Annales scientifiques de l’é.n.S.

Orlando Villamayor

Constructiveness of Hironaka's resolution

Annales scientifiques de l'É.N.S. 4^{e} série, tome 22, no 1 (1989), p. 1-32
http://www.numdam.org/item?id=ASENS_1989_4_22_1_1_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1989, tous droits réservés.
L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

CONSTRUCTIVENESS OF HIRONAKA’S RESOLUTION

By Orlando VILLAMAYOR (${ }^{1}$)

Introduction

In [9] Hironaka develops the notion of local idealistic presentation for an algebraic scheme X embedded in a regular scheme W . Here we take those results as starting point and we exhibit a constructive resolution of singularities (see 2.2)
Roughly speaking, an upper semicontinuous function is defined on a fixed Samuel stratum such that
(i) the function determines the center of a permissible transformation $\pi_{1}: \mathrm{X}_{1} \rightarrow \mathrm{X}$.
(ii) for $\pi_{1}: \mathrm{X}_{1} \rightarrow \mathrm{X}$ as before, an upper semicontinuous function can be defined at X_{1} [as in (i)] such that either there is an improvement of the Hilbert-Samuel functions at \mathbf{X}_{1}, or there is an improvement on these functions. Repeating (i) and (ii) a finite number of times, say

$$
\mathrm{X}_{\mathrm{r}} \xrightarrow{\pi_{r}} \mathrm{X}_{r-1} \rightarrow \ldots \rightarrow X_{1} \xrightarrow{\pi_{1}} \mathrm{X}
$$

one can force an improvement (at X_{r}) of the Hilbert-Samuel function.
In section 1 we introduce the notation and some results (without proofs) required for the construction. We refer the reader mainly to [9] for more details and proofs. The definition of constructive resolutions and the development of these are given in section 2.

I thank Prof. Jean Giraud for important suggestions on this work.
§ 1. Throughout this article W will denote a regular algebraic scheme admitting a finite cover by affine sets. Each restriction to these being the spectrum of an algebra of finite type over a fixed field k of characteristic zero. And all patching maps being k-algebra maps.
A map $\mathrm{W}_{1} \rightarrow \mathrm{~W}$ will always mean a morphism of finite type.

[^0]We consider pairs of the form (J, b) where b is a positive integer and $\mathrm{J} \subset \mathrm{O}_{\mathrm{w}}$ is a coherent sheaf of ideals for which $\mathrm{J}_{x} \neq 0, \forall x \in \mathrm{~W}\left(\mathrm{~J}_{x}\right.$ denotes the stalk at $\left.x\right)$.

Given a valuation ring A and a principal ideal $J \subset A$ let ord (J) denote the value of J with respect to the valuation associated with A.

Definition 1.1. - Assume that $\left(\mathrm{J}_{1}, b_{1}\right)$ and $\left(\mathrm{J}_{2}, b_{2}\right)$ are two pairs as before with the property that for any morphism $h: \operatorname{Spec}(A) \rightarrow W$, where A is a noetherian valuation ring, the following equality holds:

$$
\left.\frac{\operatorname{ord}\left(\mathrm{J}_{1} \mathrm{~A}\right)}{b_{1}}=\frac{\operatorname{ord}\left(\mathrm{J}_{2} \mathrm{~A}\right)}{b_{2}} \quad \text { (at } \mathbb{Q}\right)
$$

$\mathrm{J}_{i} \mathrm{~A}$ the ideal induced by J_{i} via h at A .
This condition defines an equivalence relation among such pairs. We shall say that $\left(\mathrm{J}_{1}, b_{1}\right) \sim\left(\mathrm{J}_{2}, b_{2}\right)$ and the equivalence class of a pair (J, b), say $\mathscr{A}=((\mathrm{J}, b))$ is called an idealistic exponent at W (see Def. 3, p. 56 [9]).

Assume that $\left(\mathrm{J}_{1}, b_{1}\right) \sim\left(\mathrm{J}_{2}, b_{2}\right)$ and let $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ be any morphism of regular schemes, then $\left(\mathrm{J}_{1} \mathrm{O}_{\mathrm{w}_{1}}, b_{1}\right) \sim\left(\mathrm{J}_{2} \mathrm{O}_{\mathrm{w}_{2}}, b_{2}\right)$ So we define for a given idealistic exponent $\mathscr{A}=((\mathrm{J}, b))$ at W , the idealistic exponent $\pi^{-1}(\mathscr{A})$ as:

$$
\pi^{-1}(\mathscr{A})=\left(\left(\mathrm{JO}_{\mathrm{w}_{1}}, b\right)\right)
$$

Definition 1.2. - Let $\left(\mathrm{J}_{1}, b_{1}\right)$ and $\left(\mathrm{J}_{2}, b_{2}\right)$ be two equivalent pairs at W corresponding to the idealistic exponent \mathscr{A}. If $x \in W$ then

$$
c=\frac{v_{x}\left(\mathrm{~J}_{1}\right)}{b_{1}}=\frac{v_{x}\left(\mathrm{~J}_{2}\right)}{b_{2}},
$$

where $v_{x}\left(\mathrm{~J}_{i}\right)$ denotes the order of the stalk $\mathrm{J}_{i, x}$ at the local regular ring $\mathrm{O}_{\mathrm{w}, x^{*}}$. We define the order of \mathscr{A} at x to be $v_{x}(\mathscr{A})=c$ and the order of \mathscr{A} to be $\operatorname{ord}(\mathscr{A})=\max _{x \in \mathrm{w}}\left\{v_{x}(\mathscr{A})\right\}$.

Definition 1.3. - Given a pair (J, b) at W as in Def. 1.1 we define a reduced subscheme:

$$
\operatorname{Sing}^{b}(\mathrm{~J})=\left\{x \in \mathrm{~W} \mid v_{x}(\mathrm{~J}) \geqq b\right\}
$$

A transformation $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ is said to be permissible for (J, b) if it is the blowing up with center C, where C is a regular subscheme of W contained in $\operatorname{Sing}^{b}(J)$.

In this case there is a coherent sheaf of ideals $\overline{\mathbf{J}} \subset \mathrm{O}_{\mathrm{w}_{1}}$ such that $\mathrm{JO}_{\mathrm{w}_{1}}=\overline{\mathrm{J}} \mathrm{P}^{b}$ where P denotes the sheaf of ideals $\mathrm{O}\left(-\pi^{-1}(\mathrm{C})\right) \subset \mathrm{O}_{\mathrm{w}_{1}}$.

We define the transform of (\mathbf{J}, b) by π to be the pair $(\overline{\mathrm{J}}, b)$ at W_{1}.

```
4e SÉRIE - TOME 22 - 1989 - N N 1
```

One can check that if $\left(\mathrm{J}_{1}, b_{1}\right) \sim\left(\mathrm{J}_{2}, b_{2}\right)$ at W then:
(i) $\operatorname{Sing}^{b_{1}}\left(\mathrm{~J}_{1}\right)=\operatorname{Sing}^{b_{2}}\left(\mathrm{~J}_{2}\right)$ and if $\left(\bar{J}_{\mathbf{i}}, b_{i}\right)$ denotes the transform of $\left(\mathrm{J}_{i}, b_{i}\right), i=1,2$ by a permissible map $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$, then:
(ii) $\left(\overline{\mathrm{J}}_{1}, b_{1}\right) \sim\left(\overline{\mathrm{J}}_{2}, b_{2}\right)$ at W_{1}.

So now let (J, b) be a pair at $\mathrm{W}, \pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ permissible for (J, b) and $\mathscr{A}=((\mathrm{J}, b))$, then we define the subscheme of singular points:

$$
\operatorname{Sing}(\mathscr{A})=\operatorname{Sing}^{b}(J) \subset W
$$

A transformation π : $\mathrm{W}_{1} \rightarrow \mathrm{~W}$ is said to be permissible for \mathscr{A} if it is permissible for (J, b) and the transform of \mathscr{A} by the permissible transformation π to be $\mathscr{A}_{1}=((\overline{\mathrm{J}}, b))$ at W_{1} where $(\overline{\mathrm{J}}, b)$ is the transform of (J, b). Finally a sequence of permissible transformation of \mathscr{A} over W is a sequence

$$
\begin{array}{lllll}
\mathrm{W}=\mathrm{W}_{0} \stackrel{\pi_{1}}{\leftarrow} \mathrm{~W}_{1} \stackrel{\pi_{2}}{\leftarrow} \mathrm{~W}_{2} \ldots \stackrel{n_{r}}{\leftarrow} \mathrm{~W}_{r} \\
\mathscr{A}=\mathscr{A}_{0} & \mathscr{A}_{1} & \mathscr{A}_{2} & \mathscr{A}_{r}
\end{array}
$$

where each π_{i} is permissible for \mathscr{A}_{i-1} and \mathscr{A}_{i} is the transform of \mathscr{A}_{i-1}.
Definition 1.4. - We define on W_{1} for some index set Λ

$$
\mathrm{E}_{\Lambda}=\left\{\mathrm{E}_{\lambda} \mid \lambda \in \Lambda\right\}
$$

each E_{d} being a smooth hypersurface of W or the empty set. We also assume that these hypersurfaces have only normal crossings i.e. $\cup \bigcup_{\lambda \in \Lambda} \mathrm{E}_{\lambda}(\subset \mathrm{W})$ is a subscheme with only normal crossings.
A monoidal transformation π : $\mathrm{W}_{1} \rightarrow \mathrm{~W}$ is said to be permissible for $\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right)$, if it is the blowing up at a center C which is regular and has only normal crossings with $\bigcup_{\lambda \in \Lambda} \mathrm{E}_{\lambda}$.

In this case the transform of $\left(W, E_{\Lambda}\right)$ is defined as $\left(W_{1}, E_{\Lambda_{1}}\right)$, where $\Lambda_{1}=\Lambda \cup\{\beta\}$ and
(i) for each $\lambda \in \Lambda \subset \Lambda_{1}, E_{\lambda}^{\prime}$ is the strict transform of $E_{\lambda} \subset W$, by this we mean the strict transform of the components of E_{λ} which are not components of $\mathrm{C} . \mathrm{E}_{\lambda}^{\prime}=\varnothing$ if $E_{\lambda}=\varnothing$, also if $E_{\lambda}=C$.
(ii) $\mathrm{E}_{\beta}^{\prime}=\pi^{-1}(\mathrm{C})$.

It is clear that $\bigcup_{\alpha \in \Lambda_{1}} \mathrm{E}_{\alpha}^{\prime}$ consists of hypersurfaces with only normal crossings.
A permissible tree is a data of the form:

$$
\mathrm{T}: \begin{array}{rllll}
\mathrm{W} & =\mathrm{W}_{0}{ }^{\pi_{1}} \leftarrow \mathrm{~W}_{1} \leftarrow \ldots \mathrm{~W}_{r-1} \stackrel{{ }^{\pi_{r}}}{\leftarrow} \mathrm{~W}_{r} \\
\mathrm{E}_{\Lambda} & =\mathrm{E}_{\Lambda_{0}} & \mathrm{E}_{\Lambda_{1}} & \mathrm{E}_{\Lambda_{r-1}} & \mathrm{E}_{\Lambda_{r}} \\
\mathrm{C} & =\mathrm{C}_{0} & \mathrm{C}_{1} & \mathrm{C}_{r-1} &
\end{array}
$$

each π_{i} permissible for $\left(\mathrm{W}_{i-1}, \mathrm{E}_{\Lambda_{i-1}}\right)$ and $\left(\mathrm{W}_{i}, \mathrm{E}_{\Lambda_{i}}\right)$ being the corresponding transform.

Definition 1.5. - An isomophism $\Gamma=(\theta, \gamma):\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right) \rightarrow\left(\mathrm{W}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}\right)$ consists of:
(i) A bijection $\gamma: \Lambda \rightarrow \Lambda^{\prime}$.
(ii) An isomorphism $\theta: \mathrm{W} \rightarrow \mathrm{W}^{\prime}$ inducing by restriction an isomorphism

$$
\theta: \quad \mathrm{E}_{\lambda} \rightarrow \mathrm{E}_{\gamma(\lambda)}
$$

for seach $\lambda \in \Lambda$.
Remark 1.6. - Given an isomorphism of pairs $\Gamma:\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right) \rightarrow\left(\mathrm{W}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}\right)$ as before, and a transformation $\pi_{1}: W_{1} \rightarrow W$ permissible for ($\mathrm{W}, \mathrm{E}_{\mathrm{N}}$) (Def. 1.4) with center C , then $\theta(C) \subset W^{\prime}$ has only normal crossings with $\bigcup_{\lambda \in \Lambda^{\prime}} \mathrm{E}_{\lambda}$ and if π_{1}^{\prime} denotes the corresponding transformation then there is a unique isomorphism $\Gamma_{1}=\left(\theta_{1}, \gamma_{1}\right)$ of the transforms $\left(\mathrm{W}_{1}, \mathrm{E}_{\Lambda_{1}}\right)$ and $\left(\mathrm{W}_{1}^{\prime}, \mathrm{E}_{\Lambda_{1}}\right)$ such that the diagram

$$
\begin{aligned}
& \underset{\pi_{1} \downarrow}{\mathrm{~W}_{1}} \xrightarrow{\theta_{1}} \underset{\substack{\mathbf{W}^{\prime} \\
\mathbf{W}_{\pi_{1}}^{\prime}}}{\prime} \\
& \mathrm{W} \xrightarrow{\boldsymbol{\theta}} \mathrm{~W}^{\prime}
\end{aligned}
$$

is commutative.
Moreover if T is any permissible tree for ($\mathrm{W}, \mathrm{E}_{\mathrm{N}}$), then via Γ, T induces a permissible tree over ($\mathrm{W}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}$) and the isomorphism Γ can be "lifted" by T .

Remark 1.7. - Let $\mathbb{A}=\operatorname{Spec}(k[\mathrm{X}])$ and $\mathrm{P}_{n}: \mathrm{W}_{n}=\mathrm{W} \times \mathbb{A}^{n} \rightarrow \mathrm{~W}$ the natural projection $(n \geqq 0)$. Given a pair ($\mathrm{W}, \mathrm{E}_{\Lambda}$) as in Def. 1.4 we define on each W_{n} a set $\left(\mathrm{E}_{n}\right)_{\Lambda}$, which consists for each $\lambda \in \Lambda$ of $\left(E_{n}\right)_{\lambda}=P_{n}^{-1}\left(E_{\lambda}\right)$.

An isomorphism $\Gamma=(\theta: \gamma):\left(W, E_{\Lambda}\right) \rightarrow\left(W^{\prime}, E_{\Lambda^{\prime}}\right)$ (Def. 1.5) induces natural isomorphisms

$$
\Gamma_{n}=\left(\theta_{n}: \gamma_{n}\right):\left(\mathrm{W}_{n},\left(\mathrm{E}_{n}\right)_{\Lambda}\right) \rightarrow\left(\mathrm{W}_{n}^{\prime},\left(\mathrm{E}_{n}\right)_{\Lambda^{\prime}}\right)
$$

for all $n \geqq 0$.
Definition 1.8. - Consider now a 3-tuple ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\boldsymbol{\Lambda}}$) where \mathscr{A} is an idealistic exponent on W and $\left(W, E_{\Lambda}\right)$ is as in Def. 1.4.

A tree T is said to be permissible for $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\lambda}\right)$ when the two following conditions hold:
(a) T is permissible for $\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right)$ (Def. 1.4)
(b) the induced sequence of transformation

$$
\mathrm{W}=\mathrm{W}_{0} \stackrel{\pi_{1}}{\leftarrow} \mathrm{~W}_{1} \leftarrow \ldots \leftarrow \mathrm{~W}_{r-1} \stackrel{\pi_{r}}{\leftarrow} \mathrm{~W}_{r}
$$

is permissible for $(\mathrm{W}, \mathscr{A})$ in the sense of Def. 1.3.
If $\pi_{1}: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ is permissible for $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)$, let \mathscr{A}_{1} denote the transform of \mathscr{A} (Def. 1.3) and ($\mathrm{W}_{1}, \mathrm{E}_{\mathrm{A}_{1}}$) the transform of ($\mathrm{W}, \mathrm{E}_{\Lambda}$) (Def. 1.4), then ($\left.\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\mathrm{A}_{1}}\right)$ is called the transform of $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\mathrm{A}}\right)$.

```
4e SÉRIE - TOME 22 - 1989 - N N 1
```

The grove of $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)$ consists of all possible permissible trees for $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)$.
Let $\mathrm{P}_{n}: \mathrm{W}_{n}=\mathrm{W} \times \mathbb{A}^{n} \rightarrow \mathrm{~W}$ be as in Remark 1.7 then the polygrove of $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)$ consists of the groves of $\left(\mathrm{W}_{n}, \mathrm{P}_{n}^{-1}(\mathscr{A}),\left(\mathrm{E}_{n}\right)_{\Lambda}\right)$ for each $n \geqq 0 . \mathrm{P}_{n}^{-1}(\mathscr{A})$ as in Def. 1.1

An idealistic situation is a 3-tuple $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\boldsymbol{\Lambda}}\right)$ as before, together with its polygrove.
Definition 1.9. - An isomorphism from the idealistic situation ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\boldsymbol{\Lambda}}$) to ($\mathrm{W}^{\prime}, \mathscr{A}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}$) consists of an isomorphism

$$
\begin{equation*}
\Gamma=(\theta: \gamma):\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right) \rightarrow\left(\mathrm{W}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}\right) \tag{Def.1.5}
\end{equation*}
$$

such that the induced isomorphism

$$
\Gamma_{n}=\left(\theta_{n}: \gamma_{n}\right):\left(\mathrm{W}_{n},\left(\mathrm{E}_{n}\right)_{\Lambda}\right) \rightarrow\left(\mathrm{W}_{n}^{\prime},\left(\mathrm{E}_{n}\right)_{\Lambda^{\prime}}\right), \quad n \geqq 0
$$

(Remark 1.7) establish a bijection between those trees of the grove of $\left(W_{n}, \mathrm{P}_{n}^{-1}(\mathscr{A}),\left(\mathrm{E}_{n}\right)_{\Lambda}\right)$ and those of the grove of $\left(\mathrm{W}_{n}^{\prime}, \mathrm{P}_{n}^{-1}\left(\mathscr{A}^{\prime}\right),\left(\mathrm{E}_{n}\right)_{\Lambda^{\prime}}\right)$ for all $n \geqq 0$. The correspondence of trees via an isomorphism being as in Remark 1.6.

Definition 1.10. - Consider at W an idealistic situation ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\mathrm{N}}$) and an etale map

$$
e: \quad \mathrm{W}_{1} \rightarrow \mathrm{~W}
$$

then the restriction by e of $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)$ is the idealistic situation $\left(\mathrm{W}_{1}, e^{-1}(\mathscr{A}),\left(\mathrm{E}_{1}\right)_{\Lambda}\right)$ where:
(a) for each $\lambda \in \Lambda,\left(\mathrm{E}_{1}\right)_{\lambda}=e^{-1}\left(\mathrm{E}_{\lambda}\right)$
(b) if \mathscr{A} is the class of (J, b), then $e^{-1}(\mathscr{A})$ is the class of $\left(\mathrm{JO}_{\mathrm{w}_{1}}, b\right)$ (Def. 1.1).

Given a closed point $x \in \operatorname{Sing}(\mathscr{A})$, then an etale neighbourhood of $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\mathrm{N}}\right)$ at x consists of an etale map $e: \mathrm{W}_{1} \rightarrow \mathrm{~W}$, an idealistic situation $\left(\mathrm{W}_{1}, e^{-1}(\mathscr{A}),\left(\mathrm{E}_{1}\right)_{\Lambda}\right)$ as before, and a point $y \in \operatorname{Sing}\left(e^{-1}(\mathscr{A})\right)$ such that $e(y)=x$.

Given two idealistic situations $\left(\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}\right),\left(\mathrm{W}_{2}, \mathscr{A}_{2}, \mathrm{E}_{\Lambda_{2}}\right)$ and closed points $x_{1} \in \operatorname{Sing}\left(\mathscr{A}_{1}\right), x_{2} \in \operatorname{Sing}\left(\mathscr{A}_{2}\right)$, then x_{1} is said to be equivalent to x_{2} if there are etale neighbourhoods at x_{1} and x_{2} which are isomorphic i.e. there are etale maps $e_{i}: \mathrm{W}_{i}^{\prime} \rightarrow \mathrm{W}_{i}, i=1,2$, restrictions $\left(\mathrm{W}_{i}^{\prime}, e_{i}^{-1}\left(\mathscr{A}_{i}\right), e^{-1}(\mathrm{E})_{\Lambda_{i}}\right), \quad i=1,2$, closed points $y_{i} \in \operatorname{Sing}\left(e_{i}^{-1}\left(\mathscr{A}_{i}\right)\right), i=1,2$ and an isomorphism of idealistic situations (Def. 1.9)

$$
\Gamma=(\theta, \gamma):\left(\mathrm{W}_{1}^{\prime}, e_{1}^{-1}\left(\mathscr{A}_{1}\right),\left(e_{1}^{-1}(\mathrm{E})\right)_{\Lambda_{1}}\right) \rightarrow\left(\mathrm{W}_{2}^{\prime}, e_{2}^{-1}\left(\mathscr{A}_{2}\right), e_{2}^{-1}(\mathrm{E})_{\Lambda_{2}}\right)
$$

such that $\theta\left(y_{1}\right)=y_{2}$.
Remark 1.10.1. - Let the notation and assumptions be as in Def. 1.9.
Let $e: \mathrm{W}_{1}^{\prime} \rightarrow \mathrm{W}^{\prime}$ be an etale map and

$$
\begin{aligned}
&{ }_{e_{1} \downarrow} \mathrm{~W}_{1} \xrightarrow{\theta_{1}} \mathrm{~W}_{1}^{\prime} \\
& \downarrow^{\prime} \\
& \mathrm{W} \xrightarrow{\theta} \mathrm{~W}^{\prime}
\end{aligned}
$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE
the commutative diagram arising from the fiber product of $\theta: \mathrm{W} \rightarrow \mathrm{W}^{\prime}$ and $e: \mathrm{W}_{1}^{\prime} \rightarrow \mathrm{W}^{\prime}$.
Then e_{1} is etale and θ_{1} induces an isomorphism between the restricted situations (Def. 1.10).

This follows from the definition of excellence.
1.11 . - Let $\left(Z, \bar{E}_{\Lambda}\right),\left(W, E_{\Lambda}\right)$ be as in Def. 1.4 and $i: Z \rightarrow W$ be an immersion of regular schemes Assume furthermore that the following condition holds:

$$
\begin{equation*}
\forall \lambda \in \Lambda: \quad \overline{\mathrm{E}}_{\lambda}=\mathrm{E}_{\lambda} \cap \mathrm{Z} . \tag{1.11.1}
\end{equation*}
$$

In this case it is clear that a permissible tree T for $\left(Z, \bar{E}_{\Lambda}\right)$ induces a permissible tree for $\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right)$, say $i(\mathrm{~T})$. And the final transform of $\left(\mathrm{Z}, \overline{\mathrm{E}}_{\Lambda}\right)$ and $\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right)$ by T and $i(\mathrm{~T})$ still satisfy 1.11.1.

Let $\mathbb{A}\left(=\operatorname{Spec}(k[X]), W_{n}=W \times \mathbb{A}^{n}, Z_{n}=Z \times \mathbb{A}^{n}\right.$ and $\left(\mathrm{E}_{n}\right)_{\Lambda},\left(\overline{\mathrm{E}}_{n}\right)_{\Lambda}$ be as in Remark 1.7. If $i: Z \rightarrow W$ is such that condition 1.11 .1 is satisfied, then the same will hold for the natural immersions $\mathrm{Z}_{n} \stackrel{i_{n}}{\leftrightarrows} \mathrm{~W}_{n}$.

Definition 1.11. - Let $\left(\mathrm{Z}, \mathscr{A}, \overline{\mathrm{E}}_{\Lambda}\right),\left(\mathrm{W}, \mathscr{B}, \mathrm{E}_{\Lambda}\right)$ be two idealistic situations (Def. 1.8), assume that Z is a subscheme of $\mathrm{W}, i: Z G \mathrm{~W}$, and that $\overline{\mathrm{E}}_{\boldsymbol{\Lambda}}$ and E_{Λ} satisfy 1.11.1. Then i is said to be a strong immersion if $\mathrm{Z}_{n} \hookrightarrow \mathrm{~W}_{n}$ induces a bijection between the grove of $\left(\mathrm{Z}_{n}, \mathrm{P}_{n}^{-1}(\mathscr{A}),\left(\overline{\mathrm{E}}_{n}^{\prime}\right)_{\Lambda}\right)$ and that of $\left(\mathrm{W}_{n}, \mathrm{P}_{n}^{-1}(\mathscr{B}),\left(\mathrm{E}_{n}\right)_{\Lambda}\right)$ for all $n \geqq 0$.

Theorem 1.12. - Let

$$
\left(\mathrm{Z}_{1}, \mathscr{A}_{1},\left(\overline{\mathrm{E}}_{1}\right)_{\Lambda}\right) \xrightarrow{i_{1}}\left(\mathrm{~W}, \mathscr{B}, \mathrm{E}_{\Lambda}\right) \quad \text { and } \quad\left(\mathrm{Z}_{2}, \mathscr{A}_{2},\left(\overline{\mathrm{E}}_{2}\right)_{\Lambda}\right) \xrightarrow{i_{2}}\left(\mathrm{~W}, \mathscr{B}, \mathrm{E}_{\Lambda}\right)
$$

be two strong immersions (Def. 1.11), and let x_{i} be a closed point at $\operatorname{Sing}\left(\mathscr{A}_{i}\right) \subset \mathrm{Z}_{i}(i=1,2)$ such that $i_{1}\left(x_{1}\right)=i_{2}\left(x_{2}\right)$.

If $\operatorname{dim}\left(Z_{1}\right)_{x_{1}}=\operatorname{dim}\left(Z_{2}\right)_{x_{2}}$ then x_{1} is equivalent to x_{2} (Def. 1.10).
Proof. - Argue as in Theorem 11.1 [8] and construct a retraction from W to Z, locally at some etale neighbourhood of $i_{1}\left(x_{1}\right)=i_{2}\left(x_{2}\right)$ which induces an isomorphism of the restricted idealistic situations (Def. 1.10).

Theorem 1.13.1. - Let x_{i} be a closed singular point of an idealistic situation $\left(\mathrm{Z}_{i}, \mathscr{A}_{i}, \mathrm{E}_{\Lambda_{i}}\right) i=1,2$ (Def. 1.8). If x_{1} and x_{2} are equivalent (Def. 1.10) then

$$
v_{x_{1}}\left(\mathscr{A}_{1}\right)=v_{x_{2}}\left(\mathscr{A}_{2}\right) \quad \text { (Def. 1.2) }
$$

Proof. - (see Prop. 8, p. 68 [9].
1.13.2. - We now refer to Definition 1.9, p. 59 [9] for the notion of tangent vector space of an idealistic exponent \mathscr{A} at a closed point $x \in \operatorname{Sing}(\mathscr{A}) \subset \mathrm{W}$ (say $\mathrm{T}_{\mathscr{A}, x}$). This is a subspace of $\mathrm{T}_{\mathrm{w}, x}$ (the tangent-space of W at x) and we shall denote its codimension by $\tau(\mathscr{A}, x)$.

```
4e SÉRIE - TOME 22 - 1989 - N N 1
```

Theorem 1.13.2. - Let $\left(\mathrm{Z}_{i}, \mathscr{A}_{i}, \mathrm{E}_{\mathrm{A}_{i}}\right) i=1,2$ and $x_{i} i=1,2$ be as in the last theorem. Then

$$
\tau\left(\mathscr{A}_{1}, x_{1}\right)=\tau\left(\mathscr{A}_{2}, x_{2}\right)
$$

and $\tau\left(\mathscr{A}_{1}, x_{1}\right) \geqq 0$ iff $v_{x_{1}}\left(\mathscr{A}_{1}\right)=1$ (Def. 1.2).
Proof. - The proof of this fact is similar to that of Theorem 1.13.1.
1.14. Let $\mathrm{Z} G \mathrm{~W}$ be as before a closed immersion of regular schemes and $\mathrm{Z}_{n}=\mathrm{Z} \times \mathbb{A}^{n} \hookrightarrow \mathrm{~W}_{n}=\mathrm{W} \times \mathbb{A}^{n}$ the induced immersions.

Let $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\mathrm{N}}\right)$ be an idealistic situation and

$$
\begin{array}{rlr}
\mathrm{W} \times \mathbb{A}^{n}= & \left(\mathrm{W}_{n}\right)_{0} \stackrel{\pi_{1}}{\leftarrow}\left(\mathrm{~W}_{n}\right)_{1} \ldots \leftarrow\left(\mathrm{~W}_{n}\right)_{r} \\
\left(\mathrm{E}_{n}\right)_{\Lambda}= & =\left(\mathrm{E}_{n}\right)_{\Lambda_{0}} & \left(\mathrm{E}_{n}\right)_{\Lambda_{1}} \\
& \mathrm{C}_{0} & \left.\mathrm{E}_{n}\right)_{\Lambda_{r}} \\
\mathrm{C}_{1}
\end{array}
$$

a tree over W_{n}, permissible for $\left(\mathrm{W}_{n}, \mathrm{P}_{n}^{-1}(\mathscr{A}),\left(\mathrm{E}_{n}\right)_{\Lambda}\right)$ (see Def. 1.8). For any such tree let $\left(\mathrm{Z}_{n}\right)_{i} \subset\left(\mathrm{~W}_{n}\right)_{i}$ denote the strict transform of $\mathrm{Z}_{n}\left(\subset \mathrm{~W}_{n}=\left(\mathrm{W}_{n}\right)_{0}\right)$.

Definition 1.14. - With the notation as before, a regular subscheme $\mathrm{Z} \subset \mathrm{W}$ is said to have maximal contact with the idealistic situation ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}$) if, for any fix $n \geqq 0$ and any tree T of the grove of $\left(\mathrm{W}_{n}, \mathrm{P}_{n}^{-1}(\mathscr{A}),\left(\mathrm{E}_{n}\right)_{\Lambda}\right)$ one has that $\mathrm{C}_{i} \subset\left(\mathrm{Z}_{n}\right)_{i} 0 \leqq i<r$, or equivalently if \mathscr{A}_{i} denotes the transform at $\left(\mathrm{W}_{n}\right)_{i}$ of $\mathscr{A}_{0}=\mathrm{P}_{n}^{-1}(\mathscr{A})$, then $\operatorname{Sing}\left(\mathscr{A}_{i}\right) \subset\left(\mathrm{Z}_{n}\right)_{i}$, $\forall n \geqq 0$.

Theorem 1.15. - Let ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}$) be an idealistic situation (Def. 1.8), $\mathrm{Z} \stackrel{i}{\leftrightarrows} \mathrm{~W}$ a regular subscheme having maximal contact with \mathscr{A}, and ($\mathrm{Z}, \overline{\mathrm{E}}_{\mathrm{N}}$) as in Def. 1.4. If the condition 1.11 .1 holds for $\left(Z, \bar{E}_{\Lambda}\right)$ and $\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right)$ then, locally at any closed point $x \in \operatorname{Sing}(\mathscr{A})$, either
(a) Sing $\mathscr{A}=\mathrm{Z}$ or
(b) for a convenient restriction of $\left(Z, \bar{E}_{\Lambda}\right)$ at a Zariski neighbourhood of x (as in Def. 1.10), say ($\mathrm{Z}, \overline{\mathrm{E}}_{\mathrm{N}}$), there is an idealistic situation $\left(\mathrm{Z}, \mathscr{B}, \overline{\mathrm{E}}_{\Lambda}\right)$ such that $i: \mathrm{Z} \subseteq \mathrm{W}$ is a strong immersion (Def. 1.11).

Proof. - See theorem 5, p. 111 [9].
Definition 1.15. - If (a) ever holds at x, we shall say that x is a regular point of Sing ($\mathscr{A})$.

Theorem 1.16.1. - Let $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)$ be an idealistic situation and assume that $\operatorname{ord}(\mathscr{A})=1$ (Def. 1.2). Then, locally at any closed point $x \in \operatorname{Sing}(\mathscr{A})$, there is a regular hypersurface H having maximal contact with the restricted idealistic situation (Def. 1.10 and Def. 1.14).

Corollary 1.16.1. - Assume that $x \in W$ is not a point at which (locally) Sing (\mathscr{A}) is regular of codimension one (Def. 1.15). And assume also that H is a hypersurface
of maximal contact, $\left(H, \bar{E}_{\Lambda}\right)$ is as in Def. 1.4 and that $\left(H, \bar{E}_{\Lambda}\right)$ and $\left(W, E_{\Lambda}\right)$ satisfy the condition 1.11.1. Then, after restricting to a convenient Zariski neighbourhood of x, there is an idealistic situation $\left(\mathrm{H}, \mathscr{B}, \overline{\mathrm{E}}_{\boldsymbol{\Lambda}}\right)$ such that $i: \mathrm{H} \leftrightarrows \mathrm{W}$ is a strong immersion (Def. 1.11).

Theorem 1.16.2. - Let $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ be permissible for an idealistic situation $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right) \quad$ (Def. 1.8), assume that $\operatorname{ord}(\mathscr{A})=1$ and let $\left(\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}\right)$ be the transform. Then either $\operatorname{Sing}\left(\mathscr{A}_{1}\right)=\varnothing$ or $\operatorname{ord}\left(\mathscr{A}_{1}\right)=1$. If x is any closed point of $\operatorname{Sing}\left(\mathscr{A}_{1}\right)$:

$$
\tau(\mathscr{A}, \pi(x)) \leqq \tau(\mathscr{A}, x)
$$

Definition 1.16.3.-Let (W, $\left.\mathscr{A}, \mathrm{E}_{\Lambda}\right)$ be an idealistic situation, we define

$$
\tau(\mathscr{A})=\inf _{x \in \operatorname{Sing}(\mathscr{A})}\{\tau(\mathscr{A}, x)\}
$$

and
$\mathrm{R}(\tau)(\mathscr{A})=\{x \in \operatorname{Sing}(\mathscr{A}) \mid \tau(\mathscr{A}, x)=\tau(\mathscr{A})$ and x
is a regular point of $\operatorname{Sing}(\mathscr{A})($ Def. 1.15) $\}$.

Proposition 1.16.4 (with the same notation as before). - (a) The set $\mathrm{R}(\tau)(\mathscr{A})$ is a regular subscheme of W , of codimension $\tau(\mathscr{A})$ at any point, and every irreducible component of $\mathrm{R}(\tau)(\mathscr{A})$ is a connected component of $\operatorname{Sing}(\mathscr{A})$.
(b) Let $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ be permissible for $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)(\mathrm{Def} 1.8$.$) and let \left(\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}\right)$ be its transform, then at a closed point $x \in \operatorname{Sing}\left(\mathscr{A}_{1}\right)$ both conditions:
(i) x is regular at $\operatorname{Sing}\left(\mathscr{A}_{1}\right)$ (in the sense of Def. 1.15).
(ii) $\tau\left(\mathscr{A}_{1}, x\right)=\tau(\mathscr{A})$
will hold if and only if $\pi(x) \in \mathrm{R}(\tau(\mathscr{A}))$.
Theorem 1.16.1, 1.16.2 and Prop. 1.16.4 follow from Theorem 1 p. 104 [9].
1.17. Weighted idealistic situations. - Let $\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right)$ be as in Def. 1.4 and P_{λ} the sheaf of ideals $\left(\subset \mathrm{O}_{\mathrm{w}}\right)$ defining E_{λ} (i.e. $\left.\mathrm{P}_{\lambda}=\mathrm{O}\left(-\mathrm{E}_{\lambda}\right)\right)$ for each $\lambda \in \Lambda$.

Definition 1.17.1. - A weighted idealistic situation is an idealistic situation ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}$) (Def. 1.8) together with:
(i) a set A_{Λ} consisting for each $\lambda \in \Lambda$, of a locally constant function
$\alpha(\lambda): \mathrm{E}_{\lambda} \rightarrow(\mathrm{Q} \geqq 0)$ (non negative rational numbers) such that if $\mathscr{A}=((\mathrm{J}, b)$ and $x \in \operatorname{Sing}^{b}(\mathrm{~J})$, then at $\mathrm{O}_{\mathrm{w}, x}$:

$$
\mathrm{J}_{x}=\prod_{\left\{\lambda \mid x \in \mathrm{E}_{\lambda}\right\}} \mathrm{P}_{\lambda, x_{x}^{\beta(\lambda)}(x)}^{\mathrm{J}_{x}}, \overline{\mathrm{~J}}_{x} \notin \mathrm{P}_{\lambda, x}, \quad \forall \lambda / x \in \mathrm{E}_{\lambda}
$$

and $\beta(\lambda)(x)=b .(\alpha(\lambda)(x)) \in(\mathbb{Z} \geqq 0)$, for some coherent sheaf of ideals $\bar{J}\left(\subset \mathrm{O}_{\mathrm{w}}\right)$.
(ii) at each closed point $x \in \operatorname{Sing}^{b}(J)$ define $\Lambda_{x}=\left\{\lambda \in \Lambda \mid x \in E_{\lambda}\right\}$. Since these hypersurfaces have only normal crossings at W it follows that $\notin \Lambda_{x} \leqq \operatorname{dim} W$. We assume

```
4e SÉrie - tome 22 - 1989 - N N 1
```

the existence of a total order at any such Λ_{x}, say $<$, subject to the following conditions:
(1.17.1.1) Given two closed points $\left\{x_{1}, x_{2}\right\} \subset \mathrm{E}_{\alpha_{1}} \cap \mathrm{E}_{\alpha_{2}}$ then $\alpha_{1}<\alpha_{x_{1}}$ if and only if $\alpha_{1}<\alpha_{x_{2}}$. We denote this weighted idealistic situation by $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$.

We also define the weighted order of \mathscr{A} at x

$$
w-v_{x}(\mathscr{A})=\frac{v_{x}(\overline{\mathrm{~J}})}{b} \quad \text { (check consistency). }
$$

The weighted order of \mathscr{A} :

$$
w-\operatorname{ord}(\mathscr{A})=\max _{x \in \operatorname{Sing} \mathscr{A}}\left\{w-v_{x}(\mathscr{A})\right\}
$$

And the weighted singularities of \mathscr{A} :

$$
w-\operatorname{Sing}(\mathscr{A})=\left\{x \in \operatorname{Sing}(\mathscr{A}) \mid w-v_{x}(\mathscr{A})=w-\operatorname{ord}(\mathscr{A})\right\}
$$

which is a closed subset of $\operatorname{Sing}(\mathscr{A})$.
Definition 1.17.2 (notation as in Definition 1.9). - Two weighted idealistic situations ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}$) and $\left(\mathrm{W}^{\prime}, \mathscr{A}^{\prime}, \mathrm{E}_{\Lambda^{\prime}} \mathrm{A}_{\Lambda^{\prime}}\right)$ are said to be isomorphic if there is an isomorphism of the underlying idealistic situation $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\boldsymbol{\Lambda}}\right)$ and $\left(\mathrm{W}^{\prime}, \mathscr{A}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}\right)$, induced by an isomorphism

$$
\Gamma:(\theta, \gamma):\left(\mathrm{W}, \mathrm{E}_{\Lambda}\right) \rightarrow\left(\mathrm{W}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}\right) \quad(\text { Def. 1.9) }
$$

such that:
(i) for each $\lambda \in \Lambda$ let $\alpha(\lambda) \in \mathrm{A}_{\Lambda}$ and $\alpha^{\prime}(\gamma(\lambda)) \in \mathrm{A}_{\Lambda^{\prime}}$ be the corresponding functions, then

$$
\alpha(\lambda)=\alpha^{\prime}(\gamma(\lambda)) \circ\left(\left.\theta\right|_{\mathrm{E}_{\lambda}}\right): \mathrm{E}_{\lambda} \rightarrow(\mathrm{Q} \geqq 0)
$$

(ii) at any closed point $x \in \operatorname{Sing}(\mathscr{A}), \lambda_{1}<\lambda_{x}$ (at Λ_{x}) if and only if $\left.\gamma\left(\lambda_{1}\right)<\gamma(x)<x_{\theta}\right)$ (at
$\left.\Lambda_{\theta(x)}^{\prime}\right)$.
(From Theorem 1.13.1 it follows that only (ii) must be checked)
Definition 1.17.3 (notation as in Def. 1.10). - Consider a weighted idealistic situation $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$ and an etale map $e: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ then the restriction by e consists of:
(i) the restriction of the idealistic situation

$$
\left(\mathrm{W}_{1}, e^{-1}(\mathscr{A}),\left(\mathrm{E}_{1}\right)_{\Lambda}\right) \quad(\text { Def. } 1.10)
$$

(ii) $\left(e^{-1}(\mathrm{~A})\right)_{\Lambda}=\left\{\alpha^{\prime}(\lambda) \mid \lambda \in \Lambda\right\}$ where

$$
\alpha^{\prime}(\lambda)=\left.\alpha(\lambda) \circ e\right|_{e^{-1}\left(\mathrm{E}_{\lambda}\right)}, \quad \forall \lambda \in \Lambda
$$

(iii) At a closed point $x \in \operatorname{Sing}\left(e^{-1}(\mathscr{A})\right)$, given $\lambda_{1}, \lambda_{2} \in \Lambda_{x}$, define $\lambda_{1}{ }_{x} \lambda_{2}$ if and only if $\lambda_{1}<\lambda_{e(x)}$. The restriction by e of $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$ is again a weighted idealistic situation.

Given two weighted idealistic situations ($\mathrm{W}_{i}, \mathscr{A}_{i}, \mathrm{E}_{\Lambda_{i}}, \mathrm{~A}_{\Lambda_{i}}$) $i=1,2$ and closed points $x_{i} \in \operatorname{Sing}\left(\mathscr{A}_{i}\right)$, then x_{1} and x_{2} are said to be equivalent (as singular points of weighted idealistic situations) if there are restrictions at etale neighbourhoods of $x_{i}(i=1,2)$ and an isomorphism as in Def. 1.10 which is also isomorphism of weighted idealistic situations (Def. 1.17.2).

Remark. - So far we have not defined a notion of transform of weighted idealistic situations, at least not as weighted idealistic situations.

Definition 1.17.4. - Let ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}$) be as before. A transformation $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ is said to be w-permissible if:
(i) π is permissible for the idealistic situation ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}$) (Def. 1.8).
(ii) In the case that w-ord $(\mathscr{A})>0$ (Def. 1.17.1), and if π is the blowing up at center $\mathrm{C} \subset \mathrm{W}$ then $\mathrm{C} \subset w-\operatorname{Sing}(\mathscr{A})$.

If $\pi: W_{1} \rightarrow W$ is a w-permissible transformation as before and ($W_{1}, E_{\Lambda_{1}}$) is the transform of ($\mathrm{W}, \mathrm{E}_{\Lambda}$) (see Def. 1.4), then $\Lambda_{1}=\Lambda \cup\{\beta\}$ and we define now $\mathrm{A}_{\Lambda_{1}}$ as follows:
(i) for each $\lambda \in \Lambda \subset \Lambda_{1}$, let $\alpha^{\prime}(\lambda)=\left.\alpha(\lambda) \circ \pi\right|_{E_{\lambda}^{\prime}}$ where E_{λ}^{\prime} is the strict transform of E_{λ} (Def. 1.4).
(ii) $\left.\alpha^{\prime}(\beta)\right|_{\pi^{-1}} ^{\left(c_{i}\right)}=\sum_{\left\{\lambda \mid c_{i} \subset \mathbb{E}_{\lambda}\right\}} \alpha^{\prime}(\lambda) \circ \pi+w-\operatorname{ord}(\mathscr{A})$
where the c_{i} are the connected components of C , so $\alpha^{\prime}(\beta): \pi^{-1}(\mathrm{C}) \rightarrow \mathrm{Q}$ is a locally constant function. Now we define at each closed point $x \in \operatorname{Sing}\left(\mathscr{A}_{1}\right)\left[\mathscr{A}_{1}\right.$ the transform of \mathscr{A} (Def. 1.3)] a total order at $\left(\Lambda_{1}\right)_{x}$:
(i) If $\beta \in\left(\Lambda_{1}\right)_{x}\left[\right.$ i. e. if $\left.x \in \pi^{-1}(\mathrm{C})\right]$ and $\beta \neq \alpha \in\left(\Lambda_{1}\right)_{x}$ then $\beta<\alpha$.
(ii) Given $\alpha_{1} \neq \beta \neq \alpha_{2}$, then $\alpha_{1}<\alpha_{2}$ if and only if $\alpha_{\pi(x)}<\alpha_{2}$.
$\left(\mathrm{W}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}}\right)$ is now a weighted idealistic situation called the transform of $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$ by π, which we also denoted by $\left(\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}}\right) \xrightarrow{\pi}\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$.

Remark 1.17.5. - Let $\Gamma:(\theta, \gamma):(\mathrm{W}, \Lambda) \rightarrow\left(\mathrm{W}^{\prime}, \Lambda^{\prime}\right)$ define an isomorphism of the weighted idealistic situations ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}$) and ($\mathrm{W}^{\prime}, \mathscr{A}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}, \mathrm{A}_{\Lambda^{\prime}}$) (Def. 1.17.2). Let $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ be a w-permissible transformation for $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$ (Def. 1.17.4). Then there exists a unique isomorphism of weighted idealistic situations Γ^{\prime} such that the diagram

$$
\begin{gathered}
\left(\mathrm{W}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}}\right) \stackrel{\mathrm{r}^{\prime}}{\underset{\sim}{\sim}\left(\mathrm{W}_{1}^{\prime}, \mathscr{A}_{1}^{\prime}, \mathrm{E}_{\Lambda_{1}}^{\prime}, \mathrm{A}_{\Lambda_{1}}^{\prime}\right)} \\
\downarrow \\
\downarrow \\
\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda^{\prime}}, \mathrm{A}_{\Lambda}\right) \\
\stackrel{\Gamma}{\sim}\left(\mathrm{W}^{\prime}, \mathscr{A}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}, \mathrm{A}_{\Lambda^{\prime}}\right)
\end{gathered}
$$

commuts, where π^{\prime} corresponds to π via Γ and $\left(\mathrm{W}_{1}^{\prime}, \mathscr{A}_{1}^{\prime}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}^{\prime}}\right)$ is the transform of ($\mathrm{W}^{\prime}, \mathscr{A}^{\prime}, \mathrm{E}_{\Lambda^{\prime}}, \mathrm{A}_{\Lambda^{\prime}}$).

Remark 1.17.6. - With the notion as in Def. 1.17.1.
Let $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$ be a weighted idealistic situation and $t=w$-ord (\mathscr{A}). If $\mathscr{A}=((\mathrm{J}, b))$ then:
(a) $t_{1}=b . t=\max _{x \in \mathrm{~W}}\left\{v_{x}(\bar{\jmath})\right\}$ and
(b) $w-\operatorname{Sing}(\mathscr{A})=\left\{x \in \operatorname{Sing}(\mathscr{A}) \mid v_{x}(\bar{J})=t_{1}\right\}$.

When $t>0$ we attach to (\mathbf{J}, b) a new idealistic pair $w(\mathrm{~J}, b)$ as follows:
If $t \geqq 1$, then: $w(\mathrm{~J}, b)=\left(\overline{\mathrm{J}}, t_{1}\right)$.
If $0<t<1$, then: $w(\mathrm{~J}, b)=\left(\left\langle\left(\Pi \mathrm{P}_{\lambda}^{\beta(\lambda)}\right)^{t_{1}}, \overline{\mathrm{~J}}^{b-t_{1}}\right\rangle, t_{1}\left(b-t_{1}\right)\right)$ where $t_{1}=t b$, and $\overline{\mathrm{J}}$ and $P_{\lambda}^{\beta(\lambda)}$ are as in Def. 1.17.1. Now we can check:
(i) If $(\mathbf{J}, b) \sim\left(\mathbf{J}^{\prime}, b^{\prime}\right) \Rightarrow w(\mathrm{~J}, b) \sim w\left(\mathbf{J}^{\prime}, b^{\prime}\right)$ (check first that $(\overline{\mathrm{J}}, b) \sim\left(\overline{\mathbf{J}}^{\prime}, b^{\prime}\right)$, notation as before).
(ii) If $w(\mathscr{A})$ denotes $(w(\mathrm{~J}, b))$, then $\operatorname{Sing}(w(\mathscr{A}))=w-\operatorname{Sing}(\mathscr{A})$. So $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ is ω-permissible for ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}$) if and only if it is permissible for ($\mathrm{W}, w\left(\mathscr{A}\right.$), E_{Λ}) (Def. 1.17.4 and Def. 1.8).
(iii) Let $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ be as in (ii) and let $\left(\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}}\right)$ be the transform of ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\boldsymbol{\Lambda}}, \mathrm{A}_{\boldsymbol{N}}$)(Def. 1.17.4). Then:

$$
w-\operatorname{ord}\left(\mathscr{A}_{1}\right) \leqq w-\operatorname{ord}(\mathscr{A})
$$

and if the equality holds, then $w\left(\mathscr{A}_{1}\right)$ is the transform (simply as idealistic situation) of $w(\mathscr{A})$ (Def. 1.8).

Remark 1.17.7. - Given a weighted idealistic situation ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}$), assume w $\operatorname{ord}(\mathscr{A})>0$, and let $w(\mathscr{A})$ be as before, then: $\operatorname{ord}(w(\mathscr{A}))=1$.

Remark 1.17.8. - If $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\mathrm{N}}\right)$ is an idealistic situation (Def. 1.8) and $\operatorname{ord}(\mathscr{A})=1$ (Def. 1.2) then it can be given a structure of weighted idealistic situation, taking A_{A} to consists of the functions $\alpha(\lambda)$ which are constantly equal to zero along E_{λ} for each $\lambda \in \Lambda$ (Def. 1.17.2).
Note also that in this case w-Sing $(\mathscr{A})=\operatorname{Sing}(\mathscr{A})$. So the notions of w-permissibility and of permissibility coincide (Def. 1.17.4 and Def. 1.8).

If $\pi: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ is permissible for $\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}\right)$ [w-permissible for $\left.\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\boldsymbol{\Lambda}}, \mathrm{A}_{\Lambda}\right)\right]$ and $\left(\mathrm{W}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}\right)\left(\left(\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}}\right)\right)$ denotes the transform. Then again $\mathrm{A}_{\Lambda_{1}}$ consists of functions $\alpha(\lambda): \mathrm{E}_{\lambda} \rightarrow \mathrm{Q}$ such that $\alpha(\lambda)(x)=0 \forall x \in \mathrm{E}_{\lambda}, \forall \lambda \in \Lambda_{1}$.

1.18. Idealistic spaces

Definition 1.18.1. - $\operatorname{By}(\mathrm{C}(m), \Lambda)$ we denote a category, where the objects are those weighted idealistic situations ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}$) where $\operatorname{dim} \mathrm{W}=m$ (Def. 1.17.1) and a map $\left(\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}}\right) \rightarrow\left(\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}\right)$ is an etale map $e: \mathrm{W}_{1} \rightarrow \mathrm{~W}$ such that $\mathrm{id}_{\mathrm{W}_{1}}$ induces an isomorphism (Def. 1.17.2) between ($\mathrm{W}_{1}, \mathscr{A}_{1}, \mathrm{E}_{\Lambda_{1}}, \mathrm{~A}_{\Lambda_{1}}$) and the restriction of ($\mathrm{W}, \mathscr{A}, \mathrm{E}_{\Lambda}, \mathrm{A}_{\Lambda}$) by e (Def. 1.17.3).

To simplify the notation, given an object $\alpha \in \mathrm{C}(m, \Lambda)$ we denote

$$
\alpha=\left(\mathrm{W}(\alpha), \mathscr{A}(\alpha), \mathrm{E}_{\Lambda_{\alpha}}, \mathrm{A}_{\Lambda_{\alpha}}\right)
$$

A subset C of $\mathrm{C}(m, \Lambda)$ consists, for each $\alpha \in \mathrm{C}(m, \Lambda)$ of a locally closed subset $C(\alpha) \subset$ Sing $(Q(\alpha)) \subset W(\alpha)$ subject to the following conditions:

1. Given $\alpha \xrightarrow{j} \beta$ in $\mathrm{C}(m, \Lambda)$, then $e(j)^{-1}(\mathrm{C}(\beta))=\mathrm{C}(\alpha)$ where $e(j): \mathrm{W}(\alpha) \rightarrow \mathrm{W}(\beta)$ is the associated etale map.
2. Given $\alpha_{1}, \alpha_{2} \in \mathrm{C}(m, \Lambda)$ and closed points $x_{i} \in \mathrm{~W}\left(\alpha_{i}\right)$, if x_{1} and x_{2} are equivalent (Def. 1.17.3), then $x_{1} \in \mathrm{C}\left(\alpha_{1}\right) \Leftrightarrow x_{2} \in \mathrm{C}\left(\alpha_{2}\right)$.

Definition 1.18.2. - An idealistic space of dimension m is a map χ from a set I to $\mathrm{C}(m, \Lambda)(\operatorname{dim} \chi=m)$.

A closed subset C of χ consists of a subset C of $C(m, \Lambda)$ such that for each $\alpha \in I$ $\mathrm{C}(\chi(\alpha))(\subset \mathrm{W}(\chi(\alpha)))$ is a closed subset. A closed subset C of χ is said to be permissible for χ if $\mathrm{C}(\chi(\alpha))$ is w-permissible for $\chi(\alpha)$ in the sense of Def. 1.17.4. In such case the transform of χ by C is defined by $\chi^{\prime}: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$ where $\chi^{\prime}(\alpha)$ is the transform of $\chi(\alpha)$ by $\mathrm{C}(\alpha)$ (Def. 1.17.4). This we denote by $\chi^{\prime} \rightarrow \chi$ and π is said to be a permissible transformation with center \mathbf{C}.

A point $x \in \chi$ consists of a closed point $x_{\alpha} \in \operatorname{Sing}(\mathscr{A}(\chi(\alpha)) \subset W(\chi(\alpha))$ (for some $\alpha \in \mathrm{I}$) together with all those $x_{\beta} \in \operatorname{Sing}\left(\mathscr{A}(\chi(\beta)) \subset W(\chi(\beta))(\beta \in \mathrm{I})\right.$ such that x_{α} and x_{β} are equivalent (Def. 1.17.3).

Definition 1.18.3. - A m-dimensional idealistic space $\chi: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$ is said to be restrictive to an n-dimensional idealistic space if $n \leqq m$ and there are idealistic spaces $\chi_{m}: \overline{\mathrm{I}} \rightarrow \mathrm{C}(m, \Lambda)$ and $\chi_{n}: \overline{\mathrm{I}} \rightarrow \mathrm{C}(n, \Lambda)$ such that:

1. Points of χ are locally equivalent to points of χ_{m} and the converse also holds (local equivalence always as in Def. 1.17.3).
2. For each $\alpha \in \bar{I}$ there is a strong immersion (Def. 1.11), disregarding the weighted structure, induced by $\mathrm{W}\left(\chi_{n}(\alpha)\right) \stackrel{i(\alpha)}{\leftrightarrows} \mathrm{W}\left(\chi_{m}(\alpha)\right)$ such that two points

$$
x_{i} \in \operatorname{Sing}\left(\mathscr{A}\left(\chi_{n}\left(\alpha_{i}\right)\right) \subset W\left(\chi_{n}\left(\alpha_{i}\right)\right)\right.
$$

$i=1,2$ are equivalent points at $\mathrm{C}(n, \Lambda)$ (Def. 1.18.2) if and only if $i\left(\alpha_{i}\right)\left(x_{i}\right)$ are equivalent as points of $\chi_{m}[$ at $\mathrm{C}(m, \Lambda)]$.

Remark 1.18.4. - Given χ_{n} and χ_{m} as before, permissible center for χ_{n} and χ_{m} coincide (via i) and if $\chi_{m}^{\prime} \rightarrow \chi_{m}$ and $\chi_{n}^{\prime} \rightarrow \chi_{n}$ are the permissible transforms at an identified center, then (1) and (2) hold for χ_{n}^{\prime} and χ_{m}^{\prime}.

Remark 1.18.5. - Suppose that for each $\alpha \in \mathrm{I}$,

$$
\chi_{m}(\alpha)=\left(\mathrm{W}\left(\chi_{m}(\alpha)\right), \mathscr{A}\left(\chi_{m}(\alpha)\right), \mathrm{E}_{\Lambda \alpha)}, \mathrm{A}_{\Lambda \alpha)}\right)
$$

is such that all functions $\alpha(\lambda)$ (Def. 1.17.1) [for all $\lambda \in \Lambda(\alpha)$] are constant functions equal to zero i.e.

```
4e}\mathrm{ SÉRIE - TOME 22 - 1989 - N N 1
```

$\alpha(\lambda): \mathrm{E}_{\lambda} \rightarrow \mathbb{Q}$ is such that $\alpha(\lambda)(x)=0, \forall x \in \mathrm{E}_{\lambda}, \forall \lambda \in \Lambda(\alpha)$. Assume that this also holds for any $\alpha \in \bar{I}$ at $\chi_{n}(\alpha)$, then (2) of Def. 1.18.3 can be replaced by:
(2^{\prime}) For each $\alpha \in \bar{I}$ there is a strong immersion, disregarding the weighted structure, induce by:

$$
\mathrm{W}\left(\chi_{n}(\alpha)\right) \underset{i(\alpha)}{G} \mathrm{~W}\left(\chi_{m}(\alpha)\right)
$$

1.19. When we consider a fixed idealistic space $\chi: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$, and $\alpha \in \mathrm{I}$ we denote $\chi(\alpha)=\left(\mathrm{W}(\chi(\alpha)), \mathscr{A}(\chi(\alpha)), \mathrm{E}_{\Lambda_{\chi}(\alpha)}, \mathrm{A}_{\Lambda_{\chi(\alpha)}}\right)$ by $\left(\mathrm{W}(\alpha), \mathscr{A}(\alpha), \mathrm{E}_{\Lambda \alpha}, \mathrm{A}_{\Lambda \alpha}\right)$.

Definition 1.19.1. - An idealistic space $\chi: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$ is said to be quasi-compact if there is a finite subset $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset I$ such that for any $\alpha \in I$ and any closed point $x \in \operatorname{Sing}(\mathscr{A}(\alpha)) \subset \mathrm{W}(\alpha)$ there is an index $i, 1 \leqq i \leqq n$ and a point $y \in \operatorname{Sing}\left(\mathscr{A}\left(\alpha_{i}\right)\right)$ such x and y are locally equivalent (Def. 1.17.3).
If x is a point of χ (Def. 1.18.2), say that $x_{1} \in W\left(\alpha_{1}\right)$ belongs to the class of x, then we define the order of χ at x

$$
\operatorname{ord}_{x}(\chi)=v_{x_{1}}\left(\mathscr{A}\left(\alpha_{1}\right)\right) \quad \text { (Def. 1.2) }
$$

and

$$
\tau(\chi, x)=\tau\left(\mathscr{A}\left(\alpha_{1}\right), x_{1}\right), \quad \text { (Def. 1.13.2) }
$$

the consistency of these definitions are given by Theorems 1.13.1 and 1.13.2.
The order of χ is:

$$
\text { ord } \chi=\max _{\alpha \in I}\{\operatorname{ord} \mathscr{A}(\alpha)\} \quad \text { (Def. 1.2) }
$$

The weighted order of χ is:

$$
\begin{equation*}
w-\operatorname{ord}(\chi)=\max _{\alpha \in I}\{w-\operatorname{ord}(\mathscr{A}(\alpha))\} \tag{Def.1.17.1}
\end{equation*}
$$

and

$$
\tau(\chi)=\inf _{\alpha \in \mathrm{I}}\{\tau(\mathscr{A}(\alpha), x) \mid x \in \operatorname{Sing}(\mathscr{A}(\alpha))\} .
$$

1.19.2. One can check that the following are closed subsets of χ in the sense of Definition 1.18.2.

1. $\operatorname{Sing} \chi:(\operatorname{Sing} \chi)(\alpha)=\operatorname{Sing}(\chi(\alpha))=\operatorname{Sing}(\mathscr{A}(\alpha)) \subset W(\alpha), \forall \alpha \in I$.
2. w-Sing $\chi:(w-\operatorname{Sing} \chi)(\alpha)=w-\operatorname{Sing}(\mathscr{A}(\alpha)) \subset \mathbf{W}(\alpha), \forall \alpha \in \mathrm{I}$.
3. If $\tau=\tau(\chi)$ then $F(\tau)(\chi)$:

$$
\mathrm{F}(\tau)(\chi)(\alpha)=\{x \in \operatorname{Sing} \mathscr{A}(\alpha) \mid \tau(\mathscr{A}(\alpha), x)=\tau\}
$$

4. If $\tau=\tau(\chi)$ then $\mathrm{R}(\tau)(\chi)$:

$$
\mathrm{R}(\tau)(\chi)(\alpha)=\{x \in \operatorname{Sing} \mathscr{A}(\alpha) \mid \tau(\mathscr{A}(\alpha), x)=\tau
$$

and
x is regular at $\operatorname{Sing} \mathscr{A}(\alpha)($ Def. 1.15) $\}$.
Remark 1.19.2. $-\mathbf{R}(\tau)(\chi)$ is a component of Sing χ in the sense that $\forall \alpha \in I, R(\tau)(\chi)(\alpha)$ is a union of connected components of $(\operatorname{Sing} \chi)(\alpha)=\operatorname{Sing}(\mathscr{A}(\alpha))($ see Proposition 1.16.4).

Definition 1.19.3. - Given $\chi: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$ such that w-ord $(\chi)>0$ (Def. 1.19.1), define $w(\chi): \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$ by:

$$
w(\chi)(\alpha)=\left(\mathrm{W}(\alpha), w(\mathscr{A}(\alpha)), \mathrm{E}_{\Lambda \alpha}, \mathrm{A}_{\Lambda \alpha}^{\prime}\right)
$$

$w(\mathscr{A}(\alpha))$ as in 1.17 .6 and all functions of $\mathrm{A}_{\Lambda \alpha}^{\prime}$ being constantly equal to zero (see Remark 1.17.8).

Now one can check that $w(\chi)$ is an idealistic space for which:
(i) $\operatorname{ord}(w(\chi))=1$ (Def. 1.19.1).
(ii) $\operatorname{Sing}(w(\chi))=w-\operatorname{Sing}(\chi)$.
(iii) If $\pi: \chi_{1} \rightarrow \chi$ is a permissible transformation (Def. 1.18.2) then w-ord $\chi_{1} \leqq w$-ord χ.
(iv) If the equality holds at (iii) then naturally $\pi: w\left(\chi_{1}\right) \rightarrow w(\chi)$ is a permissible transformation.

Theorem 1.20. - Let $\chi: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$ be a quasi-compact m-dimensional idealistic space of order 1 (Def. 1.19.1). If $\mathrm{E}_{\Lambda \alpha}=\varnothing \forall \alpha \in \mathrm{I}$, then $\tau(\chi)>1$, and χ is restrictive to a quasicompact idealistic space of dimension $m-1$ (Def. 1.18.3).

Proof. - Follows from theorems 1.16.1 and 1.12.

§ 2. Constructive Resolutions

2.1. Recall from 1.19 .3 that if $\pi: \chi_{1} \rightarrow \chi$ is a permissible transformation of idealistic spaces, then

$$
w-\operatorname{ord}\left(\chi_{1}\right) \leqq w-\operatorname{ord}(\chi)
$$

Definition 2.1. - Fix a sequence of idealistic spaces and permissible transformations (1.18.2):

$$
\begin{equation*}
\chi_{0} \stackrel{\pi_{1}}{\leftarrow} \chi_{1} \stackrel{\pi_{2}}{\leftarrow} \chi_{2} \leftarrow \ldots \stackrel{\pi_{r}}{\leftarrow} \chi_{r} \tag{2.1.1}
\end{equation*}
$$

and assume that w-ord $\left(\chi_{0}\right)=w$-ord $\left(\chi_{r}\right)>0$, we shall say that χ_{0} is a new space and χ_{0} is the birth of χ_{r}.

```
4e SÉRIE - TOME 22 - 1989 - No 1
```

In this case [(2.1.1) being fixed], we define $\left.\tau\left(w \chi_{r}\right)\right)$ to be $\tau\left(w\left(\chi_{0}\right)\right)\left[\tau\left(\chi_{0}\right)\right.$ as in Def. 1.19.1 and $w\left(\chi_{i}\right)$ as in 1.19.3].

Let $\chi_{0}: I \rightarrow C(m, \Lambda)$, then (2.1.1) induces for each $\alpha \in I$ a sequence of w-permissible transformations of weighted idealistic situations

$$
\begin{aligned}
\left(\mathrm{W}^{(0)}(\alpha), \mathscr{A}^{(0)}(\alpha), \mathrm{E}_{\Lambda(\alpha)}^{(0)}, \mathrm{A}_{\Lambda(\alpha)}^{(0)}\right) \stackrel{\pi_{1}}{\leftarrow}\left(\mathrm{~W}^{(1)}(\alpha), \mathscr{A}^{(1)}(\alpha), \mathrm{E}_{\Lambda(\alpha)}^{(1)},\right. & \left.\mathrm{A}_{\Lambda(\alpha)}^{(1)}\right) \ldots \\
& \stackrel{\pi_{r}}{\leftarrow}\left(\mathrm{~W}^{(r)}(\alpha), \mathscr{A}^{(r)}(\alpha), E_{\Lambda(\alpha)}^{(r)}, \mathrm{A}_{\Lambda(\alpha)}^{(r)}\right)
\end{aligned}
$$

For each $\alpha \in I$ we define $\left(\mathrm{E}_{\Lambda(\alpha)}^{(r)}\right)^{+},\left(\mathrm{E}_{\Lambda(\alpha)}^{(r)}\right)^{-}$such that

$$
\mathrm{E}_{\Lambda(\alpha)}^{(r)}=\left(\mathrm{E}_{\Lambda(\alpha)}^{(r)}\right)^{+} \bigcup^{\left(\mathrm{E}_{\Lambda(\alpha)}^{(r)}\right)^{-} .}
$$

(i) $\left(\mathrm{E}_{\Lambda(\alpha)}^{(r)}\right)^{-}$consists of the strict transform at $\mathrm{W}^{(r)}(\alpha)$ of elements of $\mathrm{E}_{\Lambda(\alpha)}^{(0)}$ [as in (i) of Def. 1.4].
(ii) $\left(\mathrm{E}_{\Lambda}^{(r)}{ }_{(\alpha)}\right)^{+}$consists of the strict transforms at $\mathrm{W}^{(r)}(\alpha)$ of the exceptional locus of π_{j}, $j=1,2, \ldots, r$ [as in (ii) Def. 1.4].

A partial resolution of χ consists of a^{\prime} sequence of permissible transformations

$$
\chi=\chi_{0} \stackrel{\pi_{1}}{\leftarrow} \chi \leftarrow \chi_{2} \ldots \stackrel{\pi_{2}}{\leftarrow} \chi_{r} \stackrel{\pi_{r+1}}{\leftarrow} \chi_{r+1}
$$

such that $w-\operatorname{ord}(\chi)=w-\operatorname{ord}\left(\chi_{r}\right)>w-\operatorname{ord}\left(\chi_{r+1}\right)$. And a resolution is a sequence

$$
\chi_{0} \leftarrow \ldots \leftarrow \chi_{s}
$$

of permissible transformations, and Sing $\chi_{s}=\varnothing$.
2.2. At this point we want to establish the meaning of a constructive resolution of quasi compact idealistic spaces of dimension m.

On any partially ordered set $(\mathrm{D},<)$ consider the discrete topology, then a constructive resolution of χ consists of:
(i) An upper semicontinuous function $\varphi:$ Sing $\chi \rightarrow \mathrm{D}$ such that

$$
\underline{\operatorname{Max}} \varphi=\{x \in \operatorname{Sing} \chi \mid \varphi(x) \text { is maximum }\}
$$

is the center of a permissible transformation

$$
\pi_{1}: \quad \chi_{1} \rightarrow \chi
$$

(ii) If $\pi_{1}: \chi_{1} \rightarrow \chi$ [as in (i)] is not a resolution of χ (Def. 2.1), then there is an upper semicontinuous function $\varphi_{1}: \operatorname{Sing} \chi_{1} \rightarrow D$, such that:
(a) $\varphi\left(\pi_{1}(x)\right) \geqq \varphi_{1}(x), \forall x \in \operatorname{Sing} \chi_{1}$
(b) If $\pi(x) \notin \operatorname{Max} \varphi$ then $\varphi_{1}(x)=\varphi(\pi(x))$
(c) $\operatorname{Max} \varphi_{1}$ is permissible at χ_{1}

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE
(iii) Assume that a sequence

$$
\chi=\chi_{0} \leftarrow \chi_{1} \leftarrow \chi_{2} \ldots \leftarrow \chi_{r}
$$

has been defined, that Sing $\chi_{r} \neq \varnothing$, and also that the functions $\varphi_{i}: \chi_{i} \rightarrow \mathrm{D}$ are given $i=0, \ldots, r$. Then $\operatorname{Max}\left(\varphi_{r}\right)$ is the center of a permissible transformation say π_{r+1} :

$$
\chi_{r} \stackrel{\pi_{r+1}}{\leftarrow} \chi_{r+1}
$$

such that either χ_{r+1} is a resolution of χ_{r} or there is an upper semicontinuous function $\varphi_{r+1}: \chi_{r+1} \rightarrow \mathrm{D}$ and conditions (a), (b) and (c) of (ii) (with the obvious adjustement of subindices) hold.
(iv) For some r, Sing $\chi_{r}=\varnothing$ i.e.

$$
\chi=\chi_{0} \stackrel{\pi_{1}}{\leftarrow} \chi_{1} \stackrel{\pi_{2}}{\leftarrow} \ldots \stackrel{\pi_{r}}{\leftarrow} \chi_{r}
$$

is a resolution (Def. 2.1).
(v) Suppose that $\operatorname{ord}(\chi)=1$, that $\operatorname{Sing}(\chi)=R(\tau)(\chi)(1.19 .2)$ and $\chi^{\pi_{1}} \leftarrow \chi_{1} \leftarrow \ldots \stackrel{\pi_{r}}{\leftarrow} \chi_{r}$ have been constructed, and assume that only hypersurfaces arising as exceptional locus from this sequence of permissible transformations intersect $\operatorname{Sing}\left(\chi_{r}\right)$ [which is also regular (Prop. 1.16.4)], then

$$
\operatorname{Max} \varphi_{r}=\operatorname{Sing} \chi_{r}
$$

i.e. φ_{r} is constant at $\operatorname{Sing} \chi_{r}$.

Remark 2.2.1. - Let χ_{r} be as in (v) then φ_{r} is constantly equal to some $c \in \mathrm{D}$. If

$$
\chi_{r} \stackrel{\pi_{r}}{\leftarrow} \chi_{r+1}
$$

is any permissible transformation and Sing $\chi_{r+1} \neq \varnothing$ then all conditions on χ_{r} hold also on χ_{r+1}, and if we define $\varphi_{r+1}: \operatorname{Sing} \chi_{r+1} \rightarrow \mathrm{D}$ by $\varphi_{r+1}=c$ (the constant function), then condition (iii) still holds.

Remark 2.2.2. - On a ordered set (D, \leqq) we may assume the existence of an element $\infty_{D} \in D$ such that $\lambda<\infty_{D}, \forall \lambda \in D, \lambda \neq \infty_{D}$. If not we can "add" such an element to D.

Given D_{1} and D_{2} as before we consider on $D_{1} \times D_{2}$ the lexicographic order, then $\infty_{\mathrm{D}_{1} \times \mathrm{D}_{2}}=\left(\infty_{\mathrm{D}_{1}}, \infty_{\mathrm{D}_{2}}\right)$.
\mathbb{Z} (or $\mathbb{Z} \cup\{\infty\}$) will be considered with the usual order.
2.3. We begin by constructing an upper semicontinuous function T from which φ will derive.

First we consider the case of an idealistic space of dimension m, say $\chi: I \rightarrow C(m, \Lambda)$ and weighted order zero (Def. 1.19.1).
2.3.1. Case $\operatorname{dim} \chi=m$ and $w-\operatorname{ord} \chi=0$.
4^{e} SÉRIE - TOME $22-1989-\mathrm{N}^{\circ} 1$

At each closed point $x \in \operatorname{Sing} \chi$ define $\Lambda_{x}=\left\{\alpha \in \Lambda \mid x \in \mathrm{E}_{\alpha}\right\}$ [see Def. 1.17.1 (ii)] and recall that $\notin \Lambda_{x} \leqq m$.

Let now $\mathrm{T}: \operatorname{Sing} \chi \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}$ be defined as follows

$$
\mathrm{T}(1)(x)=0
$$

$$
\begin{aligned}
& \mathrm{T}(2)(x)=-\mathscr{B}(x) \quad \text { where } \quad \mathscr{B}(x)=\min \left\{k\left|\exists i_{1}<i_{2}<\ldots<i_{k}\right|\right. \\
& \left.i_{j} \in \Lambda_{x} j=1,2, \ldots, k \quad \text { and } \quad \alpha\left(i_{1}\right)(x)+\ldots+\alpha\left(i_{k}\right)(x) \geqq 1\right\} .
\end{aligned}
$$

If $\mathscr{B}=\mathscr{B}(x)$ then

$$
\mathrm{T}(3)(x)=\max \left\{\alpha\left(i_{1}\right)(x)+\ldots+\alpha\left(i_{\mathscr{F}}\right)(x) \mid i_{1}<\ldots<i_{\beta}\right.
$$

and

$$
\left.\mathrm{E}_{i_{j}} \in \Lambda_{x}, i=1,2, \ldots, \mathscr{B}\right\}
$$

Now consider $\Lambda_{x}^{\mathscr{R}}=\Lambda_{x} \times \ldots \times \Lambda_{x}(\mathscr{B}$-times $)$ with the lexicographic ordering, and:

$$
\begin{gathered}
\beta=\left(\bar{\beta}_{1}, \ldots, \bar{\beta}_{\mathscr{R}}\right)=\max \left\{\left(\beta_{1} \ldots \beta_{\mathscr{R}}\right) \mid \beta_{1}>\beta_{x} \ldots \beta_{x}, \beta_{\mathscr{}}, \beta_{i} \in \Lambda_{x}\right. \\
\left.i=1,2, \ldots, \mathscr{B} \quad \text { and } \quad \alpha\left(\beta_{1}\right)(x)+\ldots+\alpha\left(\beta_{\mathscr{B}}\right)(x)=\mathrm{T}(3)(x)\right\} .
\end{gathered}
$$

Define:

$$
\mathrm{T}(4)(x)=(\beta, \infty) \in \Lambda^{m}\left(\beta \in \Lambda_{x}^{\mathscr{B}} \subset \Lambda^{\mathscr{B}} \text { and } \infty=\infty_{\Lambda^{m-\mathscr{E}} \in} \in \Lambda^{m-\mathscr{E}}\right)
$$

We shall now define at $\operatorname{Img} T \subset \mathbb{Z}_{3} \times \Lambda^{m}$ a partial order, without a notion of order at Λ, but extending the lexicographic order at \mathbb{Z}^{3}.

It suffices to defines a notion of $\mathrm{T}(x)<\mathrm{T}(y)$ at closed points $x, y \in \operatorname{Sing} \chi$ for which $\mathrm{T}(j)(x)=\mathrm{T}(j)(y)=a_{j}, j=1,2$ and $3\left(a_{1}=0\right.$ by assumption).

Let $\mathrm{J}=\left\{x \in \operatorname{Sing} \chi \mid \mathrm{T}(j)(x)=a_{j}, j=1,2,3\right\}$. One can check (at each $\alpha \in \mathrm{I}$) that the irreducible components of J are open subset of irreducible components of $\operatorname{Sing} \chi$ of dimension $m+a_{2}$ [at $\mathrm{W}(\alpha)$]. Now we say that $\mathrm{T}(4)(x)<\mathrm{T}(4)(y)$ if there are closed points $\left\{x_{0}=x_{1}, \ldots, x_{2}=y\right\} \subset \mathrm{J}$ such that:
(a) $\mathrm{T}(4)\left(x_{i}\right) \in \Lambda_{x_{i}+1}^{-a_{2}}, i=0, \ldots, l-1$
(b) for some i as before $\mathrm{T}(4)\left(x_{i}\right)<\mathrm{T}(4)\left(x_{i+1}\right)$ at $\Lambda_{x_{i}+1}^{-a_{2}}$.

The consistency of this definition follows from (1.17.1.1) and Def. 1.17.2 (ii).
This order is not a total order at Img T, and the existence of maximal elements follows from the hypothesis of quasi-compactness on χ.

The maximal elements might not be unique as shown in the following examples:
Examples. - Consider at $\mathrm{W}=\operatorname{Spec}(\mathrm{C}[x, y, z])$ hypersurfaces

$$
\mathrm{E}_{1}=\{x=0\}, \quad \mathrm{E}_{2}=\{x=1\}, \quad \mathrm{E}_{3}=\{y=0\}, \quad \mathrm{E}_{4}=\{z=0\}
$$

and given $\{i, j\} \in \Lambda_{x}$, let $i<j$ iff $i<j$ (at $\left.\mathbb{Z}\right)$.

Define also $\mathrm{T}_{i j}=\mathrm{E}_{i} \cap \mathrm{E}_{j}$.
Example 1. - Let ($\mathrm{J}, b)$ be defined at W by $\mathrm{J}=\langle x(x-1) z\rangle$ and $b=2$. Then $\operatorname{Sing}^{(b)}(J)=T_{14} \cup T_{24}, T$ is maximal along $\operatorname{Sing}^{b}(J)$ and

$$
\max \mathrm{T}=\{(0,-2,1,(1,4, \infty)) ;(0,-2,1,(2,4, \infty))\}
$$

Example 2:

$$
\begin{gathered}
J=\langle x(x-1) \cdot y \cdot z\rangle, \quad b=2 . \\
\text { Sing }^{b} J=T_{14} \cup T_{24} \cup T_{34} \cup T_{13} \cup T_{23}
\end{gathered}
$$

in this case $\max \mathrm{T}=\{(0,-2,1,(3,4, \infty))\}$ is reached exactly along T_{34}.
Remark 2.3.1. - One can check that T is upper semicontinuous, moreover for a fixed $d \in \mathbb{Z}^{3} \times \Lambda^{m}$ the condition $\mathrm{T}>d$ is closed at $\operatorname{Sing} \chi$.

Recall now from Def. 1.17.4 the notion of total order at Λ_{x} after a permissible transformation and check that $\mathrm{T}=\varphi$ satisfies all conditions of 2.2.
2.3.2. Case of $\operatorname{dim} \chi=m$ and $w-\operatorname{ord}(\chi)>0$. Consider χ together with a fixed sequence

$$
\chi^{(-r)^{\frac{\pi_{-r}}{\leftarrow}} \chi^{(-r+1)} \leftarrow \ldots \chi^{(-1)^{\pi_{-1}}} \leftarrow \chi^{(0)}=\chi .}
$$

in the conditions of the sequence (2.1.1) of Def. 2.1, so that $\chi^{(-r)}$ is the birth of χ and $E_{\Lambda}=E_{\Lambda}^{+} \cup E_{\Lambda}^{-}\left(E_{\Lambda}(\alpha)=E_{\Lambda}^{+}(\alpha)+E_{\Lambda}^{-}(\alpha), \forall \alpha \in I\right)$ are defined.
Now let $\mathrm{T}: w$-Sing $\chi \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}$ be defined for each $x \in w$-Sing χ by:

$$
\begin{gathered}
\mathrm{T}(1)(x)=w-\operatorname{ord}(\chi) \quad(\text { Def. 1.9.1) } \\
\mathrm{T}(2)(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x \in \mathrm{R}(\tau)(w(\chi)) \quad(1.19 .2 \text { and 1.19.4) } . \\
& & 1
\end{array} \text { if } \quad x \notin \mathrm{R}(\tau)(w(\chi))\right.
\end{gathered}
$$

Observation 2.3.2. $-\mathbf{R}(\tau)(w \chi)$ is a "component" of $w-\operatorname{sing} \chi$ (Remark 1.19.2), this fact can be checked at any $\operatorname{Sing}(w(\mathscr{A} \alpha)) \subset \mathrm{W}(\alpha)(\alpha \in \mathrm{I}))$. Moreover the definitions of $\tau(\chi)$ (Def. 2.1) together with Proposition 1.16.4 and 1.19.3 assert that a point $x \in \mathrm{R}(\tau)(w(\chi))$ if and only if the final imagen of such point at $\chi^{(-r)}$ is a point of $\mathrm{R}(\tau)\left(w\left(\chi^{(-r)}\right)\right.$.

Now define:

$$
\begin{gathered}
n(x)=\notin\left\{\alpha \in \Lambda_{x} \mid \mathrm{E}_{\alpha} \in \mathrm{E}_{\Lambda}^{-}\right\} \\
m(x)=\Varangle\left\{\alpha \in \Lambda_{x} \mid \mathrm{E}_{\alpha} \in \mathrm{E}_{\Lambda}^{-} \text {and } w \text {-Sing }(\chi) \notin \mathrm{E}_{\alpha} \text { locally at } x\right\}
\end{gathered}
$$

and finally

$$
\mathrm{T}(3)(x)=\left\{\begin{array}{lll}
n(x) & \text { if } & x \notin \mathbf{R}(\tau) \\
m(x) & \text { if } & x \in \mathbf{R}(\tau)
\end{array}\right.
$$

And $\mathrm{T}(4)(x)=\infty \in \Lambda^{m}$.

```
4e SÉRIE - TOME 22 - 1989 - N N }
```

The function T_{1} takes values at \mathbb{Q}, but since we assume that χ is quasi-compact there is $n \in \mathbb{Z}$ such that $\operatorname{Img} T_{1} \subset 1 / n \mathbb{Z} \subset \mathbb{Q}$, and $1 / n \mathbb{Z} \simeq \mathbb{Z}$ as ordered sets.

Remark 2.3.2. - The fact T is well defined follows from the notion of equivalence of points at weighted idealistic situations (Def. 1.17.3) and Theorems 1.13.1 and 1.13.2.

Observation 2.3.3. - If $\operatorname{dim} \chi=m=1$ (Def. 1.18.2) then $\mathrm{T}=\varphi$ satisfies all conditions of 2.2.

Remark 2.3.4. - If $w-\operatorname{ord} \chi>0$ then T reaches a unique maximal value along w-Sing (χ). And for a fixed element $d \in \mathbb{Z} \times \Lambda^{m}$ both $\{x \in w$-Sing $\chi \mid \mathrm{T}(\mathrm{X}) \geqq d\}$ and $\{x \in w$-Sing $\chi \mid \mathrm{T}(\mathrm{X})>d\}$ are closed subsets (Def. 1.18.2) included in w-Sing χ. In fact the values of T are taken in the totally ordered discrete subset $\mathbb{Z}^{3} \times \infty\left(\subset \mathbb{Z}^{3} \times \Lambda^{m}\right)$.

Definition 2.4. - A preparation procedure of an idealistic space χ of weighted order bigger than zero, constists of a sequence of permissible transformation

$$
\chi \stackrel{\pi_{1}}{\leftarrow} \chi_{1} \ldots \leftarrow \chi_{s}^{\pi_{S+1}} \leftarrow \chi_{s+1}
$$

such that w-ord $\chi=w$-ord χ_{s} and either w-ord $\chi_{s+1}<w$-ord χ_{s} or, if w-ord $\chi_{s+1}=w-$ ord χ_{s} then $\mathrm{T}(3)(x)=0, \forall x \in w-\operatorname{Sing}\left(\chi_{s+1}\right)$.

Definition 2.5. - Let

$$
\beta: \chi^{(-r)^{\pi_{-}}} \leftarrow \chi^{(-r+1)} \leftarrow \ldots \leftarrow \chi^{(0)}=\chi
$$

be as in 2.3.2, i. e. $\chi^{(-r)}$ is the birth of χ (Def. 2.1), and let $\pi: \chi \rightarrow \chi^{(-r)}$ denote the composition of the intermediate transformation. Then given $x \in w-\operatorname{Sing}(\chi)$ we define the birth of x to be the point $\pi(x) \in w$-Sing $\left(\chi^{(-r)}\right)$.
2.6. Here we define a notion of an inductive procedure. Let the assumptions and notation be as in Def. 2.5. Assume also that $T(3)(x)=0, \forall x \in w$ - $\operatorname{Sing}(\chi)$, and that this condition does not hold at $\chi^{(-1)}$.

Now fix $x \in w-\operatorname{Sing}(\chi)$ and let $y \in w-\operatorname{Sing}\left(\chi^{(-r)}\right)$ denote the birth of $x \cdot \chi^{(-r)}: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$. Choose $\alpha \in \mathrm{I}$ such that

$$
y \in w-\operatorname{Sing}\left(\mathscr{A}^{(-r)}(\alpha)\right) \subset \mathrm{W}^{(-r)}(\alpha) .
$$

Now $w-\operatorname{Sing}\left(\mathscr{A}^{(-r)}(\alpha)\right)=\operatorname{Sing}\left(w\left(\mathscr{A}^{(-r)}(\alpha)\right)\left(\right.\right.$ Remark 1.17.6), and ord $\left(w\left(\mathscr{A}^{(-r)}(\alpha)\right)\right)=1$ (Remark 1.17.7).

So Theorem 1.16.1 asserts that there is a regular hypersurface H, such that $y \in \mathrm{H} \subset \mathrm{W}^{(-r)}(\alpha)$, having maximal contact with $\mathrm{W}\left(\mathscr{A}^{(-r)}(\alpha)\right)$ locally at y.

After a convenient restriction assume that H has maximal contact with $\mathrm{W}\left(\mathscr{A}^{(-r)}(\alpha)\right)$.

The sequence of permissible transformations $\beta: \chi^{(-r)} \leftarrow \ldots \leftarrow \chi^{(0)}$ gives rise to:
(1) a sequence of w-permissible transformations over

$$
\begin{array}{ll}
\left(\mathrm{W}^{(-r)}(\alpha), \mathscr{A}^{(-r)}(\alpha), \mathrm{E}_{\Lambda}(-r), \mathrm{A}_{\Lambda}(-r)\right) & (\text { Def. } 1.17 .4): \\
& \left(\mathrm{W}^{(-r)}(\alpha), \mathscr{A}^{(-r)}(\alpha), \mathrm{E}_{\Lambda^{(-r)}(\alpha)}, \mathrm{A}_{\Lambda^{(-r)}(\alpha)}\right) \leftarrow \ldots \\
& \leftarrow\left(\mathrm{W}^{(0)}(\alpha), \mathscr{A}^{(0)}(\alpha), \mathrm{E}_{\Lambda(\alpha)}(0), \mathrm{A}_{\Lambda(\alpha)}(0)\right)
\end{array}
$$

(2) a sequence of permissible transformations over

$$
\left(\mathrm{W}^{(-r)}(\alpha), w\left(\mathscr{A}^{(-r)}(\alpha)\right), \mathrm{E}_{\Lambda(-r)}\right) \quad(\text { Def. } 1.8)
$$

Since $\operatorname{ord}\left(w\left(\mathscr{A}^{(-r)}(\alpha)\right)\right)=1$ (Remark 1.17.7), it can be interpreted as a sequence of w-permissible transformations (see Remark 1.17.8).
$\left(\mathrm{W}^{(-r)}(\alpha), w\left(\mathscr{A}^{(-r)}(\alpha)\right), \mathrm{E}_{\Lambda^{(-r)}(\alpha)}, \overline{\mathrm{A}}_{\Lambda^{(-r)}(\alpha)}\right) \leftarrow \ldots$

Let H_{1} denote the final strict transform of $\mathrm{H}\left(\subset \mathrm{W}^{(-r)}(\alpha)\right)$ at $\mathrm{W}^{(0)}(\alpha)$, and let $\mathrm{E}_{\Lambda^{(0)}{ }_{(\alpha)}=\mathrm{E}_{\Lambda^{(0)}{ }_{(\alpha)}}^{+} \cup \mathrm{E}_{\Lambda^{(0)}{ }_{(\alpha)}} \text { be as in 2.3.2. } ~}^{\text {. }}$

Now we consider two cases
$2.6(a)$ Case $\mathrm{T}(2)(y)=1$. In this case, $y \notin \mathrm{R}\left(\tau\left(w\left(\mathscr{A}^{(-r)}\right)\right)\right)$. Since $\mathrm{R}\left(\tau\left(w\left(\mathscr{A}^{(-r)}\right)\right)\right)$ is a connected component of $w-\operatorname{Sing}\left(\mathscr{A}^{-r}\right)=\operatorname{Sing}\left(w\left(\mathscr{A}^{-r}\right)\right)$ (Proposition 1.16.4), we may assume after shrinking that $\mathrm{R}\left(\tau\left(w\left(\mathscr{A}^{(-r)}\right)\right)=\varnothing\left(\right.\right.$ at $\left.\mathrm{W}^{(-r)}(\alpha)\right)$.

Now one can check at $W^{(0)}(\alpha)$ that $\bar{E}_{\lambda}=\mathrm{E}_{\lambda} \cap \mathrm{H}_{1}$ is empty or a smooth hypersurface for $\mathrm{E}_{\lambda} \in \mathrm{E}_{\Lambda^{0}{ }_{(\alpha)},}$, and $\overline{\mathrm{E}}_{\lambda}=\varnothing$ if $\mathrm{E}_{\lambda} \in \mathrm{E}_{\Lambda^{0}{ }_{(\alpha)}}^{-}$at least locally at w - $\left.\operatorname{Sing}(\chi)\right]$.

Let $\overline{\mathrm{E}}_{\Lambda}=\left\{\overline{\mathrm{E}}_{\lambda} \mid \lambda \in \Lambda\right\}$, then the inclusion $\mathrm{H} \subset \mathrm{W}^{(0)}(\alpha)$ and $\left(\mathrm{H}_{1}, \overline{\mathrm{E}}_{\Lambda}\right),\left(\mathrm{W}^{(0)}(\alpha), \mathrm{E}_{\Lambda}\right)$ satisfy the condition 1.11.1.

On the other hand H_{1} has maximal contact with $w\left(\mathscr{A}^{(0)}(\alpha)\right)$ at $\mathrm{W}^{(0)}(\alpha)$. One can check that the conditions are given for Theorem $1.15,(b)$ to hold, so that there is an idealistic situation (Def. 1.8) $\left(\mathrm{H}_{1}, \mathscr{B}, \overline{\mathrm{E}}_{\Lambda}\right)$ such that $i: \mathrm{H}_{1} \leftrightarrows \mathrm{~W}^{(0)}(\alpha)$ is a strong immersion from $\left(\mathrm{H}_{1}, \mathscr{B}, \overline{\mathrm{E}}_{\Lambda}\right)$ to $\left(\mathrm{W}^{(0)}(\alpha), w\left(\mathscr{A}^{(0)}(\alpha)\right), \mathrm{E}_{\Lambda}\right)$ (Def. 1.11).
\mathscr{B} might have order bigger than $1=\operatorname{ord}\left(w\left(\mathscr{A}^{0}(\alpha)\right)\right)$ (Remark 1.17.7). We define the weighted idealistic situation $\left(\mathrm{H}_{1}, \mathscr{B}, \overline{\mathrm{E}}_{\Lambda}, \overline{\mathrm{A}}_{\Lambda}\right)$ where $\overline{\mathrm{A}}_{\Lambda}=\{\alpha(\lambda) \mid \lambda \in \Lambda\}$ such that $\alpha(\lambda)(x)=0, \forall x \in \overline{\mathrm{E}}_{\lambda}\left(\forall \overline{\mathrm{E}}_{\lambda} \in \overline{\mathrm{E}}_{\Lambda}\right)$.

Arguing as before at each point y, we construct a restriction of $w(\chi)$ to an $m-1$ dimensional idealistic space $\bar{\chi}^{(0)}$ (Def. 1.18.3). Theorem 1.12 asserts that $\bar{\chi}^{(0)}$ is quasicompact (Def. 1.19.1). And $\operatorname{Sing} \bar{\chi}^{(0)}=\left(\operatorname{Sing} w\left(\chi^{(0)}\right)\right)-R(\tau)\left(w\left(\chi^{0}\right)\right)$ which consists of "connected components" of Sing $w\left(\chi^{(0)}\right)$ (Remark 1.19.2).

In this case we define the restriction of $w\left(\chi^{0}\right)$ to be $\bar{\chi}^{(0)}$.
$2.6(b)$ Case $\mathrm{T}(2)(y)=0$ i.e. $y \in \mathrm{R}(\tau)\left(w\left(\chi^{(-r)}\right)\right)$.
After a convenient restriction we may assume that $\mathrm{R}(\tau)\left(w\left(\chi^{(-r)}\right)\right)=\operatorname{Sing}\left(w\left(\chi^{(-r)}\right)\right)$ (Def. 1.19.3).

Let α and $\mathrm{H} \subset \mathrm{W}^{(-r)}(\alpha)$ be as before. Since H has maximal contact with $w\left(\mathscr{A}^{(-r)}(\alpha)\right)$, apply Theorem 1.15 case (b) if possible (see Remark I below) and let ($\mathrm{H}, \mathscr{B}, \mathrm{E}_{\varnothing}, \mathrm{A}_{\varnothing}$) induce a strong immersion with $\left(\mathrm{W}^{(-r)}(\alpha), w\left(\mathscr{A}^{(-r)}(\alpha)\right), \mathrm{E}_{\varnothing}, \mathrm{A}_{\varnothing}\right)$ (we do not assume that $\mathrm{E}_{\Lambda}^{(-r)}=\varnothing$ at $\left.\chi^{(-r)}(\alpha)\right)$.

One can check that, by this procedure an $m-1$ dimensional idealistic space $\bar{\chi}^{(-r)}$ has been defined such that:
(i) $\bar{\chi}^{(-r)}$ is quasi-compact
(ii) $\operatorname{Sing} \bar{\chi}^{(-r)}=\operatorname{Sing} w\left(\chi^{(-r)}=w-\operatorname{Sing}\left(\chi^{(-r)}\right)\right.$
(iii) The permissible sequence $\beta: \chi^{(-r)} \leftarrow \ldots \leftarrow \chi$ induces a permissible sequence

$$
\bar{\beta}: \quad \bar{\chi}^{(-r)} \leftarrow \ldots \leftarrow \bar{\chi}^{(0)}
$$

(iv) $\operatorname{Sing} \bar{\chi}^{(j)}=\operatorname{Sing} w\left(\chi^{(j)}\right), j=-r, \ldots, 0$.
(v) $w\left(\chi^{0}\right)$ is restrictive to $\bar{\chi}^{0}$ (Def. 1.18.3).

In this case we define the restriction of $w\left(\chi^{0}\right)$ to be $\bar{\chi}^{0}$ (with birth $\bar{\chi}^{(-r)}$).
Remark 2.6.1. - Let $\bar{\chi}^{0}$ be the restriction of $w\left(\chi^{0}\right)$ as in $2.6(a)$ or $2.6(b)$, then:
(i) $\operatorname{Sing}\left(\bar{\chi}^{0}\right)=w-\operatorname{Sing}(\chi)$ (disregarding eventually connected components of the second term).
(ii) the function $\mathrm{T}: w$ - $\operatorname{Sing}(\chi) \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}$; is constant along $\operatorname{Sing}\left(\bar{\chi}^{(0)}\right)$

Remark I. - The procedure of 2.6 is not defined at x if and only if
(i) $\tau\left(\chi^{(-r)}\right)=1$
(ii) $\mathrm{T}(2)(y)(=\mathrm{T}(2)(x))=0$
since, in that case and only in that case Theorem $1.15 b$) does not apply.
2.7
2.7.1. Before going into the development of this section we sketch the strategy to follow in a simplified form.

So we start with a pair (J, b) and $E=\left\{E_{1}, \ldots, E_{n}\right\}$ hypersurfaces with only normal crossings in a regular scheme W of dimension m (as in $\S 1$). Recall that if χ is the induced idealistic space, then permissible transformations over χ correspond to w-permissible transformations over (J, b), E (Def. 1.18.2). Say

$$
\begin{array}{cccc}
\chi & \chi_{1} & \cdots & \cdots \\
(\mathrm{~J}, b) \leftarrow\left(\mathrm{J}_{1}, b\right) & \ldots & \chi_{r} \\
\mathrm{E} & \mathrm{E}_{1} & & \left.\mathrm{~J}_{r}, b\right) \\
\mathrm{E}_{r}
\end{array}
$$

where: (i) $\left(\mathrm{J}_{i}, b\right)$ is the transform of $\left(\mathrm{J}_{i-1}, b\right)$ (Def. 1.3).
(ii) $\mathrm{J}_{i}=\mathrm{MJ}^{(i)}$, M a monomial (Def. 1.17.1).
(iii) w-ord $(\mathrm{J}) \geqq \ldots \geqq w-\operatorname{ord}\left(\mathrm{J}_{r}\right)($ Remark 1.17 .6 (iii)).
(iv) $w-\operatorname{Sing} \chi_{i}=\operatorname{Sing}\left(w-\chi_{i}\right)=\operatorname{Sing} w\left(\mathrm{~J}_{i}, b\right)\left[w\left(\mathrm{~J}_{i}, b\right)\right.$ as in 1.17.6].

The notion of birth of χ_{r} (and of $\mathrm{E}_{r}=\mathrm{E}_{r}^{-} \cup \mathrm{E}_{r}^{+}$) of Def. 2.1 corresponding to the smallest index k for which w-ord $\left(\left(\mathrm{J}_{k}, b\right)\right)=w$-ord $\left(\left(\mathrm{J}_{r}, b\right)\right)$.

If the weighted order of $\left(\mathrm{J}_{r}, b\right)$ is zero i.e. if J_{r} is locally a monomial, the resolution of $\left(\mathrm{J}_{r}, b\right)$ will follow easily. So assume that $w-\operatorname{order}\left(\mathrm{J}_{r}, b\right)>0$ (as in 2.3.2).

For further simplification we restrict our attention to the functions on w-Sing χ_{r} defined by $\mathrm{T}(1)$ [constantly equal to w-order $\left(\mathrm{J}_{r}, b\right)$] and $\mathrm{T}(3), \mathrm{T}(3)(x)=n(x)$ (as in 2.3.2).

These two functions turn out to be substantial for this procedure of resolution.
In 2.7.2 we study the maximal value of this function (in a lexicographic sense) along ω - $\operatorname{Sing}\left(\chi_{r}\right)$, say $\operatorname{Max} \mathrm{T}_{r}=(\omega, n)$. We set

$$
\operatorname{Max} \mathrm{T}_{r}=\left\{x \in w-\operatorname{Sing}\left(\chi_{r}\right) / \mathrm{T}(x)=(\omega, n)\right\}
$$

Fix $x \in \operatorname{Max}\left(\mathrm{~T}_{r}\right)$, then $n(x)=n$, and say $\left\{\mathrm{E}_{1}, \ldots, \mathrm{E}_{n}\right\}=\left\{\mathrm{E}_{i} \in \mathrm{E}_{r}^{-} / x \in \mathrm{E}_{i}\right\}$, E_{i} locally defined by $x_{i}=0$.

Then Max T_{r} is the singular locus of a new pair of order 1 (Def. 1.2), say $\mathrm{T}_{r}\left(\mathrm{~J}_{r}, b\right)$, where:

$$
\mathrm{T}_{r}\left(\mathrm{~J}_{r}, b\right) \sim w\left(\mathrm{~J}_{r}, b\right) \cap\left(\left\langle x_{1}\right\rangle, 1\right) \cap \ldots \cap\left(\left\langle x_{n}\right\rangle, 1\right)
$$

or equivalently, if $w\left(\mathrm{~J}_{r}, b\right)=(\mathscr{A}, d)$

$$
\mathrm{T}_{r}\left(\mathrm{~J}_{r}, b\right) \sim\left(\mathscr{A}+\left(x_{1}^{d}\right)+\ldots+\left(x_{n}^{d}\right), d\right)
$$

[\sim : isomorphic in the sense of idealistic situations (Def. 1.9)].
If $n=0$, in 2.6 we showed that the problem of resolution of $\omega\left(\mathrm{J}_{r}, b\right)$ (the problem of "lowering" the weighted order), is a problem of resolution of an idealistic space of dimension smaller then m.
n is to be thought of as an obstruction in this sense.
The main results in this section are: [see conditions (1), (2), (3) and (4) of 2.7.3 for precise statements].
(a) The lowering of n [or of $\omega=$ weighted order of $\left(\mathrm{J}_{r}, b\right)$], is equivalent to the resolution of the pair $\mathrm{T}_{r}\left(\mathrm{~J}_{r}, b\right)$.
(b) The problem of resolution of $\mathrm{T}_{r}\left(\mathrm{~J}_{r}, b\right)$ is a problem of resolution of idealistic spaces of dimension smaller then m.

Of course the number n, or any $n(x)$ is bounded by m. There cannot be more then m-hypersurfaces with normal crossings at $x \in W$.
2.7.2. Consider a sequence
of permissible transformations over an m-dimensional idealistic space $\chi^{(-r)}: \mathrm{I} \rightarrow \mathrm{C}(m, \Lambda)$ such that

$$
w-\operatorname{ord}\left(\chi^{(-r)}\right)=w-\operatorname{ord}(\chi)>0
$$

We assume, inductively on r, that each π_{j} is a permissible transformation with center C_{j}, uniquely determined by an upper semicontinuous function on the "closed" sets w Sing (χ^{j}).

In 2.3.2 we have constructed a function T on each $w-\operatorname{Sing}\left(\chi^{(j)}\right)$ which is upper semicontinuous. Now define for each such $\mathrm{T}: \operatorname{Max}\left(\mathrm{T}\left(\chi^{(j)}\right)\right.$) or simply.
$\operatorname{Max}(\mathrm{T})=$ maximum value of T at $w-\operatorname{Sing}\left(\chi^{(j)}\right)$, and
$\operatorname{Max}(\mathrm{T})=\left\{x \in w-\operatorname{Sing}\left(\chi^{(j)}\right) \mid \mathrm{T}(x)=\operatorname{Max} \mathrm{T}\right\}$
(see Remark 2.3.4).
Assume that the following conditions hold:
(i) $\mathrm{C}_{j} \subset$ Max $\mathrm{T} \subset w-\operatorname{Sing} \chi^{(j)}$
(ii) for any $x \in w-\operatorname{Sing}\left(\chi^{(j+1)}\right) ; \mathrm{T}\left(\pi_{j}(x)\right) \geqq \mathrm{T}(x)$.

Definition 2.7.2. - When these conditions hold then for each $x \in \operatorname{Max}(T) \subset w$ Sing (χ) we define:

1. $m-\operatorname{Sing}(x)=\mathrm{T}(x)(=\operatorname{Max}(\mathrm{T}))$.
2. the m-birth of x as the image y of x by the natural map $\pi: \chi \rightarrow \chi^{(-j)}$ where $-j$ is the smallest index for which $\mathrm{T}(x)=\operatorname{Max}\left(\mathrm{T}\left(\chi^{(-j)}\right)\right.$.

Remark. - Given x as before, let y be the m-Sing birth of x and z the birth of x (Def. 2.5). Then z is also the birth of y.
2.7.3. In 2.6 we studied a sequence β (as before) such that w-ord $\left(\chi^{(-r)}\right)=w$-ord $(\chi)>0$ and the additional hypothesis that $\mathrm{T}(3)(x)=0, \forall x \in w-\operatorname{Sing}(\chi)$. In this section we consider the case that $\operatorname{Max} \mathrm{T}=\left(d_{1}, d_{2}, d_{3}, \infty\right)\left(\mathrm{T}: w-\operatorname{Sing}(\chi) \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}\right)$ where $d_{3}>0$ and we want to construct now a preparation procedure (Def. 2.4).

Let $-j$ and y be as before and $\mathrm{F}^{(-j)}=\operatorname{Max}(\mathrm{T}) \subset w-\operatorname{Sing}\left(\chi^{(-j)}\right)$, let z denote the birth of y and let $\alpha \in \mathrm{I}$ be such that $z \in w-\operatorname{Sing}\left(\overline{\mathscr{A}^{(-r)}}(\alpha)\right) \subset \mathrm{W}^{(-r)}(\alpha)$ where $\chi^{(-r)}(\alpha)=\left(\mathrm{W}^{(-r)}(\alpha)\right.$, $\left.\mathscr{A}^{(-r)}(\alpha), \mathrm{E}_{\Lambda^{(-r)}{ }_{(\alpha)},}, \mathrm{A}_{\Lambda^{(-r)}(\alpha)}\right)$.

Now $w-\operatorname{Sing}\left(\mathscr{A}^{(-r)}(\alpha)\right)=\operatorname{Sing}\left(w\left(\mathscr{A}^{(-r)}(\alpha)\right)\right.$ and ord $\left(w\left(\mathscr{A}^{(-r)}(\alpha)\right)\right)=1$ (Remark 1.17.1). Again by theorem 1.16 .1 there is a smooth hypersurface $H^{(-r)} \subset W^{(-r)}(\alpha)$ such that $z \in \mathrm{H}^{(-r)}$ and $\mathrm{H}^{(-r)}$ has maximal contact with $w\left(\mathscr{A}^{(-r)}(\alpha)\right)$ [after shrinking $\left.\mathrm{W}^{(-r)}(\alpha)\right]$.

If $\mathrm{H}^{(-j)}$ denotes the strict transform of $\mathrm{H}^{(-r)}$ at $\mathrm{W}^{(-j)}(\alpha)$ by the maps induced over $\mathrm{W}^{(-r)}(\alpha)$, then $y \in \mathrm{H}^{(-j)}$ and $\mathrm{H}^{(-j)}$ has maximal contact with $w\left(\mathscr{A}^{(-j)}(\alpha)\right)$ (which is the transform of the idealistic exponent $w\left(\mathscr{A}^{(-r)}(\alpha)\right)$) at $W^{(-j)}(\alpha)$ [Remark 1.17.6
 $w\left(\mathscr{A}^{(-j)}(\alpha)\right)$ is defined locally at y by a pair (J, b), then consider the idealistic exponent

$$
\mathrm{K}=\left(\left(\mathrm{J}+\sum_{y \in \mathrm{E}_{s} \in \Gamma} \mathrm{P}_{s}^{b}, b\right)\right), \quad \Gamma=\left(\mathrm{E}_{\Lambda}(j)\right)^{-}
$$

(2.1) where $\mathrm{P}_{s} \subset O_{\mathrm{w}^{()}{ }_{(\alpha)}}$ is the sheaf of ideals $O\left(-\mathrm{E}_{s}\right)$.

One can check that:
(a) Sing $K=F^{(-j)}$ (locally at y).
(b) K is well defined independently of the election of (J, b).

Remark. - Assume that $\mathrm{T}(2)(y)=(=\mathrm{T}(2)(z))=0$ then

$$
\begin{equation*}
\left(\mathrm{J}+\sum_{y \in \mathrm{E}_{s} \in \Gamma} \mathrm{P}_{s}^{b}, b\right) \sim\left(\mathrm{J}+\sum_{y \in \mathrm{E}_{t} \in \Gamma^{\prime}} \mathrm{P}_{t}^{b}, b\right) \tag{Def.1.1}
\end{equation*}
$$

where $\Gamma^{\prime}=\left\{\mathrm{E}_{t} \in\left(\mathrm{E}_{\Lambda^{(j)}}\right)^{-} \mid w-\operatorname{Sing}\left(\chi^{(-j)}\right) \notin \mathrm{E}_{t}\right\}$ (locally at y).
Since $\mathrm{H}^{(j)}$ has maximal contact with $w\left(\mathscr{A}^{(-j)}(\alpha)\right)=((\mathrm{J}, b))$, then it also has maximal contact with K .

Now consider at $W^{(-j)}(\alpha)$ the weighted idealistic situation $\left(W^{(-j)}(\alpha)\right.$,
 $\alpha(\lambda): \mathrm{E}_{\lambda} \rightarrow \mathbb{Q}$, for each $\mathrm{E}_{\lambda} \in\left(\mathrm{E}_{\Lambda^{(-j)}(\alpha)}\right)^{+}$where $\alpha(\lambda)(x)=0, \forall x \in \mathrm{E}_{\lambda}$.
 $\mathrm{A}_{\bar{\Lambda}}=\left\{\alpha(\lambda): \overline{\mathrm{E}}_{\lambda} \rightarrow \mathbb{Q}\left(\overline{\mathrm{E}}_{\lambda}\right.\right.$ as before) such that $\left.\alpha(\lambda)(x)=0, \forall x \in \overline{\mathrm{E}}_{\lambda}\right\}$.
$\mathrm{E}_{\bar{\Lambda}}$ consists of hypersurfaces (at $\mathrm{H}^{(-j)}$) with only normal crossings.
We claim that the conditions of Theorem $1.15(b)$ are given (see Remark II below), so that there is an idealistic exponent \mathscr{B} at $\mathrm{H}^{(-j)}$ and a strong immersion

$$
\left(\mathrm{H}^{(-j)}, \mathscr{B}, \mathrm{E}_{\bar{\Lambda}}\right) \subsetneq\left(\mathrm{W}^{(-j)}(\alpha), \mathrm{K},\left(\mathrm{E}_{\Lambda^{(-j)}(\alpha)}\right)^{+}\right)
$$

Arguing in the same way for all points $x \in \operatorname{Max}(T) \subset \chi^{0}=\chi$ and all election of hypersurfaces $\mathrm{H}^{(-r)}$, we construct an $m-1$ dimensional idealistic space $\bar{\chi}^{(-j)}$ which is quasi-compact and satisfies the following conditions:
(1) $\operatorname{Sing} \bar{\chi}^{(-j)}=\operatorname{Max}(T) \subset w-\operatorname{Sing}\left(\chi^{(-j)}\right)$.
(2) The permissible sequence

$$
\chi^{(-j)} \stackrel{\pi_{-j}}{\leftarrow} \chi^{(-j+1)} \leftarrow \ldots \stackrel{\pi_{-1}}{\leftarrow} \chi^{(0)}=\chi
$$

induces a permissible sequence

$$
(\mathrm{A}): \quad \bar{\chi}^{(-j)} \leftarrow \bar{\chi}^{(-j+1)} \leftarrow \ldots \leftarrow \bar{\chi}^{(0)}
$$

over $\bar{\chi}^{(-j)}$ such that $\operatorname{Sing}\left(\bar{\chi}^{(l)}\right)=\operatorname{Max}(\mathrm{T}) \subset w-\operatorname{Sing}\left(\chi^{(l)}\right)$ for all $l=-j,-j+1, \ldots, 0$.
(3) If $\bar{\chi}^{(-j)} \leftarrow \bar{\chi}^{(-j+1)} \leftarrow \ldots \leftarrow \bar{\chi}^{(0)} \leftarrow \ldots \bar{\chi}^{(k)}$ is a permissible sequence [extending that of (2)] then it induces a permissible sequence

$$
\left(\chi^{(-r)} \ldots \leftarrow\right) \chi^{(-j)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \leftarrow \chi^{(k)}
$$

at permissible centers $\mathrm{C}_{l}(-r \leqq l \leqq k)$ such that (i) and (ii) of 2.7 hold. Moreover $\operatorname{Sing} \bar{\chi}^{(l)}=\operatorname{Max}(\mathrm{T}) \subset w-\operatorname{Sing}\left(\chi^{(l)}\right) 0 \leqq l \leqq k$ and

$$
\operatorname{Max}\left(\mathrm{T}: w-\operatorname{Sing}(\chi) \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}\right)>\operatorname{Max}\left(\mathrm{T}: w-\operatorname{Sing}\left(\chi^{k}\right) \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}\right)
$$

if and only if Sing $\bar{\chi}^{(k)}=\varnothing$.
(4) Conversely, if $\quad \chi^{(-r)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \chi^{(k)} \quad$ is \quad an extension of $\chi^{(-r)} \leftarrow \ldots \leftarrow \chi^{0}=\chi$ by permissible transformations at centers

$$
\mathrm{C}_{j} \subset \underline{\operatorname{Max}} \mathrm{~T} \subset w-\operatorname{Sing}\left(\chi^{(j)}\right), \quad 0 \leqq j \leqq k
$$

such that (i) and (ii) of 2.7 hold, and if

$$
\operatorname{Max}\left(\mathrm{T}: w-\operatorname{Sing}\left(\chi^{(k)}\right) \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}\right)=\operatorname{Max}\left(\mathrm{T}: w-\operatorname{Sing}(\chi) \rightarrow \mathbb{Z}^{3} \times \Lambda^{m}\right)
$$

then it induces a sequence of permissible transformations

$$
\bar{\chi}^{(-j)} \leftarrow \ldots \leftarrow \bar{\chi}^{(0)} \leftarrow \bar{\chi}^{(1)} \leftarrow \ldots \leftarrow \bar{\chi}^{(k)}
$$

and Sing $\left(\bar{\chi}^{(l)}\right)=\underline{\operatorname{Max}} \mathrm{T} \subset w$-Sing $\chi^{(l)} l=0, \ldots, k$.
Remark II. - The construction of the restricted situation at y would not be possible if and only if:
(1) $\tau\left(\chi^{(-r)}\right)=1$
(2) $\mathrm{T}(2)(y)=0$
(3) $\mathrm{T}(3)(y)=0$
(see Remark I) but we assumed in the construction of 1.7 .2 that $\mathrm{T}(3)(y) \neq 0$.
2.8. Now let $\mathrm{D}_{m}=\mathrm{Z}^{3} \times \Lambda^{m}, \mathrm{~J}_{m}=\mathrm{D}_{m} \times \mathrm{D}_{m-1} \times \ldots \times \mathrm{D}_{1}$ and suppose that the theorem of constructive resolutions (2.2) holds in dimension smaller then m.

We assume that the sequence (A) is a constructive sequence, i.e. that there is a resolution

$$
\chi^{(-j)} \leftarrow \chi^{(-j+1)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \leftarrow \chi^{(l)}, \chi^{(0)}=\chi
$$

together with functions $\psi_{m-1}^{(k)}:$ Sing $\bar{\chi}^{(k)} \rightarrow \mathrm{J}_{m-1},-j \leqq k<l$ satisfying the conditions at 2.2 (see observation 2.3.3). Recall that $\operatorname{Sing}\left(\bar{\chi}^{(k)}\right)=\operatorname{Max}(T) \subset w-\operatorname{Sing}\left(\chi^{(k)}\right)$ where now:

$$
\chi^{(-k)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \leftarrow \chi^{(l)}, \chi^{(0)}=\chi
$$

is the permissible sequence constructed with these centers.
Moreover this maximum value of T along w - $\operatorname{Sing}\left(\chi^{(-s)}\right)$ is the same, say c, for all $-j \leqq s \leqq l$.

So if c_{1} is the maximum of T along w-Sing $\left(\chi^{(l)}\right)$ (assuming that the birth of $\chi^{(l)}$ is still $\left.\chi^{(-k)}\right)$, then $c_{1}<c$. But this simply means that

$$
\operatorname{Max}\left\{\mathrm{T}(3)(x) \mid x \in w-\operatorname{Sing}\left(\chi^{(l)}\right)\right\}<\operatorname{Max}\left\{\mathrm{T}(3)(x) \mid x \in w-\operatorname{Sing}\left(\chi^{(-k)}\right)\right\}
$$

But $\mathrm{T}(3)(x) \leqq m=\operatorname{dim} \chi^{(l)}$ (Def. 1.18.2). So repeating this argument we are left in the situation at which either $w-\operatorname{ord}\left(\chi^{(l)}\right)<w-\operatorname{ord}\left(\chi^{(-k)}\right) \operatorname{or} w-\operatorname{ord}\left(\chi^{(l)}\right)=w-\operatorname{ord}\left(\chi^{(-k)}\right)$ and $T(3)(x)=0, \forall x \in w-\operatorname{Sing}\left(\chi^{(l)}\right)$. In this way we have constructed a preparation procedure (Def. 2.4) and now the inductive procedure of 2.6 can be applied.

In either case at $F^{(s)}=\left\{x \in w\right.$-Sing $\left(\chi^{(s)}\right) \mid F(x)$ is maximum $\}=$ Max (T) define $\psi_{m}^{(k)}(x)=\left(T(x), \psi_{m-1}^{(k)}(x)\right)$; this defines a map:

$$
\psi_{m}^{(k)}: \mathrm{F}^{(k)} \rightarrow \mathrm{D}_{m} \times \mathrm{J}_{m-1}\left(=\mathrm{J}_{m}\right)
$$

We are still left with the case (within w-ord $(\chi)>0$) where:

$$
\begin{array}{ll}
\mathrm{T}(2)(x)=0, & \forall x \in w-\operatorname{Sing}(\chi) \\
\mathrm{T}(3)(x)=0, & \forall x \in w-\operatorname{Sing}(\chi)
\end{array}
$$

and $\tau(w(\chi))=1$.
In this case and only in this case, the procedure introduced before are of no use. But then $w-\operatorname{Sing} \chi$ is regular at each point and $w-\operatorname{Sing} \chi$ itself is a center of a permissible transformation and such transformation defines a resolution of $w(\chi)$. On the other hand the function T : w- $\operatorname{Sing}(\chi) \rightarrow \mathrm{D}_{m}$ is constant. So we define

$$
\psi_{m}(x)=(\mathrm{T}(x), \infty) \in \mathrm{D}_{m} \times \mathrm{J}_{m-1}=\mathrm{J}_{m}
$$

Finally, if w-ord $(\chi)=0$ define

$$
\psi_{m}: \text { Sing } \chi \rightarrow \mathbf{J}_{m}
$$

by

$$
\psi_{m}(x)=(\mathrm{T}(x), \infty)
$$

(Remark 2.3.1 asserts that a resolution of χ can be "constructed").
2.9. With the assumption of constructive resolutions of singularities for idealistic spaces of dimension smaller then m, we have produced in 2.8 , for any m-dimensional idealistic space χ a unique resolution:

$$
\begin{equation*}
 \tag{A}
\end{equation*}
$$

where each $\chi_{r} \stackrel{\pi_{r}}{\leftarrow} \chi_{r+1}$ is a permissible transformation with center $\mathrm{Y}_{r} \subset \operatorname{Sing} \chi_{r}$.
Definition 2.9.1. - Given a point $x \in \operatorname{Sing} \chi_{r}$, if $x \notin Y_{r}$ we identified it with a point $x \in \operatorname{Sing} \chi_{r+1}$ in such a way that $\Pi_{r}: \operatorname{Sing} \chi_{r+1} \rightarrow \operatorname{Sing} \chi_{r}$ is locally an isomorphism (at x). Since (A) is finite there is a well defined number $r^{\prime} \geqq r$ which is maximal with the condition that $\Pi_{r}^{\prime}: \operatorname{Sing} \chi_{r^{\prime}} \rightarrow \operatorname{Sing} \chi_{r}$ (the composition of all intermediate maps) is an isomorphism locally at x. We say that " $x \in \operatorname{Sing} \chi_{r^{\prime}}$ ". In this case $x \in Y_{r^{\prime}} \subset \operatorname{Sing}\left(\chi_{r^{\prime}}\right)$, because of the maximality of r^{\prime}, r^{\prime} is called the level of x.

Definition 2.9.2. - Given an upper semicontinuous function $h: \mathrm{F} \rightarrow(\mathrm{D}, \leqq$), if (D, \leqq) is totally ordered then set $\operatorname{Max} h=\{$ maximal value of $h\}$ (a unique element) and Max $h=\{x \mid h(x)=\operatorname{Max}(h)\}$. If D is not totally ordered, then Max h might consist of more than one element. We will assume moreover that for each $x \in \mathrm{~F}$, there is a totally ordered subset $\left(\mathrm{D}_{x},<\right) \subset(\mathrm{D},<)$ and that $\operatorname{Im} g(h) \subset \mathrm{D}_{x}$ locally at x.

Examples of these maps are given by
T: Sing $w(\chi) \rightarrow \mathrm{D}$ as pointed out in 2.3.1 and 2.3.2.

$$
4^{\mathrm{e}} \text { SÉRIE }- \text { TOME } 22-1989-\mathrm{N}^{\circ} 1
$$

Now Max h becomes a disjoint union of closed sets

$$
\underline{\operatorname{Max}} h=\bigcup_{d \in \operatorname{Max} h} \underline{\operatorname{Max}}(h)(d), \quad \underline{\operatorname{Max}}(h)(d)=\{x \mid h(x)=d\}
$$

Lemma 2.9.3. - Suppose we are given the following data:

$$
\begin{gather*}
\chi \stackrel{\Pi_{0}}{\leftarrow} \chi_{1} \stackrel{\pi_{1}}{\leftarrow} \chi_{j} \stackrel{\Pi_{j}}{\leftarrow} \leftarrow \chi_{n} \\
\mathrm{Y}_{0} \subset \mathrm{~F}_{0} \quad \mathrm{Y}_{1} \subset \mathrm{~F}_{1} \quad \mathrm{Y}_{j} \subset \mathrm{~F}_{j} \tag{B}
\end{gather*}
$$

and upper semicontinuous functions $h_{r}: \mathrm{F}_{r} \rightarrow(\mathrm{D}, \leqq)$ such that:
(i) the data (B) is a resolution of χ.
(ii) $\mathrm{F}_{r} \subset \operatorname{Sing} \chi_{r}$ is closed, Y_{r} is the center of Π_{r} and $\mathrm{Y}_{r} \subset \operatorname{Max}\left(h_{r}\right)$.
(iii) if $x \in \mathrm{~F}_{r+1}$ and $\Pi(x) \in \mathrm{F}_{r}$ then $h_{r+1}(x) \leqq h_{r}\left(\Pi_{r}(x)\right)$ and the equality holds if moreover $\Pi(x) \notin \mathrm{Y}_{r}$.
(iv) ST $\left(\mathrm{F}_{r}\right) \subset \mathrm{F}_{r+1}\left[\mathrm{ST}\left(\mathrm{F}_{r}\right)\right.$ strict transform of $\left.\mathrm{F}_{r}\right],\left(\mathrm{ST}\left(\mathrm{F}_{r}\right)=\varnothing\right.$ if $\left.\mathrm{Y}_{r}=\mathrm{F}_{r}\right)$.
(v) If $x \in \mathrm{Y}_{s}(s>r)$ and $\Pi_{r}^{s}(x) \in \mathrm{Y}_{r}$ than $h_{s}(x) \leqq h_{r}\left(\Pi_{r}^{s}(x)\right.$.
(vi) If $s>r, \forall x \in \mathrm{~F}_{s} \exists d \in \operatorname{Max} h_{r}$ such that $h_{s}(x) \leqq d$ and if equality holds then $\Pi_{r}^{s}(x) \in \operatorname{Max} h_{r}\left(\Pi_{r}^{s}\right.$: the composition of all intermediate maps).

Define now $H_{r}: \operatorname{Sing} \chi_{r} \rightarrow(D, \leqq)$ as follows: given $x \in \operatorname{Sing} \chi_{r}$ let r^{\prime} be the level of x (Def. 2.9.1) then $x \in \mathrm{Y}_{r}$, and we define $\mathrm{H}_{r}(x)=h_{r^{\prime}}(x)$. We claim that
(a) If $x \in \mathrm{~F}_{r}, \mathrm{H}_{r}(x)=h_{r}(x)$ i. e. H_{r} extends h_{r}.
(b) $\mathrm{H}_{r}(x) \leqq \mathrm{H}_{r-1}(\Pi(x))$ and equality holds if $\Pi(x) \notin \mathrm{Y}_{r-1}$.
(c) H_{r} is upper semicontinuous, $\operatorname{Max} \mathrm{H}_{r}=\operatorname{Max} h_{r}$ and $\operatorname{Max} \mathrm{H}_{r}=\operatorname{Max} h_{r}$.

Remark 2.9.3.1. - In the conditions of (vi), if $h_{s}(x)=d$ then $x \in \operatorname{Max} h_{s}$.
Proof (of the Lemma). - (a) Let $x \in \mathrm{~F}_{r}$ and r^{\prime} be the level of x. We must prove that $h_{r}(x)=h_{r^{\prime}}(x)$, this follows from (iv) and (iii).
(b) If $\Pi(x) \notin Y_{r-1}$, then level of x and $\Pi(x)$ concide, so $H_{r-1}(\Pi(x))=H_{r}(x)$. If $\Pi(x) \in Y_{r-1}$ then the level of $\Pi(x)$ is $r-1$ and $H_{r-1}(\Pi(x))=h_{r-1}(\Pi(x))$. Let r^{\prime} be the level of x, then $x \in Y_{r^{\prime}}$ and clearly $\Pi_{r-1}^{r^{\prime}}(x)=\Pi(x)$ so

$$
\mathrm{H}_{r}(x)=h_{r^{\prime}}(x) \leqq h_{r-1}(\Pi(x))=\mathrm{H}_{r-1}(\Pi(x))
$$

[inequality due to (v)].
(c) Given $d \in \mathrm{D}$, we define

$$
\begin{gathered}
\mathrm{U}=\left\{x \in \operatorname{Sing} \chi_{r} / H_{r}(x) \geqq d\right\} \\
\mathrm{V}=\underset{\left(s, d^{\prime}\right) \in \Gamma}{ } \Pi_{r}^{s}\left(\mathrm{~F}\left(s, d^{\prime}\right)\right) \\
\Gamma=\left\{\left(s, d^{\prime}\right) / d^{\prime} \in \operatorname{Max}\left(h_{s}\right) d^{\prime} \geqq d \text { and } s \geqq r\right\}, \\
\mathrm{F}(s, d)=\underline{\operatorname{Max}}\left(h_{s}\right)\left(d^{\prime}\right)=\left\{x \in \underline{\operatorname{Max}}\left(h_{s}\right) / h_{s}(x)=d^{\prime}\right\} .
\end{gathered}
$$

We claim that $\mathrm{U}=\mathrm{V}$. In which case, since each Π_{r}^{s} is proper and the $\mathrm{F}\left(s, d^{\prime}\right)$ are closed, U is a finite union of closed sets.

Fix $x \in \mathrm{U}, \mathrm{H}_{r}(x)=d^{\prime} \geqq d$ and let r^{\prime} be the level of x. Then $x \in \mathrm{Y}_{r^{\prime}}\left(\subseteq \underline{\operatorname{Max}} h_{r^{\prime}}\right)$ so $\left.d^{\prime} \in \operatorname{Max} h_{r^{\prime}}\right)$ and $d^{\prime} \geqq d$ i.e. $\left(r^{\prime}, d^{\prime}\right) \in \Gamma$, so $x \in \Pi_{r}^{r^{\prime}}\left(\mathrm{F}\left(r^{\prime}, d^{\prime}\right)\right)$ i.e. $x \in \mathrm{~V}$.

If $x \in \mathrm{~V}$ there is $y \in \operatorname{Max}\left(h_{s}\right)\left(d^{\prime}\right)\left(\left(s, d^{\prime}\right) \in \Gamma\right)$ such that $\Pi_{r}^{s}(y)=x$, so $h_{s}(y)=d^{\prime} \in \operatorname{Max}\left(h_{s}\right)$ and $d^{\prime} \geqq d$.

Let s^{\prime} be the level of y and r^{\prime} the level of x. Clearly $s^{\prime} \geqq r^{\prime}, \Pi_{r^{\prime}}^{s^{\prime}}(y)=x \in \mathrm{Y}_{r^{\prime}}$ and $y \in \mathrm{Y}_{s^{\prime}}$, so

$$
\mathrm{H}_{r}(x)=h_{r^{\prime}}(x) \geqq h_{s}(y)=h_{s^{\prime}}(y)=d^{\prime} \geqq d
$$

[inequelity do to (v)] i.e. $x \in \mathrm{U}$.
Let us show that $\operatorname{Max} h_{r}=\operatorname{Max}_{r}$. First we prove that: $\forall d \in \operatorname{Max} \mathrm{H}_{r}, \exists d^{\prime} \in \operatorname{Max} h_{r}$ such that $d \leqq d^{\prime}$. In fact if $\mathrm{H}_{r}(x)=d$ for some point $x \in \operatorname{Sing} \chi_{r}$ of level r^{\prime}, then $x \in \mathrm{Y}_{r^{\prime}} \subset \mathrm{F}_{r^{\prime}}$ and $h_{r^{\prime}}(x)=d$. By (vi) there is $d^{\prime} \in \operatorname{Max}\left(h_{r}\right)$ such that $d \leqq d^{\prime}$. Since (a) is proved it follows that Max $h_{r}=\operatorname{Max} \mathrm{H}_{r}$. Again because of (a), Max $h_{r} \cong$ Max H_{r} and the equality is clear from (vi).

Remark 2.9.4. - Suppose that the sets F_{r} are replaced by $\mathrm{F}^{(r)}$ satisfying:
(a) $\operatorname{Max}\left(h_{r}\right) \subset \mathrm{F}^{(r)} \subset \mathrm{F}_{r}$ and $\mathrm{F}^{(r)}$ is closed
(b) Condition (iv) of Lemma 2.9.3.
and (c) $h_{r}^{\prime}: \mathrm{F}^{(r)} \rightarrow \mathrm{D}$ are defined by restricting h_{r} to $\mathrm{F}^{(r)}$.
With this conditions we assert that:
(1) the statement of the Lemma still holds.
(2) If H_{r}^{\prime} is defined as in the Lemma then $H_{r}^{\prime}=H_{r}$.

Proof of (1) is straightforwards [see Remark 2.9.3.1 for (vi)] and (2) is due to the fact that the construction of H_{r} depends only on $\left.h_{s}\right|_{\mathrm{Y}_{s}}, \forall s \geqq r$, and $\mathrm{Y}_{s} \subset \underline{\operatorname{Max}} h_{s} \subset \mathrm{~F}^{(s)}$.

Proposition 2.9.5. - Given the resolution (A) of 2.9, let F_{r} be defined as:
(A) $\mathrm{F}_{r}=\operatorname{Sing} w\left(\chi_{r}\right)$ if $w-\operatorname{ord}\left(\chi_{r}\right)>0$.
(B) $\mathrm{F}_{r}=\operatorname{Sing} \chi_{r}$ if $w-\operatorname{ord}\left(\chi_{r}\right)=0$
and set $\mathrm{T}_{r}: \mathrm{F}_{r} \rightarrow \mathrm{D}$ as in 2.3.1 and 2.3.2, then all the conditions of Lemma 2.9.3 are satisfied.

Proof. - (i) and (ii) follow by construction.
(iv): If $w-\operatorname{ord}\left(\chi_{r}\right)>0$ and the strict transform of $\mathrm{F}_{r}=\operatorname{Sing} \omega\left(\chi_{r}\right)$ is non-empty, then the $w-\operatorname{ord}\left(\chi_{r+1}\right)=w-\operatorname{ord}\left(\chi_{r}\right)$ and $w\left(\chi_{r+1}\right)$ is the transform of $w\left(\chi_{r}\right)(2.7)$. Now (iv) is clear in this case.

If $w-\operatorname{ord}\left(\chi_{r}\right)=0$ then $F_{r}=\operatorname{Sing} \chi_{r}, w-\operatorname{ord} \chi_{r+1}=0$ and $F_{r+1}=\operatorname{Sing} \chi_{r+1}$, so also in this case (iv) is clear.
(iii) We prove it by considering different cases:
(a) w-ord $\left(\chi_{r+1}\right)<w-\operatorname{ord}\left(\chi_{r}\right)$. In this case it is clear that w-ord $\left(\chi_{r}>0\right.$ and as discussed above [in the prove of (iv)], $\mathrm{F}_{r}=\operatorname{Sing} w\left(\chi_{r}\right)$ must be Y_{r}, (iii) is now obvious from these remarks.

[^1](b) w-ord $\left(\chi_{r+1}\right)=w-\operatorname{ord}\left(\chi_{r}\right)=\omega>0$. The first coordinate of T_{r} is constant alonog F_{r} (equal to ω) and the some holds at F_{r+1}. The second coordinate is $\mathrm{T}(2)$, the good behavior of this function is given by Prop. 1.16 .4 which states that $T(2)(x)=T(2)(\Pi(x))$, $\forall x \in \operatorname{Sing}\left(\chi_{r+1}\right)$. So that we are left with proving (iii) by looking at the function $\mathrm{T}(3)$, now the statement follows from the fact that E_{r+1}^{-}is the strict transform of E_{r}^{-}and by the construction of (A) in terms of T [condition (1) (2) (3) and (4) of 2.7.2].
(c) If $w-\operatorname{ord}\left(\chi_{r+1}\right)=w$-ord $\left(\chi_{r}\right)=0$ we refer to Remark 2.3.1.
(v) (a) w-ord $\left(\chi_{s}\right)<w-\operatorname{ord}\left(\chi_{r}\right)$ there is nothing to prove. We must consider the cases.
(b) w-ord $\left(\chi_{s}\right)=w-\operatorname{ord}\left(\chi_{r}\right)>0$ and $(c) w$-ord $\left(\chi_{s}\right)=w$-ord $\left(\chi_{s}\right)=0$ both undergo essentially the some proofs as those given above for (b) and (c) of (iii).
(vi): is clear from the construction of (A) in terms of T.

Proposition 2.9.6. - Let (A), $\mathrm{F}_{r}, \mathrm{Y}_{r}$ be as in Prop. 2.9.5, if each F_{r} is replaced by $\mathrm{F}^{(r)}=\operatorname{Max} \mathrm{T}_{r}$, then the conditions of Remark 2.9.4 hold.

Proof. - the non trivial point is to show that condition (iv) of Lemma 2.9.3 still holds i.e. $\operatorname{ST}\left(\mathrm{F}_{r}^{\prime}\right) \subset \mathrm{F}_{r+1}^{\prime}$.

If w-ord $\left(\chi_{r}\right)>0$, there is an $n-1$ dimensional idealistic space $\bar{\chi}^{(l)}$ such that $\operatorname{Sing}\left(\bar{\chi}^{(l)}\right)=\operatorname{Max}\left(\mathrm{T}_{r}\right)\left(=\mathrm{F}^{(r)}\right)$, and if $\operatorname{Max}\left(\mathrm{T}_{r}\right)=d$ then the lowering of d is equivalent to
the resolution of $\bar{\chi}^{(l)}$ [conditions (1), (2), (3) aond (4) of 2.7.2], so we look at $\chi_{r} \stackrel{\Pi}{\leftarrow} \chi_{r+1}$.
If $\operatorname{Max} \mathrm{T}_{r+1}<d, \mathrm{Y}_{r}$ must be $\operatorname{Sing} \bar{\chi}^{(l)}\left(=\mathrm{F}_{r}\right)$ and there is nothing to prove. If $\operatorname{Max} \mathrm{T}_{r+1}=d$ then Max T_{r+1} is the singular locus of $\bar{\chi}^{l+1}$ which is the transform of $\bar{\chi}^{l}$ by a permissible map $\bar{\chi}^{l} \leftarrow \bar{\chi}^{l+1}$, but then the $\operatorname{ST}\left(\operatorname{Sing} \bar{\chi}^{l}\right) \subset \operatorname{Sing} \bar{\chi}^{l+1}$ as was to be shown.

If w-ord $\left(\chi_{r}\right)=0$ then $F_{r}^{(r)}$ is the center i.e. $\mathrm{F}^{(r)}=\mathrm{Y}_{r}$ and there is nothing to prove.
2.9.7. In 2.8 we defined at $F^{(s)}=\operatorname{Max}_{s}$ a function

$$
\psi_{m}^{s}=\mathrm{F}^{(s)} \rightarrow \mathrm{D}=\mathrm{D}_{m} \times \mathrm{J}_{m}
$$

in such a way that $p_{1}^{r} \circ \psi_{m}^{s}=\mathrm{T}_{s}\left(p_{1}^{r}\right.$ projection on $\left.\mathrm{D}_{m}\right)$.
Theorem 2.9.7. - The data
(A)

$$
\begin{gathered}
\chi_{0} \leftarrow \chi_{1} \leftarrow \underset{\mathrm{Y}_{j}}{\leftarrow} \leftarrow \mathrm{X}_{j} \leftarrow \chi_{n} \\
\mathrm{Y}_{0} \subset \mathrm{~F}^{(0)} \subset \mathrm{F}^{(j)}
\end{gathered}
$$

together with the functions $\psi_{m}^{r}: \mathrm{F}^{(r)} \rightarrow \mathrm{D}$ satisfies the conditions of Lemma 2.9.3. In particular there are, for each s , functions ψ_{m}^{s} : Sing $\chi_{s} \rightarrow \mathrm{D}_{m} \times \mathrm{J}_{m}$ making of (A) a constructive resolution in the sense of 2.2.

Proof. - After Prop 2.9.6, (i), (ii) and (iv) deserve no proof (vi) is clear from the construction of (A) [recall that $\mathrm{Y}_{s}=\mathrm{Max} \psi_{m}^{s}$, and for $s>r, x$ and d as in (vi) then $\left.h_{s}(x)<d\right]$.
(iii) (a) If w-ord $\left(\chi_{r}\right)=0$, then ψ_{m}^{r} is basically T_{r} and again this case is in Prop. 2.9.6.
(b) If $w-\operatorname{ord}\left(\chi_{r}\right)>0$ and $\operatorname{Max} \mathrm{T}_{r}>\operatorname{Max} \mathrm{T}_{r+1}$, then $\mathrm{Y}_{r}=\operatorname{Max} \mathrm{T}_{r}\left(=\mathrm{F}^{(r)}\right)$ and the assertion is clear.
(c) If $\operatorname{Max} \mathrm{T}_{r}=\operatorname{Max} \mathrm{T}_{r+1}$, there is $\bar{\chi}^{l}$ (as in the proof of Prop 2.9.6) such that $\mathrm{F}^{(r)}=\operatorname{Sing}\left(\bar{\chi}^{l}\right), \mathrm{F}^{(r+1)}=\operatorname{Sing}\left(\bar{\chi}^{l+1}\right)$.

Now $\mathrm{T}(x)=\mathrm{T}(\Pi(x))$ so one must prove (iii) for ψ_{m-1} and now x and $\Pi(x)$ are singular points of an $m-1$ dimensional resolution.

But ψ_{m-1} is constructive and (iii) follows from (ii), of 2.2.
(v) Reduces immediatly to the case $\mathrm{T}_{s}(x)=\mathrm{T}_{r}\left(\Pi_{r}^{s}(x)\right)$ and undergoes essentially the some argument of the proof of (c) given just above.
2.10

Remark 2.10.1. - Why T(2)?
As pointed out in 2.7 , the role ot $\mathrm{T}(2)$ is not essential for our constructions i.e. we can define $\mathrm{T}(2)(x)=1$ whenever $\mathrm{T}(1)(x)>0$ without affecting the general strategy. However if we consider ($\mathrm{J}, 1$), $\mathrm{E}, \mathrm{J}=\langle x, y\rangle \subset \mathbb{C}|x, y, z|, \mathrm{E}=\left\{\mathrm{E}_{1}\right\}$, $\mathrm{E}_{1}=\{z=0\} \subset \mathbb{C}^{3}$, then one can check that the number of unnecessary quadratics transformations applied before solving the pair, will diminish if we do consider this function.
2.10.1. - At this point we give a punctual construction of the functions ψ_{m} defined at 2.8.

Let χ an idealistic space of dimension m, if w-ord $\chi=0$ i.e. if χ is locally a monomial, ψ_{m} reduces to T (2.3.1).

We consider therefore the case w-ord $\chi>0$. In order to simplify set (\mathbf{J}, b) as in paragraph 1 and $\left(\mathrm{J}_{r}, b\right)$ aristing from $(\mathrm{J}, b) \leftarrow\left(\mathrm{J}_{1}, b\right) \ldots \leftarrow\left(\mathrm{J}_{r}, b\right) \ldots \leftarrow\left(\mathrm{J}_{n}, b\right)$ with the notations and assumptions of 2.7.1, where only the functions $\mathrm{T}(1)$ and $\mathrm{T}(3)$ where considered $[$ i. e. $\mathrm{T}(2)(x)=1$ if $\mathrm{T}(1)(x)>0]$.

So let (ω, n) be Max_{r}, and $k \leqq r$ be the smallest number for which $\operatorname{Max} \mathrm{T}_{k}=\left(\omega, n_{0}\right)$. Recall from 2.7.1 that $\mathrm{T}_{r}\left(\mathrm{~J}_{r}, b\right)$ was an " $m-1$-dimension" idealistic pair such that Max $\mathrm{T}_{r}=\operatorname{Sing} \mathrm{T}_{r}\left(\mathrm{~J}_{r}, b\right)$ and that

$$
\left(\mathbf{J}_{k}, b\right) \stackrel{\boldsymbol{\Pi}_{k}}{\leftarrow} \ldots \leftarrow\left(\mathbf{J}_{r}, b\right)
$$

induces a sequence of permissible maps:

$$
\mathrm{T}_{k}\left(\mathrm{~J}_{k}, b\right) \stackrel{\Pi_{k}}{\leftarrow} \ldots \leftarrow \mathrm{~T}_{r}\left(\mathrm{~J}_{r}, b\right),
$$

each $\mathrm{T}_{i}\left(\mathrm{~J}_{i}, b\right)$ being the transform of $\mathrm{T}_{i-1}\left(\mathrm{~J}_{i-1}, b\right)$ (Def. 1.3), for $i>k$.
Given $x \in \operatorname{Sing}\left(\mathrm{~J}_{p}, b\right)$ we express $\psi_{m}^{p}(x)$ by three coordinates, the first two corresponding to T_{p}, the third to ψ_{m-1}^{p}. We begin by defining, inductively on p, sets $\mathrm{E}_{x, p}^{-}$as follows:
(i) if $\omega-v_{x}\left(\mathrm{~J}_{p}, b\right)<\omega-v_{n(x)}\left(\mathrm{J}_{p-1}, b\right)\left(\Pi=\Pi_{p-1}\right)$ (Def 1.17.1), or if $p=0$:

$$
\mathrm{E}_{x, p}^{-}=\left\{\mathrm{E}_{i} \in \mathrm{E}_{p} / x \in \mathrm{E}_{i}\right\}
$$

(ii) if $\omega-v_{x}\left(\mathrm{~J}_{p}, b\right)=\omega-v_{\pi(x)}\left(\mathrm{J}_{p-1}, b\right)$

$$
\mathrm{E}_{x, p}^{-}=\left\{\mathrm{ST}\left(\mathrm{E}_{i}\right) / E_{i} \in \mathrm{E}_{p-1, \Pi(x)}^{-} \text {and } x \in \mathrm{ST}\left(\mathrm{E}_{i}\right)\right\}
$$

[^2](as usual ST denotes the strict transform).
Now we claim that:
(a) $\mathrm{T}_{p}(1)(x)=\omega-v_{x}\left(\mathrm{~J}_{p}, b\right)$
(b) $\mathrm{T}_{p}(3)(x)=\mathrm{E}_{p, x}^{-}$
(c) If $q(\leqq p)$ is the smallest index for which $\mathrm{T}_{q}\left(\Pi_{q}^{p}(x)\right)=\mathrm{T}_{p}(x)$. Consider at a neighbourhood of $y=\Pi_{q}^{p}(x)$ the pair:
$$
(\mathscr{A}, d)=w\left(\mathrm{~J}_{q, y}, b\right) \cap\left(x_{1}, 1\right) \cap\left(x_{2}, 1\right) \cap \ldots \cap\left(x_{h}, 1\right)
$$
[notation as in 2.7.1, where $h=\mathrm{T}_{q}(3)(y)$ and $x_{i}=0$ defines $\mathrm{E}_{i} \in \mathrm{E}_{q, y}^{-}$locally at y]. Then the third coordinate is $\psi_{m-1}^{t}(x), t=p-q$ and ψ_{m-1}^{t} arises from the constructive resolution of the $m-1$ dimensional pair (\mathscr{A}, d).

Let r denote the level of $x(r \geqq p)$ (Def. 2.9.1) and recall the definition of $\psi_{m}^{p}(x)$ in terms of the level of x (2.9.3 and 2.9.7).

Point (a) is clear and (b) will follow by proving inductively on p, that:
(d) $\mathrm{E}_{x, p}^{-}=\left\{\mathrm{E}_{i} \in \mathrm{E}_{r}^{-} / x \in \mathrm{E}_{i}\right\}$.

In the case (i), either $p=0$ or the weighted order of $\left(\mathrm{J}_{r}, b\right)$ is smaller then that of $\left(\mathrm{J}_{p-1}, b\right)$ and (d) follows in this case from the definition of E_{r}^{-}in terms of the weighted orders of the pairs (2.1).

In the case (ii), if s is the level of $\Pi(x)$, clearly $s \leqq r$ and (with the identifications of Def. 2.9.1)

$$
w-\operatorname{ord}\left(J_{s}\right)=\omega-v_{\Pi(x)}\left(\mathrm{J}_{s}, b\right)=\omega-v_{x}\left(J_{r}, b\right)=w-\operatorname{ord}\left(\mathrm{J}_{r}\right)
$$

since $\Pi(x) \in \mathrm{Y}_{s} \subset \underline{\operatorname{Max}} \psi_{m}$ and $x \in \mathrm{Y}_{r} \subset \underline{\operatorname{Max}} \psi_{m} . \quad$ So (d) follows now from the relations between E_{s}^{-}and E_{r}^{-}given in 2.1.

Now that (d) is settled (for any p) we prove (c). So let $s(\geqq q$) be the level of y and r as before that of x. Clearly $s \leqq r$. On the other hand $y \in \mathrm{Y}_{s} \subset$ Max $_{s}$ and $x \in \mathrm{Y}_{r} \subset$ Max $_{r}$ so:

$$
\operatorname{Max~}_{s}=\mathrm{T}_{s}(y)=\mathrm{T}_{r}(x)=\operatorname{Max} \mathrm{T}_{r}=\left(w, n_{0}\right)
$$

In particular $k \leqq s$ (k defined as above).
Consider the composition of the intermediate maps: Π_{k}^{s} and the point $z=\Pi_{k}^{s}(y)$. If the level of z is the level of y, Π_{k}^{s} is the identity map locally at y and (c) follows from (d) and the construction of $\mathrm{T}_{k}\left(\mathrm{~J}_{k}, b\right)$ (2.7.1).

If Π_{k}^{s} would not be an isomorphism at y, since $\Pi_{q}^{s}=\mathrm{id}$, then $k<q$ contradicting the minimality of q.

So if x is considered as a point of $\operatorname{Sing}\left(\mathrm{J}_{r}, b\right)$, the point $\Pi_{k}^{r}(x) \in \operatorname{Sing}\left(\mathrm{J}_{k}, b\right)$ (which is the m-birth of x Def. 2.7.2) has the same level as y.

Suppose now that the function T_{p} is replaced by $\mathrm{T}_{p}(1)$ and q by $q_{1}(\leqq p)$: the smallest index for which $y_{1}=\mathrm{T}_{p}(1)\left(\Pi_{q_{1}}^{p}(x)\right)=\mathrm{T}_{p}(1)(x)$. Then the same argument as above will show that the birth of $x \in \operatorname{Sing}\left(\mathrm{~J}_{r}, b\right)$ (Def. 2.5) has the same level as y_{1}. Therefore in
the construction of 2.7.3 the election of the hypersurface of maximal contact can be done locally at y_{1}.

REFERENCES

[1] S. S. Abhyankar and T. T. Моh, Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation (Crell Journal, Vol. 260, 1973, pp. 47-83 and Vol. 261, 1973, pp. 29-54).
[2] J. M. Aroca, H. Hironaka and J. L. Vicente, The Theory of Maximal Contact (Memo. Mat. del Inst. Jorge Juan, Vol. 29, Madrid, 1975).
[3] J. M. Aroca, H. Hironaka and J. L. Vicente, Desingularization Theorems (Memo. Mat. del Inst. Jorge Juan, Vol. 30, Madrid, 1977).
[4] B. M. Bennett, On the Characteristic Function of a Local Ring (Ann. Math., Vol. 91, 1970, pp. 25-87).
[5] J. Giraud, Sur la théorie du contact maximal (Math. Zeit., Vol. 137, 1974, pp. 285-310).
[6] J. GIRAUD, Remarks on Desingularization Problems (Nova acta Leopoldina, NF 52, Nr. 240, 1981, pp. 103-107).
[7] H. Hironaka, Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero, I-II (Ann. Math., Vol. 79, 1964).
[8] H. Hironaka, Introduction to the Theory of Infinitely Near Singular Points (Memo Math. des Inst. Jorge Juan, Vol. 28, Madrid, 1974).
[9] H. Hironaka, Idealistic Exponents of Singularity (Alg. Geom., J. J. Sylvester Symp., John Hopkins Univ. Baltimore, Maryland 1976, John Hopkins Univ. Press 1977).
(Manuscrit reçu le 31 octobre 1986, révisé le 7 juillet 1988).
O. Villamayor,

Algebra y geometria,
Facultad de Ciencias,
Universidad de Valladolid, Valladolid-Spain.

[^0]: ${ }^{(1)}$ Supported by the Alexander von Humboldt-Stiftung.

[^1]: 4^{e} SÉRIE - TOME $22-1989-\mathrm{N}^{\circ} 1$

[^2]: 4^{e} SÉRIE - TOME $22-1989-\mathrm{N}^{\circ} 1$

