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A COMPACTIFICATION OF A MANIFOLD
WITH ASYMPTOTICALLY NONNEGATIVE

CURVATURE (Q

BY ATSUSHI KASUE

Dedicated to Prof. Shingo Murakami on his 60th birthday

0. Introduction

Cheeger-Gromoll [6] investigated the topological and geometrical properties of a com-
plete manifold M of nonnegative curvature. They proved that such a manifold M has
a compact totally convex, totally geodesic submanifold y, which they called a soul of
M, and moreover M is deffeomorphic to the normal bundle of y in the tangent bundle
of M. The crucial fact for such M is that the Busemann function associated with a ray
of M is convex on M. This fact imposes strong restrictions on the topology and
geometry of M (see e.g., Cheeger-Ebin [4], Ch. 8, Shiohama [24] for further discussions
and the literature). However this class of Riemannian manifolds does not seem to be
adequate for the study of the topology and geometry at infinity of open
manifolds. Actually, if we start with the Riemannian metric go of a complete, noncom-
pact manifold MQ with nonnegative curvature, and perturbe it slightly or deform the
topological structure within a compact subset of M(), then the resulting Riemannian
manifold M" would keep many geometrical properties of Mo at infinity, but M" would in
general have negative curvature somewhere. From the view point of geometry at infinity,
it is natural to consider a larger class of (open) Riemannian manifolds. In fact, recently,
Abresch [1] has introduced a class of (open) Riemannian manifolds, which are called
asymptotically nonnegative curved, and studied the topological structure of such man-
ifolds along the line settled by Gromov [14].

On the other hand, Gromov has defined, in his lectures [3], the Tits' metric on the
points at infinity, the equivalence classes of rays, of a Hadamard manifold. Moreover,
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594 A. KASUE

he has suggested that there is a counterpart to Tits' metric for nonnegative curvature
and proposed several interesting exercises on such manifolds (cf. [3], pp. 58-59).

In this paper, motivated by the above works, we shall investigate a class of (open)
Riemannian manifolds of asymptotically nonnegative curvature (after Abresch [1])). To
be precise, we call a complete, connected, noncompact Riemannian manifold M with
base point o asymptotically nonnegative curved, if there exists a monotone nonincreasing

r°°function k: [0, oo) -» [0, oo) such that the integral tk(t)dt is finite and the sectional

curvature of M at any point p of M is bounded from below by -k(dis^(o,p)).
Our observation on a manifold M of asymptotically nonnegative curvature begins with

the construction of a metric space M(oo) associated with M. Namely, we call two rays
cr and y(e^M) of M equivalent if dis^(<j(t\ y ( t ) ) / t goes to zero as (-> + oo and define a
distance 5^ on the equivalence classes ^/^ ^ 800 (hLh^ I™ ^(crPi S^yO S,)/t,

t -*• oo

where S, denotes the metric sphere of M around a fixed point with radius t and d^ is the
inner distance on S, induced from the distance on M (see Section 2 for the details of the
results mentioned in this paragraph). It should be pointed out here that M is home-
omorphic to the interior of a compact manifold V with boundary 5V (cf. Gromov [14],
p. 185, for the statement and [1] for the estimate of the number n(M) of the connected
components of 3V in terms of the dimension of M and the lower bound k of the
curvature of M). Actually, M is isotropic to the metric balls B^ of large radius t. For
the sake of convenience, we call (a neighborhood of) a connected component of 3V an end
of M, denoted by eJM), according to the component 3V, of 3V (a= 1, . . ., n(M)). Thus
§00 (t^L M) < + oo if and only if a and y belong to the same end, namely, a(t) and y(0
go to the same end as t-> +00. Let us write M(oo) for the metric space (^M/^Soo)
obtained above. Then M(oo) consists of n(M) -connected components M,(oo)
(a=l, . . . ,n(M)) and each M^(oo) is a compact inner metric space (or length space
after Gromov [15]). Moreover it turns out that for large t, there exist Lipschitz maps
<D^:S,->M(oo) which enjoy the following properties: ̂  oJ^O)^] for any ray o-
starting at the fixed point (the center of S,), and 6^(^^(x),^^(y))^C(t)d,(x,y)/t
for any x and y e S ,̂ where C (t) goes to 1 as t -> + oo. From this observation, it follows
that M(oo) is the Hausdorff limit of a family of the metric spaces (Sp djt) as t -> + oo.

It would be interesting to see how the geometry of M(oo) reflects that of M. In
Section 4, motivated by Shiohama [23], we shall study Busemann functions on manifolds
of nonnegative curvature. The main result of Section 4 is stated as follows:

THEOREM 4.3. — Let M be a complete, noncompact Riemannian manifold of nonnegative
sectional curvature. Then for a ray CT of M, the Busemann function F^ associated with a
is an exhaustion function on M (i. e., for each teR, the set {xeM: ¥^(x)^t} is compact)
if and only ifo^ ([a], [y]) <n/2 for any ray y ofM.

In the subsequent papers [20] and [21], we shall continue to discuss some other
relationships between the geometry of M(oo) and that of M.

The author wishes to express his sincere thanks to Professor H. Wu for his interest in
this work and to Professor M. T. Anderson for his kind letter. He is also grateful to
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Professor M. Gromov for his comment at the Taniguchi Symposium in August, 1985,
and to Professor S. Murakami for giving him the opportunity to participate the
symposium. This paper is a revised version of a part of [19], which was completed after
the symposium and while the author was a member of the Mathematical Sciences
Research Institute at Berkeley. He greatly appreciates the institute for its hospitality.

1. Preliminaries

In this section, we shall give several preliminary results on comparison theorems
and the behavior of geodesies. Throughout this section, M is a connected, complete,
noncompact Riemannian manifold of dimension m, V denotes the Levi-Civita connection,
and geodesies are assumed to have unit speed, unless otherwise stated.

1.1. We shall begin with some basic notations and definitions. Let us denote by
dis^(p,q) [resp., B((^), Sp(p)] the distance (in M) between two points p, q of M (resp.,
the metric ball around a point p with radius t, the metric sphere around a point p with
radius t). A geodesic CT of M defined on [0, oo) [resp. (—00, oo)] is called a ray (resp., a
straight line) if disM(a(5), cj(t))=\t—s\ for any s, te[0, oo) [resp. (—00, oo)]. We write
^ (resp., ^p) for all rays of M (resp. all rays of M starting at a point p). The
Busemann function associated with a ray a e ̂  is defined by

F^(x):= lim t-dis^(x,a(t))
t -> 00

(cf. e.g., Cheeger-Ebin [4]). After Wu [27], we define a function Fp associated with a
family of the metric spheres { S ^ (p)} around a point p by

¥? (x): = lim t - disM (x, S, (p)).
t -»• 00

Then we have the following
Factl.l(c/:[4],[24],[27]).
(i) F^F^ on M, and F,(a(0)=F^(a(0)=^(a(0)=t on [0, oo), for any^eM

and CT 6 ̂ p, where r? (x) = dis^ (p, x).
(ii) ¥ p (x) = t - disM Qc, ¥ p 1 (t)) for any p, x e M and t > 0 with ¥ p (x) < t.
(iii) A ray oe^ is asymptotic to ye^i if and only if ¥^(a(t))=t+¥^(a(0)) for

any t^O.
Here a ray CT is called asymptotic to a ray y if there exists a family of distance

minimizing geodesies {^n}n=i,2, . . . » eac^ °n satisfying CT^(O)=^ with lim J^=CT(O)
n -> oo

and CT^(^)=y(fcJ for some divergent sequence {&„} , and they satisfy: CT(O)= lim CT^(O).
n —» oo

Although the above functions Vy F^, ¥ p are in general only Lipschitz functions on M,
it is convenient for us to introduce the following notations:

V.^(x):={y6T,M:|i;[=l,?+^(exp,-^)=^(x)(re[0,rp(x)])}

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



596 A. KASUE

V.F^(x):={i;eT,M:|t;|=l,F^exp,(i;)-(=F^(x)(r^O)}
V.F,(x):={FeT,M:[i;|=l,F,(exp,(i;)-(=F,(x)(^0)}.

1.2. We recall here some definitions and facts used later. See [12] and [27] for details.
We begin by the definition of Riemannian convolution smoothing on M. Let

cp: R -> R be a nonnegative smooth function that has its support contained in [—1,1], is

constant in a neighborhood of 0 and has (p (| v \) = 1. Given a continuous function
•LeIR"*

T : M -> IR, define

^=~m\ (p (! v \1^ T (exp^ u) d^ (u)9
8 JueTpM

where the integration is with respect to the measure [ip induced on the tangent space
Tp M at p by the Riemannian metric of M. For a compact subset A of M, there is a
neighborhood of A on which the Tg are defined and smooth for all sufficiently small e.

Let T : M -> R be a continuous function and ^ a constant. The function T is called
^-convex at a point p of M if there is a positive constant 5 such that the function
q -> T - (^ 4- 8) disM (p, q)2/^ is convex in a neighborhood of;?. If T| : M -> R is a continuous
function, then T is called r|-convex on M if, for each peM, T is r|(p)-convex at
p. Moreover T is a called r|-concave on M if —T is (—r|)-convex on M. In the similar
manner, we can define T being r|-subharmonic or ri-superharmonic on M. Let v be a
tangent vector at p e M and y: (- e, e) -> M a geodesic with y (0) =p and y (0) = v. Then
an extended real number V2. T (p: v) is defined by

V^T^iO^lim inf -^{T.YOO+T.yC-s)-^^)}.
s -o s2

If T| : M -^ R is a continuous function and if T is r|-convex on M, then V2. T (p'. v) > T| (p)
for any peM and every unit vector veTpM. Conversely if r i f :M-»-R O'=l,2) are
continuous functions with r|i > r|2 and if V2. T (p: v) ̂  r|i (p) for any p e M and every unit
vector ueT M, then r\ is T^-convex on M. Note here that if two continuous functions
T f : M - ^ R (f=l ,2) satisfy: 1:1^2 and ^O^^OO at a P01111 P of M' then

V2.^:!;)^2.^^).

1.3. From now on, we assume that M is a manifold of asymptotically nonnegative
curvature. Namely, the sectional curvature K^ of M satisfies:

(H.I) KM^-^O,

where y-o is the distance function to a fixed point o of M and k(t) is a nonnegative
f00

monotone nonincreasing function on [0, oo) such that the integral tk (t) dt is

finite. Let us denote by J^ the solution of a classical Jacobi equation:

(1.1) J^(0-fc(OJfc(0=0, with Jfc(0)=0 and Jfc(0)=l.
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Then it is known that

1^J,(0 /• J,(0))(:= lim J,(r))^exp ['tk(t)dt
( l • z ' ) t ->• oo Jo

^Jfe(O^Jfc(oo)t

(c/: Greene-Wu [11: Theorem C]).

LEMMA 1.2. — Let M fee as above and e a positive constant. Then the following
assertions hold:

(i) The distance function TQ to the base point o in (H. 1) is {(1+e) (log J^)'} -concave on
M and { (1 +e) (m — 1) (logJ^)' }-superharmonic on M.

(ii) r -^ Vol^B^O))/.^^)"1 is monotone nonincreasing.

f r00 t(iii) 77^ function Fo defined in 1.1 f5 ^ —(1+e) k(t)dt ̂ -convex on
(. Jpo J

f f00 1{7?eM: Fo(/?)>0} ifk^O near oo, and ^ — e — k(t)dt ̂ -convex there ifk=0 near oo.
I JFQ J

Proof. — We shall prove only the last assertion (iii). See [17], [18] for the others.
In order to prove (iii), we use the method in [27]. Fix a point p of M. For any
number t with Fo(^)<^, we take a point p^ such that Fo(^)==r and dis^O^^dis^O^,
FO^(O)- Set r^:=dis^(py ^). Then it follows from Lemma 1 (ii) that ^—r^Fo near
p and ? — ̂  (p) = FQ (p). This implies that V2. (t — r^) (/?) ̂  V2. Fo (p). Hence it is enough
to show that if Fo (p) > 0, then

(1.3) V^^-^+f00 k(u)du,
^(P) JFo(p)

since the right side of (1.3) goes to k (u) du as t -> oo. Let us now prove (1.3). Since
JFO

I ro (Pi) ~~ rt to) | ̂  ro (<?) f01* ̂ y ^ of M and fc (?) is monotone nonincreasing, the sectional
curvature of M at q is bounded from below by —k(\ro(p^—rf(q)\). It follows that

(1.4) V^r^QogJ^or,

(cf. [17]), where J^ is the solution of an equation:

y/W-k(\r,(p,)-u\)W=0,
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subject to the initial conditions: J^(0) =0 and ^(0) =1. On the other hand, we have

(1.5) J^)=l+ Sstk(\r,(p,)-u\)Wdu(s,:=r,(p))
Jo

^1+W ['k^r^-u^du
Jo

^l+J^)r k(u)du if Fo(p)>0.
JFQ (p)

Thus (1.3) follows from (1.4) and (1.5). This completes the proof of Lemma 1.2.
Remarks. — (i) Let A be a closed subset of M and set r^:==dis^(A, ̂ ). Then the

same assertion as in Lemma 1.2 (i) holds for r^ (cf. [17], [18]).
(ii) Lemma 1.2 (ii) is true under the weaker assumption that the Ricci curvature of

M is bounded below by -(m-1) k cy-o (cf. [17], [18]).
(iii) Let ^ = { A ( } ( > O be a divergent family of closed subsets A^ of M. Then a family

of Lipschitz functions: { dis^ (A(, 0) — dis^ (Ap ^) }^ > o is equicontinuous and totally
bounded on each compact sets of M. Therefore, we can find a divergent sequence { ^ }
such that the functions: dis^(A( ,o)—dis^(^, ^) converge to a Lipschitz function F^
on M, uniformly on compact subsets of M. Then the last assertion of Lemma 1.2
holds for such F^ (cf. [27] and the above proof of Lemma 1.2).

1.4. The following version of the Toponogov comparison theorem has been proved
by Abresch [1].

Fact 1.3 ([I], Proposition 1). — Let a, ee(0,l) and let ^(pojPi^Pi) ^e a generalized
triangle in an asymptotically nonnegative curved manifold M. Suppose moreover that
p^ is the base point o of M in (H.I) and that ^^(p^P^^(^—^)^^(pz->pQ)' Then
the following estimates hold:

(i) cos « at o) ̂  ̂ /l-^.P^s2 =^> disM (po,Pi) ̂  dis^ (p^Po) - dis^ ( p ^ P z ) ̂ /l-^2.

(ii) cos(<atJ9l)^-^l-a2^disM(^2,^o)^disM(/?o^l)+disM(^l,7?2)^/l-^2•P2•£2•

Here the constant P as above should be explained (cf. [1]). Let Z^ be the unique solution
of an equation: Z^ (t)—k(t)Zk(t)=0 subject to the conditions: 0<Zj^l and
Zfc(0)==l. Then the constant P is by definition the limit of Z^(t) as t-> +00 and it is

f»
estimated by exp — tk (t) dt ̂  P ̂  1.

Jo

1.5. Let us now prove a result which is the starting point of our observation on a
manifold M of asymptotically nonnegative curvature.

LEMMA 1.4. — Let M be as above. Then the assertions belo\v hold: (i) For any fixed
point p of M, ¥ p (x)/rp (x) converges to 1 as x goes to infinity. In particular, ¥ p : M -> R
is an exhaustion function on M, namely, {xeM: ¥ p ( x ) ^ t ] is compact for any teR.
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A MANIFOLD WITH ASYMPTOTICALLY NONNEGATIVE CURVATURE 599

(ii) As x e M goes to infinity,

max« (u, v): u, yeV. Vp(x) } -^ 0,

max { < (M, i?): M e V . r^(x), ceV. Fp(x) } -^ 0.

Pyw/: - It is enough to show the lemma in case ofp= o (the base point in (H. 1)). We
first prove the assertion (i). Let (x^\=^^ be a sequence of points of M such that
r(xn) ('' =^o (^n)) goes to infinity as n -> + oo. For each n, we have a distance minimizing
geodesic (?„: [0, aj -^ M (a^: =r(xJ) joining o with x,,. Taking a subsequence if neces-
sary, we may assume that o^ converges to a ray a^e^ starting at o, that is,
6n: = <(^n (0)» cr^ (0)) goes to zero as n -> + oo. Let a, s e (0,1) be chosen
arbitrarily. Then for large n, we have

cosO^^/l-^.P^e2.

Put ̂ : = CT^ (a^/(l - e)). Then by Fact 1. 3 (i),

for large n. It follows from Fact 1.1 (i), (ii) and (1.6) that

Fo(xn)= T^~ -^f^ Fo1 f^)) ̂  75'- -disM^^^^/T^2.1 0 \ \ l — ^ / / 1—£

This implies that

^Fo(^)^
^0 ̂ n)

for large M. Thus we have shown the first assertion, since {^} and ae(0,l) are
arbitrary.

Let us prove the second assertion (ii). Put

9 (x): = max (< (u, v): u, v e V. r (x) }.

Suppose there exist a constant ce(0,1) and a sequence {x^} of points of M such that
^n^O^) goes to infinity as n -> oo and 9(xJ>2c>0 for any n. Let us take a pair of
vectors u^ v^ of V.r(x^) such that <(u^,^)>2c, and set r[^t):=exp^(t-a^)u^ and
W:=exp^(t-a,)v, (O^t^a,). We fix an n for a while. Let x be "a point of M
such that b=r(x)^aJ(l-G) and G:[0,rf]-^M (rf: = dis^ (x^, x)) a distance minimizing
geodesic joining x^ with x. Observe that max { <(o (0), ̂ ), <(o (0), ̂ )} > c. Then for
a constant ee(0,1) and a distance minimizing geodesic y: [0, fc] -^ M emanating from the

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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base point o such that j(b)=x, we see that

(1.7)
<(Y(0),TL,(0))^6 if <(a(0),u,)>c,

<(Y(0),^(0))^8 if <(a(0),^)>c,

where 5 is a positive constant depending only on c, e, and the constant P as in
Fact 1.3. Actually in the case that <(a (0), u^) > c, we apply Fact 1.3 (ii) to the geodesic
triangle A(8(fo),x^0) and obtain

(1.8) ^d+^/l-a2 .^.?4

where a = sine. It turns out from (1.8) and Fact 1.3 (i) that

cos < (y (0), ̂  (0)) ̂  ̂ /l-a^s4.?4,

and hence

< (Y (0), ̂  (0)) ̂  5: = arccos ̂ /l-a^e4. P4.

Similarly it follows that <(y(0),^(0))^8 if <(o(0),^)>c. Thus we have shown
(1.7). Let us continue the argument to lead a contradiction. Define a set U^ by

n,={(u, i ; )eToMxToM:|u |=H=l , <(u,^(0))<5/4, <(i;,^(0))<5/4},

where 8 is as in (1.7). Then we see from (1.7) that U^nU^=0 if n<n' and
a^aj{\ —e). This is a contradiction. Thus it has been proved that 6(x) goes to zero
as xeM-> co. Finally we shall show that max { <(M,i;):MeV.r(x), reV.Fo} goes to
zero as xeM tends to infinity. This is done by a similar argument to the above
one. Suppose there exist a constant ce(0,1) and a divergent sequence {x^} of M such
that <(^,^)>c>0 for some ^eV.r(x^) and ^eV.Fo(x^). Set r|^(t):=exp^ tv^ and
take a distance minimizing geodesic ^ ^ joining o with r\^(t). We consider the case:
r(r|^(0)^r(x^)/(l-e) where ee(0,l). Then applying Fact 1.3 (ii) to the geodesic
triangle A (ri,,(Q, ;?(;„, o), we have

r (^ (0) ̂ t+r (x^) ̂ /l-a^.P2,

where a = sine. On the other hand, it follows from Fact 1.1 (i), (ii) that

r(^(0)^F,(TUO)=^+Fo(x,).

The above two inequalities imply that

Fo(xn)< /l-^.e2.?^!
r(x^ -^

4® SfeRIE — TOME 21 — 1988 — N° 4



A MANIFOLD WITH ASYMPTOTICALLY NONNEGATIVE CURVATURE 601

for any n. This contradicts the first assertion of the lemma. Thus we have shown the
second assertion. This completes the proof of Lemma 1.4.

Remark. — Let M be a manifold of asymptotically nonnegative curvature and A a
compact subset of M. Let r^:==dis^(A, ̂ ). Then for each xeM, V.r^x) can be
defined in the same manner as in 1.1. Moreover the same argument as in the proof of
Lemma 1.4 leads us to the following assertion: as x e M goes to infinity,

max{ -<(u,v):u,veV.r^(x)} ->0

max { < ( M , i O : M e V . r^(x),veV. r^(x)} -> 0

(peM). Note that if the sectional curvature of M is everywhere nonnegative and A is
a soul of M, then

max{ -<(u,i0: u,veV .r^(x)}<n

on M\A (cf. Cheeger-Gromoll [6]).

1.6. Here is given a technical but useful fact on smooth approximation of distance
functions.

LEMMA 1.5. — Let M, o, y-o, FQ, Jfc be as in 1.1 and 1.2. Then for any large t>0
and small e>0, there is a constant 8(^e)>Q such that the Riemannian mollifier r§ of
r(:==ro) (0<8^8(r,£)) is well defined on B((O) and it enjoys the following properties: on
B,(o),

(i) [r-^l^e,
(ii) l-e-9i(r-e)^[Vr5[^l+e,

(iii) l-^\Vr,\(x)ifdis^(x^o)^e,
(iv) V^O+sKlogVors,

where ^y stands for the cut locus of M with respect to the base point o and
GI (s): = max { <(u, i;): M, v e V. r (x), r (x) ̂  s}. Moreover the Riemannian mollifier Fg of
F(: =Fo) f5 also well defined on B^o) and satisfies:

(v) |F-Fs|^e,
(vi) jVF^-Vr^e+e^r-e),

poo

(vii) V^^-^l+e) k(s)dson{x(=B,(0):¥(x)>0}, ifk^Onear +00;
JF

r00
V^^-e- k(s)ds on {xeB^o):V(x)>0}, ifk=0 near +00,

JF
where Q^(s):=msix{-<(u,v):ueV .r(x), ueV.F(x), r(x)^s}.

Remarks. — (i) Both 61 (s) and 02 (s) go to zero as s -> oo, because of Lemma 1.4 (ii).
(ii) It turns out from Lemma 1. 5 (ii) that M is isotopic to the interior of a metric ball

of M with large radius (cf. [15], p. 185).
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602 A. KASUE

(iii) Let M be a manifold of asymptotically nonnegative curvature and fix a point o
of M, say the base point in (H.I). Then there are a positive constant to and a
nonnegative continuous function 9o (t) on [0, oo) such that 9o (t) goes to zero as t -> -+- oo
and if a geodesic a:[0,oo)->M starts at a point x=a(0) with r^(x)^^ and
max { <((T (0), u): i; eV.ro(x)}< 7r-9,,(0, then CT goes to infinity (actually, r^(a(t))^ct
for some c>0 and any large t). This follows from Lemma 1.5 (vii) (cf. 3.6, Step 1).

Proof of Lemma 1 . 5 . — Among the above inequalities, (i) and (v) follow from the
definitions of r^ and F§, and furthermore (iv) and (vii) turn out to be true, because of
Lemma 1.2 and the results in [10]. We shall now prove the remaining inequalities,
refering to [16]. Let c be a positive constant smaller than the injectivity radius of M at
any xeB^(o). For any pair of points x, y of B,(o) with dis^(x,y)<c, we denote by P^y
the parallel displacement from x to y along the (unique) minimal geodesic x to y. Then
for any xeB^(o), we can find a positive number 8(x) which is smaller than c/4 and has
the following properties: for any yeB^^ and ueV.r(y\ there is a vector ueV.r(x) such
that

(1.9) <(P^u\v)<^

and moreover for any y, z e B§ ̂  (x) and u e Ty M with | u [ = 1,

(1 -10 ) <(P^u\P^P^u))<G

4

(cf. the proof of Theorem 1.7 in [16]). Set yO^min^/^x)} and let X be the
Lebesgue number of the covering { B§/ ̂  (x)} (x e B, (o)) of B, (o). Then for any x e B, (o),
there is a point XQ of B^(o) such that B^(x) c B^(^(X^), so that for any ^eB^(x),
KeV.r(j) and weV.r(x), we have

(1.11) ^(W.P^KJE+A^),

where A (xo): = max { <(u, u'): v, v' e V. r (xo) }. In fact, by (1.9), we see that

<(w,P^(tO)=<(P^w),tO<^

for some v e V. r (xo) and

< (P,, , (I/), P,, ,op^ (^)) = ̂  (^, P^ (^)) <8

for some i/eV.r(xo). Furthermore by (1.10), we get -< (P^ ̂ °P^ (^),
t^y^))^/4- ^en by the triangle inequality, we obtain (1.11). We observe here that
there exists a positive constant 80 < ̂  such that for any 8:0 < 5 < §o, rg and F§ are well
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defined and smooth on B, (o), and they satisfy:

(1.12) |Vrs(x)- f (p(|48)P^(Vr(y))^(y)|<8

JueTjcM 4

(1 .13) |VF,(x)-f (p(|48)P^(VF(;^M^)|<^-
JueT^M 4

where ^=exp^ and (p is as in 1.2 (cf. the proof of Theorem 2.2 in [16]). Then it
follows from (1.11) and (1.12) that for any weV.r(x),

(1.14) |Vr,(x)-w|^|Vrs(x)-f (p ( | x |/8) P,, (V r (y))d^ (v) |
JueT^M

+ f (p(|4§)|P^(Vr(y))-w|^00<e+A(xo).
JveT^M

We note that if dis^ (x, ̂ o) ̂  £, then XQ does not belong to ^Q, and hence in this case,
we have

(1.15) |Vr8(x)-w|<£.

Moreover we have by (1.12), (1.13) and the definition of 82,

(1.16) IVFsOO-VrsOOl^ lVFsM-f (p( \v\/S)P^¥(y))d^(v)\
JveTjcM

+ f (p([t;|/§)|P^(VF(^))-P^(Vr(y))[^(t;)
JveT^M

+ f (p(|^|/§)[P^(VF(^)-P^(VrO))|^(r)
JveT^MJveT^M

+ | f (p(|i;|/5)P^(Vr(y))^(i;)-V^(x) <£+e2(r(x)-8).
I J c e T x M z

Obviously (1.12), (1.14), (1.15) and (1.16) show the estimates (ii), (iii) and (iv) of
Lemma 1.5. This completes the proof of Lemma 1.5.

2. A geometric compactification for a manifold
of asymptotically nonnegative curvature and its properties

In this section, based on the observations in Section 1, we shall define a metric space
of points at infinity of an asymptotically nonnegative curved manifold and state its basic
properties. The results of this section will be verified in the next section. Throughout
this section, M is a manifold of asymptotically nonnegative curvature.
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2.1. The metric sphere S^(p) around a point p of radius t is not generally a smooth
hypersurface of M. However, according to Lemma 1.4 and Lemma 1.5, { S ^ (p)} (for
large t) is a family of Lipschitz hypersurfaces of M which consist of the v(M) connected
components, where v(M) is the number of the ends of M, so that it is possible to
introduce the inner distance, denoted by dp ̂ , on S^(p) induced from the distance d^( , )
of M restricted to S^ (p). To be precise, we define the length L (c) of a continuous curve
c:[0,a]-^S,(p)by

k

L(c):= sup ^ disM(c(^),c(^))(^+°o).
0=to<t^< • • • <tk=a i=0

and then, for any pair of points x, yeS^(p), the inner distance dp ̂  (x,y) is defined by

dp^y):=mtL(c)

where c ranges over all continuous paths in S^(p) joining x to y (cf. Gromov [15],
Ch. 1). Here dp^(x,y) is defined to be infinity if x, y do not belong to the same
connected component of S^ (p\ so that dp ^ (x, y) < + oo if and only if x, y belong to the
same connected component of S^(p) (for large t).

Let us now define an equivalence relation ~ on the set ̂  of all rays of M and a
distance 8^ on the set of equivalence classes. Two rays a, ye^ are called equivalent
and denoted by <j~y if Urn dis^(a(t),y(t))/t=0. We write [a] for the equivalence class

( ->• 00

of a. Moreover we introduce a distance S^ on ^M/^ ^Y

§00 (M, M): = lim 1 d p ^ , (a U S, (p\ y U S, (p)\
t -* oo ^

where /? is any fixed point of M. Then the distance 6^ is well defined on
^M/ ̂  • Actually we have the following

PROPOSITION 2.1. — (i) CT ~ y (a, y e ̂ ) l/ an^ on^ l/ ^lm ^p, i (CT 0 S, (p),
t -> 00

y 0 S( (p))/t = 0 for any fixed point p of M.
(ii) For any pair of rays a, y and a fixed point p of M, there exists the limit:

lim dp ^ (<T n S( (p), y 0 S( (p))/t, which is independent of the reference point p.
t -»• oo

(iii) The inclusion t : ^ p / ^ -^M/^ ls bijectivefor any peM.
We write M(oo) for the metric space (^M/^Soo)^^/^^)- Note here that

§00 (I^L M)< + 00 /or a? Y 6 ̂ M V an(^ ^Y V (7? Y belong to the same end of M, namely,
there is a large number to such that if t^to, a(t) and y(Q belong to the same connected
component of M\B^ (p), which is homeomorphic to S^ (p) x [to, oo). Here we write
M,(oo) (a=l, . . .,v(M)) for the component of M(oo) corresponding to the end <^a(M)
ofM.

2.2. It is possible to introduce the metric space M(oo)=Mi(oo) U . . . UM^(M) in a
different fashion with the aid of the following
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PROPOSITION 2.2.— Take the base point o in (H. 1) and fix a large number to. Then
for any pair of numbers s, t with t^s^t, there exists a map d> :̂ S,(o) -^ S,(o) such that

(i) W.rOO.^.tO)) ̂  ^(x.^)
Jt(0 ~ Jit(s)

w/tere rit=d<,,, and 3^ (t) is as in 1.2.
(ii) <?.,"o<I)s,t=^,» (t^s^t^u),

(i") ^.((CT(S))=CT(O for any oe^o.
Let U S,(o) denote the disjoint union of {S,(o)}^,o and call two elements x,eS,(o)

and x. 6 S, (o) e<?«roaknt i/- lim ̂  ($,, „ (x,), <&,,, (x,))/u = 0. Then we can define a distance
u -> oo

800 on the set of equivalence classes [xj (x^eS^o)) by

§00 ([̂ ], M: = lim -1 d, (<^ , (x,), a),,, (JC,)).
M -» 00 M

Then the metric space M(oo)=(^/-,8J=(^/-,§J is identified with the metric
space ( U S^(o)/~,8J through the natural correspondence:

t^tQ

{o]e^/- -^[a(t)]e U S,(o)/-.
t^to

Define a map $,, „: S, (o) -^ M (oo) (t^ („) by <D, , (x): = [x]. Then we have the following
PROPOSITION 2.3:

(') Soc (<!>., oo (x),^ ,(y))^J^O^)t d-^yl,
3k(t) t

where ^(00) and J^are as in 1.2.
(ii) For any x^eM(co), the diameter of 3F, (xj: = <D^ (xj w S,(o) wit/i resect to

tne distance (1/0^ goes to zero as t -»• + oo.

(iii) For any pair of points x^, y^ of M (oo),

^(Xoo,.)^!"" -d,(^,(xj,^,(yj).
t -* 00 F

In particular, for each component M^(oo) o/M(oo),

diam(MJoo))= lim diamfs, .(o),1^^ +00
? - o o \ ' t )

(a=l , . . . ,v(M)) , wft^ S^(o) sranrf5 /or ^ component of S,(o) corresponding to
M, (oo).
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(iv) The Hausdorff distance between (S^(o), (1/0^) and M^(oo) (a= 1, . . ., v(M)) goes
to zero as t -> + oo. Especially (M^(oo)) ar^ compact inner metric spaces (or length spaces
in [5]).

Here we recall the definition of Hausdorff distance on metric spaces (cf. [15],
Ch. 3). Given a metric space Z and subsets A, B of Z, the Hausdorff distance in Z
between A and B is defined by d^ (A, B): = inf { e > 0: dis^ (a, B) < s for a e A, disz (A, b) < e
for fceB}. Given two metric spaces X, Y, the Housdorff distance between them is
defined by d^ (X, Y): = inf 4 (/(X)), g (Y)), where Z, /: X -> Z, and g : Y -> Z, respectively,
range over all metric spaces, distance preserving maps from X to Z, and distance
preserving maps from Y to Z. Note that if d^(X,\)=0 for compact metric spaces X
and Y, then X is isometric to Y (cf. [15], Ch. 3, Proposition 3.6).

Making use of the above family of maps (^ ^: S^ (o) -> M (oo), we can give a compactif-
ication M of M. More precisely, as a set, M is the disjoint union of M and M(oo),
and the topology is generated by the following collection of subsets U: U is an open
subset of M or U= U ^"^(V) UV, where V is an open set of M(oo) and t is so large

s^t

that the maps 0^ 00(^0 are defined. Remark that M satisfies "Ball Convergence
Criterion" in Donnely-Li [8], namely, if x^eM is a sequence with x^->xeM(co) then
for all t>0, B,(x^)->x.

2.3. There is another way to define a distance <^ on ̂ /^ (or ^ p / ^ ) which coincides
with the distance stated in [3] when M has nonnegative curvature everywhere (i.e.,
k=0). Let us here define it and state its properties. The distance <^ on ^/^ ls

defined as follows:

< co (t^L M): = lim 2 arcsin — disM (a (Q, y (t))
t -» oo 2t

Then, we have the following

PROPOSITION 2.4. —The above distance <oo on ^/^ is well defined and <^=min
{^800}.

Before concluding this section, we shall mention a result on smooth approximation of
the metric spheres of M with bounded curvature, under certain additional conditions to
Hypothesis (H.I).

Let M be as before and suppose, in addition to (H. 1), that M satisfies

(H.2) KM:=lim sup^K(0<+oo,
t -»• oo

where K(Q:=sup (the sectional curvature of M at points x with dis^(o,x)^t} and o is
a fixed point of M, say the base point in (H. 1). Obviously K^ is independent of the
choice of the reference point o. The following theorem will be proved in [20].
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THEOREM 2.5. —Under the conditions (H.I) and (H.2), for large t," there exists a
smooth hypersurface S^ of M which has the following properties:

(i) (1/0 max { max disM^S^maxdis^S^o),^)} ->0 as t goes to infinity.
xeSt(0) yeS't

(ii) There is a Lipschitz homeomorphism (p^: S^ -> S,(o) satisfying

^-.(^^(^(^^0))^^e(o

"" ^(^) "

where e(0 tends to zero as t-> oo and ^ (resp. d[) denotes the inner distance on S^(o)
(resp. S;).

(iii) The second fundamental form a, of S^ is estimated by

{-a/KMtana/KM-£(0}^M^^r^^l+^+£(O^M.v v I a J

where a is a constant such that 0 < a < n/2 ̂ /K^. Moreover if

lim Vol^ (B, (p) U <c (M))/F > 0
t -*• oo

for some end ^a(M) of M, then one has a smooth approximation §, with (i) and (ii) as
above, whose second fundamental form o^ enjoys the following estimates:

(1-£(0)^^(1+£(0)^

onS,H<(M).
Theorem 2. 5 says in particular that under the conditions (H. 1) and (H.2), M(oo) is

the limit (with respect to the Hausdorff distance) of a family of compact (m—1)-
dimensional Riemannian manifolds { M( } which are bounded in diameter and in curva-
ture, and moreover when lim Vol^Bt^n^M))/^:^ for some end <^(M) of M,

t ->• 00

the volume of the connected component of M( converging to M^(oo) may be assumed to
have a positive lower bound uniformly in t. These facts would clarify much more the
geometry of M at infinity. We refer the reader to, e.g., [15], Ch. 8, [9], [13], etc.

3. Proofs of the results in Section 2

The purpose of this section is to verify the results stated in Section 2. Throughout
this section, M is an m-dimensional Riemannian manifold of asymptotically nonnegative
curvature. We use the same notations as in the previous sections.

3.1. Let us begin by constructing the maps 0, ^ : S, (p) -> S, (o) in Proposition 2.2,
where o is the base point in (H. 1).

Step 1. — Let us take a small number e>0 and large numbers ^o» t! suc^ that ^0^1
and [Vr5|>l/2 on A(^, ?o)C=B^ (o)\B^(o)), where r^ is the Riemannian mollifier of
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the distance r to o and 0<5^8(t,e) (cf. Lemma 1.5). For a point xeA(t^to), we
denote by ^(x;T) (Te[a,fo];a<0<b) the maximal integral curve of the vector field
V r^l V 7*5 |2 on A (t^ to) such that ̂  (x; 0) = x. Let T| (s) be a smooth regular curve in M
defined on an interval I such that Oel and r8(r|(s))=r8(r|(0)). Set X(5,T):=(3/as)^
(T| (s); T) and Y (s, r): = (8/9^) ̂  (r| (5); i). Then we have

(3.1) ^|X|-™>.^-^
(7T X | A [

.W^0a<_^^<,gj.(,+,.(,(o)))
IVrgl ' IXl2 IVr^l2^

by Lemma 1. 5 (iv). We set here I,: = { T e [0, q: disM (^ (r! (°)» 'O^o) ̂  £} (; ̂  b)^ where

^o is the cut locus of M with respect to o. Then, since |Vr5|(^(r |(0);T))^l—£ for
T e Ig by Lemma 1.5 (iii), we get by (3.1)

(3-2) IX(0?T)1, ^exp(2(£+l) f^logJJp+^TKO)))^)| X (0,0) | \ Ji,5p /

^ I" Jfc (^ (̂  01 (0); T))) T£/(1 -£) J, (r, (̂  (̂ 1 (0).' ̂ )))
L Jk (^ (^6 (^ (0); 0))) J Jfc (r^ (^ (r| (0); 0)))

(Te[0,r|). Note that

( (* ^ \
(3.3) lim exp 2(e+l) —log.Up+rs(Ti(0)))dpl=l,

11. l ^o Ji,op /

(3.4) limP-^^^^^T"1"^!.
s-oLjfc(^(^(r|(0);0))J

5'̂  2. - For any pair of numbers s, t with ^o^s^^ti, we can define a map ^g;^
S^(o) -^ S((o) as follows: for a point x of S,(o), O^.tOc) is the point of S^(o) where the
integral curve ^(x;^) intersects S^(o). Then it follows from (3.2) and Lemma 1.5
that {Og.s (} (0<8^8(ti,e)) is a totally bounded, equicontinuous family of maps from
S, (o) onto S( (o). Hence we have a sequence {§„} with §„ \ 0 as n -> oo and a Lipschitz
map 0, ̂ : S, (o) -> S( (o) such that {08n;s.(} converges to 0,̂  as n-^oo. Observe that
for any distance minimizing geodesic o: [0, t] -> M joining o to a point of S((o),

^.t(cr(5))=a(0.

Moreover, taking a subsequence of { 8,,} if necessary, we see that the choice of { §„} is
independent of s, t and t^, namely, for any pair of numbers 5, t with to^s^t, {Og^s,?}
converges to a Lipschitz map 0^: S,(o) -^ S^(o) as S^^O. Clearly {0,^} has the
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following property:

0 o d) ==(D-r, u —s. t —s, u

(^^(^M).

Step 3. — We are now in a position to show

.3 ^ ^(0,.,(x),^,(j))^^(x^)
W = W

for any pair of 5, t with ^o^5^ anc! every pair of points x, y of Sg(o), where rf( denotes
the inner distance on S, (o) induced from the distance of M. For any pair of points x,
y of a connected component of S,(o), we can take a Lipschitz curve T|: [0,1} -> S,(o) such
that T| (0) = x, r[(T)=y and ^ (r| (u), T( (i;)) = [ u — v |. Since S, (o) is not necessary smooth,
we approximate it by a smooth hypersurface Sy:={zeM:ry(z)=s], where 6' is suffi-
ciently small. Let us denote by (pg/ the projection from S^(o) onto Sy along the integral
curves of V r^/\ V r^ [2, and set x ' = (p^ (x) and y = (p^ (y). Let TI" : [0, F] --> S^ be a minimal
geodesic in Sy joining x' to /. Observe that the length V of TI' (=the distance in Sy
between x ' and y ' ) goes to I as 5' -> 0. We take here a (small piece of) smooth
hypersurface U in Sy such that TI" intersects orthogonally U at X^T^O), and we write
V for the domain of a smooth family of geodesies r|p:[0, F] -> Sg/ which start at p of U
and point to the same direction as TI". Let us here choose a small positive constant e
and a sequence {£„} of positive numbers with £»^0 as n-> oo. We may assume that
0<5»^5(^,Ej, where {8^} is as in Step 2 and §(^i,e^ is as in Lemma 1.5. For a
point z ' of Sg., we set

!„ (z-): = { T e [0, ̂  (z-)]: ̂  (z'; T) e ̂  ̂  },

where !„«) is defined by ^(z^T^z'^eS^o) and ^o,sn:={xeM:disM(x^o)^sn}'
Observe that the m-dimensional Hausdorff measure ^(^o ̂ ^r\A(t,s)) goes to zero as
e^O. We define subsets K,^ of Sy by K^^z'eS^IUz^l^e}. Then by the
Chebyshev's inequality, we have

Jfw-l(K^)^l f lUzOl^Jf^o^nA^))
s Jss- s

where c^ is a positive constant independent of n. This implies that

(3.6) ^-^(K^^O asn-^oo.

For a point /? of U, set T,, „(/?):= {ue[0,r]: r|p(M)eKg^}. Then by the Chebyshev's
inequality again, we obtain

(3.7) ^"'-^{peU:^^)^})^^ \^^(p)[^c2^m-l(K^^V),
£Ju 6
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where c; is a positive constant independent of n. It is not hard to see from (3.6) and
(3.7) that

(3.8) liminf|T,,^)|^s
n -> oo

for almost all p of U. Let us take a point p of U with (3.8) and a subsequence n' such
that

lim |T^(/0|^£.
n' -> oo

We can define a family of curves ^p,n'(M) (ue[0,r]) in S,(o) by
^ „/ (u): = ̂ , (TI; (u), ̂  (T|; (M))). Set ^ „,: = the length of ^,,. Then it follows from
(3.2), (3.3), (3.4) and (3.8) that

(3.9) ^ ̂  ({(I + 0 (n')) (1+0 (£))w + 0 (6)1,
L Jfc(s) J

where 0 (n') [resp., 0 (e)] stands for a constant which goes to zero as n' -» oo (resp.,
s-^0). Since ^(0) (resp., ^,^(0) converges to Os. ((^1 (^)) (resp.,
^(^W))) as n'^ oo, and further d,(x, (p^l0?))<£ and ^O.cp^ri^r))^ if^
is sufficiently close to x\ we have by (3.2) and (3.9)

^(0^(x),0^(^))^J^(l+0(E^))(l+0(£))^+0(£)+0(n /).
Jfc(s)

Thus, letting n" go to infinity and £ and 8" go to zero, we have shown the required
inequality (3. 5). This completes the proof of Proposition 2.2.

3.2. We shall now show the following

LEMMA 3.1. — Let M be as above and CT, y t\vo rays o/M.
(i) If a i5 asymptotic to y, then,

-disM(a(0,Y(0)-^0,

^(ans^Yns^^o,
t

as t goes to infinity, where p is a fixed point of M.
(ii) If a and y are equivalent, i.e., lim dis^(a(t),y(t))/t=0, then,

t -*• oo

^(ans^Yns^^o,

as t goes to infinity.
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Proposition 2.1 is an immediate consequence of Proposition 2.2 (which has been
proved in 3.1) and Lemma 3.1.

Proof of Lemma 3.1.- Suppose first that CT is asymptotic to y. We take two positive
constants e, 8e(^0,1) and a divergent sequence {^ .L= i ,2 , . . . Let a^ ^:[0,;g J-^M be
distance minimizing geodesies such that c^ „ (0) = CT (e), CT^ „ (/„ „) = y (Q" Then* Fact 1.1
(iii) implies that {o^ „ (Q } converges to a ((+ e) as n -> oo. Hence we have

(3-10) 9n:=<o(s)(^n(0),a(e))^0,

as n goes to infinity. Let us apply Fact 1.3 (i) to the geoedesic triangle
An:=(a(£),Y(^,a((^+e)/(l-6))). Then we get

(3.11) disM(y(acT(a,„+£)/(l-8)))^^€^t£_^ /T^
1 —6 v

where ̂ : = P ~1 8 -1 sin 9^ and P is a constant depending only on M and a (e) (cf. 1.3). It
follows from (3.10), (3.11) and Urn l^Jt^ 1 that

n -*• oo

limsup^7^^-25-.
n -» oo ?„ 1 — 8

Since 8 and { ^ } are taken arbitrarily, we see that CT and y are equivalent. It is easy to
see from the argument in 3.1 that if y and CT are equivalent, then
Urn d, (y Pi S, (^), a U S^ (p))/t = 0. This completes the proof of Lemma 3.1.

t -» oo

3.3. TV6? shall now prove Proposition 2.3. - The first three assertions are direct
consequences of the previous results. It remains to show that the Hausdorff distance
^H(MJoo),M^) goes to zero as t-> oo, where M^:=(S,(o)n<^(M), (l/t)d,). Let e
be any small positive number and A={/?i , . . .,^} a 2e-lattice of MJoo) with gap e,
namely, 8^,,/?,)^£(f^/) and 8^(.)c,A)^2£ for any xeM^(oo). We assume that /?,
0*=1 , . . . ,H) are represented by rays o, starting at o. Set
A(0:={oi(0, . . .,o^(0}. Then A(Q defines a (2e+e(t)}-lattice in M, , with gap
£-e(r), where e(r) goes to zero as t -^ oo. Moreover we have

j^8^,^^^.(a,(0,a,(0)^^l+^l8,^

This shows that d^(M^(co),M^,) goes to zero as t->oo (cf. [15], Ch. 3, Proposition

3.4. We shall here give the proof of Proposition 2.4 which is devided into 4 steps.
Step 1. - Let CT and 7 be two rays of M which belong to the same end of M. For

simplicity, we assume that they start at the same point, say the base point o in (H. 1). We
fix constants a, b with 0<a<fc. For any large number r, we take a sufficiently small
positive constant 8, which goes to zero as ^ oo. Then S^:={xeM:r^ (x)=at}
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approximates S^(o). Set ^;=anS^ and ^:=ynS^, and let T|( : [0, ?j-»-S^ be a
distance minimizing geodesic in S^ joining p^ to ^ { ? ( : =the length of T|(). Observe that

(3.12) -^8,([a],[Y])
at

as t-> oo, because of Proposition 2.3 (iii). We have now a (piece of) smooth surface
£,:(M,S)-^M (a^M^b; 0^5^/r) defined by 2;,(M,s):=^(^(sO;(u-a)r). Set
g^: ̂ t"2^*^ where ̂  stands for the Riemannian metric of M. Then it follows from
the definition of E( and Lemma 1. 5 that

(3.13) ^-^^)=so'\8u 8s/

(3.14) g^[ —,— ) -> 1 uniformly as t -> oo.
\8u 9u/

Moreover we observe that

(3.15) ^ / a a)(u,5)^c^
\8s 9s ) a-

for any (u, s), and

(3.16) [ltlt |g,(ll\u,s)ds^u^([^[y])Jo v \3s a5/
as t goes to infinity, where c, is independent of (u, s) and it converges to 1 as t -> oo. In
fact, by Lemma 1.5, we have

^ i ( 8 8\^^. 2e,+9i(Mt-e,) 1 8 , _ , ,-log^ -,- ^2 1+————--——t)- -logJJ^O,
9u \8s 8 s } L l—^—6i(ut—s)_]8u

where 61 and J^ are as in Lemma 1.5 and E( goes to zero as t->co. This implies
(3.15). On the other hand, we have

(3.17) liminfF U 8 9 \u,s)d ̂ lim ̂ (a(ut),y(ut)) ̂ ^^
t-» oo Jo V \8S 8S/ t-^ oo t

Hence (3.16) follows from (3.15) and (3.17). Consequently, we can assert that for a
fixed u,

g\^^}(^9s)~^ul (almost a115)\8s 8s/ a2

as t goes to infinity, if 5^ ([or], [y]) >0.
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Step 2. - Let us now define the metric space associated with M(oo). For any pair
of points (t,p\ (t\p') of [0, oo) x M(oo), we set

Aoo ((t,p\ (r',//)): ==^/r2 +1' 2 -2 tf cos 8^ (p,p\

where 8^ (/?,//): =min {71,8^ (/?,//)}. Then we get a metric space ([0, oo) x M(oo), AJ
and write ^(M(oo)) for it. Making use of Propositions 2.2 and 2.3, we have a map
(D:M\B,Jo)^^(M(oo)) defined by 0(x):=(r(x),0,^,(x)) which satisfies:
0 1 ( { t } x M (oo)) = S, (o) (t^ to), and for any Lipschitz curve T|: [0, <] -> M\B^ (o),

(3.18) the length ofOon^ (dis^ (o, T| ([0, /]))) x the length of T|.

Here n (() satisfies:

(3.19) H(0^1 and l imn(0=l .
t -»• 00

5't^ 3. - In this step, we shall show that for two rays CT, y of M,

(3.20) lim inf < (CT (Q, y (t)) ̂ 5, ([a], [y]),
t -*• 00

where <(a(0,y(0):=2 arcsin(disM(a(0,Y(0)/20. Obviously it is enough to show
(3.20) in case that a and y start at the same point, say the base point o in (H. 1).
Let n,:[0,l]-^M be a geodesic joining T|,(O)=CT(O to r|,(l)=y(t) with
\r}t\=^M(^(t\7(t))^ We first consider the case that disM(o,r|,([0,1])) goes to infinity
as t-^co. Set r|,:=(l/00o^:[0,1] -^(M (oo)) (for large t), namely,
n, (s): = ((1/0 r (TI, (s)), <D, ̂  ̂ ^ ^ (Tt, (s))). Then, { T|, } defines a family of Lipschitz curves
in ^(M(oo)) such that i(0)=(l, [a]), 'n,(l)=(l,[y]) and

the length of r\^ (dis^ (o, ̂  ([0,1]))). disM(g(o?y(o).
t

Thus { T|,} are equicontinuous and totally bounded. This implies that for any divergent
sequence {^}, there exists a subsequence {t^} of {?„} such that {r^,} converges to a
Lipschitz curve r^: [0,1] -> <^(M(oo)) joining (1, [o]) to (1, [y]) with

the length of ^^liminf^^^^^^.
(„' ^ oo ?„'

Hence we have

lim inf < (a (Q, y (Q) = 2 arcsin flim inf^M^^)^^)]
^00 L ^00 2( J

^ 2 arcsin (the length of r\ J

^2arcsinA,((l, [a]),(l, [Y]))=8,([a], [y]),
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It remains to prove (3.20) in the case that supdis^(o,r[^([0,1])) is finite for some
divergent sequence {^}. In this case, we have a straight line T|: (- oo, + oo) -> M such
that TI^IP.OCO-^M (Ti'^O^ri^)) is asymptotic to y and r|~:[0,oo)^M
(r|~(0:=r|(-0) is asymptotic to <j. This implies that dis^(a(t\j(t))/2t goes to 1 as
t -> oo, because of Lemma 3.1 (i) and dis^ (r|+ (t\ T| ~ (t))/21 = 1. Hence we have

lim <(a(0,y(0)=7i^8,([a],[y]).
t -*• 00

Thus we have shown (3.20).
Step 4. — In this step, making use of the observation in Step 1, we shall show that,

given two rays a, y of M,

(3.21) lim sup < (a (r), y (Q) ̂  §, ([a], [y]).
( -> 00

Obviously it is enough to prove (3.21) in the case that cr, y belong to the same end and
start at the same point, say the base point o in (H. 1). Moreover we may assume that
§00 ([CT]? [y])<71- I11 what follows, we use the same notation as in Step 1 (the constant a,
b there are assumed to satisfy: 0<fl<cos5^([(j],[y])/2<l<h). For sufficiently large r,
we consider smooth curves ^: [0, I J t } -> M defined by

^ (5): = S, ((cos IJ1 t)/(cos (s/a - IJ10), s).

Then it is clear from the definition of E( that lim dis^^O), a(t))/t=0 and
t -»• 00

lim disM (^ (l,/t\ y (t))/t = 0. Moreover it turns out from (3.13), (3.14) and (3.15) that
t -> 00

lim sup - . the length of ̂  ̂  2 sin 8^ ([a], [y])/2.
t -* 00 t

Thus we have

Hm sup l sM(cr (ay(y) ^lim sup 1 . the length of ̂ 2 sin 8^ ([c], [y])/2.
t -* ao t t -* oo t

This proves (3.21). The first assertion of Proposition 2.4 follows from (3.20) and
(3.21).

4. Busemann functions on a manifold
of nonnegative curvature

In this section, we shall study a complete, connected, noncompact Riemannian manifold
M of nonnegative sectional curvature and the behavior of Busemann functions on M,
motivated by Shiohama [23].
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Let us begin with the following
Fact 4.1 (Toponogov [26], Lemma 19). Let M be as above and c^.: [0, ?j -^ M (f= 1,2)

two distance minimizing geodesies starting at the same point. For each (t^t^) with
0<t^li (f=l,2), let A (t^t^) be the triangle sketched on (R2 whose edge lengths are t^,
^2 and dis^a^i), (^(t^)), and denote by Q(t^t^) the angle of A(ti,^) opposite to the
edge of length dis^(a^(t^\a^(t^)). Then (t^,t^)->6(t^t^) is monotone nonincreasing
in the following sense: 9 (^, t^) ̂  9 (s^, s^) if s^ ̂  ti and 53 ̂  ̂ .

Before showing the first result of this section, we note that M has at most two ends
and further if M has two ends, then M splits isometrically into N x R, where N is
compact (cf. [5], [25]).

PROPOSITION 4.2. — Let M be as above and suppose M has one end. Then the t\vo
distances <„ and S^ on M(oo) defined in Section 2 coincide. Moreover the following
conditions are mutually equivalent:

(i) The diameter ofM(oo) is equal to n.
(ii) M contains a straight line.

(iii) M splits isometrically into NT x R.
(iv) The isometry group of M is non compact.

Proof. — Suppose 8^([o], [y])^ for some CT and ye^i- Then by Proposition 2.4,
"̂ oo ([a]? M) =7L We claim that S^ ([a], [y]) = n and M splits isometrically into R x N. In
fact, we may assume that o(0)=y(0). Then by Fact 4.1, 2arcsin(disM((T((),y(0)/20
is a monotone nonincreasing function in t and converges to n = <^ ([o], [y]). This implies
that dis^(a(t),j(t})==2t, namely the geodesic i^IR-^M defined by ^(t)==a(t) for t^O
and S(0=Y(—0 for t^O gives a line on M. Therefore it turns out from the Toponogov
splitting theorem that M splits isometrically into R x N along ^ and 8^ ([o], [y]) = n. Now
the proposition follows from the above observation and Corollary 6.2 in [6].

Let us now prove the following

THEOREM 4.3. — Let M be a complete, noncompact Riemannian manifold of nonnegative
sectional curvature. Then for a ray a of M, the Busemann function ¥y associated mth a
is exhaustion function on M (i.e., for each teR, the set { x e M : ¥ y ( x ) ^ t ] is compact) if
and only if S^ ([a], [y]) < n/2 for any ray y of M.

Proof. — Take two points [a], [y] of M(oo). We may assume that cr(0)=y(0). For
any u, s^O, we define Q(u,s) by dis^(cJ(s),y(u))2=u2-}-s2—2 us cos9(M,s). Suppose
that u ̂  s. Then by Fact 4.1, 9 (u, u) ̂  9 (M, s) ̂  9 (s, s) and lim 9 (u, u) = lim

U -> 00 S -*• 00

9 (s, s) = <^ ([a], [y]). Therefore we have

F<,(y(u))= lim s-disM(a(s),y(u))

= lim 5(1- /1+M2S - 2-2M5•~19(M,S))=MCOS9(M,00).
s -> oo

Obviously this shows the theorem, since -^(M? [7])== ^lm 8(^9 °0)-
U -*• 00
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Remark. — The above proof of Theorem 4. 3 says that

<oo(MJy])=lim F,(y(u))/K.
U -* 00

Moreover we can give another description of the distance <oo on M(oo) as follows. Let
<j and y be two rays of M. For each t>0, we can take a ray CT( which emanates from
Y (t) and which is asymptotic to a. We claim now that

(4.2) <oo(^Uy])= lim <,(o(y (0,^(0))
t -> oo

In fact, it is obvious from Lemma 3.1 and Fact 4.1 that

<oo(MJy])^<,(o(y(0,^(0))

Hence it is enough to show that

(4.3) <,(o(y(0, <^(0)) ̂  < (a(0, y(Q)+5,,

where 5( goes to zero as t -> oo and < (a (t), y (t)) = 2 arcsin {dis^ (a (t), y (0)/21}
{cf. Proposition 2.4). (4.3) is verified by refering to the argument of Shiohama [23],
p. 287. For simplicity, we assume that a(0)=y(0). Then by the definition of a, being
asymptotic to a (t is fixed), there exists a family of minimizing geodesies {Ot,n}n=i, 2,
such that the starting points ^,n=c^ n(0) converge to y(t), as n-> oo, the initial vectors
<7(n(0) approach a,(0) as n-^oo and ^t,n(at,n)=a(^t,n) wlt!1 lim^^=oo. Let

n --»• oo

y^ „:[(), fc^J-^M be the unique minimizing geodesies joining a(0) to q^ „ (which are
assumed to be sufficiently close to y(0)). We take the triangle A( „ sketched on R2

whose edge lengths are d^ „, a^ „, b^ „. Let us denote by ^ „, a, „, and P( „, respectively,
the edge angle of A( „ opposite to the edge of lengths d^ „, a^ „ and b^ „. Then it turns
out from Fact 4.1 that for large n,

<„ „ (c^.. (0), V,, „ (̂ . n))^- 8,. „ = o^ + P,., ̂  9,, „ + P,, „,

where

9,^: = 2 arcsin { disM (q^ n, cr (b^ ^))/2 \ „).

Since lim P, „ = 0 and lim 6y „ = < (a (t), y (Q), we have (4.3). This completes the proof
n -» oo n -^ oo

of (4.2).
As direct consequences of Theorem 4.3, we have the two results below.

COROLLARY 4.4. — Let M be as in Theorem 4.3. Then every Busemann function is
an exhaustion function on M, if the diameter ofM(co) is less than n/2.
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COROLLARY 4.5. — Let M be as above. Suppose that M(oo) is a circle. Then:
(i) The diameter ofM(co) is less than n/2 if and only if every Busemann function is an

exhaustion function on M.
(ii) The diameter o/M(oo) is greater than or equal to K / 2 if and only if every Busemann

function is a nonexhaustion function on M.
In particular, these two statements hold for the case: dimM=2.
Remarks. — (i) Let M be as in Theorem 4.3. Then it was conjectured by Shiohama

[23], p. 282, that M could not admit both exhaustion and nonexhaustion Busemann
functions simultanuously. Actually he proved it in the case: m=dimM=2. However
it is not true in general for the case: m^4. For example, let M^ (f==l ,2) be complete,
noncompact manifolds of nonnegative curvature such that diam(M,(oo)) (;=1,2) are
sufficiently small. Then the product manifold M=M^ x M^ admits both exhaustion and
nonexhaustion Busemann functions simultanuously (cf. Section 5).

(ii) Let M be a manifold of asymptotically nonnegative curvature. Suppose that M
has one end and the diameter of M(oo) is less than n. Then it follows from Proposition
2.4 that M admits no straight lines. Moreover we see that the isometry group I(M) of
M is compact. Actually, if I(M) is not compact, then l(M)'p is unbounded for any
peM, and hence the sectional curvature of M must be nonnegative everywhere. Thus
by Proposition 4.2, we see that the diameter of M(oo) is equal to n.

5. Examples

We consider first Riemannian products of manifolds with nonnegative curvature. Let
M;(f==l,2) be complete, noncompact Riemannian manifolds of nonnegative curvature
and M the Riemannian product of M^ and M^. Then we have the natural inclusions
M,(oo) c= M(oo) (f=l,2). It is easy to see that if /?,eMf(oo) (f==l,2), then
6^(p^p^)=n/2, and if/?eM(oo), then there arep^eM^oo) ( f=l ,2) such that/? lies on
the distance minimizing curve in M(oo) joining p^ to p^.

Example 5 . 1 . — Let M,(i= 1, . . ., k) be complete, noncompact Riemannian manifolds
of nonnegative curvature such that for each f, M;(oo) consists of a single point.
Then (M^ x . . . xM^)(oo) is isometric to the part of the unit sphere:
{ (^ , . . . , ^ )eS k - l ( l ) :x^O(f= l , . . . , f e )} .

We shall here give the following

PROPOSITION 5.2. — Let M be a complete, noncompact Riemannian manifold and suppose
the sectional curvature of M is bounded from below by c/r2 log r outside a compact set,
where c is a positive constant and r denotes the distance to a fixed point of M. Then
dimM(oo)==0, i.e., M(oo) consists of a finite number of points.

Proof. — Let us take a continuous function H on [0, oo) such that the sectional
curvature of M is bounded from below by I c ^ r and 1c(t)=c/t2logt for large t. Let J^
be the solution of an equation: J^+^Jg=0, with J,g(0)=0 and J^(0)=l. Then by the
lemma below, we see that J ^ ( t ) / t goes to zero as t-> oo. This implies that given two
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rays CT, y of M starting at the same point o of M and belong to the same end, we have

lim^Co^y^^lim^.^'^0^^,
t -» oo t t -»• oo t •^(0)

since ?-^(a(r),y(r))/J^(0 is monotone nonincreasing for large t(cf. the proof of
Proposition 2.2). This completes the proof of Proposition 5.2.

LEMMA. — Let k be a continuous function on [0, oo) such that k(t)^0 for large t and
r°° -tk(t)dt=co. Let J be the solution of an equation: .T'+feJ^, mth J(0)==0 and

J'(0) = 1. Suppose that J is positive on (0, oo). Then J ( t ) l t tends to zero as t -^ oo.

Proof. — We assume that ̂ 0 on [a, oo) for some a. Then for any t>a, we have

.T(0(t-fl)-J(0= \ {y(s)(s-a)-J(s)}ds-J(a)= | - k ( s ) J ( s ) ( s - a ) d s - J ( a ) < 0 .
<J a J a

This shows that 3 ( t ) / ( t — a ) is monotone nonincreasing on [a, oo). Suppose that
b:= lim J(t)/t>0. Then J( r )^^(r—a) on [a, oo), and hence we have

- k ( s ) J ( s ) d s ^ - \ b(s-a)£(s)ds.
Ja Ja

The right side of the above inequality goes to — oo as t -> oo, so that

( n ^ \
J ' ( t ) =J/(a)— k ( s ) J ( s ) d s ) goes to —oo as t -> oo. This contradicts the assumption

Ja /

that J(t)>0 on (0, oo). Thus we have shown that J ( t ) / t tends to zero as t -^ oo. This
completes the proof of Lemma.

Let us next consider a Riemannian submersion n: M -> M, where M is a manifold of
asymptotically nonnegative curvature (and hence so is M, since n is curvature nondecreas-
ing (cf. O'Neill [22])). Let us denote by M"(oo) the set of equivalence classes containing
the horizontal rays of M. Then the projection can be naturally extended to a map
7i: M U M"(oo) -> M U M(oo). We write n^ for the restriction of n to M"(oo). Then
it turns out that n^ is a distance nonincreasing map from M"(oo) onto M(oo). In what
follows, we assume that n has compact fibres. In this case, it is not hard to see that
M"(oo) coincides with M(oo) and moreover that for each pair of points p, q of M(oo),
the distance between them in M(oo) is equal to the distance between the two fibres
^oo1 (?) ̂ d ^oo1 (^) m M(oo). In particular, n^ gives rise to an isometry between M(oo)
and M(oo), if diam(7i~1 (x))/dis^(x, o) goes to zero as xeM tends to infinity, where o is
a fixed point of M. We remark that for a slight perturbation of the Riemannian
submersion n: M -> M, we have the same conclsuions as above. Actually it is natural
to consider "an asymptotically Riemannian submersion" in an appropriate
sense. However we do not go into details here.
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Let us now consider a group H of isometries of a manifold M with asymptotically
nonnegative curvature and suppose that H acts freely on M so that the orbit space
M=M/H is a manifold and basis of a principal fibration H ^ M ^ M with natural
projection n. Since H acts by isometries, the metric of M projects down to a complete
metric for M with respect to which n becomes a Riemannian submersion. Since H also
acts isometncally on M(oo), we see that M(oo) = M(oo)/H, if H is compact.

Example 5.2. - Let G=SO(m+l) with bi-invariant metric and H=SO(m) acting
on Euclidean space R" by rotations. Then M=G x R-/H is the tangent bundle of the
sphere S", where H acts diagonally on G x R-, and M(oo) consists of only one point.

Example 5.3.- Consider the unit sphere S^l) of dimension 3 in H (Quaternion field)
as a Lie group with multiplication in H. Let { Z,, Z,, Z,} be a left invariant, orthonor-

Si ̂  ̂  0." S3(l)such that [Z^=2Z3' tZ2,Z3]=2Z, [Z3,ZJ=2Z, (cf. e.g.,[4], 3.35). We denote by 9,(i= 1,2,3) the dual forms of Z. and consider a Riemannian
metric G on R4 of the form:

G = dr2 +f2 (r) Q2, +f2 (r) ej +g2 (r) Qj,

where f(r), g(r) are smooth functions on [0, oo) which are chosen later. Let n be a
tangent 2-plane spanned by unit vectors X, Y which are orthogonal. Without loss of
generality, we may assume that G(Y, 9/8r)=0. Then the sectional curvature K(n} for
the plane n is given by

K^-^^-^i-^J
•f f g

+f~2^-^g2f-2-f2)(xiyi+xiy2)

+f~lg~l(g3f~3-g'f)(xiyi+xiyi+xjyi+xiyi)

+6/~3 (S'f-gf) (XQ Xi y^y^ -Xy x^y^ y^),

where x,-G^'8/8r), x,=G(X,Z.)//0=l,2), x,=G(X,Z,)/g, y^G(^)/f 0=1,2)
and y,=G(V,Z,)/g. We set here f(r)^r(Q<\<2) and g (r) = r2^ + r2) for large
r. Then M=(IR ,G) is a manifold of asymptotically nonnegative curvature such that
M(co) is isometric to the 2-sphere of constant curvature A,"2.

The following example shows that certain minimal submanifolds in R" belong to a
class of manifolds with asymptotically nonnegative curvature.

Example 5.4 (Anderson [2]). - Let M be a complete minimal submanifold of Euclidean

space such that the total scalar curvature: J \^\- is finite, where m=dimM and ̂

denotes the second fundamental form of M. "Then if m^ 3, \^\ is bounded from above
by c/r for some constant c, where r is the distance function to a fixed point of M In
Ais case, M(oo) consists of a finite number of the (m - l)-spheres of constant curvature

Before concluding this section, we shall mention a result on the volume growth of
metric balls of a manifold M with asymptotically nonnegative curvature.
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PROPOSITION 5.5. — Let M be as above. Suppose that the sectional curvature is
bounded from above by a positive constant. Then for each end S^ ofM (a= 1, . . ., u(M)),
one has

^^logVol.(B^)n^(M))^^^^^
t - o o lOgt

where p is a fixed point ofM and diniHMJoo) stands for the Hausdorff dimension of the
connected component M^(oo) ofM(co) corresponding to <^(M).

proof. — Let us first observe that for any ray a starting at the base point o in (H. 1),

a
(5.1) the injectivity radius of M at or (t) ̂  — — — — . ,

[log(2+t)J

where a, b are positive constants independent of a. (5.1) can be verified by applying
the argument of Cheng-Li-Yau [7], Theorem 1. Since Proposition 5. 5 is obvious when
dimH M, (oo) = 0, we assume that dimn M, (oo) is positive. Let us take a positive constant
\x with ^KdimnMJoo). Given a positive constant e, let {x^ . . .,^} be finite points
of M,(oo) such that BJx,) UBJx,)=0 (i^j\ where B,(x) denotes the metric ball of
MJoo) centered at x with radius s and further {x^ . . ., x^} is maximal among the finite
points with the above property. Then MJoo) is covered by {^^) };=i. . . . , „ , and
hence we have

n(4e)^£^Jdiam(B2jx,))]^C^Se(MJoo)),

where C^ is a constant depending only on |A. Since (KdimHMJoo),
lim^SJHxC^^^^00^00- This ^P1165 that ^£-p if e^e^Hxt00)).
e-» 0
where £(n, MJoo)) is a positive constant depending only on n and MJoo). Now let us
take e=l/k (k=l,2, . . .) and let {x^ i , . . .,^^)} be finite points of MJoo) chosen
as above. Set A,^^.^)' where {^,1} are r3iys emanating from 0 such that
[c^ j = x^ i. Then we have a constant c < 1 which satisfies

- disM (pk, i. Pk, j) ̂  c Soo (xk. i» ^k. j)
K

for large k and any i, j:t^ij^n(k) [cf. 3.1 step 1; Proposition 2.3(i)]. This shows
that disM(pk.^kJ^2c (i^j) and hence we have

(5.2) B,/2 (p^,) 0 B,/2 (pk,,) = 0 (i ̂ ').
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Set A<,^: = (Bfc +1/2 (o)\A -1/2 (o)) Pt ̂  (M). Then by (5.1), (5.2) and the assumption
that the sectional curvature of M is bounded from above by a constant, say A2, we have

n(k)

(5.3) Vol,(A,,)^ S VoUB .̂,))1=1
...f^rsmAtd"-1 / a \

^(a,.,_,n(fe) ——— du [c,,:=——————
Jo L A J V * [log(2+fe)]2;

...f^rsinAMT""1

^'"-^JoL'-A-J '"•

Then it turns out from (5.3) that

^ ^logVoUB^)n^(M))
?-. 00 lOg t

^^^logVoUB^)n^(M))
( -» 00 lOg t

P[(]
log M^|:log(2+M)]-bw^

^ lim inf——v————————— ^ 1 + n.
? ^ oo log t

Since |i is any constant less than dim^My(co), we get the required inequality. This
completes the proof of Proposition 5.5.

Remarks. — (i) It is clear from Proposition 2.2 that dimHM(oo)(:=maxdimHM,(oo))
is less than or equal to w—1, without the additional condition that the curvature of M
is bounded from above.

(ii) In Proposition 5. 5, the equality does not hold in general (c/. Proposition 5.2).
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