Delta_{F,\,0})$ l'ensemble des vecteurs primitifs de \mathbf{N}^k qui sont combinaison linéaire à coefficients rationnels positifs d'au plus k-1 vecteurs de $\mathscr{F}(\Delta_{F,\,0})$. On remarquera que si k=2, $\mathscr{F}(\Delta_{F,\,0})$ coıncide avec $\mathscr{F}(\Delta_{F,\,0})$ tandis que si k>2, $\mathscr{F}(\Delta_{F,\,0})$ est en général infini.

Théorème 1.5. — Soit $F: A^n \to A^k$ un morphisme dominant défini sur K et s'annulant à l'origine. On suppose que F est bon et que $\Delta_{F,0}$ est une hypersurface. Alors l'ensemble $\mathscr{P}(F)$ des pentes du morphisme F est inclus dans $\mathscr{P}(\Delta_{F,0})$.

1.6. Preuve du résultat. — 1.6.1. L'énoncé concerne une estimation des pôles de l'intégrale

$$Z_{\varphi,\chi}(s) = \int_{\mathbb{K}^n} \varphi(x) \prod_{i=1}^k \chi_i(a(f_i(x))) |f_i(x)|^{s_i} |dx|.$$

On peut supposer que φ est une fonction caractéristique, et, quitte à effectuer une homothétie que le support de φ est contenu dans $\{x \in K^n/|f_i(x)| \le 1, 1 \le i \le k\}$.

Si t appartient à $(\mathbf{A}^k \backslash \Delta_{\mathbf{F}})_{\mathbf{K}}$ le résidu de la mesure |dx| le long de $(\mathbf{F}^{-1}(t))_{\mathbf{K}}$ est une mesure localement finie sur $(\mathbf{F}^{-1}(t))_{\mathbf{K}}$ notée $|dx/d\mathbf{F}|_{t}$. On a donc

$$Z_{\varphi,\chi}(s) = \int_{\mathbb{R}^k \setminus \Delta_{\mathsf{F},K}} \prod_{i=1}^k \chi_i(a(t_i)) \left| t_i \right|^{s_i} \mathbf{I}_{\varphi,t} \left| dt \right|$$

avec

$$I_{\varphi, t} = \int_{(F^{-1}(t))_{K}} \varphi \left| \frac{dx}{dF} \right|_{t}.$$

Soit \mathscr{S} une partition en cônes simpliciaux associée au polyèdre de Newton à l'origine de Δ_F comme en 1.2.1 : les cônes σ appartenant à \mathscr{S} sont de la forme

$$\sigma = \left\{ \sum_{1 \le i \le m} \lambda_i a_i / a_i \in \mathscr{F}(\Delta_{F, 0}), \ \lambda_i > 0 \right\}$$

avec $m \leq k$, les a_i étant linéairement indépendants. A un tel cône σ on associe un cône $\tilde{\sigma}$ comme en 1.2.1. On note $S_{\sigma} = \{(x_i) \in \mathbb{R}^k / (v(x_i)) \in \sigma\}$. Les S_{σ} , σ décrivant \mathscr{S} , forment une partition de $(\mathbb{R} \setminus \{0\})^k$. Si U^m est égal à

$$\{(y_i) \in (\mathbf{K}^{\times})^k / |y_i| < 1, \ 1 \le i \le m, \ |y_i| = 1, \ i > m\}$$

on remarque que $\pi_{\tilde{\sigma}}(U^m)$ est inclus dans S_{σ} . Il nous suffit d'étudier les pôles de

$$Z_{\varphi, \chi, \sigma}(s) = \int_{S_{\sigma}} \prod_{i=1}^{k} \chi_{i}(a(t_{i})) \left| t_{i} \right|^{s_{i}} I_{\varphi, t} \left| dt \right|.$$

Pour cela nous allons utiliser le lemme suivant, dû à J. Denef [D].

LEMME 1.6.1. — Sous les hypothèses précédentes

- 1. $\pi_{\tilde{\sigma} \mid U^m} \colon U^m \to \pi_{\tilde{\sigma}}(U^m)$ est localement K-bianalytique et les fibres sont de cardinal fini constant.
 - 2. Il existe un nombre fini d'éléments $\gamma_1,\;\ldots,\;\gamma_e$ de $(K^\times)^k$ tels que

$$S_{\sigma} = \pi_{\tilde{\sigma}}(U^m) \perp \!\!\!\perp \gamma_1 \pi_{\tilde{\sigma}}(U^m) \qquad \ldots \perp \!\!\!\perp \gamma_l \pi_{\tilde{\sigma}}(U^m).$$

1.6.2. Comme le discriminant de F et celui de γ_i F ont même polyèdre de Newton à l'origine il suffit d'étudier les pôles de

$$\int_{\pi_{\widetilde{\mathbf{G}}}(\mathbf{U}^{m})} \prod_{i=1}^{k} \chi_{i}(a(t_{i})) \left| t_{i} \right|^{s_{i}} \mathbf{I}_{\varphi, t} \left| dt \right|$$

ou encore de $\int_{\mathbb{D}^m} \Psi$ avec

$$\psi = \prod_{i=1}^k \chi_i \left(a \left((\pi_{\widetilde{\sigma}}(y))_i \right) \right) \left| y_i \right|^{\langle a_i, s \rangle} \pi_{\widetilde{\sigma}}^* \left(I_{\varphi, t} \right) \mu.$$

On écrit le diviseur réduit sous-jacent à $\pi_{\tilde{\sigma}}^{-1}(\Delta)$ sous la forme $\bigcup_{1 \le i \le k} L_i \cup \tilde{\Delta}$ avec L_i l'hyperplan $y_i = 0$ et $\tilde{\Delta}$ ne contenant aucun L_i . D'après 1.2.1 l'origine n'appartient pas à $\tilde{\Delta}$. Soit U_1 un voisinage p-adique de l'origine dans K^n qui ne rencontre pas $\tilde{\Delta}_K$. Comme $I_{\varphi,t}$ est de type singulier-régulier le long de Δ par hypothèse, le calcul direct nous montre que les parties réelles des pôles de $\int_{U_1 \cap U^m} \Psi$ sont contenues dans une réunion finie d'hyperplans $\langle a_i, \sigma \rangle + \alpha = 0$ avec a_i appartenant à $\mathcal{F}(\Delta_{F,0})$ et α rationnel strictement positif. On a le même résultat pour tout petit voisinage p-adique d'un point de $U^m \setminus \tilde{\Delta}_K$.

1.6.3. Par partition de l'unité, il reste à montrer que si p est un point de $U^m \cap \tilde{\Delta}_K$, les pôles de $\int_{U_2} \psi$ sont du type requis, pour U_2 un petit voisinage p-adique de p.

Pour p un tel point, soit L_i , $i \in A_p \subset \{1, \ldots, k\}$, les hyperplans de coordonnées qui contiennent p. Sur un petit voisinage U_2 de p dans U^m on a

$$\int_{\mathbf{U}_2} \Psi = \int_{\mathbf{U}_2} \Psi_p$$

avec

$$\psi_p = C_p \prod_{i \in A_p} \chi_i(a((\pi_{\tilde{\sigma}}(y))_i)) \mid y_i \mid^{\langle a_i, s \rangle} \pi_{\tilde{\sigma}}^{*}(I_{\varphi, t} \mu)$$

et C_p une constante.

Soit $\lambda \colon Z \to U_2$ une modification, provenant d'une modification algébrique définie sur K de A^k , avec Z lisse et $\lambda^{-1}(U_2 \cap (\pi_{\tilde{\sigma}}^{-1}(\Delta))_K)$ diviseur à croisements normaux, vérifiant les conditions de 1.4.1. Si q est un point de Z il existe sur un voisinage p-adique V de q des coordonnées locales (z_1, \ldots, z_k) telles que le support de $\lambda^{-1}(\pi_{\tilde{\sigma}}^{-1}(\Delta)_K) \cap V$ soit contenu dans la réunion des hyperplans $z_i = 0$. On conclut par un calcul direct semblable à celui de 1.6.2 en exprimant $\lambda^* \psi_p$ sur V en fonction des z_i et en remarquant que A_p est strictement inclus dans $\{1, \ldots, k\}$.

1.7. Fonctions d'Igusa et déformations. — Soit f_t une famille de polynômes appartenant à $K[x_1, \ldots, x_n]$. Autrement dit on a un morphisme $F: A^{n+1} \to A^2$ défini sur K avec $F = (f_t, t)$, les coordonnées sur A^{n+1} étant (x_1, \ldots, x_n, t) . On suppose que F s'annule à l'origine. Pour φ une fonction de Schwartz-Bruhat sur K^n , on s'intéresse à la variation avec la paramètre t de l'intégrale

$$Z_{\varphi, t}^{0}(\omega) = \int_{\mathbf{K}^{n}} \varphi \omega (f_{t}) \mu.$$

On suppose que F est sans éclatement en codimension zéro. Soit $\mathscr{P}(\Delta_{F,0})$ l'ensemble des pentes du discriminant à l'origine du morphisme F, et $\delta(F)$ l'ensemble des quotients a/b avec (a, b) appartenant à $\mathscr{P}(\Delta_{F,0})$, b non nul.

Théorème 1.7. — Si le morphisme $F = (f_t, t)$ est bon, alors pour |t| suffisamment petit et non nul on a:

$$Z_{\varphi, t}^{0}(\omega) = \sum_{\alpha \in \delta(F)} \sum_{\beta \in B} \sum_{j=0}^{n} \sum_{\chi \in \widehat{R}} Z_{\alpha, \beta, j, \chi, \varphi}(\omega) \chi(a(t)) |t|^{\alpha s + \beta} \log |t|^{j}$$

avec B une partie finie de C, $\operatorname{Re}(\beta) > -1$ si $\beta \in B$, et $Z_{\alpha, \beta, j, \chi, \phi}$ une fonction méromorphe nulle pour presque tout χ .

Démonstration. — Soit $\pi\colon X_K\to A_K^{n+1}$ une modification K-analytique vérifiant les conditions données en 1.1.4 (avec la convention $f_1=f_t$, $f_2=t$). On note E^j , $j\in I$, les composantes irréductibles de π^{-1} ($(f_1\,f_2)^{-1}(0)$), N_i^j la multiplicité de f_i le long de E^j et N_0^j-1 la valuation de $\pi^*(\mu)$ le long de E^j . Si $\varphi(x)$ appartient à $\mathscr{S}(K^n)$ on lui associe le produit $\varphi'(x,t)=\varphi(x)\,\varphi_0(t)$ avec φ_0 la fonction caractéristique de R.

Si $\chi = (\chi_1, \chi_2)$, avec χ_1 et χ_2 dans \hat{R} , on a

$$Z_{\varphi',\chi}(s_1, s_2) = \int_{K^{n+1}} \varphi' \chi_1(a(f_1)) \left| f_1 \right|^{s_1} \chi_2(a(f_2)) \left| f_2 \right|^{s_2} \mu = \frac{P_{\varphi,\chi}(s_1, s_2)}{\prod\limits_{i \in I} (1 - q^{-(N_1^i s_1 + N_2^i s_2 + N_0^i)})}$$

avec $P_{\varphi,\chi}(s_1, s_2)$ un polynôme à coefficients complexes en les variables $q^{-s_1}, q^{-s_2}, q^{s_1}, q^{s_2}$. On note

$$I_0 = \{i \in I/N_2^i \neq 0\}, \qquad I_1 = \{i \in I/N_2^i = 0\}$$

et

$$\mathbf{R}(s_1) = \prod_{i \in I_1} (1 - q^{-(\mathbf{N}_0^i + \mathbf{N}_1^i s_1)}).$$

Si i appartient à I_0 on pose

$$\alpha_{i, k} = \frac{N_0^i + N_1^i s_1}{N_2^i} - \frac{l(q) k}{N_2^i}$$

pour $1 \le k \le N_2^i$. On a:

(1)
$$Z_{\varphi',\chi}(s_1, s_2) = \frac{P_{\varphi,\chi}(s_1, s_2)}{\prod\limits_{\substack{i \in I_0 \\ 1 \le k \le N^{\frac{1}{2}}}} (1 - q^{-\alpha_{i,k}} q^{-s_2}) R(s_1)}$$

En décomposant en éléments simples on obtient :

$$Z_{\varphi',\chi}(s_1, s_2) = \sum_{\alpha \in A} \sum_{1 \le j \le m} \frac{\mathcal{Q}_{\alpha,j,\varphi,\chi}(s_1)}{(1 - q^{-\alpha - s_2})^j} + \mathcal{Q}_{\varphi,\chi}^0(s_1, s_2)$$

avec $A = \{\alpha_{i, k}/i \in I_0, 1 \le k \le N_2^i\}$ et m un entier naturel convenable; $R(s_1) \mathcal{Q}_{\alpha, j, \varphi, \chi}(s_1)$ est un polynôme en q^{-s_1} et q^{s_1} , tandis que $R(s_1) \mathcal{Q}_{\varphi, \chi}^0(s_1, s_2)$ est un polynôme en $q^{-s_1}, q^{-s_2}, q^{s_1}, q^{s_2}$.

Pour $\omega = (s_1, \chi_1)$ fixé, avec $\text{Re}(s_1) > 0$, on a l'égalité :

$$\mathbf{M}_{t}\left(\frac{\left|t\right|\varphi_{0}\left(t\right)}{1-q^{-1}}Z_{\varphi,t}^{0}\left(\omega\right)\right)=Z_{\varphi',\chi}\left(s_{1},s_{2}\right)$$

 M_t désignant la transformation de Mellin par rapport à la variable t. Comme le degré de $\mathcal{Q}_{\varphi,\chi}^0(s_1, s_2)$ par rapport à la variable q^{-s_2} est borné indépendamment de s_1 on déduit de 1.1.2.4 et 1.1.2.5 qu'il existe $\varepsilon > 0$ tel que si $|t| < \varepsilon$:

(2)
$$Z_{\varphi,t}^{0}(\omega) = \sum_{\alpha \in \mathbf{M}} \sum_{\beta \in \mathbf{B}} \sum_{j=0}^{m-1} \sum_{\gamma \in \widehat{\mathbf{R}}} Z_{\alpha,\beta,j,\varphi,\chi}(\omega) \chi(a(t)) |t|^{\alpha s + \beta} \log |t|^{j},$$

avec B fini, $\text{Re}(\beta) > -1$ si $\beta \in B$, et $R(s_1) Z_{\alpha, \beta, \phi, \chi}(\omega)$ polynôme en q^{-s_1} et q^{s_1} . Si F est bon, d'après le théorème 1.5 on peut remplacer I_0 par

$$\mathbf{I'} = \left\{ i \in \mathbf{I}_0 / \frac{\mathbf{N}_1^i}{\mathbf{N}_2^i} \in \gamma(\mathbf{F}) \right\}$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

dans l'égalité (1). Dans l'égalité (2) on peut donc remplacer M par $\gamma(F)$. Il reste à vérifier que m est au plus égal à n+1, ce qui est une conséquence directe du théorème de résolution des singularités.

1.8. RELATION AVEC LA MONODROMIE. -1.8.1. Soit f un polynôme non constant appartenant à $K[x_1, \ldots, x_{n+1}]$ et s'annulant à l'origine. Soit $\pi: X_K \to K^{n+1}$ une modification K-analytique comme en 1.1.4. On écrit $\pi^{-1}(f^{-1}(0)) = \sum_{i \in I} N_i E_i$ avec E_i irréductible. On

note n_i ce qui était précédemment noté N_0^i , c'est-à-dire la valuation de $\pi^*(\mu)$ le long de E_i augmentée de 1. On note $p_{\varphi,\chi}(f)$ l'ensemble des parties réelles des pôles de la fonction

$$Z_{\varphi,\chi}(s) = \int_{K^{n+1}} \varphi \chi(a(f)) |f|^s \mu$$

 φ étant une fonction de Schwartz-Bruhat et χ un caractère. Soit p(f) la réunion des $p_{\varphi,\chi}(f)$, et p'(f) la réunion des $p_{\varphi,\chi}(f)$ avec φ s'annulant à l'origine. Nous allons donner, modulo la conjecture 1.4.2, une condition nécessaire pour qu'un quotient $-n_i/N_i$ appartienne à p(f)/p'(f).

Pour cela on considère une forme linéaire générale l s'annulant à l'origine. Un changement de coordonnées permet de supposer que l est la coordonnée x_{n+1} . Le morphisme F = (f, l) est sans éclatement en codimension zéro. Soit Δ son discriminant. L'ensemble $\mathscr{P}(\Delta_0)$ ne dépend que de f. Soit m_i la valuation de $\pi^*(l)$ le long de E_i .

Théorème 1.8.1. — Soit f un polynôme non constant appartenant à $K[x_1, \ldots, x_{n+1}]$ et s'annulant à l'origine. Soit l une forme linéaire générale s'annulant à l'origine. On suppose que (f, l) est bon, ce qui est le cas si la conjecture 1.4.2 est vérifiée.

Soit $\pi\colon X_K\to K^{n+1}$ une modification comme précédemment. Soit E_i , $i\in I_\Delta$, l'ensemble des diviseurs E_i tels que (N_i,m_i) soit proportionnel à un élément de $\mathcal{P}(\Delta_0)$ et m_i soit non nul. Soit α un pôle dont la partie réelle appartient à p(f)p'(f). Alors il existe un diviseur E_i avec i appartenant à I_Δ , tel que la partie réelle de α soit égale à $-n_i/N_i$. En particulier si l'origine est une singularité isolée de f et si le support de f ne contient pas d'autre singularité, si f est pôle de f est partie réelle de f est de la forme f in pour f un diviseur avec i appartenant à f in moins qu'elle ne soit égale à f in f i

Démonstration. – D'après la preuve de 1.7, il existe $\varepsilon > 0$ tel que pour $0 < |t| < \varepsilon$:

$$\int_{x_{n+1}=t} \varphi \chi(a(f)) | f|^{s} \mu = \sum_{i \in I_{\Delta}} \sum_{k=1}^{m_{i}} \sum_{j=0}^{n} \sum_{\chi' \in \widehat{R}} Z_{i, k, j, \chi'}(s) \chi'(a(t)) | t|^{\alpha_{i} s + \beta_{i, k}} \log |t|^{j}$$

avec $\alpha_i = (N_i/m_i)$, $\beta_{i,k} = (n_i/m_i) - (kl(q)/m_i) - 1$ et $Z_{i,k,j,\chi}$ méromorphe sur C (dépendant de χ et φ).

Le problème étant local à l'origine on peut supposer que le support de φ est contenu dans $\{x \in K^{n+1} | | x_{n+1}| < \epsilon\}$. Fixons s de partie réelle strictement positive.

Comme Re $(\alpha_i s + \beta_{i,k}) > -1$ on a l'égalité

$$Z_{\varphi,\chi}(s) = \sum_{i \in I_{\Delta}} \sum_{k=1}^{m_i} \sum_{j=0}^{n} \sum_{\chi' \in \widehat{R}} Z_{i,k,j,\chi'}(s) \int_{|t| < \varepsilon} \chi'(a(t)) |t|^{\alpha_i s + \beta_{i,k}} \log |t|^j |dt|$$

d'après le théorème de Fubini.

Tous les termes de cette égalité étant méromorphes elle vaut pour s quelconque.

Soit α un pôle de $Z_{\varphi,\chi}$ dont la partie réelle n'est pas de la forme $-n_i/N_i$ avec i appartenant à I_{Δ} . D'après l'égalité précédente α est pôle d'au moins une fonction $Z_{i,\,k,\,j,\,\chi'}$. On note D l'ensemble des quadruplets $(i,\,k,\,j,\,\chi')$ et D_{α} l'ensemble des d appartenant à D tels que α soit un pôle de Z_d . Si d est égal à $(i,\,k,\,j,\,\chi')$ on note $k_d(s,\,t)$ la fonction

$$\chi'(a(t)) |t|^{\alpha_i s + \beta_{i,k}} \log |t|^j$$

et K_d(s) l'intégrale

$$\int_{|t| < \varepsilon} k_d(s, t).$$

Lemme. — Il existe un ouvert non vide U de $\{t \in K/0 < |t| < \epsilon\}$ tel que α soit pôle de l'intégrale

$$\int_{x_{n+1}=t} \varphi \chi(a(f)) |f|^{s} \mu$$

pour t appartenant à U.

 $D\acute{e}monstration.$ — On considère sur D_{α} la relation d'équivalence suivante : d est équivalent à d' si les deux fonctions $k_d(\alpha,t)$ et $k_{d'}(\alpha,t)$ sont égales. Soit $L_{\alpha} = \bigcup\limits_{c \in C} L_c$ la partition associée, $k_c(\alpha,t)$ [resp. $K_c(\alpha)$] la valeur commune des fonctions $k_d(\alpha,t)$ [resp. $K_d(\alpha)$] pour d dans la classe c. Si la conclusion du lemme était en défaut, pour chaque classe c la fonction $\sum\limits_{d \in c} Z_d(s) k_d(s,t)$ n'aurait pas de pôle en la valeur α , et comme $k_c(\alpha,t)$ est non nul pour t non nul, la somme $\sum\limits_{d \in c} Z_d(s)$ n'aurait pas de pôle en la valeur α . Mais alors la somme $\sum\limits_{d \in c} Z_d(s)$ K $_c(s)$ n'aurait pas non plus de pôle en α , ce qui serait contradictoire.

Pour conclure la démonstration du théorème, on remarque que si φ_0 est le produit de φ avec la fonction caractéristique de $l^{-1}(U)$, U étant donné par le lemme, α est un pôle de $Z_{\varphi_0, \chi}$.

Remarque. – L'ensemble $\mathcal{P}(\Delta_0)$ a été introduit par Lê et Teissier ([L], [T]).

1.8.2. Remarque. — La condition nécessaire donnée par le théorème 1.8.1 n'est malheureusement pas suffisante. Examinons le cas où f est un polynôme de deux variables. On

considère l'arbre dual A associé à la résolution canonique de la singularité de f à l'origine. Les sommets de A correspondent aux diviseurs apparaissant dans la résolution. On appelle point de rupture un sommet qui a au moins trois sommets adjacents. On appelle bout un sommet qui a un seul sommet adjacent et qui ne correspond ni à une composante de la transformée stricte ni au diviseur apparaissant dans le premier éclatement. On appelle branche morte un arc connexe d'extrémité un bout et un point de rupture et dont tous les autres sommets possèdent exactement deux sommets voisins. Dans ce cas les éléments de p(f)/p'(f) sont de la forme $-n_i/N_i$ avec E_i associé à un point de rupture (cf). [Lo 1]) tandis que l'ensemble des diviseurs E_i , avec i appartenant à I_{Δ} , correspond à l'ensemble des sommets appartenant à une branche morte (voir [L-M-W]) (auquel on adjoint le sommet associé au premier éclatement, si il y a exactement deux tangentes distinctes).

1.8.3. Remarquons cependant que le théorème 1.8.1 montre que les pôles des fonctions $Z_{\varphi,\chi}$ ont des propriétés analogues à celles des valeurs propres de la monodromie dans le cas complexe, ce qui va dans le sens des conjectures proposées dans [Lo 2], [Lo 3].

Soit f un représentant convenable d'un germe de fonction analytique de $(\mathbb{C}^n, 0)$ dans $(\mathbb{C}, 0)$. On note m(f) l'ensemble des valeurs propres de la monodromie locale à l'origine et m'(f) l'ensemble des valeurs propres de la monodromie locale en des points de $f^{-1}(0)$ distincts de l'origine. On définit $\mathscr{P}(\Delta_0)$ de manière analogue à 1.8.1. On considère une modification analytique locale π de \mathbb{C}^n dont le diviseur exceptionnel est contenu dans $\pi^{-1}(f^{-1}(0))$ et tel que $\pi^{-1}(f^{-1}(0))$ soit un diviseur à croisements normaux. On écrit comme en $1.8.1 \ \pi^{-1}(f^{-1}(0)) = \sum_{i \in I} N_i E_i$ et on définit de même n_i, m_i, I_{Δ} .

On dispose alors de l'énoncé suivant :

PROPOSITION 1.8.3. — Soit λ une valeur propre de la monodromie appartenant à m(f)m'(f). Il existe une composante irréductible E_i de $\pi^{-1}(f^{-1}(0))$, avec i appartenant à I_{Δ} , telle que λ^{N_i} soit égal à 1.

Démonstration. — Le résultat est une conséquence directe de l'article [L]. Indiquons la démonstration. On considère un bon représentant $F: X \to P$ du morphisme (f, l) avec l une forme linéaire générale s'annulant à l'origine et $P=D\times D$ un polydisque de C^2 . On note Δ le discriminant de F. La restriction de F à $X \setminus F^{-1}(\Delta)$ est une fibration au-dessus de $P \setminus \Delta$. Soit $\Delta = \sum \Delta_j$, $1 \le j \le r$ la décomposition de Δ en composantes irréductibles locales, et m_1^j [resp. m_2^j] la multiplicité d'intersection à l'origine de Δ_j avec $x_1 = 0$ [resp. $x_2 = 0$].

Pour α un réel positif on considère

$$\mathbf{P}_{\alpha} = \{ x \in \mathbf{X} / | f(x) | \leq | l(x) |^{\alpha} \}.$$

On ordonne les quotients finis m_1^j/m_2^j de manière à ce qu'ils forment une suite :

$$\alpha_1 > \alpha_2 > \ldots > \alpha_r$$

On choisit |t| > 0 très petit et on note $F_n = f^{-1}(t) \cap P_n$. D'après [L] on a :

LEMME. — Il existe un représentant T de la monodromie locale de f à l'origine tel que

- (i) Les F_{α} sont stables par T pour $\alpha < \alpha_0$ avec $\alpha_0 > \alpha_1$ suffisamment petit.
- (ii) Pour $\alpha_{i+1} < \alpha < \beta < \alpha_i$ l'inclusion de F_{β} dans F_{α} est une équivalence d'homotopie compatible avec l'action de T. (On pose $\alpha_{r+1} = 0$.)
 - (iii) Les valeurs propres de T sur F_{α} pour $\alpha_1 < \alpha < \alpha_0$ appartiennent à m'(f).

Soit λ une valeur propre de la monodromie locale n'appartenant pas à m'(f). Soit $I_{\lambda} = \{j \in I/\lambda^{N_j} = 1\}$. L'entier m_j est non nul si j appartient à I_{λ} . Montrons que nécessairement I_{λ} a une intersection non vide avec I_{Δ} .

Sinon on aurait $I_{\lambda} = \bigcup_{0 \le i \le r} I_{\lambda, i}$ avec

$$I_{\lambda,i} = \{j \in I_{\lambda}/\alpha_i > N_j/m_j > \alpha_{i+1}\}$$

pour $i \ge 1$ et

$$I_{\lambda, 0} = \{ j \in I_{\lambda}/\alpha_1 < N_j/m_j \}.$$

Choisissons β_i , γ_i , $1 \le i \le r$, tels que pour tout j appartenant à I_{λ}

$$\alpha_i > \beta_i > N_j/m_j > \gamma_i > \alpha_{i+1}$$

D'après la partie (iii) du lemme λ n'est pas valeur propre de T sur F_{α} , $\alpha_0 > \alpha > \alpha_1$. Ce n'est pas non plus une valeur propre de T sur F_{β_1} car sinon, d'après la description locale de la monodromie d'un diviseur à croisements normaux il existerait un diviseur E_i tel que $\lambda^{N_i}=1$ et $\alpha_1 \geq N_i/m_i > \beta_1$. D'après la partie (ii) du lemme, λ n'est pas non plus une valeur propre de T sur F_{γ_1} . On obtient par récurrence que λ n'est pas valeur propre de T sur F_{γ_i} et donc n'est pas valeur propre de T sur F_{γ_i} ce qui est contradictoire.

2. Le cas archimédien

2.1. PRÉLIMINAIRES. — 2.1.1. Notations et conventions. — Dans cette partie K désigne le corps \mathbf{R} ou \mathbf{C} . Soit $|\cdot|$ la norme standard sur \mathbf{R} et \mathbf{C} . On pose $|\cdot|_{\mathbf{K}} = |\cdot|_{\mathbf{C}} [\operatorname{resp.} |\cdot|_{\mathbf{C}}]^2$ si $\mathbf{K} = \mathbf{R}$ [resp. $\mathbf{K} = \mathbf{C}$]. On note $\mathbf{K}^{\times} = \mathbf{K} \setminus \{0\}$. Soit $\mathbf{S}_{\mathbf{K}} = \{x \in \mathbf{K}/|x| = 1\}$ et $\widehat{\mathbf{S}}_{\mathbf{K}}$ le groupe des caractères continus de $\mathbf{S}_{\mathbf{K}}$ à valeurs dans \mathbf{C}^{\times} . Si $\mathbf{K} = \mathbf{R}$ [resp. \mathbf{C}] $\widehat{\mathbf{S}}_{\mathbf{K}}$ s'identifie naturellement à $\mathbf{Z}/2 = \{0, 1\}$ [resp. \mathbf{Z}]. Pour x un élément non nul de \mathbf{K} on note a(x) = x/|x|. Si μ est la mesure de Lebesgue usuelle sur \mathbf{K} on pose

$$d^{\times} x = \frac{\mu}{2|x|_{\mathbf{R}}}$$
 si $K = \mathbf{R}$,

et

$$d^{\times} x = \frac{\mu}{2i\pi |x|_{\mathbf{C}}}$$
 si $\mathbf{K} = \mathbf{C}$.

Sur K^n [resp. $(K^*)^n$] on note encore μ [resp. d^*x] la mesure produit. Si $x = (x_1, \ldots, x_n)$ appartient à K^n , $\lambda = (\lambda_1, \ldots, \lambda_n)$ à \mathbb{C}^n , ρ à \mathbb{N}^n on notera:

$$x^{\rho} = \prod_{1 \leq i \leq n} x_i^{\rho_i}, \qquad |x|^{\lambda} = \prod_{1 \leq i \leq n} |x_i|^{\lambda_i},$$

si les x_i sont non nuls, $(\log |x|)^{\rho} = \prod_{1 \le i \le n} (\log |x_i|)^{\rho_i}$, etc.

2.1.2. Transformation de Mellin. - 2.1.2.1. Soit $\Omega(K^{\times})$ le groupe des quasicaractères de K^{\times} à valeurs dans C^{\times} . On a un isomorphisme canonique entre $\Omega(K^{\times})$ et $C \times \widehat{S_K}$ défini de la façon suivante :

$$\omega(x) = |x|_{\mathbf{K}}^{s} \chi(a(x))$$

pour $\omega \in \Omega(K^{\times})$, $(s, \chi) \in C \times \widehat{S_K}$.

- 2.1.2.2. Soit Λ_i , $1 \le i \le k$, des ensembles finis de nombres rationnels, $\Lambda = \prod_{1 \le i \le k} \Lambda_i$, m un élément de $(\mathbb{Z}_{>0})^k$ et \mathbb{R} un réel strictement positif.
- 2.1.2.3. DÉFINITION. $\mathscr{F}_{\Lambda, m, R}((K^{\times})^k)$ est l'ensemble des fonctions F à valeurs complexes définies sur $(K^{\times})^k$ telles que :
 - (i) F est nulle si inf $|x_i|_K > R$.
 - (ii) F est indéfiniment différentiable sur $(K^{\times})^k$.
 - $(iii)_C$ si K = C, F admet au voisinage de l'origine l'expression suivante :

$$F(x) = \sum_{\lambda \in \Lambda} \sum_{\substack{j \in \prod_{i=1}^{K} \{1, \dots, m_i\}}} \varphi_{\lambda, j}(x) |x|_{\mathbf{C}}^{\lambda} (\log |x|)^{j-1}$$

avec $\varphi_{\lambda,j}$ des fonctions indéfiniment différentiables au voisinage de l'origine, et cette égalité est indéfiniment dérivable terme à terme.

 $(iii)_R$ si K = R, F admet au voisinage de l'origine l'expression suivante :

$$F(x) = \sum_{\lambda \in \Lambda} \sum_{p \in (\mathbb{Z}/2)^k} \sum_{\substack{k \\ j \in \prod \{1, \dots, m_i\}}} \varphi_{\lambda, p, j}(x) \left| x \right|_{\mathbb{R}}^{\lambda} a(x)^p (\log \left| x \right|)^{j-1}$$

avec $\phi_{\lambda, p, j}$ des fonctions indéfiniment différentiables au voisinage de l'origine, et cette égalité est indéfiniment dérivable terme à terme.

2.1.2.4. DÉFINITION. — Sous les hypothèses précédentes on définit $Z_{\Lambda, m, R}(\Omega(K^{\times})^k)$ par récurrence sur k de la manière suivante. Pour k > 0, $Z_{\Lambda, m, R}(\Omega(K^{\times})^k)$ est l'ensemble des fonctions méromorphes à valeurs complexes Z sur $\Omega(K^{\times})^k$ telles que si $K = \mathbb{C}$ [resp. \mathbb{R}]

on ait:

(i) pour tout $\chi = (\chi_1, \ldots, \chi_k)$ appartenant à $\widehat{S_K^k}$, la fonction $Z_{\chi}(s)$, restriction de Z à $\mathbb{C}^k \times \{\chi\}$, est holomorphe sur

$$\prod_{i=1}^{k} \left(\mathbf{C} \setminus -\left(\Lambda_{i} + \frac{|\chi_{i}|}{2} + \mathbf{N} \right) \right)$$

$$\left[\text{resp. } \prod_{i=1}^{k} \left(\mathbf{C} \setminus -(\Lambda_{i} + \mathbf{N}) \right) \right]$$

et les hyperplans polaires de la forme $s_i = \alpha_i$ sont de multiplicité au plus m_i

(ii) pour tout entier N positif, pour tout k-uplet d'entiers positifs $p = (p_1, \ldots, p_k)$, il existe une constante C(Z, N, p) telle que:

$$\prod_{i=1}^{k} \left| s_{i} \right|^{p_{i}} \left| Z_{\chi}(s) \right| \leq C(Z, N, p) \prod_{i=1}^{k} R^{\operatorname{Re}(s_{i})}$$

pour s vérifiant $\text{Re}(s_i) > -N$, $1 \le i \le k$, et n'appartenant pas à un voisinage produit convenable du lieu polaire de \mathbb{Z}_{χ} .

(iii) pour tout entier i de $\{1, \ldots, k\}$ fixé, pour tout χ_i de $\widehat{S_K}$, et tout α_i appartenant à $-\Lambda_i - (|\chi_i|/2) - N[\text{resp.} -\Lambda_i - N]$, si $Z_{\chi}(s)$ a un pôle d'ordre r le long de l'hyperplan $s_i = \alpha_i$, les r coefficients de la partie polaire de $Z_{\chi}(s)$ le long de l'hyperplan appartiennent à $Z_{\Lambda', m', R}(\Omega(K^{\times})^{k-1})$, avec $\Lambda' = \prod_{j \neq i} \Lambda_j$ et $m' = (m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_k)$. [Cette dernière condition est toujours vérifiée si k = 1.]

2.1.2.5. On a le résultat suivant, dont la démonstration est entièrement similaire à celle du cas k=1, traité dans [I1], [I2], [B-M].

Théorème 2.1.2.5. — Si F appartient à $\mathcal{F}_{\Lambda, m, R}((K^{\times})^k)$ la fonction

$$\mathbf{M}_{\mathbf{K}}(\mathbf{F})(\boldsymbol{\omega}) = \int_{(\mathbf{K}^{\times})^{k}} \mathbf{F}(x) \, \boldsymbol{\omega}(x) \, d^{\times} x$$

définie sur $\Omega(K^{\times})^k$ pour Re(s) suffisamment grand admet un prolongement analytique en une fonction de $Z_{\Lambda, m, R}(\Omega(K^{\times})^k)$.

La transformation de Mellin M_K établit une bijection entre $\mathscr{F}_{\Lambda, m, R}((K^{\times})^k)$ et $Z_{\Lambda, m, R}(\Omega(K^{\times})^k)$.

2.2. Morphismes sans éclatement en codimension zéro. Discriminant. - 2.2.1. Soit X [resp. Y] un ouvert de K^n [resp. K^k] et $F: X \to Y$ un morphisme K-analytique dominant. On note

$$F_c: X_c \rightarrow Y_c$$

le complexifié de ce morphisme.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Soit

$$\tau_{\mathbf{F_C}}$$
: $C_{\mathbf{F_C}}(\mathbf{X_C}) \to \mathbf{X_C}$

le conormal relatif défini comme en 1.3.1.

DÉFINITION [H-M-S]. — Le morphisme F est sans éclatement en codimension zéro si le morphisme composé $F_C \circ \tau_{F_C}$ est de dimension relative constante.

Pour éviter tout problème au bord de X on supposera dans la suite de l'article que F admet un prolongement en $F': X' \to Y'$ avec X relativement compact dans X'. Quand on dira que F est sans éclatement en codimension zéro, cela signifiera que F admet un tel prolongement F' qui est sans éclatement en codimension zéro.

- 2.2.2. Soit $F: X \to Y$ un morphisme vérifiant les hypothèses précédentes. Le lieu critique C_F de F est par définition l'espace K-analytique défini par l'annulation de tous les mineurs d'ordre k de la matrice jacobienne de F. Si F est sans éclatement en codimension zéro, l'image de C_F par F est soit vide, soit définie localement par une équation K-analytique, d'après 1.3.2. C'est par définition le discriminant Δ_F de F.
 - 2.3. FONCTIONS DE TYPE SINGULIER-RÉGULIER ET INTÉGRATION DANS LES FIBRES.
- 2.3.1. DÉFINITION. Soit Y un ouvert non vide de K^k , Δ un sous ensemble K-analytique réduit de Y et m un entier positif. Une fonction F définie sur Y\ Δ à valeurs complexes est de type singulier-régulier d'ordre m, en abrégé S-R (m), le long de Δ si elle satisfait les conditions suivantes :
 - 1. F est indéfiniment différentiable sur $Y \setminus \Delta$.
 - 2. pour tout morphisme:

$$\pi: Z \to Y$$

avec Z une variété K-analytique lisse irréductible de dimension k vérifiant :

- (i) $\pi^{-1}(\Delta)$ est un diviseur à croisements normaux;
- (ii) le lieu critique de π est contenu dans $\pi^{-1}(\Delta)$;

pour tout point p de $\pi^{-1}(\Delta)$, si sur un voisinage de p le support de $\pi^{-1}(\Delta)$ coïncide avec $y_1 \dots y_l = 0$, (y_1, \dots, y_l) faisant partie d'un système de paramètres $y = (y_1, \dots, y_k)$ en p, alors au voisinage de p, identifié grâce à p à un voisinage de l'origine dans p0, la fonction p1, p2, p3, p3, p4, p5, p6, p7, p8, p9, p9,

convenable de la forme $\Lambda = \prod_{i=1}^{n} \Lambda_i \times \{0\}^{k-l}$; $m_i = m+1$ si $i \leq l$, $m_i = 1$ si i > l; et R arbitraire.

2.3.2. Soit $F: X \to Y$ un morphisme K-analytique vérifiant les hypothèses données en 2.2.1. Pour t appartenant à Y on note X(t) la fibre $F^{-1}(t)$.

Soit ω une forme différentielle C^{∞} de type (n, n) [resp. de degré n] sur X si $K = \mathbb{C}$ [resp. $K = \mathbb{R}$] à support F-propre.

Si t est une valeur régulière de F, l'intégrale de ω dans la fibre est définie dans le cas complexe [resp. réel] par l'intégrale :

$$I_{\omega}(t) = \int_{X(t)} \frac{\omega}{dF \wedge d\overline{F}} \left[\text{resp. } I_{\omega}(t) = \int_{X(t)} \frac{\omega}{dF} \right]$$

avec la convention que $dF = df_1 \wedge \ldots \wedge df_k$, si $F = (f_1, \ldots, f_k)$ et $\omega/dF \wedge d\overline{F}$ [resp. ω/dF] est une forme différentielle relative α , définie sur un voisinage de X(t), vérifiant $\omega = dF \wedge d\overline{F} \wedge \alpha$ [resp. $\omega = dF \wedge \alpha$].

Le résultat suivant sera démontré dans le prochain paragraphe :

Theoreme 2.3.2. — Si F: $X \to Y$ est un morphisme sans éclatement en codimension zéro, si ω est une forme différentielle C^{∞} sur X à support F-propre, de type (n, n) dans le cas complexe, de degré n dans le cas réel, alors l'intégrale dans la fibre $I_{\omega}(t)$ est une fonction de type singulier-régulier d'ordre n-k le long du discriminant Δ_F .

2.4. On déduit le théorème 2.3.2 du résultat suivant, dont la démonstration occupera l'essentiel du paragraphe.

Théorème 2.4. — Soit $F: X \to Y$ un morphisme K-analytique vérifiant les hypothèses données en 2.2.1. On suppose que F est sans éclatement en codimension zéro. Soit η une forme différentielle C^{∞} sur X, de type (n-k, n-k) dans le cas complexe, de degré n-k dans le cas réel, à support F-propre.

L'intégrale

$$\int_{\mathbf{X}(t)} \eta$$

définit une fonction de type S-R (n-k) le long du discriminant Δ_F .

Démonstration. — Nous donnons la démonstration dans le cas complexe, le cas réel étant similaire et un peu plus simple.

Le morphisme F étant sans éclatement en codimension zéro il est ouvert, et donc en employant une partition de l'unité il suffit de traiter le cas où X est un petit voisinage de l'origine dans \mathbb{C}^n et Y = F(X) est un petit voisinage de l'origine dans \mathbb{C}^k .

On démontre le résultat par récurrence sur n-k. Si n=k, localement le morphisme F est fini et la démonstration est similaire au cas p-adique traité en 1.4.3.

Supposons donc n > k. On va utiliser l'hypothèse de récurrence pour obtenir le résultat suivant.

Proposition 2.4.1. — Soit $F: X \to Y$ un morphisme sans éclatement en codimension zéro avec X [resp. Y = f(X)] un voisinage ouvert de l'origine dans \mathbb{C}^n [resp. \mathbb{C}^k].

Il existe un voisinage X_0 de l'origine dans X tel que si σ est une forme C^{∞} de type (n-k, n-k) à support F-propre contenu dans X_0 qui s'annule sur un voisinage de l'origine,

alors l'intégrale

$$\int_{\mathbf{X}(\mathbf{r})} \sigma$$

est de type S-R (n-k-1) le long de Δ_F .

 $D\acute{e}monstration.$ — On considère une forme linéaire générale l s'annulant à l'origine. Le morphisme

F':
$$\begin{cases} X \to Y \times \mathbb{C} \\ x \to (F(x), l(x)) \end{cases}$$

est sans éclatement en codimension zéro.

Comme en 1.3.2 le discriminant $\Delta_{F'}$ de F' est égal à la réunion du dirimant D_i et de l'image réduite par F' du lieu critique de F.

D'après ([H-M-S] 4.3.3) la restriction de F' à la variété polaire P_t est un morphisme fini sur son image.

L'intersection de la fibre $F^{\prime -1}(0)$ avec P_l est donc un ensemble fini, et on choisit un voisinage ouvert de l'origine X_0 dont l'intersection avec $F^{\prime -1}(0)$ et P_l ne contient que l'origine.

Soit σ une forme C^{∞} de type (n-k, n-k) à support F-propre contenu dans X_0 et s'annulant sur un voisinage de l'origine.

On veut montrer que $\int_{X(t)} \sigma$ est de type S-R (n-k-1). Pour cela il suffit de démontrer que si q est un point de $X_0 \cap (F'^{-1}(0)\setminus\{0\})$ et X_q un petit voisinage de q, l'intégrale

$$I_q(t) = \int_{X_q \cap X(t)} \sigma$$

est de type S-R (n-k-1).

Pour cela considérons un morphisme

$$\pi: Z \to Y$$

comme en 2.3.1.

On note Y_q [resp. Y_q'] l'image de X_q par F [resp. F'], Δ_q [resp. Δ_q'] le discriminant de la restriction de F à Y_q [resp. F' à Y_q']. D'après la définition de X_q , Δ_q' est égal à $Y_q' \cap (\Delta_q' \times \mathbb{C})$.

Par hypothèse de récurrence l'intégrale

$$\varphi(t, l) = \int_{X_q \cap F'^{-1}(t, l)} \frac{\sigma}{dl \wedge dl}$$

est de type S-R (n-k-1) le long de Δ'_{a} .

 4^e série - tome 22 - 1989 - N° 3

Soit $\pi': \mathbb{Z} \times \mathbb{C} \to \mathbb{Y} \times \mathbb{C}$ le morphisme produit.

Le support de $\varphi \circ \pi'$ est contenu dans un tube

$$0 \le |l| \le \varepsilon$$
 avec $\varepsilon > 0$.

Comme

$$I_{q}(\pi(y)) = \int_{0 \le |l| \le \varepsilon} \varphi \circ \pi'(y, l) \, dl \wedge d\overline{l}$$

on obtient que $I_q \circ \pi$ a un développement asymptotique du type désiré : il suffit d'intégrer celui de $\phi \circ \pi'$. Il est clair que toutes les conditions requises sont vérifiées.

Nous allons maintenant démontrer le résultat suivant :

Proposition 2.4.2. — Soit $F: X \to Y$ un morphisme vérifiant les hypothèses de la proposition 2.4.1. Il existe un voisinage ouvert X_0 de l'origine dans X tel que si ω et ω' sont des formes différentielles holomorphes de degré n-k définies sur X et ρ une fonction C^∞ à support compact contenu dans X_0 qui vaut identiquement 1 sur un voisinage de l'origine, l'intégrale

$$\int_{\mathbf{X}(\mathbf{w})} \rho \mathbf{w} \wedge \overline{\mathbf{w}}'$$

est de type S-R (n-k) le long de Δ_F .

 $D\acute{e}monstration$. — On note \mathscr{D}_X le faisceau des opérateurs différentiels holomorphes sur X. Soit \mathscr{M} le faisceau \mathscr{O}_X des fonctions holomorphes sur X muni de sa structure naturelle de \mathscr{D}_X module.

D'après ([K-S] 8.6.1 et 9.4.1), le complexe image directe $\int_{\mathbf{F}} \mathcal{M}$ définit un objet de la catégorie dérivée des complexes de $\mathcal{D}_{\mathbf{Y}}$ modules à cohomologie holonome et régulière. En effet l'hypothèse que F est sans éclatement en codimension zéro est exactement l'hypothèse requise dans ([K-S] 8.6.1 et 9.4.1).

En particulier le \mathscr{D}_Y module $\mathscr{F} = \int_{\mathbb{R}}^{n-k} \mathscr{M}$ est holonome et régulier.

Soit $\pi: Z \to Y$ un morphisme analytique vérifiant les conditions données en 2.3.1. Le \mathscr{D}_Z module $\pi^*\mathscr{F}$ est un module holonome régulier. On considère son localisé \mathscr{G} le long de $\pi^{-1}(\Delta_F)$.

Soit p un point de $\pi^{-1}(\Delta_F)$, (y_1, \ldots, y_k) des coordonnées locales en p telles que sur un voisinage Z_p de p le support de $\pi^{-1}(\Delta_F)$ soit égal au diviseur $\prod_{1 \le i \le l} y_i = 0$ avec $l \le k$.

On considère l'espace X' obtenu par produit fibré

$$\begin{array}{ccc} X' \to X \\ \downarrow & \downarrow F \\ Z \stackrel{\pi}{\to} Y \end{array}$$

et une résolution des singularités X de X'

$$\begin{array}{ccc} \widetilde{X} & \stackrel{\widetilde{\pi}}{\rightarrow} & X \\ \widetilde{F} \downarrow & & \downarrow F \\ Z & \stackrel{\pi}{\rightarrow} & Y \end{array}$$

Sur $\widetilde{X}_p = \widetilde{F}^{-1}(Z_p)$ on écrit $y_i \circ \widetilde{F} = \widetilde{f}_i$, on note $\widetilde{\delta} = \prod_{1 \le i \le l} \widetilde{f}_i$ et \widetilde{F}_p [resp. $\widetilde{\pi}_p$] la restriction de \widetilde{F} [resp. $\widetilde{\pi}$] à \widetilde{X}_p .

On note $\mathscr{A} = \mathscr{O}_{\mathbb{Z}_p}[y_1^{-1}, \ldots, y_l^{-1}]$ et $\mathscr{B} = \widetilde{\mathbb{F}}_p^{-1} \mathscr{A}$ le faisceau de $\widetilde{\mathbb{F}}_p^{-1}(\mathscr{O}_{\mathbb{Z}_p})$ modules obtenu par image inverse.

On a besoin de l'énoncé suivant.

LEMME 2.4.3. — Si α est une n-k+1 forme holomorphe définie sur X il existe des n-k formes holomorphes α_i définies sur X, et des fonctions φ_i appartenant à $\mathscr A$ telles que :

$$\widetilde{\pi}_p^* \alpha = \sum_{1 \leq i \leq k} \varphi_i(\widetilde{F}) d\widetilde{f}_i \wedge (\widetilde{\pi}_p^* \alpha_i).$$

Démonstration. – Soit δ une équation locale de Δ_F . Comme le support de

$$\Omega_{X}^{n-k+1}/\sum_{1 \le i \le k} df_{i} \wedge \Omega_{X}^{n-k}$$

est contenu dans l'hypersurface $\delta \circ F = 0$, il existe N > 0 et des n - k formes holomorphes α_i sur X telles que $(\delta \circ F)^N \alpha = \sum_{1 \le i \le k} df_i \wedge \alpha_i$. On en déduit le lemme.

Soit $\tilde{\Omega}^{n-k}$ le sous ${\mathscr B}$ module de $\Omega^{n-k}_{X_p}$ engendré par $\tilde{\pi}_p^{-1}(\Omega^{n-k}_X)$.

On a une application naturelle

$$\varphi \colon \Gamma(\tilde{X}_n, \tilde{\Omega}^{n-k}) \to \Gamma(Z_n, \mathcal{G})$$

et le noyau de φ est engendré par

$$\widetilde{\pi}_p^{-1} \left(d\Omega_{\mathbf{X}}^{n-k-1} + \sum_{1 \leq i \leq k} df_i \wedge \Omega_{\mathbf{X}}^{n-k-1} \right).$$

Si ω est une n-k forme holomorphe définie sur X, d'après le lemme 2.4.3 il existe des n-k formes holomorphes α_i sur X et des fonctions φ_i appartenant à $\mathscr A$ telles que

$$\widetilde{\pi}_p^*(d\omega) = \sum_{1 \le i \le k} \varphi_i(\widetilde{F}) \ d\widetilde{f}_i \wedge (\widetilde{\pi}_p^* \alpha_i)$$

et par définition de \mathscr{G} on a :

$$\frac{\partial}{\partial y_i} (\varphi (\widetilde{\pi}_p^* \omega)) = \varphi_i (y) \varphi (\widetilde{\pi}_p^* \alpha_i).$$

Comme \mathscr{G} est holonome régulier et définit une connexion intégrable en dehors de $\pi^{-1}(\Delta)$, il existe, quitte à remplacer Z_p par un voisinage de p plus petit, des opérateurs différentiels holomorphes D_i définis sur Z_p de la forme suivante :

$$D_{i} = \prod_{1 \leq j \leq k_{i}} \left(h_{i, j} (y_{i}) y_{i} \frac{\partial}{\partial y_{i}} - \alpha_{i, j} \right)$$

avec $\alpha_{i,j} \in \mathbb{C}$; $k_i \in \mathbb{N}$; $h_{i,j}$ fonction holomorphe de la variable y_i vérifiant $h_{i,j}(0) = 1$ pour $1 \le i \le k$; les opérateurs D_i vérifiant :

$$D_i(\varphi(\tilde{\pi}_p^*\omega))=0$$
 pour $1 \le i \le k$.

On a d'autre part

$$\frac{\partial}{\partial y_i} \left(\int_{\widetilde{X}_p(y)} \widetilde{\pi}_p^* (\rho \omega \wedge \bar{\omega}') \right) = \int_{\widetilde{X}_p(y)} \left(\frac{\partial}{\partial y_i} (\rho \circ \widetilde{\pi}) \right) \widetilde{\pi}_p^* (\omega \wedge \bar{\omega}') + \varphi_i(y) \int_{\widetilde{X}_p(y)} (\rho \circ \widetilde{\pi}) \widetilde{\pi}_p^* (\alpha_i \wedge \bar{\omega}')$$

avec $\widetilde{X}_{p}(y) = \widetilde{X}_{p} \cap \widetilde{F}^{-1}(y)$.

Comme p vaut identiquement 1 sur un voisinage de zéro, l'intégrale

$$\int_{\widetilde{\mathbf{X}}_{p}(\mathbf{y})} \frac{\partial}{\partial y_{i}} (\rho \circ \widetilde{\boldsymbol{\pi}}) \widetilde{\boldsymbol{\pi}}_{p}^{*} (\boldsymbol{\omega} \wedge \overline{\boldsymbol{\omega}}')$$

est de type S-R (n-k-1) d'après la proposition 2.4.1, en prenant X_0 comme dans la proposition 2.4.1.

L'intégrale

$$\frac{\partial}{\partial y_i} \left(\int_{\widetilde{\mathbf{X}}_{\mathbf{p}'}(y)} \widetilde{\pi}^* (\rho \omega \wedge \overline{\omega}') \right)$$

est donc égale à

$$\varphi_i(y) \int_{\widetilde{X}_p(y)} (\rho \circ \widetilde{\pi}) \, \widetilde{\pi}_p^* (\alpha_i \wedge \overline{\omega}')$$

modulo des fonctions de type S-R (n-k-1).

On obtient donc à partir du lemme 2.4.3 l'énoncé suivant.

Lemme 2.4.4. — Pour tout opérateur différentiel holomorphe D sur Z_p , pour tout forme différentielle holomorphe ω de degré n-k sur X, il existe une forme différentielle α sur \tilde{X}_p appartenant à $\tilde{\Omega}^{n-k}$ telle que

$$(\bigstar) \qquad \qquad D(\varphi(\widetilde{\pi}_{p}^{*}\omega)) = \varphi(\alpha).$$

De plus pour toute forme α définie sur \tilde{X}_p , appartenant à $\tilde{\Omega}^{n-k}$ et vérifiant (\bigstar) , la fonction

$$\cdot \ D\bigg(\int_{\widetilde{X}_p(y)} \widetilde{\pi}_p^*(\rho\omega \wedge \bar{\omega}')\bigg)$$

coïncide modulo une fonction de type S-R (n-k-1) le long de $\pi^{-1}(\Delta_F) \cap \mathbb{Z}_p$ avec l'intégrale

$$\int_{\widetilde{X}_p(y)} \alpha \wedge \widetilde{\pi}_p^*(\rho \overline{\omega}').$$

On déduit de ce lemme que $D_i(\tilde{I}_p(y))$ est de type S-R (n-k-1) le long de $\pi^{-1}(\Delta_F) \cap Z_p$, $\tilde{I}_p(y)$ désignant l'intégrale

$$\int_{\widetilde{\mathbf{X}}_{p}(\mathbf{y})}\widetilde{\pi}_{p}^{*}(\rho\omega\wedge\bar{\omega}').$$

De même il existe des opérateurs différentiels D_i' du type précédent tels que $D_i'(\varphi(\omega')) = 0$ pour $1 \le i \le k$, et $\overline{D_i'}(\widetilde{1}_p(y))$ est de type S-R (n-k-1) le long de $\pi^{-1}(\Delta_F) \cap Z_p$.

La fonction $\tilde{I}_{p}(y)$ est donc solution d'un système

$$D_{i}(f) = \psi_{i}, \qquad 1 \leq i \leq k$$

$$\overline{D'_{i}}(f) = \psi'_{i}, \qquad 1 \leq i \leq k$$

avec ψ_i , ψ'_i de type S-R (n-k-1) le long de $y_1 \dots y_l = 0$. On en déduit que $\tilde{I}_p(y)$ est de type S-R (N) le long de $y_1 \dots y_k = 0$ avec N assez grand. Il reste donc à vérifier que, avec les notations de 2.1.2.3,

- (i) on peut prendre $\Lambda_i = \{0\}$ et $m_i = 1$ si i > l,
- (ii) on peut prendre $m_i \le n-k+1$, pour $i \le l$.

L'assertion (i) est claire car à la place des coordonnées $y = (y_1, \ldots, y_k)$ on aurait pu prendre n'importe quelles coordonnées locales $y' = (y'_1, \ldots, y'_k)$ avec $y'_i = y_i$ pour $i \le l$.

Vu ce qui a été déjà démontré, pour obtenir l'assertion (ii), il suffit de vérifier que la restriction de $\tilde{\mathbf{I}}_p(y)$ à des germes de courbes analytiques transverses à $\pi^{-1}(\Delta)$ est de type S-R (n-k). Les fibres générales de l'image inverse T de C par $\tilde{\mathbf{F}}$ sont de dimension n-k. Comme C est de dimension 1, le résultat est alors bien connu [on peut désingulariser T et appliquer ([I2], p. 81)].

Revenons à la démonstration du théorème. On suppose X assez petit pour être égal à X_0 .

Si η est une forme différentielle C^{∞} de type (n-k, n-k) à support relativement propre sur X, on note $\tilde{I}_{\nu}(\eta)$ la fonction

$$\int_{\widetilde{\mathbf{X}}_{p}(\mathbf{y})}\widetilde{\pi}_{p}^{*}\,\mathbf{\eta}$$

et $\tilde{Z}_{\eta}(\omega)$ la transformée de Mellin de $\tilde{I}_{y}(\eta)$ par rapport aux coordonnées $y=(y_{i})$, notée également $\tilde{Z}_{\eta,\chi}(s)$ avec χ appartenant à $(\hat{S}_{\mathbf{C}})^{k} \simeq \mathbf{Z}^{k}$ et s à \mathbf{C}^{k} .

On note
$$E_{A,B} = \{ s \in \mathbb{C}^k / A > \text{Re}(s_i) > -B, 1 \le i \le k \}$$
 et $E_A = E_{+\infty,A}$.

On dit que η s'annule à l'ordre N à l'origine si le développement de Taylor à l'ordre N à l'origine de η est nul.

Lemme 2.4.5. — Pour tout entier M>0 il existe N>0 tel que si η s'annule à l'ordre N à l'origine alors les pôles de $\tilde{Z}_{\eta}(\omega)$ appartenant à E_M sont situés sur des hyperplans parallèles aux hyperplans de coordonnées.

Démonstration. – Soit ρ_{λ} une fonction C^{∞} croissante

$$\rho_{\lambda}$$
: $[0, +\infty[\rightarrow [0, 1]$

qui vaut 0 sur $[0, \lambda/2]$, 1 sur $[\lambda, +\infty[$.

On note η_{λ} la forme différentielle $\rho_{\lambda}(\sum_{1 \le i \le n} |x_i|^2) \eta$.

Comme $\tilde{Z}_{\eta,\chi}(s)$ s'exprime comme une intégrale sur \tilde{X}_p , il n'est pas restrictif de supposer que le diviseur $\left(\prod_{i=1}^k \tilde{f}_i\right)^{-1}(0)$ est un diviseur à croisements normaux.

On a

$$\tilde{\pi}_p^{-1}\left(\left(\prod_{i=1}^k \tilde{f}_i\right)^{-1}(0)\right) = E \cup F$$

avec E la réunion des diviseurs qui ont pour image par $\tilde{\pi}_p$ l'origine et F la réunion des autres composantes.

Soit E^{α} , $\alpha \in A$, [resp. E^{β} , $\beta \in B$] les composantes irréductibles de E [resp. F].

On note N_i^{γ} la multiplicité de $\tilde{f}_i \circ \tilde{\pi}_p$ le long de E^{γ} . Si E^{γ} est donné localement par une équation $x_{\gamma} = 0$, on note $N_0^{\gamma} = 1 + d_{\gamma}/2$, avec d_{γ} le degré par rapport à x_{γ} et \bar{x}_{γ} de la partie initiale du développement de Taylor de η au point générique de E^{γ} .

On note P_E [resp. P_F] la réunion des hyperplans

$$\sum_{1 \le i \le k} \mathbf{N}_i^{\gamma} s_i + \mathbf{N}_0^{\gamma} + \frac{l}{2} = 0$$

avec $\gamma \in A$ [resp. B], $l \in \mathbb{N}$.

Si M est un entier fixé, si N est suffisamment grand, alors pour toute forme η qui s'annule à l'ordre N à l'origine, on a l'inclusion

$$(\bigstar) \qquad \qquad P_{E} \subset C \setminus E_{M}.$$

On déduit alors le lemme 2.4.5 du lemme 2.4.6 et de la proposition 2.4.1.

Lemme 2.4.6. — Soit N tel que l'on ait (\bigstar), L un hyperplan appartenant à P_F et $L_M = L \cap E_M$. La partie polaire de $\tilde{Z}_{\eta_{\lambda,\chi}}(s)$ le long de L_M est la limite quand λ tend vers zéro de la partie polaire de $\tilde{Z}_{\eta_{\lambda,\chi}}(s)$ le long de L_M .

Démonstration. — Le lemme résulte d'un calcul local sur \tilde{X} , similaire à [I2], p. 101-103.

Pour démontrer le théorème on va montrer que $\tilde{Z}_{\eta}(\omega)$ appartient à $Z_{\Lambda, m, R}((K^{\times})^k)$ avec Λ de la forme

$$\Lambda = \prod_{i=1}^{l} \Lambda_i \times \{0\}^{k-l}$$

 $m_i = n - k + 1$, $i \le l$; $m_i = 1$ i > l; R tell que le support de $\tilde{\pi}_p^* \eta$ soit contenu dans $\{x \in \tilde{X}_p / |\tilde{f}_i(x)| < R\}$.

Choisissons M > 0. Les pôles de $\tilde{Z}_{\eta}(\omega)$ situés sur E_M sont du type requis. En effet on choisit N assez grand pour avoir la conclusion du lemme 2.4.5, on écrit

$$\eta = \sum_{1 \le i \le d} \rho_i \, \omega_i \, \wedge \, \overline{\omega_i'} + \eta'$$

avec ω_i , ω_i' des n-k formes holomorphes sur X, ρ_i des fonctions C^{∞} sur X qui prennent la valeur 1 sur un voisinage de l'origine, et η' qui s'annule à l'ordre N à l'origine, puis on applique la proposition 2.4.2 et le lemme 2.4.5.

Il reste donc à démontrer que \tilde{Z}_{η} vérifie les inégalités de 2.1.2.4, ce qui est fait dans le lemme 2.4.8.

LEMME 2.4.7. — Pour N positif, il existe une constante C(N) telle que

$$\left|\tilde{Z}_{\chi}(s)\right| \leq C(N) \prod_{i=1}^{k} R^{\operatorname{Re}(s_{i})}$$

pour s appartenant à E_N et n'appartenant pas à un voisinage produit convenable du lieu polaire de $\mathbf{\tilde{Z}}_{\kappa}$.

Démonstration. — On remarque tout d'abord qu'il suffit de montrer que pour tous les entiers positifs M et N la fonction $\tilde{Z}_{\eta,\,\chi}$ est bornée (indépendamment de χ) sur $E_{M,\,N}$ privé de voisinages produit du lieu polaire de $\tilde{Z}_{\eta,\,\chi}$.

Dans le cas k=1, Igusa ([I2], p. 101-103) montre ceci directement par un calcul sur une résolution des singularités. On peut faire un calcul analogue dans le cas présent. Supposons comme dans la démonstration du lemme 2.4.5 dont on reprend les notations

que
$$\left(\prod_{i=1}^{k} \tilde{f}_{i}\right)^{-1}$$
 (0) est un diviseur à croisements normaux.

Soit q un point de \tilde{X}_p tel que sur un voisinage U_q de q le diviseur exceptionnel $\left(\prod_{i=1}^k \tilde{f}_i\right)^{-1}(0)$ soit de support $t_1 \dots t_f = 0, \ t = (t_1, \dots, t_n)$ étant des coordonnées locales en q. On note $E^{j, q}$ le diviseur $t_j = 0$. On définit les multiplicités $N_i^{j, q}$, $0 \le i \le k$, comme dans le lemme 2.4.5.

Un calcul semblable à celui de ([I2], p. 101-103) donne que pour $\varepsilon > 0$ fixé, l'intégrale

$$\int_{\mathbb{U}_q} \omega(\widetilde{f}_i) \, \widetilde{\pi}_p^* \, \eta$$

est bornée sur $E_{M,N}$ privé des tubes $|l(s)| \le \varepsilon$, l décrivant l'ensemble P_q des fonctions

$$l(s) = \sum_{1 \le i \le k} N_i^{j, q} s_i + N_0^{j, q} + \frac{m}{2}, \qquad m \in \mathbb{N}.$$

La fonction $|l|^{n-k+1} |\tilde{Z}_{\eta,s}|$ est bornée sur

$$\mathbf{E}_{\mathbf{M}, \mathbf{N}} \cap \{ s / | l(s) | \leq \varepsilon \} \setminus \{ s / | l'(s) | \leq \varepsilon, \ l' \in \bigcup_{q \in \widetilde{\mathbf{X}}_p} \mathbf{P}_q \setminus \{ l \} \}$$

d'après le même calcul. Si l(s)=0 n'est pas un hyperplan polaire de $\tilde{Z}_{\eta,\chi}$, on en déduit que $|\tilde{Z}_{\eta,\chi}|$ est borné sur cet ensemble d'après le principe du maximum. On obtient le lemme en effectuant une récurrence sur le nombre d'hyperplans non polaires de la forme l=0, l appartenant à P_a .

Lemme 2.4.8. — Pour tout N positif, pour tout p appartenant à N^k , il existe une constante C(N, p) telle que

$$\prod_{1 \leq i \leq k} \left| s_i \right|^{p_i} \left| \widetilde{Z}_{\chi}(s) \right| \leq C(N, p) \prod_{1 \leq i \leq k} R^{\text{Re}(s_i)}$$

pour s appartenant à E_N et n'appartenant pas à un voisinage produit convenable du lieu polaire de \tilde{Z}_r .

Démonstration. — Soit (x_1, \ldots, x_n) des coordonnées locales à l'origine de X. En appliquant le lemme 2.4.3 aux formes $dx_{i_1} \wedge \ldots \wedge dx_{i_{n-k+1}}$ on obtient qu'il est possible d'écrire :

$$\tilde{\pi}_{p}^{*}(d\eta) = \sum_{1 \leq i \leq k} d\tilde{f}_{i}^{*} \wedge \varphi_{i}(\tilde{F}) (\tilde{\pi}_{p}^{*} \alpha_{i}) + \sum_{1 \leq i \leq k} d\bar{\tilde{f}}_{i}^{*} \wedge \varphi_{i}^{*}(\tilde{F}) (\tilde{\pi}_{p}^{*} \beta_{i})$$

avec α_i et β_i des formes C^{∞} de type (n-k, n-k) sur X et φ_i [resp. φ_i'] des fonctions sur Z_p , $\pi^{-1}(\Delta_F)$ telles que $\prod_{1 \le j \le l} |y_j|_{\mathbf{C}}^m \varphi_i$ [resp. $\prod_{1 \le j \le l} |y_j|_{\mathbf{C}}^m \varphi_i'$] soit C^{∞} sur Z_p pour m un entier convenable.

On a

$$\frac{\partial}{\partial y_i} \tilde{\mathbf{I}}_{y}(\eta) = \varphi_i \tilde{\mathbf{I}}_{y}(\alpha_i)$$

$$\frac{\partial}{\partial \overline{v}_i} \tilde{\mathbf{I}}_{\mathbf{y}}(\mathbf{\eta}) = \varphi_i' \tilde{\mathbf{I}}_{\mathbf{y}}(\boldsymbol{\beta}_i)$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

On pose

$$\mathbf{D}_{i} = \frac{1}{2} \left(y_{i} \frac{\partial}{\partial y_{i}} + \overline{y_{i}} \frac{\partial}{\partial \overline{y_{i}}} \right).$$

Comme la transformée de Mellin de $D_i \tilde{I}_y(\eta)$ est égale à $(s_i + 1) \tilde{Z}_{\eta}$ on obtient que :

$$(s_i+1)\widetilde{\mathbf{Z}}_{\eta} = \frac{1}{2}\mathbf{M}_{\mathbf{C}}(y_i\,\varphi_i(y)\widetilde{\mathbf{I}}_{y}(\alpha_i) + \overline{y_i}\,\varphi_i'(y)\widetilde{\mathbf{I}}_{y}(\beta_i)).$$

On en déduit l'énoncé du lemme pour p = (0, ..., 1, ..., 0) d'après le lemme 2.4.7 et sa démonstration, et donc pour p quelconque par récurrence.

D'après ce qui précède ceci termine la démonstration du théorème.

Remarque. — Dans [S2] C. Sabbah a donné une démonstration différente du théorème 2.4, basée sur les résultats de [S1].

Démonstration du théorème 2.3.2. — On suppose $K = \mathbb{C}$ [le cas $K = \mathbb{R}$ étant similaire] et on reprend les notations utilisées dans la démonstration du théorème 2.4.

D'après le théorème des zéros de Hilbert on peut écrire

$$\tilde{\pi}_{p}^{*}(\omega) = \psi(\tilde{F}) \tilde{\pi}_{p}^{*}(\eta \wedge df_{1} \wedge \ldots \wedge df_{k} \wedge d\bar{f}_{1} \wedge \ldots \wedge d\bar{f}_{k})$$

avec ψ une fonction sur $\mathbb{Z}_p^{\setminus} \pi^{-1}(\Delta_F)$ telle que $(\prod_{1 \le i \le l} |y_i|_{\mathbf{c}})^m \psi$ soit \mathbb{C}^{∞} sur \mathbb{Z}_p pour un entier m convenable. L'énoncé est donc une conséquence du théorème 2.4 appliqué à η .

2.5. Le théorème. — Soit $F: X \to Y$ un morphisme K-analytique dominant, X (resp. Y) un ouvert de K^n (resp. K^k) contenant l'origine.

On suppose que F est sans éclatement en codimension zéro et que F(0) = 0. Soit $\Delta_{F, 0}$ le germe du discriminant de F à l'origine.

On définit l'ensemble $\mathscr{P}(\Delta_{F,0})$ de façon similaire au cas p-adique (1.5):

Soit $\mathscr{F}(\Delta_{F,0})$ l'ensemble des vecteurs primitifs associés au polyèdre de Newton à l'origine de $\Delta_{F,0}$ [défini comme en 1.2.1]. On note $\mathscr{P}(\Delta_{F,0})$ l'ensemble des vecteurs primitifs de \mathbb{N}^k qui sont combinaison linéaire à coefficients rationnels positifs d'au plus k-1 vecteurs de $\mathscr{F}(\Delta_{F,0})$.

Si η est une forme différentielle C^{∞} à support propre de type (n, n) [resp. de degré n] si $K = \mathbb{C}$ [resp. $K = \mathbb{R}$], on considère la fonction

$$Z_{\eta}(\omega) = \int_{K^n} \omega(F) \, \eta$$

définie pour ω appartenant à $(\Omega(K^{\times}))^k$ vérifiant $\operatorname{Re}(s_i) > 0$, $1 \le i \le k$. (On convient que $\omega(F) = \prod_{1 \le i \le k} \omega_i(f_i)$ si $\omega = (\omega_1, \ldots, \omega_k)$, $F = (f_1, \ldots, f_k)$.)

Cette intégrale admet un prolongement analytique en une fonction méromorphe sur $(\Omega(K^{\times}))^k$. Ceci est classique si k=1 ([A], [B-G], [I1]) et se prouve de façon analogue si

k > 1. De plus le lieu polaire de $Z_n(\omega)$ est une réunion d'hyperplans H_i d'équation

$$\sum_{1 \le i \le k} a_i^l s_i + a_0^l = 0$$

avec $a^l = (a_i^l)_{1 \le i \le k}$ un vecteur primitif de \mathbb{N}^k et a_0^l un rationnel strictement positif.

On note $\mathscr{P}_{\eta}(F)$ l'ensemble des vecteurs a_l , H_l décrivant l'ensemble des hyperplans polaires et $\mathscr{P}(F)$ la réunion des ensembles $\mathscr{P}_{\eta}(F)$. L'ensemble $\mathscr{P}(F)$ est fini.

Notre résultat principal est le suivant :

Théorème 2.5. — Soit $F: X \to Y$ un morphisme K-analytique dominant sans éclatement en codimension zéro vérifiant F(0) = 0, avec X [resp. Y] un ouvert de K^n [resp. K^k] contenant l'origine.

Alors l'ensemble des hyperplans polaires est contenu dans l'ensemble des pentes du polyèdre de Newton du discriminant à l'origine :

$$\mathscr{P}(F) \subset \mathscr{P}(\Delta_{F,0}).$$

Remarque. — Comme il a été rappelé dans l'introduction, C. Sabbah a montré dans [S1] que si F est sans éclatement en codimension zéro, l'ensemble $\mathscr{P}(F)$ est contenu dans un ensemble fini, ne dépendant que de la géométrie du discriminant, qui coïncide avec $\mathscr{P}(\Delta_{F,0})$ dans le cas k=2, et devrait être contenu dans $\mathscr{P}(\Delta_{F,0})$ en général.

Démonstration. — Compte tenu du théorème 2.3.2 la preuve du théorème est entièrement similaire à celle du cas p-adique (théorème 1.5):

Si σ est un cône appartenant à \mathscr{S} on lui associe $S_{\sigma} = \{(x_i)/|x_i| \leq 1 \text{ et } (-\log|x_i|) \in \sigma\}$.

Le seul problème qui pourrait apparaître est le suivant : la transformée stricte $\tilde{\Delta}$ du discriminant par $\pi_{\tilde{\sigma}}$ peut éventuellement ne pas être transverse au bord du polydisque $\{y_i/|y_i| \leq 1\}$. Pour remédier à cela il suffit d'effectuer une transformation linéaire $x_i' = \lambda_i x_i$, avec des λ_i assez généraux, pour se ramener au cas où $\tilde{\Delta}$ est transverse au bord du polydisque, pour tout cône $\tilde{\sigma}$. On peut alors effectuer la démonstration exactement comme dans le cas p-adique.

2.6. APPLICATIONS AUX DÉFORMATIONS. — Soit f_t une famille de fonctions analytiques sur un ouvert de K^n . Autrement dit on a un morphisme $F: X \to Y$ avec X [resp. Y] un ouvert de K^{n+1} [resp. K^n] contenant l'origine avec $F = (f_t, t)$, les coordonnées sur K^{n+1} étant (x, t). On suppose que F s'annule à l'origine.

Soit η une forme différentielle C^{∞} à support compact de type (n, n) [resp. de degré n] si $K = \mathbb{C}$ [resp. $K = \mathbb{R}$]. Si $\omega = (s, \chi)$ est un quasicaractère on s'intéresse à la variation avec le paramètre t de l'intégrale :

$$Z_{\eta, t}^{0}(\omega) = Z_{\eta, t, \chi}^{0}(s) = \int_{\mathbb{K}^{n}} \omega(f_{t}) \eta.$$

Si F est sans éclatement en codimension zéro on note $\delta(F)$ l'ensemble des quotients a/b appartenant à $\mathcal{P}(\Delta_{F,0})$, b non nul.

Théorème 2.6. — Si le morphisme $F = (f_t, t)$ est sans éclatement en codimension zéro, il existe un ensemble fini B de rationnels strictement supérieurs à -1, un ensemble fini C de rationnels strictement négatifs, un entier N, tels que pour |t| suffisamment petit on ait

$$Z_{\eta, t, \chi}^{0}(s) = \left(\prod_{c \in C} \Gamma(s-c)\right) \sum_{\alpha \in \delta(F)} \sum_{\beta \in B} \sum_{j \in \{0, \dots, n\}} \varphi_{\alpha, \beta, j}(s, t) \left| t \right|_{C}^{\alpha s + \beta} \log \left| t \right|^{j}$$

dans le cas K = C [resp.

$$Z_{\eta, t, \chi(s)}^{0} = \left(\prod_{c \in C} \Gamma(s-c)\right) \sum_{\alpha \in \delta(F)} \sum_{\beta \in B} \sum_{j \in \{0, \ldots, n\}} \sum_{p \in \mathbb{Z}/2} \varphi_{\alpha, \beta, j, p}(s, t) a(t)^{p} \left| t \right|^{\alpha s + \beta} \log \left| t \right|^{j}$$

si $K = \mathbb{R}$] avec $\phi_{\alpha, \beta, j}$ [resp. $\phi_{\alpha, \beta, j, p}$] des fonctions telles que $\phi_{\alpha, \beta, j}(s, t^N)$ [resp. $\phi_{\alpha, \beta, j, p}(s, t^N)$] soient C^{∞} en les variables (s, t) et holomorphes en la variable s.

Démonstration. — Soit ρ une fonction C^{∞} à support compact qui vaut identiquement 1 sur un voisinage de l'origine dans K.

L'intégrale

$$Z_{\eta}(\omega, \omega') = \int_{\kappa^{n+1}} \omega(f(t)) \omega'(t) \eta \wedge \rho(t) d^{\times} t$$

est la transformée de Mellin par rapport à la variable t de $\rho(t) Z_{n,t}^0(\omega)$.

On écrit $\omega = (s, \chi), \omega' = (s', \chi')$.

On peut choisir un ensemble fini C de rationnels strictement négatifs tel que la fonction

$$Z'_{\eta}(\omega, \omega') = (\prod_{c \in C} \Gamma(s-c))^{-1} Z_{\eta}(\omega, \omega')$$

n'ait pas de droite polaire de la forme $s-\lambda=0$.

On écrit
$$\omega'' = (N s', \chi')$$
 et $Z''_n(\omega, \omega') = Z'_n(\omega, \omega'')$.

Lemme 2.6.1. — Il existe un entier N strictement positif tel que pour ω fixé la fonction $Z''_{\eta}(\omega, \omega'')$ appartienne à $Z_{\Lambda, n, R}(\Omega(K^{\times}))$ pour Λ , R convenables.

Démonstration. - Elle est analogue à celle de [I2], p. 98-104.

En effectuant pour ω fixé une transformation de Mellin inverse et en utilisant le théorème 2.5 on obtient l'énoncé du théorème avec des fonctions $\varphi_{\alpha, \beta, j}(s, t^N)$ [resp. $\varphi_{\alpha, \beta, j, p}(s, t^N)$] qui sont a priori seulement C^{∞} en t pour s fixé.

Pour conclure il suffit de remarquer que $Z'_n(\omega, \omega')$ étant méromorphe les parties polaires aux pôles de sa restriction aux droites où s est constante varient holomorphiquement avec s, et que les coefficients du développement asymptotique de la transformée de Mellin inverse sont des fonctions linéaires des coefficients polaires aux pôles.

BIBLIOGRAPHIE

- [A] M. F. Atiyah, Resolution of Singularities and Division of Distributions (Comm. pure and appl. Math., vol. 23, 1970, p. 145-150).
- [B] D. BARLET, Fonctions de type trace (Ann. Inst. Fourier, vol. 33, n° 2, 1983, p. 43-76).
- [B-M] D. BARLET et H.-M. MAIRE, Développements asymptotiques, transformation de Mellin complexe et intégration dans les fibres (Séminaire P. Lelong, 1986).
- [Be-G] I. N. BERNSTEIN et S. I. GELFAND, Meromorphic Property of the Functions P^k (Functional Analysis and its Applications, 3, 1969, p. 68-69).
- [D] J. DENEF, Poles of p-Adic Complex Powers and Newton Polyhedra, Preprint, 1985.
- [H-M-S] J.-P. G. HENRY, M. MERLE et C. SABBAH, Sur la condition de Thom stricte pour un morphisme analytique complexe (Ann. Scient. Ec. Norm. Sup., 4^e série, 17, 1984, p. 227-268).
- [I1] J.-I. IGUSA, Complex Powers and Asymptotic Expansions I, Functions of Certain Types (J. reine angew. Math., vol. 268/269, 1974, p. 110-130); II, Asymptotic expansions (J. reine angew. Math., vol. 278/279, 1975, p. 307-321).
- [I2] J.-I. IGUSA, Lectures on Forms of Higher Degree, Springer Verlag, 1978.
- [K-S] M. KASHIWARA et P. SCHAPIRA, Microlocal Study of Sheaves (Astérisque, n° 128, Société Mathématique de France, 1985).
- [L] Lê D. T., The Geometry of the Monodromy Theorem, Volume dédié à C. P. Ramanujam, Springer Verlag, 1978.
- [L-M-W] Lê D. T., F. MICHEL et C. WEBER, Courbes polaires et topologie des courbes planes, Preprint.
- [Lo1] F. LOESER, Fonctions d'Igusa p-adiques et polynômes de Bernstein (American Journal of Mathematics, vol. 110, 1988, p. 1-21).
- [Lo2] F. LOESER, Fonctions | f |s, théorie de Hodge et polynômes de Bernstein-Sato. Géométrie algébrique et applications, Travaux en cours 24, Hermann, 1987, p. 21-33.
- [Lo3] F. LOESER, Quelques résultats récents concernant les fonctions d'Igusa (Séminaire de Théorie des Nombres de Bordeaux, 1986-1987, Exposé n° 25).
- [S1] C. SABBAH, Proximité évanescente I, la structure polaire d'un D-module, Appendice en collaboration avec F. Castro (Compositio Mathematica, vol. 62, 1987, p. 283-328); II, Equations fonctionnelles pour plusieurs fonctions analytiques (Compositio Mathematica, vol. 64, 1987, pp. 213-241).
- [S2] C. SABBAH, Appendice à Proximité évanescente II, Manuscrit, janvier 1988.
- [SGA 1] Séminaire de Géométrie Algébrique du Bois Marie, 1960/1961, dirigé par A. GROTHENDIECK, Revêtements étales et groupe fondamental (Springer Lecture Notes in Mathematics, n° 224, 1971).
- [T] B. TEISSIER, Variétés polaires I: Invariants polaires des singularités d'hypersurfaces (Invent. Math., vol. 40, 1977, p. 267-292).

(Manuscrit reçu le 25 mars 1988, révisé le 21 novembre 1988).

F. LOESER,
Centre de Mathématiques,
Unité Associée au C.N.R.S. n° 169,
École Polytechnique,
91128 Palaiseau Cedex.